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1. An urn contains m balls marked a, b, c, d, . . ., that one draws successively
each, in order to replace them afterwards. What is the probability that, in two
successive drawings, n balls will exit in the same order?

We suppose that one makes the first drawing, and that in measure as the
balls exit from the urn, one writes their names on one same line; we suppose
also that the same thing has taken place for the second drawing, and that the
second line is written below the first. One will obtain from the drawing, two
sequences composed each of m letters, and which will be for example:

1st drawing . . . g, a, h, l, i, c, e, d, . . . (1)
2nd drawing . . . i, l, h, g, b, d, e, f, . . . (2)

I will call a correspondence the encounter, at the same rank, of two similar
letters: thus, the letters h, e, form two correspondences.

The question reverts then to this one here:
What is the probability that in writing at random the sequences (1) and (2)

, composed of the same letters, one will obtain n correspondences?
We write arbitrarily the first line; then, in order to form the second, we

begin to make correspond n letters; we must next write the other m−n letters,
in a manner that they present no correspondence: I designate for an instant by
Xm−n the number of solutions of which this question is susceptible.

We will have then, for n designated correspondences, Xm−n systems. And
as the n letters, instead of being designated, are any, the number Xm−n must be
multiplied by the number of combinations of m letters, taken n by n; a quantity
that I will designate by Cm,n.

Thus, for any arrangement of the letters of the first line, there are Cm,n ×
Xm−n letters of the second, for which n letters correspond. Moreover, the
letters of the first line can be disposed in as many ways as indicate the number
of permutations of m letters, taken altogether, it follows that the number of
chances favorable to the event demanded, is

Pm.Cm,n.Xm−n (3)
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The total number of chances is evidently (Pm)2: therefore the probability sought
has for expression

p =
Cm,n.Xm−n

Pm
; (4)

or else, by putting for Cm,n and Pm their known values,

p =
Xm−n

1.2.3 . . . n.1.2.3 . . . (m− n)
(5)

2. We determine Xm−n.
By replacing m− n by µ, the question can be posed in this manner:
The µ letters a, b, c, d, . . . h, i being written on one same line, to find in how

many ways one can form a second line of these same letters, with the condition
that none of them occupy the same rank in these two lines.

This quantity will be designated by Xµ.
We suppose this operation already effected for the µ−1 letters a, b, c, d, . . . h;

and we consider any one of these systems:

1st line . . . a, b, c, . . . h,
2nd line . . . g, d, a, . . . c.

}
(6)

We bring the µth letter i to the end of each line; then, in the second, we change
successively each of the µ− 1 letters which enter there, into i, and reciprocally.

It is clear that we will obtain in this way, µ − 1 systems, which will make
part of the Xµ systems demanded.

We consider next two lines of µ − 1 letters, among which there is 1 corre-
spondence; for example:

1st line . . . a, b, c, d, . . . h,
2nd line . . . a, f, d, b, . . . c.

}
(7)

We write the µth letter i at the end of each line; then, in the second, we
change i into a; we will have next one of the arrangements sought. We can
make the same thing for each of the µ − 1 letters a, b, c, . . . h; and as, for one
letter which corresponds, there remain µ− 2, which one can invert in as many
ways as Xµ−2 indicates it, it follows that

Xµ = (µ− 1)(Xµ−1 +Xµ−2) (8)

It is evident that X1 = 0, and X2 = 1. One has next X3 = 2.1 = 2, X4 =
3(2 + 1) = 9, X5 = 4(9 + 2) = 44, etc.

One sees therefore that the sequence of termsX1, X2, X3, . . . Xµ−2, Xµ−1, Xµ, . . .
forms a sequence in which any term is equal to the sum of the two preceding,
multiplied by the rank of the term which precedes the one that one seeks.

3. One can transform formula (8) into another simpler:
First, for the symmetry of the calculation, we set X1 = 1: this value satisfies

the general law, because then X2 = 1(X1 +X0),
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Next, by changing in the formula above, µ into µ−2, µ−4, . . . and supposing
µ even, we will have

Xµ = (µ− 1)(Xµ−1 +Xµ−2),
Xµ−2 = (µ− 3)(Xµ−3 +Xµ−4),

· · ·
X4 = 3(X3 +X2)
X2 = 1(X1 + 1)

 (9)

The sum of all these equations is

Xµ = (µ− 1)Xµ−1 + (µ− 2)Xµ−2 + · · ·+ 3X3 + 2X2 + 1X1 + 1. (10)

Changing µ into (µ− 1), we will have, (µ− 1) being odd,

Xµ−1 = (µ− 2)Xµ−1 + · · ·+ 3X3 + 2X2 + 1X1 + 1; (11)

whence
Xµ = µXµ−1 + 1.

µ being odd, we will obtain likewise

Xµ = µXµ−1 − 1.

The general formula is therefore

Xµ = µXµ−1 ± 1, (12)

by taking the superior sign if µ is even.
One sees therefore, that, in order to obtain any term, it suffices to multiply

its rank by the preceding term, and to add or to subtract unity.
The value of Xµ increases very rapidly with µ: one has X1 = 0, X2 =

1, X3 = 2, X4 = 9, X5 = 44, X6 = 265, X7 = 1854, X8 = 14,833, X9 =
133,496, X10 = 1,334,961, X11 = 14,684,570, X12 = 176,214,841, X13 = 2,290,792,932, X14 =
32,071,101,049, X15 = 481,066,515,734, etc.

4. We determine the general term Xµ solely as function of µ.
By changing in equation (12), µ into µ−1, µ−2, . . . we will obtain the µ+1

equations,
Xµ = µXµ−1 ± 1,

Xµ−1 = (µ− 1)Xµ−2 ∓ 1,
Xµ−2 = (µ− 2)Xµ−3 ± 1,

· · ·
X3 = 3X2 − 1,
X2 = 2X1 + 1,
X1 = 1X0 − 1,

X0 = 1.


(13)

Multiplying then the 2nd equation by µ, the 3rd by µ(µ− 1), etc.; it comes, by
adding the products:

Xµ = ±1∓ µ± µ(µ− 1)∓ µ(µ− 1)(µ− 2)± · · ·
−µ(µ− 1) · · · 3.2 + µ(µ− 1) · · · 3.2.1.

}
(14)
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Therefore Xµ is equal to the difference between the number of permutations of
µ letters taken in even number, and the one of the permutations of these same
letters taken in odd number.

5. The value of Xµ can be set under the form

Xµ = 1.2.3 · · · (µ− 1)µ

[
1− 1

1
+

1

1.2
− 1

1.2.3
+ · · · ± 1

1.2.3 . . . (µ− 1)µ

]
(15)

The series between parenthesis has a remarkable analogy with the develop-
ment of the base of the Napierian logarithms: one knows that this development
has for value the limit of

(
1 + 1

n

)n
. Likewise, the series above has for value the

sum of the µ+ 1 first terms of the development of
(
1− 1

n

)n
, after one has made

n infinity.
By neglecting the superior powers in the first, one has 1

1+ 1
n

= 1− 1
n : it follows

that by designating as ordinarily by e the base of the Napierian logarithms, the
series above is the development of 1

e , limited to the first µ+ 1 first terms. It is
that which becomes evident if one takes the relation

ex = 1 +
x

1
+
x2

1.2
+

x3

1.2.3
+ · · · (16)

and if one puts x = −1.
It follows also that the limiting value of Xµ is

1.2.3.4 . . . (µ− 1)µ

e
(17)

As the series (15) is very convergent, the value (17) is very near, as soon as µ
passes a certain limit, which is not elevated. By making the calculation, one
finds that, for µ > 13,

1

e
= 0.367 879 441 19 . . . (18)

Therefore also, for µ > 13,

Xµ = 0.367 879 441 19× 1.2.3 . . . (µ− 1)µ (19)

Finally, if one sets for the product of the first µ natural numbers, its approximate
value, one will have, very nearly,

Xµ =
µµ
√

2πµ

eµ+1

(
1 +

1

12µ
+

1

288µ2
+ · · ·

)
(20)

5. Returning to the problem which makes the object of our note, we will
have, by replacing Xm−n by its value, in formula (5)

p =
1

1.2.3 . . . (n− 1)n

[
1− 1

1
+

1

1.2
− · · · ± 1

1.2.3 . . . (m− n− 1)(m− n)

]
,

(21)
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for the exact expression of the probability. When m−n passes 13, the very near
value is

p =
0.367 879 441 19

1.2.3 . . . (n− 1)n
. (22)

We take for example m = 20, n = 5, m − n = 15; formulas (21) and (22) give
equally

p = 0.003 065 662.

6. We seek the probability that, in the two drawings, no letter will exit at
the same rank. Setting n = 0 in formula (21), there comes for the demanded
probability,

p′ = 1− 1

1
+

1

1.2
− · · · ± 1

1.2.3 . . . (m− 1)m
(23)

And if m is infinite,

p′ =
1

e
(24)

Such is the probability that, in two sequences of the same independent events
the ones of the others, and in number infinite, no event will arrive in the same
order.

If from unity we subtract p′, we will obtain, for the probability of at least
one correspondence in the two successive drawings,

p′′ =
e− 1

e
. (25)

This probability is that of the game of rencontre, which consists in this here:
Two players have each a deck of cards, complete; each of them draw succes-

sively a card from his deck, until the same card exits at the same time, from
the two sides. One of the players wagers that he will have rencontre; the other
wagers the contrary. By supposing the number of cards infinite, it is clear that
the probability of the first is p′′, and that of the second, p′.

One has
p′′ = 0.632 . . . p′ = 0.368 . . . ;

and as these values are quite near when m is greater than 13, it follows that one
can regard them as exact, even for a deck of 32 cards.1

7. Problem (1) presents a rather remarkable circumstance: the value (22)
contains in the denominator only the variable n. As for the numerator, one
comes to see that as soon as m− n passes 13, it remains, very nearly, constant.
Therefore also, the probability demanded is, nearly rigorously, independent of

1The problem of which I occupy myself here, had been proposed to me, it is more than two
years, at the École Polytechnique. It is only after having sent the solution to M. Liouville,
that I have learned that Euler had occupied himself with the problem of rencontre, which is,
as one sees it, a very particular case of mine.

One will find the solution of Euler in the Mémoires de l’Académie de Berlin, year 1751. One
can consult also the Calcul des Probabilités of Laplace, p. 217, and Tome XII of the Annales
de Mathématiques. I have had knowledge of all this only since a short time.

5



the number of balls that the urn contains: it depends solely on the quantity of
balls which must exit at the same ranks, in the two drawings.

8. In formula (22), we make n vary from 0 to m, and we add all the results:
the sum is evidently unity, which is the symbol of certitude. Therefore

1 =

m∑
0

1− 1
1 + 1

1.2 − · · · ±
1

1.2.3...(m−n)

1.2.3 . . . n
(26)

This equation can be put under the form

1 =1

(
1 +

1

1
+

1

1.2
+ · · ·+ 1

1.2.3 . . .m

)
− 1

1

(
1 +

1

1
+

1

1.2
+ · · ·+ 1

1.2 . . . (m− 1)

)
+

1

1.2

(
1 +

1

1
+

1

1.2
+ · · ·+ 1

1.2 . . . (m− 2)

)
− · · ·

∓ 1

1.2.3.4 . . . (m− 1)

(
1 +

1

1

)
± 1

1.2.3 . . . (m− 1)m

Multiplying the two members by 1.2.3 . . . (m− 1)m, it becomes

1.2.3 . . . (m− 1)m = [1 +m+m(m− 1) + · · ·+m(m− 1)(m− 2) . . . 3.2.1]

− m

1
[1 + (m− 1) + (m− 1)(m− 2) + · · ·+ (m− 1)(m− 2) . . . 3.2.1]

+
m

1

m− 1

2
[1 + (m− 2) + (m− 2)(m− 3) + · · ·+ (m− 2)(m− 3) . . . 3.2.1] (27)

· · ·

∓ m

1

m− 1

2
· · · 2

m− 1
[1 + 1]± 1.

If one represents by Sn the sum of the numbers of permutations of n letters,
taken 0 by 0, 1 by 1, 2 by 2,. . . n by n, this equation can be set under the form

1.2.3 . . . (m− 1)m = Sn − Cm,1.Sm−1 + Cm,2.Sm−2 − · · · ∓ Cm,1.S1 ± 1. (28)

Equation (27) expresses a theorem on the numbers, equation (28) a theorem on
the combinations.

9. I will suppose now that instead of extracting all the balls from the urn,
one draws from it only a number t. Problem I is changed into this other, more
general:

What is the probability that, in two consecutive drawings from an urn con-
taining m balls marked a, b, c, . . . h, i, of which there exit of them t at each
drawing, n letters will exit in the same order?

By following the same march as previously, one sees that, after having made
correspond n letters in a system of two lines, there remains to place in each of
them, t − n other letters, taken among the m − n remaining; and that, with
the condition that it presents no longer any correspondence. We suppose for an
instant that this operation has been effected in all the possible ways, and we
designate by Ym−n, t−n the number of systems thus obtained.
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Actually, the n corresponding letters being able to be any, and being able
to occupy t places, it follows that the number above must be multiplied by
Cm,n.Pt,n. The chances favorable to the event demanded are therefore in num-
ber Cm,n.Pt,n.Ym−n, t−n. The number of possible chances is (Pm,t)

2. The prob-
ability sought has therefore for expression

p =
Cm,n.Pt,n.Ym−n, t−n

(Pm,t)2
. (29)

10. We determine Ym−n, t−n.
By replacing m− n by µ and t− n by α, the question reverts to this here:
In how many ways can one form two lines composed of α letters, taken

among µ given letters, with the condition that no letter occupies the same rank
in the two lines? This number will be represented by Yµ, α.

Let the µ letters be a, b, c, d . . . g, h. We consider any of the systems of two
lines formed only by α − 1 letters, a system which has no correspondence, and
which will be, in order to fix the ideas:

a, f, i, b, . . . e,
g, i, a, h, . . . d.

}
(30)

At the end of each of these two lines, we bring any one of the µ− (α− 1) letters
which do not enter there: for example, g for the first, and c for the second. We
will have then two lines of α letters; namely

a, f, i, b, . . . e, g,
g, i, a, h, . . . d, c.

}
(31)

It is clear that this system will be one of those demanded, except the case where
the two letters introduced will be similar: we will return to this circumstance.

By not taking account of it, we see that, for a system of (α− 1) letters, we
obtain from it (µ − α + 1)2 of α letters. And as the number of the systems of
α−1 letters is represented by Yµ,α−1, the one of the systems of α letters will be
by (µ−α+ 1)2.Yµ,α−1, of which it is necessary actually to subtract the number
of systems composed of lines terminated by the same letter.

Now, if we have placed one same letter a at the end of two lines of α − 1
letters, it is because it does not enter it yet: these two lines can therefore be
considered as composing one of the systems of α− 1 letters, taken only among
the µ − 1 other letters b, c, d, . . . h. Therefore, among the systems obtained a
little while ago, there are Yµ−1, α−1 terminated by a, a, as many by b, b, etc.; in
all, µ.Yµ−1, α−1 systems to reject. We have therefore

Yµ,α = (µ− α+ 1)2Yµ, α−1 − µ.Yµ−1, α−1 (32)

11. Before going further, we remark that, through the symmetry of the
calculations, one can suppose Yµ,0 = Yµ−1,0 = 1: because then, by making
α = 1 in the formula, there comes

Yµ,1 = µ2 − µ = µ(µ− 1).
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It is evident indeed that, if each line contains only one letter, the number of
systems is equal to the number of permutations of µ letters, taken 2 by 2.

Now, we change α into α−1, α−2, . . . 3, 2, 1, we will obtain the α equations

Yµ,α = (µ− α+ 1)2.Yµ,α−1 − µ.Yµ−1,α−1,
Yµ,α−1 = (µ− α+ 2)2.Yµ,α−2 − µ.Yµ−1,α−2,
Yµ,α−2 = (µ− α+ 3)2.Yµ,α−3 − µ.Yµ−1,α−3,

· · ·
Yµ,2 = (µ− 1)2.Yµ,α − µ.Yµ−1,1,
Yµ,1 = µ2.1− µ.1,


(33)

We multiply the second equation by (µ−α+ 1)2, the third by (µ−α+ 1)2.(µ−
α+ 2)2, etc., next we add. There comes

Yµ,α = (µ.µ− 1.µ− 2 . . . µ− α+ 1)2 − µ.[Yµ−1,α−1
+ (µ− α+ 1)2Yµ−1,α−2 + (µ− α+ 1)2.(µ− α+ 2)2Yµ−1,α−3

+ · · ·+ (µ− α+ 1)2.(µ− α+ 2)2 · · · (µ− 1)2]

 (34)

This equation in finite differences, is more complicated than equation (32); but
it is going to lead us easily to the general expression of Yµ,α.

For this, we set successively α = 1, 2, 3, . . . in this equation, and in that
which one deduces from it by changing µ into µ− 1; we will obtain:
for α = 1,Yµ,1 = µ2 − µ, Yµ,1 = µ(µ− 1)

and Yµ−1,1 = (µ− 1)[(µ− 1)− 1],

α = 2, Yµ,2 = µ2(µ− 1)2 − µ[(µ− 1)2 − (µ− 1) + (µ− 1)2]

= µ2(µ− 1)2 − µ[2(µ− 1)2 − (µ− 1)]

or Yµ,2 = µ(µ− 1)[µ(µ− 1)− 2(µ− 1) + 1],

Yµ-1,2 = (µ− 1)(µ− 2)[(µ− 1)(µ− 2)− 2(µ− 2) + 1],

α = 3,Yµ,3 = µ2(µ− 1)2(µ− 2)2 − µ[(µ− 1)2(µ− 2)2

− 2(µ− 1)(µ− 2)2 + (µ− 1)(µ− 2) + (µ− 1)2(µ− 2)

− (µ− 1)(µ− 2)2 + (µ− 2)2(µ− 1)2]

= µ2(µ− 1)2(µ− 2)2 − µ[3(µ− 1)2(µ− 2)2

− 3(µ− 1)(µ− 2)2 + (µ− 1)(µ− 2)

Yµ,3 = µ(µ− 1)(µ− 2)[µ(µ− 1)(µ− 2)− 3(µ− 1)(µ− 2)

+ 3(µ− 2)− 1],

α = 4,Yµ,4 = µ(µ− 1)(µ− 2)(µ− 3)[µ(µ− 1)(µ− 2)(µ− 3)

− 4(µ− 1)(µ− 2)(µ− 3) + 6(µ− 2)(µ− 3)− 4(µ− 3) + 1]
etc.
The law is actually evident, and we are right to set, save verification
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Yµ,α = µ(µ− 1) · · · (µ− α+ 1)[µ(µ− 1) · · · (µ− α+ 1)

−α
1

(µ− 1)(µ− 2) · · · (µ− α+ 1) +
α

1

α− 1

2
(µ− 2) · · · (µ− α+ 1)

− · · · ± α

1
(µ− α+ 1)∓ 1].


(35)

By employing the same relations as above, this formula can be set under the
simplest form

Yµ,α = Pµ,α[Pµ,α − Cα,1.Pµ−1,α−1 + Cα,2.Pµ−2,α−2

− · · · ± Cα,1.Pµ−α+1,1 ∓ 1].

}
(36)

The integral of equation (32) have been obtained by way of induction, it is
essential to verify it. For this, we change first α into α− 1 in (36), then µ into
µ− 1 and α into α− 1; we will have

Yµ,α−1 = Pµ,α−1[Pµ,α−1 − Cα−1,1.Pµ−1,α−2 + Cα−1,2.Pµ−2,α−3

− · · · ∓ Cα−1,1.Pµ−α+2,1 ± 1].

Yµ−1,α−1 = Pµ−1,α−1[Pµ−1,α−1 − Cα−1,1.Pµ−2,α−2 + Cα−1,2.Pµ−3,α−3

− · · · ± Cα−1,1.Pµ−α+1,1 ∓ 1].

We multiply the first of these equations by (µ − α + 1)2, next we subtract
from it the second multiplied by µ. In noting that one has in general, Pm,n =
(m− n+ 1).Pm,n−1 and Pm,n = m.Pm−1,n−1, we will obtain first

(µ− α+ 1)2.Yµ,α−1 − µ.Yµ−1,α−1 = Pµ,α[Pµ,α − (Cα−1,1 + 1).Pµ−1,α−1

+ (Cα−1,2 + Cα−1,1).Pµ−2,α−2 − · · · ± (1 + Cα−1,1)Pµ−α+1,1 ∓ 1].

But one knows also that Cm,p+Cm,p−1 = Cm+1,p; therefore the second member
becomes

= Pµ,α[Pµ,α − Cα,1.Pµ−1,α−1 + Cα,2.Pµ−2,α−2 − · · · ± Cα,1.Pµ−α+1,1 ∓ 1] :

an expression identical with that which we have found for Yµ,α.
12. If in formula (35), we set µ− α = δ, the development will become

Yµ,α =[µ(µ− 1)(µ− 2 . . . (δ + 1)]2
[
1− 1

1

(
1− δ

µ

)
+

1

1.2

(
1− δ

µ

)(
1− δ

µ− 1

)
− · · · ± 1

1.2.3 . . . (α− 1)

(
1− δ

µ

)(
1− δ

µ− 1

)
· · ·
(

1− δ

µ+ 2

)
∓ 1

1.2.3 . . . (α− 1)α

(
1− δ

µ

)(
1− δ

µ− 1

)
· · ·
(

1− δ

µ+ 1

)]
Comparing this expression with formula (15), one sees that if α = µ,

Yµ,µ = 1.2.3 . . . (µ− 1).µXµ (38)
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this which is evident besides.
The series within parenthesis is very convergent: because its terms decrease

more rapidly than those of the development of e−1. If α, µ and δ are large
numbers, one could replace this development by the one here:

1− 1

1

(
1− δ

µ

)
+

1

1.2

(
1− δ

µ

)2

− 1

1.2.3

(
1− δ

µ

)3

+ · · · (38)

which has for value

e−(1− δ
µ ) =

1

e
δ
µ

.

It would be perhaps rather difficult to determine a priori the degree of approx-
imation that one will be able to obtain, expecting that the more one advances
in the series (37) and (38), the more the terms of the same order differ. In the
cases where the series (38) will be able to be employed with advantage, one will
have therefore for an approximate value of Yµ,α,

Y ′µ,α =
[µ(µ− 1)(µ− 2) · · · (µ− α+ 1)]2

e
α
µ

(39)

13. By setting in formula (29), the values of the letters which enter, there
comes

p =
t(t− 1)(t− 2) · · · (t− n+ 1)

1.2.3 . . . n×m(m− 1) . . . (m− n+ 1)

[
1− 1

1

(
1− δ

µ

)
+

1

1.2

(
1− δ

µ

)(
1− δ

µ− 1

)
− · · ·

]
 (40)

or else

p =
t(t− 1)(t− 2) · · · (t− n+ 1)

1.2.3 . . . n×m(m− 1) . . . (m− n+ 1)

[
1− 1

1

t− n
m− n

+
1

1.2

t− n
m− n

.
t− n− 1

m− n− 1
− · · ·

]
 (41)

The series within parenthesis has α + 1 = t − n + 1 terms: the last has for
expression

1

1.2.3 . . . (t− n)
· t− n
m− n

· t− n− 1

m− n− 1
· · · 1

m− t+ 1
=

1

(m− n)(m− n− 1) · · · (m− t+ 1)
.

14. If one supposes t = n, the probability becomes

p′ =
1

m(m− 1) · · · (m− n+ 1)
. (42)

It is evident indeed, that if all the letters that one draws from the urn become
exited in the same order in the two drawings, the probability has for expression
Pm,n

(Pm,n)2
.
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Finally, if we suppose n = 0, the value of p becomes

1

m(m− 1) . . . (t+ 1)

[
1− 1

1

t

m
+

1

1.2

t

m
· t− 1

m− 1
− · · · ± 1

1.2.3 . . . t

t

m

t− 1

m− 1

· · · 2

m− t+ 2
· 1

m− t+ 1

]
This is the probability of the game of rencontre, by supposing that one stops

this game at the tth trial.
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