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For the determination by means of the analysis of probabilities the value of a tran-
scendental number, we have in mind expressing a transcendental number by the prob-
ability of the occurrence of any event, depending on countlessly many cases. Then a
great number of trials, randomly selected cases on which the event depends, is pro-
duced, and both the number of occurrences of the event and number of all trials are
noted. The ratio of the first to the latter will depict, by the well-known theorem of
Jakob Bernoulli the approximate value of the probability of the said event. Equations
found by the ratio of these things a priori to express the probability, will give an equa- [458]
tion from which it will be easy to determine the desired transcendental number.

The task, for which we propose here the solution, consists of the determination of
ratio of circle to the diameter; although this kind of question is one of the simplest, but
along with that all the more difficult of those which have been solved until now. Here
is what it is:

Let us assume that a given definite or indefinite quantity of the plane tiled by equi-
lateral triangles; onto this plane is thrown, at random, a very thin cylinder of known
length. The question is, how great is the probability that the cylinder will fall at least
on one of the sides of the triangles drawn on the plane?

Let us note that the desired probability for the entire system of triangles will be
identical with the probability corresponding to one of the component triangles; for this
it suffices to determine the latter, and therefore, taking into consideration one of the
triangles of plane to determine the probability that a cylinder, falling with its center
inside the triangle in question, will cross one or two of its sides, must proceed as
follows: about every internal point of the triangle, taken as the center of the cylinder,
we describe a whole circle with a radius equal to the half-length of the cylinder; and
then determine how great is the angle at which the cylinder will intersect the sides of the
triangle. The ratio of the angle to 360◦ thus found, it is obviously equal to the ratio of
the number of cases of encounter to the number of all possible cases, and consequently
represents the probability of the encounter, when the center of cylinder will fall at a
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given point inside the triangle. Let the probability be φ
2π . Let us designate by the

characteristic S the quantity pertaining to all points of triangle. It is obvious that φ
S2π [459]

will represent the probability that the center of cylinder will fall at a designated point
in advance, and that the cylinder itself will meet at least one side of the triangle, and
the expression Sφ

S2π represents the desired probability. Multiplying both the numerator
and denominator of the latter fraction by the element of area dxdy, after replacing the
summation sign S by the double integral, we obtain∫∫

φdxdy∫∫
2π dxdy

=

∫∫
φdxdy

2π
∫∫

dxdy

If, for brevity, we indicate by A2 the area of a triangle, then we find the following
expression for the probability of encounters of the cylinder with divisions

(1)
∫∫

φdxdy

2πA2

And so, for resolution of our problem, it is necessary to determine the numerator
of previous fraction. Because of the variety of circumstances, which are represented in
different parts of the triangle, we must decompose it into several partial figures.

Let ABC (Figure 1) be the triangle in question, L each of its sides, and 2r the
length of this cylinder.

At the perpendicular distance equal to r, from each side of the triangle and inside
of it, we draw three parallel lines; thus they will be composed: 1◦. The equilateral
triangle of abc, for which let us name the area Ω. 2◦. Three trapezoids abK ′K ′′,
acKM ′′, bcMM ′; let ω̃ be the area of each of them. 3◦. Three rhombi AaKK ′,
BbMK ′′, CcM ′M ′′, and the area of each of them ω. Consequently, the area of the
triangle ABC is equal

√
3
4 L

2, we will also have = Ω + 3ω̃ + 3ω.
Let us note that this decomposition of the triangle is correct only for the case when [460]

r is less than the radius of the inscribed circle of triangle ABC. Consequently, we
assumed r < L

2
√
3

. However, if it is not possible to exclude the case r = L
2
√
3

; then it
is necessary to take Ω = 0.

Before we address the solution of the problem, let us write for convenience some
values for which we will have need. Here they are (on Figure 1):

AB = L, ab = L− 2
√

3.r bH = r

bM = 2r√
3

= l, MH = r√
3

= 1
2 l, angle(ABC) = 60◦

sin 30◦ = cos 60◦ = 1
2 , sin 60◦ = cos 30◦ =

√
3
2 .

Let P be the numerator of the fraction (1); the ratio P

2π.
√

3
4 L2

= 2P√
3πL2

represents

the probability of the encounter of the length of the cylinder meeting one of the sides
of triangle.

Let us now turn to the determination of the value of P , and note first that while the
center of cylinder is located inside the triangle of Ω, then the cylinder itself cannot fall
on any one of the sides AB, BC, CA. Consequently, the area of Ω will not be the case
of encounter. Let us represent by m the number of cases in which the cylinder, falling
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Figure 1: 〈Partitions of the equilateral triangle〉

with its center inside the area ω̃, will cross one of the sides AB, BC, CA, and by n
with the same reasoning in each of the areas ω. We will obtain P = 3m + 3n, and
consequently, the desired probability, which we represent by z, will be determined by
the formula

(2) z =
2
√

3(m+ n)

πL2
.
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Figure 2: 〈Analysis within rectangle of a trapezoid〉.

The problem now consists in the determination the value of m and n. Let us study [461]
first the former. Let ECDF (Figure 2) be the trapezoid ω̃; let us decompose it into
the rectangle ABCD and two right triangles ACE and BDF . Let µ be the number of
cases of encounter, when the center of cylinder is located inside the rectangle, and λ
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the same in relation to each of two triangles. Consequently

(3) m = µ+ 2λ.

In order to find µ, let us take inside the rectangle of ABCD an arbitrary point M , and
let us represent the rectangular coordinates of AP and PM by x and y. Let us assume
that the center of the cylinder 2r falls at this point, and that the cylinder is turning about
it, describing the ends of its entire circumference; let φ be the angle, comprehended be-
tween the axis of cylinder with the perpendicular MP at the instant when the cylinder
touches one end of the line of AB at the point K. Angle 2φ represents the part of the
circle, described by each end of the cylinder, in which this latter will fall beyond the
side of AB. And so, 4φ is a value of the angle, with which will occur the encounter
of the cylinder with the side of AB, assuming its center at the point M , and the dou-
ble integral 4

∫∫
φdxdy, taken between proper limits, expresses the value, which we

represented above by µ.
To determine this integral, we note that y = r cosφ, and consequently dy =

−r sinφ.dφ the limits relative to φ will obviously be π
2 and 0, and the limits relative to

x will be evidently 0 and AB = L− 2
√

3.r. And so, we will obtain

(4) µ = 4r

∫ L−2
√
3.r

0

∫ π
2

0

φ sinφ.dxdφ = 4r(L− 2
√

3.r).
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Figure 3: 〈Analysis within triangle of a trapezoid〉.

The value of λ is determined similarly: only the upper limit with respect to y will
be variable. Let us indicate by x = EP , y = PM (Figure 3) the coordinates of
the points of M , at which we assume the center of cylinder, and render through 2φ
the angle comprehended between the two extreme positions of the cylinder, so that
MK = ML = r. It is obvious that value λ will be expressed by the double integral
4
∫∫

φdxdy, undertaken between the limits that encompass the entire triangle ofACE;
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consequently, the limits in reasoning on the variable y will be 0 and
√

3.x, since the
equation of the straight line of EC, by reason that the angle CEA, being equal to 60◦,
is y =

√
3.x; relative to the abscissas of x, the integral must be taken from x = 0 to

x = EA = r√
3

and thus

λ = 4

∫ r√
3

0

∫ √3.x

0

φdxdy.

However, since y = r cosφ, then φ = arccos yr , this is why

λ = 4

∫ r√
3

0

∫ √3.x

0

arccos
y

r
dxdy =

4r2√
3

(
1− π

8

)
.

Consequently, in view of formulas (3) and (4), we will obtain

(5) m = 4rL− 16r2√
3
− πr2√

3
.

The determination of the value of n is somewhat more complex than the previous
of m. For convenience we will increase the dimension of rhombus ω. Let ABCD
(Figure 4) be this rhombus. From the point A, with a radius r of the semi-cylinder (by
construction equal of the height of the rhombus), let the circular arc dcb be described.
It is obvious that until the center of cylinder is located inside the sector of Abcd, then
the cylinder with all of its positions, certainly will fall on one side of AB, AD, even
on both sides. Consequently we can assume that the number of connections belonging
to this occasion, will be equal to entire circle, multiplied by the area of the sector; this
product is equal to π2r2

3 . If we represent by p the integral
∫∫

φdxdy, common to all [463]
the remaining length of the rhombus figure dDCBbc, then obviously we will obtain

(6) n =
π2r2

3
+ p,

And the problem will be reduced thus to the determination of the value of p. To
this end, for which there is any point M taken inside the figure dDCBbc, with a radius
of r, we describe part of a circle, which intersects the sides AB and AD, or of their
continuations, at some points 1,2, 3, 4. It is clear that turning the cylinder about the
point of M in question, it will meet both sides AB and AD, or only one of them, when
there are the inside angles (1M2) and (3M4), precisely: on the sides in the space of
angle (4ME) and equal to it and opposite to the vertex (1ME′), and one only, as
will be in the angles (EM2), (4MF ′), (3ME), (FM1); outside of these angles an
encounter is impossible. Hence it is easy to conclude that the encounter will occur
if the cylinder falls within the angle (FM2) and its opposite vertex (FM3), i.e., in
the space double the angle (FM2). Now beyond the limits, the cylinder cannot fall
beyond the sides of AB, AD of the rhombus. Let (FM2) = θ, and let us determine
this angle. From the point M let us drop the perpendiculars of Mh and Mj to the
sides AB and AD of the rhombus; let angle (1M2) = 2φ, and (3M4) = 2φ′. Since
angle θ = 180◦ − (2M3), and angle (hMj) = 2φ, by the property of the rhombus,
it is equal to 120◦, then there exists θ = 60◦ + φ + φ′ = π

3 + φ + φ’. Let AX ,
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Figure 4: 〈Analysis of a rhombus〉

AY be coordinate axes, and AP = x, PM = y; the element of area there will be
sin .60◦.dxdy = αdxdy, understanding by α the irrational number

√
3
2 . Consequently

we will obtain
p = 2α

∫∫ (π
3

+ φ+ φ′
)
dxdy.

If we express φ and φ′ by means of y and x, and decompose the last integral into two
others, one relative to the figure Ddcbb′D, and the other relative to the parallelogram
of bBb′C, then the first integral should be taken from y = the ordinate of the circle
of PN to y = the constant of the line AD, and from x = 0 to x = r; the second,
from y = 0 to y = the constant of the line AD, and from x = r to x = AB. We
will describe through y′ the ordinates of PN of the circle, and let us note that the line
AB = AD = 2r√

3
= l : 1; as in addition we have

x = l cosφ′ y = l cosφ,

and consequently that

φ′ = arccos
x

l
, φ = arccos

y

l
,
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and we obtain

p = 2α

∫ r

0

∫ l

y′

(π
3

+ arccos
y

l
+ arccos

x

l

)
dxdy

+2α

∫ l

r

∫ l

0

(π
3

+ arccos
y

l
+ arccos

x

l

)
dxdy

For brevity let I1 be the first, and I2 the second of the integrals, occurring in the
value of p; there will be

p = 2αI1 + 2αI2.

Integrating with respect to the variable y, we obtain

I1 =

∫ r

0

[
π

3
(l − y′) +

√
l2 − y′2 + l. arccos

x

l
− y′(arccos

y′

l
+ arccos

x

l
)

]
dx

I2 =

∫ l

r

[π
3
l + l + l. arccos

x

l

]
dx.

The integral I1 is involved with the variable x still the ordinate y′ of the circle; however,
since this latter equation is x2 − y′2 + xy′ = r2, from which we will obtain y′ =
√
4r2−5x2−x

2 , and also x =

√
4r2−5y′2−y′

2 whence we conclude
√

4r2 − y′2 = 2x+ y′

or
√
l2 − y′2 = 1√

3
(2x+ y′). Noting in addition that

∫ r
0
y′dx = πr2

6α , we find

(7)


∫ r
0
π
3 (l − y′)dx = π

3 lr −
π2r2

18∫ r
0

√
l2 − y′2.dx = 1√

3

∫ r
0

(2x+ y′)dx = r2√
3

+ πr2

6α
√
3∫ r

0
l. arccos xl .dx = l(l −

√
l2 − r2 + r arccos rl ).

To determine the last integral included in the value of I1, it is∫ r

0

y′(arccos
y′

l
+ arccos

x

l
)dx,

let us note that the sum arccos y
′

l +arccos xl = 120◦ = 2π
3 . It is very easy to prove this

equality by means of the analysis; but even easier by simple geometric construction.
Indeed we have already seen that in general

x = l cosφ′, y = l cosφ;

consequently the circle will also be

x = l cosφ′, y = l cosφ;

whence

arccos
x

l
= φ′, arccos

y′

l
= φ;

and thus

arccos
y′

l
+ arccos

x

l
= φ+ φ′.
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Figure 5: 〈Further analysis of a rhombus〉

But it is clear that when the center of the cylinder will be located in whatever point
M of the circular arc dcb (Figure 5), then for the reason MA is the equal of r, the
angles φ and φ′ will be adjacent, i.e., (hMA) = φ, (AMj) = φ′, which is why
(hMj) = φ + φ′; but on the other hand, it is obvious that angle (hMj) = 120◦;
consequently

arccos
y′

l
+ arccos

x

l
= 120◦ =

2π

3
.

And thus

(8)
∫ r

0

y′
(

arccos
y′

l
+ arccos

x

l

)
dx =

2π

3

∫ r

0

y′dx =
2π

3
· πr

2

6α
=
π2r2

9α
.

Combining integrals (7) and (8), and substituting value l equal to 2r√
3

, and for α the

number
√
3
2 , we find a reduction to

2αI1 = r2
[
2 +

2√
3

+

(
1 +

1

3
√

3

)
π − 1

3
π2

]
.

With regard to the integral I2, we obtain without any difficulty

2αI2 = r2
[
2(
√

3− 1) +

(
4

3
√

3
− 1

)
π

]
.

Consequently, by the formula p = 2αI1 + 2αI2, there is

p = r2
(

8√
3
− 1 +

5

3
√

3
π − 1

2
π2

)
,

and finally, yet equation (6),

n = r2
(

8√
3
− 1 +

5

3
√

3
π

)
.
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If we now substitute into equation (2) the value m given by equation (5) and the
value for p now obtained, then we find finally:

(9) z =
3
√

3.rL− r2(16 + 2
√

3− 1
3π)

πL2
.

Here is the expression of the probability that a cylinder, cast at random onto the
plane divided into equilateral triangles, will fall at least onto one of their sides; it is
obvious that the contrary probability will be 1 − z. For example, if for the length of
cylinder was accepted the maximum value L√

3
, which is mentioned above, then we

would find

z =
16−

√
3 + 3

2π

6π
= near

33

38

and consequently the contrary probability = 5
38 .

At the beginning of our reasoning we said that it expounded a method to lead to
the determination of the approximate values of transcendental numbers. Actually, it is
possible to use formula (9) derived above to find the approximate value of π, i.e., the
ratio of the circle to its diameter. To do this, one has only to draw on the plane equi-
lateral triangles contacting one another, and, at random, throw down a thin cylinder.
After repeating this step a great number of times (for example, 100000), and after not-
ing how often the cylinder fell on at least one of the drawn divisions, this last number,
divided by 100000, according to Jakob Bernoulli’s theorem, will very closely represent
the probability of z. Equating this ratio to the second part of formula (9), we will obtain
the equation from which it is easy to derive the value of π from the side L of triangle
and length 2r of the cylinder, which are assumed to be known. However one should
not lose sight of the fact that equation (9) is derived with the condition r < L

2
√
3

.
We intend to yet return to this kind of rather curious problems, and frequently they

are of no small difficulty. For this reason present discussion is now noted as our first.
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