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Comptes Rendus Hebd. Séances Acad. Sci. 25, 536–538.
OC I, 10 (383), 399–402.

Being given a system of simultaneous equations that the concern is to resolve, one
begins ordinarily by reducing them to a single one, by aid of successive eliminations,
save to resolve definitely, if it is able, the resulting equation. But it is important to
observe, 1 ˚ that, in a great number of cases, the elimination is not able to be effected in
any manner; 2 ˚ that the resulting equation is generally very complicated, even though
the given equations are rather simple. For these two motives, one imagines that it would
be very useful to understand a general method which may be able to serve to resolve
directly a system of simultaneous equations. Such is that which I have obtained, and
of which I am going to say some words here. I will limit myself for the moment to
indicate the principles on which it is founded, proposing to myself to return with more
details on the same subject, in a forthcoming Memoir.

Let first
u = f (x,y,z)

be a function of many variables x, y, z,. . . which never becomes negative and which
remains continuous, at least between certain limits. In order to find the values of
x, y, z,. . ., which will verify the equation

(1) u = 0,

it will suffice to make the function u decrease indefinitely, until it vanishes. Now let

x, y, z, . . .

be particular values attributed to the variables x, y, z,. . .; u the value corresponding to u;
X, Y, Z, . . . the values corresponding to Dxu, Dyu, Dzu, . . . , and α,β ,γ, . . . some very
small increments attributed to the particular values x, y, z, . . . When one will put

x = x+α, y = y+β , z = z+ γ, . . . ,

one will have sensibly

(2) u = f (x+α,y+β , . . .) = u+αX+βY+ γZ+ · · ·
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[537] We imagine now that, θ being a positive quantity, one takes

α =−θX, β =−θY, γ =−θZ, . . .

Formula (2) will give sensibly

(3) f (x−θX, y−θY, z−θZ, . . .) = u−θ(X2 +Y2 +Z2 · · ·).

It is easy to conclude from it that the value Θ of u, determined by the formula

(4) Θ = f (x−θX, y−θY, z−θZ, . . .),

will become inferior to u, if θ is sufficiently small. If, now, θ comes to increase,
and if, as we have supposed, the function f (x,y,z,. . .) is continuous, the value Θ of
u will decrease until it vanishes, or at least until it coincides with a minimum value,
determined by the equation in a single unknown

(5) Dθ Θ = 0.

It will suffice therefore, either to resolved this last equation, or at least to attribute to θ

a sufficiently small value, in order to obtain a new value of u inferior to u. If the new
value of u is not a minimum, one will be able to deduce, by operating always in the same
manner, a third still smaller value; and, by continuing thus, one will find successively
some values of u more and more small, which will converge toward a minimum value
of u. If the function u, which is supposed not at all to admit negative values, offers
some null values, they will be able always to be determined by the preceding method,
provided that one chooses conveniently the values of x, y, z, . . ..

It is good to observe that, if the particular value of u represented by u is already
very small, one will be able ordinarily to deduce another value Θ much smaller, by
equating to zero the second member of formula (3), and by substituting the value that
one will obtain thus for θ , namely

(6) θ =
u

X2 +Y2 +Z2 · · ·
,

in the second member of formula (4).
We suppose now that the unknowns x,y,z,. . . must satisfy no longer a single equa-

tion, but a system of simultaneous equations

(7) u = 0, v = 0, w = 0, . . . ,

[538] of which the number will be able to surpass even the one of the unknowns. In
order to restore this last case to the preceding, it will suffice to substitute into the system
(7) the unique equation

(8) u2 + v2 +w2 + · · ·= 0.

When, by aid of the method that we just indicated, one will have determined some
already well approximated values of the unknowns x,y,z,. . ., one will be able, if one
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wishes, to obtain new very rapid approximations by aid of the linear or Newtonian
method, of which I have made mention in the Memoir of 20 September.

One is able to draw from the principles exposed here a very advantageous part for
the determination of the orbit of a star, by applying them no longer to the differential
equations, but to the finite equations which represent the movement of this star, and by
taking for unknowns the same elements of the orbit. Then the unknowns are in number
six. But the number of equations to resolve is more considerable, some of among them
serving to define some implicit functions of the unknowns; and besides the number
of equations increases with the number of observations that one wishes to make agree
to the solution of the problem. We add that the only numbers which enter into the
equations to resolve are the longitudes, latitudes, etc., furnished by the observations
themselves. Now these longitudes, latitudes, etc., are always more exact than their
derivatives relative to time, which enter into the differential equations. Therefore, after
having obtained by aid of the differential equations, just as we have explicated in the
preceding Memoirs, some approximate values of the unknowns, one will be able, by
departing from these approximate values, and resolving them, as we just said, the finite
equations of the movement of the star, to obtain a very great precision in the results of
the calculation.
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