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It is not possible to be occupied with public or private economy, and consequently
with statistics, without remarking soon on notable differences between the results of
operations, even the most exact, and better combined in order to offer an entire concor-
dance. During a long time observers, certain of their experiences, and scandalized by
the apparent contradictions which they encountered, have wished to find the explication
more or less plausible in the variations of natural causes.

Jacques Bernoulli knew, first, that the greater part of these anomalies the simple
effects of chance. He showed how one could submit to the calculus these effects that
common opinion regarded as free of all rules, and he founded thus on an unshakable
base this part of the art of conjectures which must direct the observer into a numerous
class of scientific researches.

The researches of social economy or of statistics belong nearly all to this remark-
able class, of which the special character consists in the continual usage of the means or
the sums of similar phenomena compiled by multiplied observations. It is precisely the
ratio which exists between the probable deviation of these means and the multiplicity
of the observations that J. Bernoulli has signaled.

Moivre perfected the discovery of Bernoulli. But these two great mathematicians
supposed known the possibility of the phenomena, and they limited themselves to de-
duce from the law of possibility that they assigned, the extent of the deviations of
which the observations were able to be susceptible. This was there only one part of
the question, and the least applicable part: because the natural laws are unknown, and
form precisely the object of the researches. It remained therefore to resolve the prob-
lem inverse of the one which alone permitted to render to ever celebrate the name of
Bernoulli.

The solution was given only sixty years later, by Bayes, a little known English
scholar, without doubt because a premature death interrupted his work, but who ap-
peared to have possessed in a very high degree the qualities of the geometer. Bayes

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. June 21, 2010
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arrived, in a manner that Laplace has judged fine and very ingenious, although a little
embarrassed, to determine, in the case of two events of which the one or the other must
necessarily present itself in each observation, the probability that the indicated possi-
bilities through some experiences already made are really contained in some given
limits.

Bernoulli had proved that, when the respective probabilities of the two events are,
for example, in the ratio of 3

5 to 2
6 there are odds more than one thousand against one,

out of 25550 trials, the first will be presented more than 14819 times and less than
15841; numbers which would place the observed possibility of the first between 31

50
and 29

50 , and the observed possibility of the second between 19
50 and 21

50 .
Bayes will prove reciprocally that, if in 25550 experiences one observes the ratio of

5
6 to 2

5 between the numbers of repetition of two events, that is to say the first has been
observed 15330 times, and the second 10220 times, there are odds of one thousand
against one that the real possibilities fall, the first between 305

600 and 295
600 , the second

between 195
600 and 305

600 . These fractions would lead respectively to 15588, or to 15072
repetitions of the first event, and to 9962, or 10428 of the second.

It was not useful to repeat these facts. They indicate clearly the nature of the ques-
tions which raise the remarked deviations between the observations. They show also
what slowness has presided in the progress of this branch of the analysis of hazards,
and at what point it was arrested, having the immense impulse that the theory received
from the genius of Laplace toward the end of the last century.

Laplace had proposed in all its generality the following problem:
What is the probability of the deviation of which a mean is able to be affected

among any great number of different values of a phenomenon or of an event, given
by so many observations, when one is not aware of the law of the probabilities of the
partial deviations of each observation?

Laplace resolved completely this difficult question, and he has made the most beau-
tiful applications of his method in his admirable Theorie analytique des probabilités.

The rule to which he is arrived is quite simple. It prescribes to divide by the number
of observations, the square root of the double of the sum of the squares of the differ-
ences between the result of each observation and the mean of all. If one represents next
the limits of the deviation that one wishes to consider, by the product of the constant
thus obtained and a variable factor; the probability that the real deviation is contained
in these limits will be read without pain in a table calculated beforehand for all the
values of the variable factor, a table which remains the same for a crowd of diverse
questions.

Effectively then the probability is expressed by a well-known transcendent, of
which a table has been published by Kramp in order to resolve a quite different ques-
tion, the calculation of the astronomical refractions. Moreover, there is need most of
the time only for four or five values of this transcendent; and one is able to conserve
them in the memoir.

This rule is so facile, so general, so singular, that it will never lack to excite the
astonishment at first of all. Better, when one demonstrates it to persons little versed in
mathematics, it seems to them that it is a revelation of a sort of mystery, of a supernat-
ural property of the kind of those that the ancients attributed to the famous numbers of
Pythagoras: these persons are not able to be prohibited from seeing something more
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than human in the algebra, capable to extract such secrets to blind chance.
The men more habituated to the resources of the highest analysis find another sub-

ject of surprise in the artifice of which the illustrious inventor himself is served by this
rule, in order to eliminate from the calculations the quantities dependent on the un-
known law of the probabilities of the deviations of the observations. This uncommon
artifice leaves to hover some difficulty on the degree of exactitude of the use of the
constant deduced from the squares of the differences between the observations and the
mean. It will suffice to repeat in this regard that the sum of these squares appeared
substituted in the sum of the products of the squares of all the possible errors by their
probabilities, a sum to which the first is not rigorously equal, but of which it differs
probably very little when the number of observations is rather great.

Laplace has believed necessary to clarify the usage of this substitution in the Pre-
mier Supplèment à la Théorie des probabilités. The expressions consigned in this
supplement and in the diverse editions of the Essai sur les probabilités show the im-
portance that he attached to dissipate the feeble incertitude that was able to enter his
analysis.

Next, Mr. Poisson has reprised, with the extreme lucidity which is habitual with
him, this difficult passage of the theory of Laplace, and he has demonstrated how the
difference between the true constant and the observed constant vanish, in measure as
the number of experiences increases.

The study of the beautiful memoirs of Mr. Poisson, on this subject, inserted into
the Connaissance des temps, and another memoir of Volume IX of the Academy of
Sciences, in which the most delicate proceeds of this subtle analysis are applied by him
to the examination of the ratio of the births of girls and of boys, this thorough study
has made to think that there existed some means to dissipate entirely the slight cloud
which was able to subsist yet on the important rule given by Laplace.

If one also wishes to consider that this rule must serve to balance, in some manner,
in order to weigh the influence that one is able to accord to the greater part of the
observations on which political economy is founded; that it is susceptible, as its author
has shown, to be extended to the same facts which hold to the intelligent part, to the
moral part of man, and consequently to philosophy; that, besides, the physical sciences
properly said have more than one occasion to recur; one will find perhaps some interest
to see established directly and especially without this clever elimination, but painful to
grasp well, of which Laplace himself is served so happily, the existence of the constant
on which the rule reposes all whole. Such is the end of this memoir.

The proceeds which will be employed in order to arrive there are, moreover, only
those same of which Laplace has taught the use. It is necessary to repeat again, it is in
the Theorie analytique des probabilités and in the developments so remarkable given
by Mr. Poisson, that the means of demonstration have been drawn.

A rather natural reflection has led there. In order that it is easily seized, it is neces-
sary to repeat that if an event has been observed p times out of a great number p + p1
of trials, the possibility of this event is contained in the limits

(1)
p

p+ p1
± c

√
2pp1

(p+ p1)3
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is equal to the definite integral

(2)
2√
π

∫ c

0

e−t
2

dt.

This put, it was easy to perceive that to demand the probability of the extent of
the deviation between the ratio p

p+p1
, and the real ratio of possibility which would be

manifested if it were given to man to multiply indefinitely the trials, it is to demand,
for a very particular case, the probability of the exactitude of a certain mean furnished
by the observations.

Let one represent in fact by γ, γ1 two arbitrary functions of the observed events,
relative respectively, the one to the event A, which is presented p times; and the other to
the contrary event B, which has taken place p1 times; if one names moreover x, x1, the
unknown possibilities of these two events; nothing prevents to imagine that the (p+p1)
trials had had for object to determine the value of the quantity

v = γx+ γ1x1.

By taking therefore for this quantity the mean of the products of the functions γ,
γ1, multiplied respectively by the numbers p, p1 of the events to which they report
themselves back, one will be able to demand the probability that the value

v′ =
γp+ γ1p1
p+ p1

is not extended from the real value v by a given quantity.
If now one supposes

γ = 1, γ1 = 0,

the mean v′ is reduced to p
p+p1

, the quantity v is reduced to x; and it is clear that the
probability which will have been the probability of the difference between the ratio
p

p+p1
and the real value of x.

But the probability of this difference is given by formulas (1) and (2), as Laplace
has demonstrated. One is able therefore to conclude that these formulas are only a
particular case for γ = 1, γ1 = 0, of those which must express the probability of the
possible deviations between the mean obtained by observation and the true value of the
expression (γx+ γ1x1).

It is therefore from total necessity that the factor√
2pp1

(p+ p1)3
,

which enters into formula (1), is precisely the singular constant introduced by Laplace;
in which the values given by observation are p times 1, p1 times 0.

In order to acquire certitude, one will put

p+ p1 = n, whence p1 = n− p,
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and the radical above will be able clearly to be written:

1

n

√√√√2

{
p

(
1− p× 1 + p1 × 0

n

)2

+ p1

(
0− p× 1 + p1 × 0

n

)2
}

One finds therefore precisely the quotient of the root of the double of the sum of
the squares of the differences between the observed values (p times 1, p1 times 0) and
the mean p×1+p1×0

n , by the number of observations: and the radical
√

2pp1
(p+p1)3

is no
other than the constant of Laplace.

The introduction of this radical in formula (1) is not only probable: it results, one
knows, from a certain analysis. It was therefore permitted to anticipate, after this par-
ticular case, that the value of the constant was not less susceptible to be calculated in a
certain manner in the general case.

Effectively the decomposition of
√

2pp1
(p+p1)3

, one time done, the rigorous demon-
stration of the rule of Laplace requires no more than the rather simple calculations,
although a little long.

The march will be better followed, if one begins by examining the case of which
there comes to be question, and which involves only two exclusive events.

Conserving the same denominations,

p+ p1 = n, x+ x1 = 1,

and the question is to determine the probability that the unknown quantity

(3) v = γx+ γ1x1.

is comprised between the given limits a′ and a.
Designating by C the coefficient of the term of the binomial (x+(1−x))n of which

the exponents are p and p′, one knows that the probability of the event composed of p
repetitions of the event A, and of p1 of the event B, is

Cxp(1− x)p1

The relation (3) gives

x =
v − γ1
γ − γ1

, 1− x =
γ − v
γ − γ1

.

Therefore under the hypothesis of an assigned value to v, the probability of the
composite event will be

C

(
v − γ1
γ − γ1

)p(
γ − v
γ − γ1

)p1
The probability of the hypothesis of a value of v will be thereafter

(v − γ1)p(γ − v)p1dv∫ γ1
γ

(v − γ1)p(γ − v)p1dv
;
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the integral being taken for all possible values of v, that is to say from v = γ to v = γ1,
if γ1 > γ.

Finally, the probability that the real value of v is contained in the limits a′ and a,
will be found by integrating the preceding expression between these limits.

This probability is

(4)

∫ a
a′
(v − γ1)p(γ − v)p1dv∫ γ1

γ
(v − γ1)p(γ − v)p1dv

;

One knows the general method that Laplace has invented in order to obtain the
approximate value of the integrals of this kind. In the following, it is necessary to put

(5) v =
pγ + p1γ1

n
+ z, dv = dz,

and z will represent the deviation between the real value of v and the mean drawn from
the observations.

Each of the terms of the probability (4) will take the form

(γ − γ1)n
pppp11
nn

∫ b

b′

(
1 +

nz

p(γ − γ1)

)p(
1− nz

p1(γ − γ1)

)p1
dz,

b′ and b being the limits of z, corresponding to the limits a′ and a of v.
Developing the factors

(
1 + nz

p(γ−γ1)

)
and

(
1− nz

p1(γ−γ1)

)
into exponential series,

and designating ordinarily by e the base of the Naperian logarithms,

(6)
(
1 +

nz

p(γ − γ1)

)p
= e

p ln
(
1+ nz

p(γ−γ1)

)

= e
nz

(γ−γ1)
− 1

2
n2z2

p(γ−γ1)2
+ 1

3
n3z3

p2(γ−γ1)3
− 1

4
n4z4

p3(γ−γ1)4
+etc.(

1− nz

p1(γ − γ1)

)p1
=ep1 ln

(
1− nz

p1(γ−γ1)

)

= e
− nz

(γ−γ1)
− 1

2
n2z2

p1(γ−γ1)2
− 1

3
n3z3

p21(γ−γ1)3
− 1

4
n4z4

p31(γ−γ1)4
−etc.

and the integral will become

(γ − γ1)n
pppp11
nn

∫ b

b′

dze


− n2z2

2p(γ − γ1)2

(
1

p
+

1

p1

)
+

n3z3

3p(γ − γ1)3

(
1

p2
− 1

p21

)
− n4z4

4p(γ − γ1)4

(
1

p3
+

1

p31

)
+ etc.



Therefore one will put only

n2z2

2p(γ − γ1)2

(
1

p
+

1

p1

)
= t2,
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whence

(7) z = t

√
2pp1(γ − γ1)2

n3
, dz = dt

√
2pp1(γ − γ1)2

n3

The transformation used since Laplace consists in representing by t2 all the expo-
nential series in z: one deduces from it a value of z, ordered according to the powers
of t, and hence one transports to the limits of z a part of the difficulties of analysis. But
as the question here is to fix rigorously the value of the constant which expresses these
limits, it appeared preferable to rid them from this expression of z in a series of which
one obtains the terms only with difficulty through the return of the series. By the trans-
formation (7), all this which it is able to be delicate and difficult in the approximation
is entirely concentrated in the integral and in the value of the probability.

One arrives thus to the expression
(8)

(γ− γ)n+1 p
ppp11
nn

√
2pp1
n3

∫ c

c′
dte


− t2 + 4(p1 − p)

3
√
2npp1

t3 − p3 + p31
n2pp1

t4

+
8(p2 + p21)(p1 − p)
5npp1

√
2npp1

t5 − 4(p5 + p51)

3n3p2p21
t6 + etc.



c′ and c representing the limits of t.
The constant factors placed outside of the

∫
sign will be suppressed in the rest

of the calculation, because they would multiply the two terms of the probability (4).
Developing the part of the exponential which contains the powers superior to the 2nd,
by means of the known formula

em = 1 +m+
m2

1.2
+

m3

1.2.3
+ etc.,

the sought integral is able to be written as follows:

(9)
∫ c

c′
dte−t

2

{
1 +

4(p1 − p)
3
√
2npp1

t3 − p3 + p31
n2pp1

t4 +
8(p2 + p21)(p1 − p)
5npp1

√
2npp1

t5

−
(
4(p5 + p51)

3n3p2p21
− 4(p− p1)2

9npp1

)
t6 + etc.

}
It is clear that the coefficients of the terms placed between parentheses will be of

the order of the powers of 1√
n

, save some special circumstances of which there is no
place to be occupied here.

Moreover, by taking c′ = −c, the terms which contain some odd powers of t will
be destroyed, and there will remain only

(10) 2

∫ c

0

dte−t
2

{
1− p3 + p31

n2pp1
t4 − etc.

}
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But seeing that∫ t

0

dt e−t
2

t2m =− e−t
2

2

(
t2m−1 +

2m− 1

2
t2m−3 + · · ·

· · · +2m− 1

2
· 2m− 3

2
· 5
2
· 3
2
t

)
+

2m− 1

2
· · · 5

2
· 3
2
· 1
2

∫ t

0

e−t
2

dt,

the integral (10) will be partitioned into two parts,

(11) 2

{
1− 3

4

p3 + p31
n2pp1

− etc.
}∫ c

0

e−t
2

dt+
e−c

2

2

{
2
p3 + p31
n2pp1

(c3 +
5

2
c) + etc.

}
The value of e

−c2

2 , always fractional, is further for

c = 1 of 0.1839397

but c = 2 reduces it to 0.0091578

c = 2 +
1

2
to 0.0009652

c = 3 it falls to 0.0000617

The part of the series multiplied by this very small factor, a part of which the terms
are already divided by the powers of the large number

√
n, will be therefore very

convergent at the origin: and when n will be very great, one will be able evidently to
neglect it without sensible error.

The numerator of the probability (4) will be reduced thus to

(12) 2

(
1− 3

4

p3 + p31
n2pp1

− etc.
)∫ c

0

e−t
2

dt.

The denominator is found by integrating the expression (9), for all possible values
of t.

γ and γ1 being the extreme limits of v, one will conclude from the relations (5) and
(7) the limits corresponding to t:

(13) l =

√
pn

2p1
l′ = −

√
p′n

2p

These two quantities are of the order
√
n, and consequently very great; but

1

2
e−t

2

tm = 0

when t = ∞; and this expression which becomes so much smaller as t is greater
departing from t =

√
m
2 , is generally quite small, because one has for

t = 3 +
1

2

1

2
e−

49
4 = 0.00 000 239 255

t = 4
1

2
e−16 = 0.00 000 005 626

t = 5
1

2
e−25 = 0.00 000 000 000 694
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From this consideration there results that if the limits (13), which generally are
of the very elevated order

√
n, exceed only the first numbers, the terms furnished by

the integration and multiplied by 1
2e
−t2 will decrease much more rapidly yet in the

denominator than in the numerator, even for the powers of t rather elevated. To the
degree where one carries ordinarily the approximation, there will not be any error if
one neglects these terms, and the integral will be reduced to

(14)
(
1− 3

4

p3 + p31
n2pp1

− etc.
)∫ l

l′
e−t

2

dt.

One knows besides that if the absolute value of the limits l and l′ is in the least
superior to 4, one is able to extend them to infinity; since one has for

(15) t = 4

∫ ∞
4

e−t
2

dt = 0.00 000 001 366

(16) t = 5

∫ ∞
4

e−t
2

dt = 0.00 000 000 000 136 254

This extreme part of the entire integral, which becomes 10000 times smaller when t
passes from 4 to 5, diminishes much more yet from t = 5 to t = 6. It suffices therefore
that the smallest of the numbers p and p1 attained 50, provided that one was able to put
without sensible error

(17)
∫ l

l′
e−t

2

dt =

∫ ∞
−∞

e−t
2

dt =
√
π,

π representing the ratio of the circumference to the diameter.
The expression (14) is restored by this approximation excessive to(

1− 3

4

p3 + p31
n2pp1

− etc.
)
√
π,

and the probability (4) to the definite integral

(18)
2√
π

∫ c

v

e−t
2

dt.

This is the probability that the value of v = γx + γ1x1 is contained between the
limits a′ and a, which, because of the relations (5) and (7), becomes

(19)
γp+ γ1p1

n
± c
√

2pp1(γ − γ1)2
n3

.

The expression (18) is equally the probability that the difference between the real
value of v and the result of the observations, or the deviation of these observations, is
contained between

(20) ±c
√

2pp1(γ − γ1)2
n3
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It is easy to see that

pp1(γ − γ1)2

n
=
pp21 + p1p

2

n2
(γ − γ1)2 = p

(
p1(γ − γ1)

n

)2

+ p1

(
p(γ − γ1)

n

)2

= p

{
(n− p)γ − p1γ1

n

}2

+ p1

{
(n− p1)γ1 − pγ

n

}2

this which changes the expression (20) into

(21) ± c
n

√√√√2

{
p

(
γ − pγ + p1γ1

n

)2

+ p1

(
γ1 −

pγ + p1γ1
n

)2
}

One recognizes under the radical the sum of the squares of the differences between
the mean and all the observations; thus, it is proved that, in the case of two simple
events, the constant which determines the extent of the deviations is precisely and
certainly, that that the genius of Laplace has made to discover by a path so different.

The form (20), under which this constant is offered, must be remarked: it is repre-
sented without ceasing, whatever be the number of simple events. It is besides a third
way to calculate the constant. It is able to be reunited to those which have been given by
Laplace. The form (21), as Mr. Poisson has made to observe, is the most commodious.
But that

(22) ± c
n

√√√√2

{(
pγ2 + p1γ21

n

)2

−
(
pγ + p1γ1

n

)2
}
,

where enters no more than the mean of the squares of the functions given by the obser-
vations, less the square of the mean, is often useful in applications, when the functions
γ, γ1 do not vary. Perhaps it would be found from the circumstances where the form
(20) will be it also.

The developments which come to receive the analysis of the particular case of two
events will permit shortening certain parts of the demonstration, when there will be a
question of the subdivisions more multiplied by the total number of trials among the
diverse observed phenomena.

If three phenomena or events A, B, C presented themselves, one would designate
again by γ, γ1, γ2, the arbitraries which characterize them, by x, x1, x2, the unknown
possibilities, by p, p1, p2, the number of repetitions of each simple event out of the
number n trials, and one would have to calculate the probability of the values of the
expression

(23) v = γx+ γ1x1 + γ2x2,

contained between the given limits a′ and a; for which

(24) p+ p1 + p2 = n, x+ x1 + x2 = 1.
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If x, x1, x2 were known, the probability of the event composed of p times the event
A, p1 times the event B, p2 times the event C, would be

Kxpxp11 x
p2
2 ,

by designating by K the coefficient of the term of the polynomial (x + x1 + x2)
n in

which the exponents are p, p1, p2.
The probability of a hypothesis on x, x1, x2, that is to say the probability of a value

of v, will be therefore
xpxp11 x

p2
2∑

xpxp11 x
p2
2

the sign
∑

indicating the sum of all the possible values of the product which it affects.
The values of v must be contained between certain limits a′ and a, the sum of the

probabilities of these values will be∑n
a′ x

pxp11 x
p2
2∑

xpxp11 x
p2
2

the sign
∑

of the numerator indicating only the systems of values of x, x1, x2 capable
of giving for v a value contained between a′ and a.

According to the relations (23) and (24), x and x1 are functions of v and x2; and
there results from it that all the possible values of v are contained between γ and γ2, the
arbitrary γ being the smallest and γ2 the greatest of the three. One will obtain therefore
the probability above by integrating the expression

(25) 2

∫ a
a′
dvdx2 x

pxp11 x
p2
2

2

∫ γ2
γ′
dvdx2 xpx

p1
1 x

p2
2

The limits of which the sign
∫

is affected is returned to the single variable v; and
the number 2, placed to the left of this sign, reminds that it is necessary to integrate
twice.

The question is thus brought back to the determination of two definite double in-
tegrals, and one is consequently completely certain that the solution is independent of
the law of probability of the diverse simple events.

x and x1 being functions of x2 and v, could be eliminated immediately. There
would remain to find the value of the integral

(26) 2

∫ a

a′
dvdx2

(
v − γ1 − x2(γ2 − γ1)

γ − γ1

)p(
v − γ − x2(γ2 − γ)

γ1 − γ

)p1
xp22 ;

But it would be much simpler to put first, by extension of the method of Laplace,

(27) x =
p

n
+ z, x1 =

p1
n

+ z1, x2 =
p2
n

+ z2,

v =
pγ + p1γ1 + p2γ2

n
+ u;

one will deduce from it

(28) z + z1 + z2 = 0, γz + γ1z1 + γ2z2 = u.
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If one calls b′ and b the limits of u, the integral (26) will be changed into

pppp11 p
p2
2

nn

∫ b

b′

(
1 +

nz

p

)p(
1 +

nz1
p1

)p1 (
1 +

nz2
p2

)p2
dudz,

and passing to exponentials, into

(29)
pppp11 p

p2
2

nn

∫ b

b′
dudz2e


+ n(z + z1 + z2)−

n2

2

(
z2

p
+
z21
p1

+
z22
p2

)
+
n3

3

(
z3

p2
+
z31
p21

+
z32
p22

)
− etc.



The first of the relations (28) render null the term in n, in the exponent of e. One
will represent by S the series which follows the term in n2, and the integral to determine
will become more commodious for the calculation,

(30)
pppp11 p

p2
2

nn

∫ b

b′
dudz2e

−n2

2

(
z2

p +
z21
p1

+
z22
p2

)
+S.

One is able at present to make use of the relations (28) in order to eliminate z and
z1. They give

(31) z =
u− z2(γ2 − γ1)

γ − γ1
, z1 =

u− z2(γ2 − γ)
γ1 − γ

.

Substituted into the exponent of e, these values lead to

S− n2

2

{
z22
p2

+
(u− z2(γ2 − γ))2

p1(γ1 − γ)2
+

(u− z2(γ2 − γ1))2

p(γ − γ1)2

}
= S-

n2

2(γ − γ1)2

{
z22

(
(γ1 − γ)2

p2
+

(γ − γ2)2

p1
+

(γ2 − γ1)2

p

)
− 2uz

(
γ2 − γ
p1

+
γ2 − γ1

p

)
+ u2

(
1

p
+

1

p1

)}
One simplifies the calculation by putting
(32)

(γ − γ1)2 = A2
1,

(γ1 − γ2)2

p
+

(γ2 − γ)2

p1
+

(γ − γ1)2

p2
= A2

2

u

(
γ2 − γ1
p1

+
γ2 − γ1

p

)
= B2 u

(
1

p
+

1

p1

)
= C2

and the integral (30) is reduced to

(33)
pppp11 p

p2
2

nn

∫ b

b′
dudz2e

S′− n2

2 A2
1
(A2

2z
2
2−2 B2z2+C2)

S′ representing the series of terms in z3, u3, etc., that it would be less useful to
develop.
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But it is important to not forget that each of these terms is multiplied by a factor
such as n3

p2 ,
n4

p3 , etc., according to the degree of the variables that it will be able to
contain, and that thus all these terms are of order n.

Under this form (33), one perceives already that the integral taken with respect to
z2, will be known if the limits of z are rather great.

In completing the square in the exponent of e, and making

(34) y =
n

A1

√
2

(
A2z2 −

B2

A2

)
, z2 =

A1

√
2

n A2
y +

B2

A2
2

,

dz2 =
A1

√
2

A2n
dy;

one draws from it

n2

2 A2
1

( A2
2z

2
2 − 2 B2z2 + C2) = y2 +

n2

2 A2
1

(
C2 −

B2
2

A2
2

)
,

substituting these values, one will obtain

(35)
pppp11 p

p2
2

nn
A1

√
2

nA2

∫ b

b′
dudz2e

−y2− n2

2 A2
1

(
C2−

B22
A2
2

)
+ S′′

,

S′′ designating the expression of S′ in y.
If one examines at present the quantity

1

A2
1

(
C2 −

B2
2

A2
2

)
=

1

A2
2

(
C2 A2

2 − B2
2

A2
1

)
which is a function of u only, the relations (32) will give

A2
2 =

1

p2
A2

1 +
(γ2 − γ)2

p1
+

(γ2 − γ1)2

p
, C2 = u2

n− p2
pp1

,

hence

C2 A2
2 = u2

n

pp1p2
A2

1 − u2
{

A2
1

pp1
− n− p2

pp1

(
(γ2 − γ1)2

p
+

(γ2 − γ)2

p1

)}
,

B2
2 = n2

{
(γ2 − γ)2

p21
+

(γ2 − γ1)2

p2
+ 2

(γ2 − γ)(γ2 − γ1)
pp1

}
.

But the double product

2(γ2 − γ1)(γ2 − γ) = (γ2 − γ)2 + (γ2 − γ1)2 − ((γ2 − γ)− (γ2 − γ1))2

= (γ2 − γ)2 + (γ2 − γ1)2 − (γ1 − γ)2.

One has thus

B2
2 = u2

{
(γ2 − γ)2

p21
+

(γ2 − γ1)2

p2
+

(γ2 − γ)2

p1p
+

(γ2 − γ1)2

pp1
− (γ1 − γ)2

pp1

}
=

u2

pp1

{
(γ2 − γ)2(p+ p1)

p1
+

(γ2 − γ1)2(p+ p1)

p
− (γ1 − γ)2

}

13



Observing that the positive terms are multiplied by p + p1 = n − p2, and that the
negative term is A2

1,

B2
2

u2
=

(n− p2)
pp1

(
(γ2 − γ)2

p1
+

(γ2 − γ1)2

p

)
− A2

1

pp1
.

There results from these modifications, of which the ensemble will be reproduced
later, that

C2 A2
2 − B2

2 = u2
n A2

1

pp1p2
,

n2

2 A2
1

(
C2 −

B2
1

A2
2

)
=

n3u2

2p1pp2 A2
2

and
pppp11 p

p2
2

nn
A1

√
2

A2n 2

∫ b

b′
dudy e

−y2− n2

2 A2
1

(
C2−

B21
A2
2

)
+ S′′

=
pppp11 p

p2
2

nn
A1

√
2

A2n 2

∫ b

b′
dudy e

−y2− n3u2

2pp1p2A2
1
+ S′′

;

Putting finally

(36)
n3u2

2pp1p2 A2
1

= t2, u = t

√
2pp1p2 A2

1

n3

du = dt

√
2pp1p2 A2

1

n3

S′′ = S′′′ Limits of t = c′ = c;

it remains to integrate

(37)
pppp11 p

p2
2

nn
2A1
√
pp1p2

n2
√
n 2

∫ c

c′
dtdy e−y

2−t2+ S′′′ .

The terms of the series S′′′ are able to be easily appreciated. It has been established
that in the series S′, according to the powers of z2 and u, the coefficient of each term
was originally of the order n. When z2 has been changed (34) into

(
y A1

√
2

n A2
− B2

A2
2

)
and u into t

√
2pp1p2 A2

1

n3 , it is clear, according to the values (32), of A1, A2, B2, that the
coefficients of y and of t, in the transformed series S′′′, have acquired the divisor

√
n,

raised to some powers equal to the sum of the exponents of the variables diminished
by two units. The term in z32 which was multiplied by n3

p22
has given

n3

p22
y3

A3
1(
√
2)3

n3 A3
2

+ etc. = y3
1

p22

A3
1(
√
2)3

A3
2

+ etc.,

of which the coefficient is manifestly of the order 1√
p2

, or in general of the order 1√
n

.
It is likewise of it for each other power: if it is only the divisor

√
n received some

exponents more and more great.

14



It is necessary therefore already to regard as very small all the coefficients of the
series S′′′ when n is a large number. To this consideration comes to be added another
which goes to permit to neglect this series nearly in totality, without sensible error.

One is able effectively to make it exit from the exponent, since always

e S′′′ = 1 + S′′′ +
1

2
S′′′2 + etc.,

and the integral becomes

(38)
pppp11 p

p2
2

nn
2A1

n2

√
pp1p2
n 2

∫ c

c′
dtdy e−y

2−t2(1 + S′′′ + etc.)

But then each term such that∫ c

c′
e−t

2

tsdt

∫ α

0

e−y
2

dyy2m =

=

∫ c

c′
e−t

2

tsdt

{
−e
−α2

2

(
α2m−1 +

2m− 1

2
α2m−3 + · · ·+ 2m− 1

2

2m− 3

2
· · · 3

2
α

)
+

2m− 1

2
· · · 1

2

∫ α

0

e−y
2

dy

}
,

or ∫ c

c′
e−t

2

tsdt

∫ α

0

e−y
2

dyy2m+1 =

=

∫ c

c′
e−t

2

tsdt

{
−e
−α2

2

(
α2m +

2m

2
α2m−2 + · · ·+ 2m

2

2m− 2

2
· · · 2

2
α

)}
,

and one is able to see previously what was the excessive smallness of the series multi-

plied by − e
−α2

2 as soon as α surpasses 4 or 5. The single term
∫ α
0
e−y

2

dy introduces
some sensible values when the limits of y are of contrary signs.

It is therefore palpable that if these limits, for any value of t are considerable, the
resulting terms of integration of y will become completely insensible even for the high
powers of y; because they have, in general, only very small coefficients. There is
exception only for the even powers of which the integration leads to

2m− 1

2
· 2m− 3

2
· · · 3

2
· 1
2

∫ α

α′
e−y

2

dy =
2m− 1

2
· · · 3

2
· 1
2

√
π,

when the limits α′ and α are of contrary signs and always considerable.
But the relation (34), where y = n

2 A1

(
z A2 − B2

A2

)
, shows that y is constantly of

the very elevated order
√
n, whatever be u or t. There will be therefore to remain in

the series S′′′ only the terms in which y has some even exponents and some limits of
different signs.

It is not unuseful to remark, besides, that the odd powers of y or of t disappear by
themselves when the double integral is taken between two equal values and of contrary

15



signs of y and of t. Now it is a property of the function designated by y, to have two
very elevated limits, most often of contrary signs for a value of t, and changing in sign
with t. So that under the hypothesis where c′ = −c, there remains of the series only
the terms in which y and t have at the same time even exponents. Thus no term of
the third power subsists, and the terms of the fourth have some coefficients of the very
small order 1

n .
The series S′′′ is found therefore reduced by integration of y to two parts: the

one, of which all that which precedes explicates the excessive convergence for a great
number of terms, is able to be regarded as null from the origin, whatever be t. The other
part is composed first of powers of t which have, for themselves, only some very small
coefficients of order of 1

n and its powers, but which are multiplied by some factors of
the form

2m− 1

2
· 2m− 3

2
· · · 3

2
· 1
2

√
π,

and are able for this reason to acquire some value.
Besides, this second part contains all the even powers of t, which were isolated

from y, and of which the coefficients are equally very small.
It conserves therefore a rapid convergence in the first terms, save some particular

cases.
When the integration relative to t is effected, this part subsisting alone is divided

further into two series of which the first is affected of the factor e
−c2

2 ,which takes some
rather feeble values for some small values of t, and increases thus the convergence, to
the point even to render insensible the first term if n is a very great number.

It will suffice therefore to consider the second series, which contains only some
constant factors, multiplied by

∫ c
c′
e−t

2

dt. In representing by T the sum of these factors,
the integral (38) becomes definitely after the integration relative to y,

(39)
pppp11 p

p2
2

nn
2A1

n2

√
pp1p2
n3

∫ c

c′
e−t

2

dt(
√
π + T).

This expression gives immediately the numerator of the sought probability. The
denominator requires the knowledge of the extreme limits of t.

The relations (27) show that v being contained between γ and γ2, uwill be between

(40) γ − pγ + p1γ1 + p
2
γ2

n
= −p1(γ1 − γ) + p2(γ2 − γ)

n

γ2 −
pγ + p1γ1 + p

2
γ2

n
=
p(γ2 − γ) + p1(γ2 − γ)

n

The extreme limits of t are deduced from it, and are

(41) l′ = −p1(γ1 − γ) + p2(γ2 − γ)√
2pp1p2A2

2

√
n, l = −p(γ2 − γ) + p1(γ2 − γ)√

2pp1p2 A2
2

√
n

quantities of the very great order
√
n. Thus the integral relative to all the possible

values of v, fulfill to a great reason all the conditions necessary in order to neglect
without error the series which vanish in the preceding integral. One will conserve only

16



the constant terms multiplied by
∫ l
l′
e−t

2

dt; and as one is able to extend to infinity the
limits of this last integral, it is evident from it for the denominator

pppp11 p
p2
2

nn
2 A1

n2

√
pp1p2
n3

(
√
π + T)

√
π

and for the probability (25)

(42)
2√
π

∫ c

0

e−t
2

dt

The values of v, of which this definite integral represents the favorable chances, are
contained between

v =
pγ + p1γ1 + p

2
γ2

n
± c

√
pp1p2 A2

2

n3

or because of the value of A2
2

v =
pγ + p1γ1 + p

2
γ2

n
± c
√

2
pp1(γ − γ1)2 + p1p2(γ1 − γ2)2 + p2p(γ2 − γ)2

n3

and the radical

±c
√
2
pp1(γ − γ1)2 + p1p2(γ1 − γ2)2 + p2p(γ2 − γ)2

n3

expresses the deviations of the real value to the observed value.
The constant, which determines the extent of these deviations, has conserved the

symmetric form that it had taken for two events.
Nothing is more easy than to restore it to the form of Laplace. Multiplying by n

the terms under the radical, one obtains for the numerator

npp1(γ − γ1)2 + np1p2(γ1 − γ2)2 + np2p(γ2 − γ)2,

an expression which is transformed into
p2p1(γ − γ1)2 + pp21(γ − γ1)2 + pp1p2(γ − γ1)2

p21p2(γ1 − γ2)2 + p1p
2
2(γ1 − γ2)2 + pp1p2(γ1 − γ2)2

p2p2(γ2 − γ)2 + pp22(γ2 − γ)2 + pp1p2(γ2 − γ)2


=


p[p1(γ − γ1) + p2(γ − γ2)]2 − 2pp1p2(γ − γ1)(γ − γ2) + pp1p2(γ − γ1)2

p1[p(γ1 − γ) + p2(γ1 − γ2)]2 − 2pp1p2(γ1 − γ)(γ1 − γ2) + pp1p2(γ1 − γ2)2

p2[p(γ2 − γ) + p1(γ2 − γ1)]2 − 2pp1p2(γ2 − γ)(γ2 − γ1) + pp1p2(γ2 − γ)2


But the sum of the last six terms is null, because it is the square of the identically null
expression √

pp1p2 {(γ − γ1) + (γ1 − γ2) + (γ2 − γ)} .
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Besides each of the first six are able to take the form

p[p1(γ − γ1) + p2(γ − γ2)]2 = p[nγ − (pγ + p1γ1 + p2γ2)]
2 = n2p(γ − µ)2

in representing by µ the mean pγ+p1γ1+p2γ2
n .

One rediscovers thus, for the case of three events, the constant of Laplace; since
the substitution gives√

2
pp1(γ − γ1)2 + p1p2(γ1 − γ2)2 + p2p(γ2 − γ)2

=
1

n

√
2 {p(γ − µ)2 + p1(γ1 − µ)2 + p2(γ2 − µ)2}

This constant is therefore also the coefficient of the first term of the exponent of
e in the integral which furnishes the probability. The approximation carries only on
the coefficients of the terms following, which become very small when n is a large
number and are able to be neglected without appreciable error. But it could not have
any uncertainty on the value and the form of the coefficient of the first, of which no
part has been neglected in the course of the preceding analysis.

One senses at present that this analysis, although restricted in appearance in the
case of three simple events, will be applied without difficulty in the general case of any
number of distinct events.

Let in fact x, x1, x2, . . . xm be the unknown possibilities ofm simple events; p,p1,
p2,. . .pm the number of repetitions of each in a number n of trials; γ, γ1, γ2, . . . γm
of the arbitrary functions relative to the nature of each event, and ranked by order of
magnitude. The concern is to determine the probability P that the real value of

(45) v = γx+ γ1x1 + γ2x2 + · · ·+ γmxm

is contained between the given limits a′ and a. One will have

(46)
p+ p1 + p2 · · ·+ pm = n

x+ x1 + x2 · · ·+ xm = 1.

It would be superfluous to show that the probability P will be expressed by

(47) m

∫ a
a′
xpxp11 x

p2
2 · · ·xpmm dvdx2dx3 · · · dxm

m

∫ γm
γ′

xpxp11 x
p2
2 · · ·x

pm
m dvdx2dx3 · · · dxm

the index m denoting the number of integrations to effect. The reasoning employed in
order to arrive to the analogous expression (22), in the case of three events, is repro-
duced with a perfect similitude for any number.

One will make x = p
n + z, x1 = p1

n + z1, x2 = p2
n + z2, . . . xm = pm

n + zm.

(48) v =
pγ + p1γ1 + · · ·+ pmγm

n
+ u

and one will have

(49) z + z1 + z2 + · · ·+ zm = 0 γz + γ1z1 + · · ·+ γmzm = u;

18



whence one deduces

(50)
z =

u− z2(γ2 − γ1)− z3(γ3 − γ1)− · · · − zm(γm − γ1)
γ − γ1

z1 =
u− z2(γ2 − γ)− z3(γ3 − γ)− · · · − zm(γm − γ)

γ1 − γ

or, by putting u− z3γ3 − z4γ4 − · · · − zmγm = U2

z3 + z4 + · · ·+ zm = Z2

(51) z =
U2 + γ1Z2 − z2(γ2 − γ1)

γ − γ1
z1 =

U2 + γZ2 − z2(γ2 − γ)
γ1 − γ

Substituting the values (48) into the integral of the numerator of the probability P
(47), and suppressing beyond the

∫
sign the constant factors

pppp11 p
p2
2 · · · ppmm
nn

which would be destroyed in the two terms of the probability; it will become

m

∫ b

b′

(
1 +

nz

p

)p(
1 +

nz1
p1

)p1
· · ·
(
1 +

nzm
pm

)pm
dz2dz3dz4 . . . dzmdu

b′ and b being the limits of u.
Developing into exponentials, the number e will have for exponent

+n(z + z1 + z2 + · · ·+ zm)− n2

2

(
z2

p
+
z21
p1

+
z22
p2

+ · · ·+ z2m
pm

)
+
n3

3

(
z3

p2
+
z31
p21

+
z32
p22

+ · · ·+ z3m
pm2

)
− etc.

In this expression, the term in n is clearly null by the first of the relations (49): and
if one represents by S the series of powers superior to the second, one will be able to
write the integral

(52) m

∫ b

b′
dz2dz3dz4 . . . dzmdue

−n2

2

(
z2

p +
z21
p1

+
z22
p2

+···+ z2m
pm

)
+ S
,

Substituting for z and z1 their values (50), and designating by K2 the sum of the terms
−n

2

2

(
z23
p3

+
z24
p4

+ · · ·+ z2m
pm

)
, which do not contain z2, one will have to integrate

(53)

m

∫ b

b′
dz2dz3dz4 . . . dzmdue

K2+ S1−n
2

2



(
U2 + γ1 Z2 − z2(γ2 − γ1)

γ − γ1

)2
1

p
+(

U2 + γ1 Z2 − z2(γ2 − γ)
γ1 − γ

)2
1

p1
+
z22
p2
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It is necessary to order, with respect to z2, the part of the exponent of e contained
between the parentheses; this which gives first:

(54) − n2z22
2(γ − γ1)2

{
(γ1 − γ)2

p2
+

(γ − γ2)2

p1
+

(γ2 − γ1)2

p

}
+

2n2z2
2(γ − γ1)2

{
γ2 − γ1

p
( U2 + γ1 Z2) +

γ2 − γ
p2

( U2 + γ Z2)

}
− n2

2(γ − γ1)2

{
( U2 + γ1 Z2)

2

p
+

( U2 + γ Z2)
2

p1

}
In order to simplify, one will put

(γ − γ1)2 = A2
1,

(γ − γ1)2

p2
+

(γ1 − γ2)2

p
+

(γ2 − γ)2

p1
= A2

2,

γ2 − γ1
p

( U2 + γ1 Z2) +
γ2 − γ
p2

( U2 + γ Z2) = B2,

( U2 + γ1 Z2)
2

p
+

( U2 + γ Z2)
2

p1
= C2,

and the quantity (54) will be reduced to

(55) − n2

2 A2
1

(
A2

2z
2
2 − 2 B2z2 + C2

)
,

which becomes

−y22 −
n2

2 A2
1

(
C2 −

B2
2

A2
2

)
if one makes likewise as previously.

(56)
n

A1

√
2

(
z2 A2 −

B2

A2

)
= y2, dz2 = dy2

A1

√
2

n A2
.

It is good to ascertain immediately that y2 is of the order
√
n for all values of u, z3,

etc., which enter into B2. So that to the limits of z2, one will be able, as it has already
been done, to draw part of the considerable magnitude of the limits of y2.

By suppressing in advance the constant factor A1

√
2

n A2
, which would be introduced

before the
∫

sign; calling S2 that which the series S becomes, when one has eliminated
z and z1, and when one has replaced z2 by its value in y2; the integral is changed into

(57) m

∫ b

b′
dz2dz3dz4 . . . dzmdu e

+ K2+ S2−y2− n2

2 A2
1

(
C2−

B22
A2
2

)
,

an expression in which it is necessary to transform the following variable, z3.
The value of K2 permits to put

K2 = −n
2

2

(
z23
p3

+
z24
p4

+ · · ·+ z2m
pm

)
= K3 −

n2z23
2p3

,
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and one will be able to write the integral (57) as it follows:

(58) m

∫ b

b′
dz2dz3dz4 . . . dzmdu e

+ K3+S2−y22−n
2

2

(
z23
p3
− C2 A2− B22

A2
1 A2

2

)
,

Now one will develop C2 A2− B2
2

A2
1 A2

2
, or rather the numerator alone, the variables not

entering in the denominator. The relations (51) will give by calling U3 and Z3 some
sums similar to U2 and Z2, but which will contain z3 no longer:

U2 = −γ3z3 + U3, Z2 = z3 + Z3,

whence

( U2 + γ1 Z2) = U3 + γ1 Z3 − z3(γ3 − γ1),
( U2 + γ Z2) = U3 + γ1 Z3 − z3(γ3 − γ),

( U2 + γ1 Z2)
2 = ( U3 + γ1 Z3)

2 − 2z3(γ3 − γ1)( U3 + γ1 Z3) + z23(γ3 − γ1)2

( U2 + γ Z2)
2 = ( U3 + γ Z3)

2 − 2z3(γ3 − γ)( U3 + γ Z3) + z23(γ3 − γ)2

There results from it

C2 =
[ U3 + γ1 Z3 − z3(γ3 − γ1)]2

p
+

[ U3 + γ Z3 − z3(γ3 − γ)]2

p1
,

B2 =
γ2 − γ1

p
[ U3 + γ1 Z3 − z3(γ3 − γ1)] +

γ2 − γ
p1

[ U3 + γ1 Z3 − z3(γ3 − γ)],

and by developing the squares

C2 =
( U3 + γ1 Z3)

2

p
+

( U3 + γ Z3)
2

p1

− 2z1

(
γ2 − γ1

p
( U3 + γ1 Z3) +

γ2 − γ
p1

( U3 + γ Z3) + z23

(
(γ2 − γ1)2

p
+

(γ2 − γ)2

p1

))
B2
2 =

(γ2 − γ1)2( U3 + γ1 Z3)
2

p2
+

(γ2 − γ)2( U3 + γ Z3)
2

p21

+ 2
(γ2 − γ1)(γ2 − γ)( U3 + γ1 Z3)( U3 + γ Z3)

pp1

− 2z3


(γ2 − γ1)(γ3 − γ1)

p

+
(γ2 − γ1)(γ3 − γ)

p1

×

γ2 − γ1

p
( U3 + γ1 Z3)

γ2 − γ
p1

( U3 + γ Z3)


+ z23

{
(γ2 − γ1)(γ2 − γ)

p
+

(γ2 − γ)(γ3 − γ)
p1

}2

,

If one is reminded at present that

A2
2 =

(γ − γ1)2

p2
+

(γ2 − γ)2

p1
+

(γ1 − γ2)2

p
,
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one will have

C2 A2
2 − B2

2 =
( U3 + γ1 Z3)

2

p

{
(γ − γ1)2

p2
+

(γ − γ2)2

p1

}
+

( U3 + γ Z3)
2

p1

{
(γ − γ1)2

p2
+

(γ1 − γ2)2

p

}
− 2

(γ2 − γ1)(γ2 − γ)( U3 + γ1 Z3)( U3 + γ1 Z3)

pp1

− 2z3


( U3 + γ1 Z3)

[
γ3 − γ1

p

(
(γ − γ1)2

p2
+

(γ − γ2)2

p1

)
− (γ3 − γ)(γ2 − γ)(γ2 − γ1)

pp1

]
+ ( U3 + γ Z3)

[
γ3 − γ
p

(
(γ − γ1)2

p2
+

(γ1 − γ2)2

p

)
− (γ3 − γ1)(γ2 − γ1)(γ2 − γ)

pp1

]


+ z23


(
(γ3 − γ1)2

p
+

(γ3 − γ)2

p1

)(
(γ − γ1)2

p2
+

(γ − γ2)2

p1
+

(γ1 − γ2)2

p

)
− (γ2 − γ1)2(γ3 − γ1)2

p2
− (γ2 − γ)2(γ3 − γ)2

p21
− 2

(γ2 − γ1)(γ2 − γ)(γ3 − γ1)(γ3 − γ)
pp1


or else

C2 A2
2 − B2

2 =
( U3 + γ1 Z3)

2(γ − γ1)2

pp2
+

( U3 + γ Z3)
2(γ − γ1)2

p1p2

+

{
( U3 + γ1 Z3)(γ2 − γ1)− ( U3 + γ1 Z3)(γ2 − γ)

pp1

}2

− 2z3


( U3 + γ1 Z3)

(γ − γ1)2

p

(
γ3 − γ1
p2

+
γ2 − γ
p1

· (γ2 − γ)(γ3 − γ1)− (γ3 − γ)(γ2 − γ1)
(γ − γ1)2

)
+ ( U3 + γ Z3)

(γ − γ1)2

p1

(
γ3 − γ
p2

+
γ2 − γ1

p
· (γ2 − γ1)(γ3 − γ)− (γ2 − γ)(γ3 − γ1)

(γ − γ1)2

)


+ z23


(γ3 − γ1)2

p2

(
(γ3 − γ1)2

p
+

(γ3 − γ)2

p1

)
+

(γ − γ2)2(γ3 − γ1)2

pp1

− (γ1 − γ2)2(γ3 − γ)2

pp1
− 2

(γ2 − γ1)(γ2 − γ)(γ3 − γ1)(γ3 − γ)
pp1


Whence

C2 A2
2 − B2

2

A2
1

=
( U3 + γ1 Z3)

2

pp2
+

( U3 + γ Z3)
2

p1p2
+

( U3 + γ2 Z3)
2

pp1

− 2z3


( U3 + γ1 Z3)(γ3 − γ1)

pp2
+

( U3 + γ Z3)(γ3 − γ)
p1p2

+
( U3 + γ1 Z3)(γ2 − γ3)(γ2 − γ)

pp1(γ − γ1)
+

( U3 + γ Z3)(γ3 − γ1)(γ3 − γ2)
pp1(γ − γ1)


+ z23

{
(γ3 − γ1)2

p2p
+

(γ3 − γ)2

p1p2
+

[(γ − γ2)(γ3 − γ1)− (γ1 − γ2)(γ3 − γ)]2

pp1(γ − γ1)2

}
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C2 A2
2 − B2

2

A2
1

+
z23 A2

2

p3
=

( U3 + γ1 Z3)
2

pp2
+

( U3 + γ Z3)
2

p1p2
+

( U3 + γ2 Z3)
2

pp1

− 2z3

{
( U3 + γ1 Z3)(γ3 − γ1)

pp2
+

( U3 + γ Z3)(γ3 − γ)
p1p2

+
( U3 + γ2 Z3)(γ3 − γ2)

pp1

}
+ z23

{
(γ3 − γ1)2

p2p
+

(γ − γ2)2

p1p3
+

(γ1 − γ2)2

p2p
+

(γ3 − γ)2

p1p2
+

(γ3 − γ1)2

pp2
+

(γ3 − γ2)2

pp1

}
If one puts at present
(59)

( U3 + γ1 Z3)
2

pp2
+

( U3 + γ2 Z3)
2

pp1
+

( U3 + γ Z3)
2

p1p2
= C3,

( U3 + γ1 Z3)(γ3 − γ1)
pp2

+
( U3 + γ Z3)(γ3 − γ)

p1p2
+

( U3 + γ2 Z3)(γ3 − γ2)
pp1

B3,

(γ − γ1)2

p3p2
+

(γ1 − γ2)2

p3p
+

(γ2 − γ)2

p3p1
+

(γ3 − γ)2

p1p2
+

(γ3 − γ1)2

pp2
+

(γ3 − γ2)2

pp1
= A2

3.

One will have

(60) −n
2

2

(
C2 A2

2 − B2
2

A2
1 A2

2

+
z23
p3

)
= − n2

2 A2
2

(
A2

3z
2
3 − 2 B3z3 + C3

)
.

When one brings together this expression from the expression (55), one sees that
the one is composed in z3, A2, A3, B3, C3, in the same manner as the other in z2, A1,
A2, B2, C2.

One is able therefore to write immediately the result of the transformation of z3
into y3.

(61) y3 =
n

A2

√
2

(
A3z3 −

B3

A3

)
, dz3 = dy3

A2

√
2

n A3
,

in the integral (58), which, by suppressing beforehand the constant factor A2

√
2

n A3
, and

writing S3 for the series S2 transformed into y3, is changed into

(62) m

∫ b

b′
dy2dy3dz4dz5 . . . dzmdu e

K3+ S3−y22−y
2
3− n2

2 A2
2

(
C3−

B23
A2
3

)

It is impossible to not recognize that the symmetric functions A3, B3, C3, (59)
follow the same law as the functions A1, A2, B2, C2. It is therefore permitted to
anticipate that the same transformation will be applied to the other variables z exactly
in the same manner, and that one will find successively some symmetric functions of
like nature. But one will be assured from it easily by the well-known method which
consists in supposing that one is arrived to the form given after (q− 2) transformations
of so many of the variables z2, z3, . . . zq−1 and to prove that under this hypothesis, the
transformation of the following variable zq , will give precisely a similar result.

One will admit that the expression

(63) Kq−1 + Sq−1 − y22 − y23 · · · − y2q−1 −
n2

2 A2
q−1

(
Cq−1 −

B2
q−1

A2
q−1

)
= R
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is the exponent of e in the integral

m

∫ b

b′
dy2dy3 . . . dyq−1dzqdzq+1 . . . dzmdu e

R

due to (q − 2) operations. It will be necessary to prove that the result of a new trans-
formation of zq into yq will give for the exponent of e the similar expression

(64) Kq + Sq − y22 − y23 · · · − y2q−1 − y2q −
n2

2 A2
q−1

(
Cq −

B2
q

A2
q

)
= R′

in the integral

m

∫ b

b′
dy2dy3 . . . dyq−1dyqdzq+1 . . . dzmdu e

R′

the symmetric functions of like denominations conserving the values:

Kq−1 = −n
2

2

(
z2q
pq

+
z2q+1

pq+1
· · ·+ z2m

pm

)
= −

n2z2q
2pq

+ Kq,

(65) Uq−1 = u− γqzq − γq+1zq+1 · · · − γmzm = Uq − γqzq,
Zq−1 = zq + zq+1 + · · ·+ zm = Zq + zq,

A2
q−1 =

(γ − γ1)2

p2p3 · · · pq−1
+

(γ − γ2)2

p1p3 · · · pq−1
+ · · ·+ (γq−1 − γq−3)2

pp1p2 · · · pq−3

=
1

pq−1
A2
q−2 +

(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

p1p2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

Bq−1 =
( Uq−1 + γ Zq−1)(γq−1 − γ)

p1p2 · · · pq−1
+

( Uq−1 + γ1 Zq−1)(γq−1 − γ1)
p1p2 · · · pq−2

+ · · ·+ ( Uq−1 + γq−2 Zq−1)(γq−1 − γq−2)
p1p2 · · · pq−3

,

Cq−1 =
( Uq−1 + γ Zq−1)2

p1p2 · · · pq−2
+

( Uq−1 + γ1 Zq−1)2

p1p2 · · · pq−3
+

( Uq−1 + γq−2 Zq−1)2

p1p2 · · · pq−3

In order to arrive to this demonstration, one will dispose first separately in the
expression (63), the terms of the exponent of e which contain zq and z2q , this which
will give

(66) Kq+ Sq−1−y22−y23 · · ·−y2q−1−
n2

2 A2
q−1

(
z2q Aq−1
pq

−
Cq−1 A2

q−1 − B2
q−1

A2
q−2

)
.

The question will no longer be but to develop the part multiplied by n2

2 A2
q−1

to the
mean of the values of the symmetric functions (65). Here is the calculation of it.

Decomposing each of the squares contained in Cq−1, such that

( Uq−1 + γ Zq−1)2 = ( Uq + γ Zq)2 − 2zq( Uq + γ Zq)(γq − γ) + z2q (γq − γ)2
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hence

Cq−1 =
( Uq + γ Zq)2

p1p2 · · · pq−2
+

( Uq + γ1 Zq)2

p1p2 · · · pq−3
+

( Uq + γq−2 Zq)2

p1p2 · · · pq−3

− 2zq

{
( Uq + γ Zq)(γq − γ)

p1p2 · · · pq−2
+

( Uq + γ1 Zq)(γq − γ1)
pp2 · · · pq−2

+ · · ·+ ( Uq + γq−2 Zq)(γq − γq−2)
pp1 · · · pq−3

}
,

+ z2q

{
(γq − γ)2

p1p2 · · · pq−2
+

(γq − γ1)2

p1p2 · · · pq−2
+ · · ·+ (γq − γq−2)2

pp1 · · · pq−3

}2

.

One sees immediately that

Cq−1 = pq−1

(
Cq −

( Uq + γq−1 Zq)2

p1p2 · · · pq−2

)
− 2zqpq−1

(
Bq −

( Uq + γq−1 Zq)(γq − γq−1)
pp1 · · · pq−2

)
+ z2q

(
A2
q −

A2
q−1

pq
− (γq − γq−1)2

pp1 · · · pq−2

)
pq−1,

Cq−1 = pq−1
(

A2
qzq − 2 Bqz2q + Cq

)
− z2qpq−1

A2
q−1

pq

− [ Uq + γq−1 Zq − zq(γq − γq−1)]2

pp1p2 · · · pq−2
pq−1,

Cq−1 A2
q−1 = A2

q−2
(

A2
qz

2
q − 2 Bqzq + Cq

)
− z2q

A2
q−1

pq
A2
q−2 −

( Uq−1 + γq−1 Zq−1)2

pp1 · · · pq−2
A2
q−2

+ Cq−1

{
(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

pp2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

}
(67)

Cq−1 A2
q−1 − B2

q−1

A2
q−2

+
z2q A2

q−1

pq
= A2

qz
2
q − 2 Bqzq + Cq

−


B2
q−1

A2
q−1

+
( Uq−1 + γq−1 Zq−1)2

pp1 · · · pq−2

− Cq−1
A2
q−1

(
(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

pp2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

)


There remains to prove that the sum of the terms contained between parentheses,
in this last equation, is identically null. For this, decomposing B2

q−1, it becomes

B2
q−1 =

( Uq−1 + γ Zq−1)2(γq−1 − γ)2

(p1p2 · · · pq−2)2
+

( Uq−1 + γ1 Zq−1)2(γq−1 − γ1)2

(pp2 · · · pq−2)2

+ · · ·+ ( Uq−1 + γq−2 Zq−1)2(γq−1 − γq−2)2

(pp1 · · · pq−3)2

+ 2
( Uq−1 + γ Zq−1)( Uq−1 + γ1 Zq−1)(γq−1 − γ)(γq−1 − γ1)

p1p2 · · · pq−2 × pp2 · · · pq−2

+ · · ·+ 2
( Uq−1 + γq−3 Zq−1)( Uq−1 + γq−2 Zq−1)(γq−1 − γq−3)(γq−1 − γq−2)

pp1 · · · pq−1pq−2 × pp1 · · · pq−4pq−3
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In the same way one has already seen, the numerator of any of the double products
which enter in B2

q−1, is able to be considered as result of the negative square of a
binomial; for example,

2( Uq−1 + γ Zq−1)( Uq−1 + γ1 Zq−1)(γq−1 − γ)(γq−1 − γ1)
=− {( Uq−1 + γ Zq−1)(γq−1 − γ1)− ( Uq−1 + γ1 Zq−1)(γq−1 − γ)}
+ ( Uq−1 + γ Zq−1)2(γq−1 − γ1)2 + ( Uq−1 + γ1 Zq−1)2(γq−1 − γ)2

=− ( Uq−1 + γq−1 Zq−1)2(γ − γ1)2 + ( Uq−1 + γ Zq−1)2(γq−1 − γ1)2

+ ( Uq−1 + γ1 Zq−1)2(γq−1 − γ)2

Taking account of all the similar reductions in the value of B2
q−1,

B2
q−1 =

( Uq−1 + γ Zq−1)2(γq−1 − γ1)2

(p1p2 · · · pq−2)2
+

( Uq−1 + γ1 Zq−1)2(γq−1 − γ1)2

(pp2 · · · pq−2)2

+ · · ·+ ( Uq−1 + γq−2 Zq−1)2(γq−1 − γq−2)2

(pp1 · · · pq−3)2
+

( Uq−1 + γ Zq−1)2(γq−1 − γ1)2

p1p2 · · · pq−2 × pp2 · · · pq−2

+
( Uq−1 + γ1 Zq−1)2(γq−1 − γ)2

pp2 · · · pq−2 × p1p2 · · · pq−2
+

( Uq−1 + γ Zq−1)2(γq−1 − γ1)2

p1p2 · · · pq−2 × pp1p3 · · · pq−2

+
( Uq−1 + γ2 Zq−1)2(γq−1 − γ)2

pp1p3 · · · pq−2 × p1p2 · · · pq−2
+ · · ·+ ( Uq−1 + γq−3 Zq−1)2(γq−1 − γq−2)2

pp1 · · · pq−1pq−2 × pp1p3 · · · pq−4pq−3

+
( Uq−1 + γq−2 Zq−1)2(γq−1 − γq−3)2

pp1 · · · pq−4pq−3 × pp1 · · · pq−3pq−2
− ( Uq−1 + γq−1 Zq−1)2(γ − γ1)2

p1p2 · · · pq−2 × pp2 · · · pq−2

− ( Uq−1 + γq−1 Zq−1)2(γ − γ2)2

pp1 · · · pq−2 × p1p2 · · · pq−2
− · · · − ( Uq−1 + γq−1 Zq−1)2(γq−2 − γq−3)2

pp1 · · · pq−3 × pp1 · · · pq−4pq−2

Comparing the positive terms of this development to the squares furnished by the
product

Cq−1

(
(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

pp2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

)
=

{
( Uq−1 + γ Zq−1)2

p1p2 · · · pq−2
+

( Uq−1 + γ1 Zq−1)2

pp2 · · · pq−3
+ · · ·+ ( Uq−1 + γq−2 Zq−1)2

pp1 · · · pq−3

}
×
{

(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

pp2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

}
one will recognize that both are identical.

If, moreover, one pays attention that the negative terms which terminate B2
q−1, are

able to be united under the form

− ( Uq−1 + γq−1 Zq−1)2

pp1 · · · pq−2

{
(γ − γ)2

p2p3 · · · pq−2
+

(γ − γ2)2

p1p3 · · · pq−2
+ · · ·+ (γq−3 − γq−2)2

pp1 · · · pq−4

}
=

( Uq−1 + γq−1 Zq−1)2

pp1p2 · · · pq−2
A2
q−2,
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one will conclude that

B2
q−1 = Cq−1

{
(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

pp2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

}
− ( Uq−1 + γq−1 Zq−1)2

pp1p2 · · · pq−2
A2
q−2

Whence

( Uq−1 + γq−1 Zq−1)2

pp1p2 · · · pq−2
−
{

(γq−1 − γ)2

p1p2 · · · pq−2
+

(γq−1 − γ1)2

pp2 · · · pq−2
+ · · ·+ (γq−1 − γq−2)2

pp1 · · · pq−3

}
Cq−1
A2
q−2

+
B2
q−1

A2
q−2

= 0.

This is also the sum of the terms of the expression (67), of which it was necessary
to prove the identical nullity. This equation (67) is reduced therefore to

C2
q−1 Aq−1 − B2

q−1

A2
q−2

+
z2q A2

q−1

pq
= z2q A2

q − 2zq Bq + Cq,

and the exponent (66) becomes

Kq + Sq−1 − y22 − y23 − · · · − y2q−1 −
n2

2 A2
q−1

(z2q A2
q − 2zq Bq + Cq)

The form of the quantity between parentheses which is reproduced here is too
known in order to not put immediately

zq = yq

√
2 Aq−1
n Aq

− Bq
A2
q

,

and hence the result of the substitution which restores the exponent (63) or (66), and
the integral on which it depends, to

(68) Kq + Sq−1 − y22 − y23 − · · · − y2q−1 − y2q −
n2

2 A2
q−1

(
Cq −

B2
q

A2
q

)
= R′

m

∫ b

b′
dy2dy3 · · · dyq−1dyqdzq+1dzq+2 · · · dzmdue R′

by suppressing in advance the common factor
√
2 Aq−1

n Aq
.

The expression (68) is precisely the same as the exponent (64). It is therefore
established generally that the transformation of any variable gives a result of the same
form as the results of the preceding transformations, if these last have led to the form
(63), (64) or (68).

This special form having been established for one and two variables, it is demon-
strated that it will be reproduced for the third, for the fourth, and to complete exhaustion
of the variables z.

It is agreeable at present to examine that which will arrive under this last hypothesis,
and how the operation will be achieved with respect to u.
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By making q = m in the formula (68), it gives the integral

(69) m

∫ b

b′
dy2dy3 · · · dymdue

Sm−y22−y
2
3−···−y

2
m− n2

2 A2
m−1

(
Cm−

B2m
A2
m

)

Changing also (q − 1) into m in formulas (65), the quantities designated by Km
and Zm will be null, since one will have employed all the variables z, of which they
had for unique object to represent some sums.

The quantity Um will be equal to u.
One will have next

A2
m =

(γ − γ1)2

p2p3 · · · pm
+

(γ − γ2)2

p1p3 · · · pm
+ · · ·+ (γm − γm−1)2

pp1p2 · · · pm−2

=
1

pm
A2
m−1 +

(γm − γ)2

p1p2 · · · pm−1
+

(γm − γ1)2

pp2 · · · pm−1
+ · · ·+ (γm − γm−1)2

pp1 · · · pm−2
,

Bm = u

{
(γm − γ)2

p1p2 · · · pm−1
+

(γm − γ1)2

pp2 · · · pm−1
+ · · ·+ (γm − γm−1)2

pp1 · · · pm−2

}
,

Cm = u2
{

1

p1p2 · · · pm−1
+

1

pp2 · · · pm−1
+ · · ·+ 1

pp1 · · · pm−2

}
= u2

n− pm
pp1 · · · pm−1

,

Hence

Cm A2
m =

u2(n− pm)

pp1 · · · pm−1

[
A2
m−1 + pm

(
(γm − γ)2

p1p2 · · · pm−1
+

(γm − γ1)2

pp2 · · · pm−1
+ · · ·+ (γm − γm−1)2

pp1 · · · pm−2

)]
Cm A2

m − B2
m =

u2n A2
m−1

pp1p2 · · · pm

− u2
[

A2
m−1

pp1 · · · pm−1
− n− pm
pp1 · · · pm−1

(
(γm − γ)2

p1p2 · · · pm−1
+

(γm − γ1)2

pp2 · · · pm−1
+ · · ·+ (γm − γm−1)2

pp1 · · · pm−2

)
+

B2
m

u2

]
.

But

B2
m = u2


(γm − γ)2

(p1p2 · · · pm−1)2
+

(γm − γ1)2

(pp2 · · · pm−1)2
+ · · ·+ (γm − γm−1)2

(pp1 · · · pm−2)2

+ 2
(γm − γ)(γm − γ1)

p1p2 · · · pm−1 × pp2 · · · pm−1
+ · · ·+ 2

(γm − γm−2)(γm − γm−1)
pp1 · · · pm−3pm−1 × pp2 · · · pm−2


Executing on the double products the change already employed, one has for example

2(γm − γ)(γm − γ1) = −(γ − γ1)2 + (γm − γ)2 + (γm − γ1)2,
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this which permits to write

B2
m

u2
=

1

pp1p2 · · · pm−1

{
(γm − γ)2p
p1p2 · · · pm−1

+
(γm − γ1)2p1
pp2 · · · pm−1

+ · · ·+ (γm − γm−1)2pm−1
pp1 · · · pm−2

+
(γm − γ)2p1
p1p2 · · · pm−1

+
(γm − γ1)2p
pp2 · · · pm−1

+
(γm − γ)2p2
p1p2 · · · pm−1

+
(γm − γ2)2p
pp2 · · · pm−1

+ · · ·

+
(γm − γm−2)2pm−1

pp1 · · · pm−1
+

(γm − γm−1)2pm−2
pp1 · · · pm−2

− (γ − γ1)2

p2p3 · · · pm−1
− (γ − γ2)2

p1p3 · · · pm−1

− · · · − (γm−1 − γm−2)2

pp1 · · · pm−3

}
Reusing the similar positive terms as for the functions γ, and observing that they

are all multiplied by p+ p1 + p2 + · · ·+ pm−1 is that is to say by n− pm; that besides
the negative terms are precisely the terms of A2

m−1, one is able to affirm that

B2
m

u2
=

n− pm
pp1p2 · · · pm−1

{
(γm − γ)2

p1p2 · · · pm−1
+

(γm − γ1)2

pp2 · · · pm−1
+ · · ·+ (γm − γm−1)2

pp1 · · · pm−2

}
−

A2
m−1

pp1 · · · pm−1

The coefficient of u2 between parentheses in the development of Cm A2
m− B2

m, is
therefore identically null; and there remains

Cm A2
m − B2

m

A2
m−1

=
u2n

pp1p2 · · · pm
.

The part of the exponent of e which, in the integral (69), contained further Am−1,
Bm, Cm, is reduced consequently to

− n3

2pp1p2 · · · pm A2
m

u2,

and if one makes

u = t

√
2pp1p2 · · · pm A2

m

n3
,

one will have for the integral, by continuing to suppress in advance the constant factors
outside the

∫
sign, calling c′ and c, the limits of t, and Sm+1 the series of superior

powers transformed into l,

(70) m

∫ c

c′
dy2dy3 · · · dymdte Sm+1−y2−y23−···−ym−t

2

In order to achieve the integration, it will suffice to make the series Sm+1 exit from
the exponent: this which gives

m

∫ c

c′
dy2dy3 · · · dymdte−y

2−y23−···−ym−t
2

(
1 + Sm+1 +

1

2
S2
m+1 + etc.

)
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One should remark then that by integrating any term with respect to y2, the mag-
nitude of the limits of this variable which is of the order

√
n, will reduce to zero, if

the exponent of y2 is odd, and to a constant factor multiplied by
√
π, if the exponent is

even and if the very great limits are of contrary signs.
One will conclude from it easily that after having integrated relatively to all the

variables y, it will remain only some terms in t, those which were found multiplied by
some even powers of each of these variables y.

The integration, with respect to t, will lead next to two series: the one of terms
multiplied by 1

2e
−c2 , 1

2e
−c′2 , of which the coefficients, being of the order 1√

n
and its

powers, will be quite small when one will take for n a large number, and c > 2, c′ > 2.
One is able therefore to neglect this series, of which, moreover, the preceding anal-

ysis is capable to take account.
The second series will be composed of constant terms affected of

∫ c
c′
e−t

2

dt. By
designating it by T, the sought integral, becomes finally

(71) ((
√
π)m−1 + T)

∫ c

c′
e−t

2

dt.

Taking c′ = c, one will have the numerator of the probability P. As for the denom-
inator, it is necessary to integrate the expression (71), for all the possible values of t.
The limits which contain all the possible values are γ and γm, the smallest and the
greatest of the arbitrary γ: as

u = v − pγ + p1γ1 + p2γ2 + · · ·+ pmγm
n

,

the extreme limits of u will be

+
p(γm − γ) + p1(γm − γ1) + · · ·+ pm−1(γm − γm−1)

n

− p1(γ1 − γ) + p2(γ2 − γ) + · · ·+ pm(γm − γ)
n

,

and one will have for the limits of t

l = {p(γm − γ) + p1(γm − γ1) + · · ·+ pm−1(γm − γm−1)}
√

n

2pp1p2 · · · pm A2
m

l′ = {p(γm − γ) + p1(γ2 − γ) + · · ·+ pm(γm − γ)}
√

n

2pp1p2 · · · pm A2
m

quantities of the very great order
√
n. One is therefore by right to suppose in the

denominator of the probability t = ±∞: this which gives for the value of this term

((
√
π)m−1 + T)

√
π,

and one arrives, as in the preceding cases, to

(72) P =
2√
π

∫ c

0

e−t
2

dt.
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It is the probability that the value of v is contained between the limits

pγ + p1γ1 + p2γ2 + · · ·+ pmγm
n

± c

√
2pp1p2 · · · pm A2

m

n3
,

or else that the difference between the true value of v and the mean deduced from
observations fall between

±c

√
2pp1p2 · · · pm A2

m

n3
,

an expression which, by bringing together for A2
m the always symmetric function that

this letter represents, takes the form already established:
(73)

±c
√

2

n3
{pp1(γ − γ1)2 + pp2(γ − γ2)2 + p1p2(γ1 − γ2)2 + · · ·+ pm−1pm(γm − γm−12)}

If one develops the squares between the parentheses, one obtains for a term such as
pp1(γ − γ1)2,

pp1γ
2 + pp1γ

2
1 − 2pp2γγ1.

It becomes thus manifest that the radical containing the squares of the differences
between γ and the m other arbitraries, each multiplied by the numbers pp1, etc., cor-
relatives; the product of a square γ2 by the number p, will be multiplied by the sum of
all the other numbers p1 + p2 + · · ·+ pm = n− p.

The terms of the parenthesis under the radical (73) will be able therefore to be
written

p(n− p)γ2 + p1(n− p1)γ21 + p2(n− p2)γ22 + · · · − 2pp1γγ1 − 2pp2γγ2

− 2p1p2γ1γ2 − · · · − 2pm−1pmγm−1γm

or else

n(pγ2 + p1γ
2
1 + p2γ

2
2 + · · ·+ pmγ

2
m)− (p2γ2 + p21γ

2
1 + p22γ2

+ · · ·+ p2mγ
2
m − 2pp1γγ1 − 2pp2γγ2 − · · · − 2pmpm−1γmγm−1

which is evidently equal to

n2
pγ2 + p1γ

2
1 + p2γ

2
2 + · · ·+ p2mγ

2
m

n
− n2

(
pγ + p1γ1 + p2γ2 + · · ·+ pmγm

n

)2

whence one obtains for the limits (73) of the deviation
(74)

±c

√√√√ 2

n

{
pγ2 + p1γ21 + p2γ22 + · · ·+ pmγ2m

n
−
(
pγ + p1γ1 + p2γ2 + · · ·+ pmγ2m

n

)2
}

Here figures only the mean of the squares of the n observations, less the square
of the mean: it is the form that Laplace has given in order to measure the deviations
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of the calculated mean life according to the ages γ, γ1, γ2, etc., of a large number of
individuals.

In calling µ the mean, one is able to remark that

pγ2 + p1γ
2
1 + p2γ

2
2 + · · ·+ pmγm

n
− µ2 =

pγ2 + p1γ
2
1 + p2γ

2
2 + · · ·+ pmγm − nµ2

n

=

{
p(γ2 + µ2 − 2γµ) + p1(γ

2
1 + µ2 − 2γ1µ) + · · ·+ pm(γ2m + µ2 − 2γmµ)

− 2nµ2 + 2(pγ + p1γ1 + · · · pmγm)µ

}
n

=
p(γ − µ)2 + p1(γ1 − µ)2 + · · ·+ pm(γm − µ)2 − 2nµ2 + 2nµ2

n

The limits of the deviation is able therefore to be written equally

(75) ± c
n

√
2 {p(γ − µ)2 + p1(γ1 − µ)2 + p2(γ2 − µ)2 + · · ·+ pm(γm − µ)2}

There is no more under the radical than the squares of the differences between each
value γ resulting from the observation and the mean of all.

Laplace has discovered under this last form the constant which measures the errors
of the mean results from astronomical observations.

The analysis which has just been exposed no longer permits to raise the least doubt
on the use of this constant so remarkable. It shows that this quantity is certainly the
complete coefficient of the first term of the series which expresses the probability of
the deviation of the mean of any number of observations, likewise that the radical√

2pp1
n3 , on which there has never been raised doubt, is the coefficient of the first term

in the probability of the deviation of the real ratio of possibility to the mean ratio of the
repetitions of two events which exclude both.

If the direct demonstration of this truth was able to obtain the suffrage of the
Academy, perhaps the observers would make use more often of the rule of Laplace,
of which the rigorous exactitude appears to have been until here well judged only by
a small number of scholars. This Memoir would then be completely fulfilled, since at
present, the intention which has made it written, although the default of the times has
not at all permitted to develop the consequences of them.
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