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§1. The proposition, of which the demonstration will be the object of this note, is
the following:

“One is able to assign always a number of trials such, that the probability of that
which the ratio of the number of repetitions of the event E to the one of the trials will
not deviate from the mean of the chances of E beyond some given limits, as tightened
as are these limits, will be approached as much as one will wish to certitude.”

This fundamental proposition of the theory of probabilities, containing as particular
case the law of Jacques Bernoulli, is deduced by Mr. Poisson from a formula, which he
obtains by calculating approximately the value of a rather complicated definite integral
(See Recherches sur les probabilités des jugements, Chap. IV).

As ingenious as is the method employed by the celebrated Geometer, it does not
furnish the limit of the error that his approximate analysis permits, and by this uncer-
tainty over the value of the error the demonstration of the proposition lacks rigor.

I am going to show here how one is able to demonstrate rigorously this proposition
by some totally elementary considerations.
§2. We suppose that p1, p2, p3, . . .pµ are the chances of the event E in µ consecu-

tive trials, Pm the probability that E will arrive at least m times in these µ trials.
One will arrive, as one knows, to the expression of Pm by developing the product

(p1t+ 1− p1)(p2t+ 1− p2)(p3t+ 1− p3) . . . (pµt+ 1− pµ)

according to the powers of t by taking the sum of the coefficients of tm, tm+1, . . . tµ.
Thence result evidently these two properties of Pm:
1) This quantity contains p1, p2, p3, . . .pµ only to the degrees not superior to unity;

2) it is a symmetric function with respect to p1, p2, p3, . . .pµ.
By virtue of the first property Pm will be able to be set under the form

U + V p1 + V1p2 +Wp1p2,

where U , V , V1, W are independent of p1 and p2; by virtue of the second, V and V1
are equals. Therefore the form of the expression Pm is

U + V (p1 + p2) +Wp1p2,

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. November 2, 2011
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where U , V , W contain neither p1 nor p2. Following this it is easy to prove concerning
the expression Pm the following theorem:

Theorem. “If p1, p2 are not equal, one is able, without changing the values of
p1 + p2, p3,. . .pµ, to increase that of Pm by taking p1 = p2; or one is able to arrive to
one of the following equations:

p1 = 0, p1 = 1,

without diminishing the value of Pm.”
Demonstration. We have seen that the expression of Pm is able to be put under the

form U + V (p1 + p2) +Wp1p2, where U , V , W are independent of p1 and p2.
Now the formula U +V (p1+p2)+Wp1p2 presents always one of the three cases:

W > 0, W = 0, W < 0.
In the first case the sum p1 + p2 remains the same, and the value of Pm increases

from 1
4W (p1 − p2)2, when one changes p1, p2 into 1

2 (p1 + p2), 1
2 (p1 + p2); because

the difference

U + V

[
1

2
(p1 + p2) +

1

2
(p1 + p2)

]
+W

1

2
(p1 + p2)

1

2
(p1 + p2)

−{U + V (p1 + p2) +Wp1p2}

is reduced to 1
4W (p1 − p2)2.

In the two other cases one will not change the value of the sum p1 + p2 and one
will not diminish that of U +V (p1 + p2)+Wp1p2, by changing p1, p2 into 0, p1 + p2
or into 1, p1 + p2 − 1; for

U + V [0 + p1 + p2] + W.0.(p1 + p2)− {U + V (p1 + p2) +Wp1p2}
= −Wp1p2;

U + V [1 + p1 + p2 − 1] + W.1.(p1 + p2 − 1)− {U + V (p1 + p2) +Wp1p2}
= −W (1− p1)(1− p2).

But the values 0, p1+p2 will be able to be admitted for p1, p2 each time that p1+p2
not surpass 1; for they are then positive and do not surpass unity at all; in the contrary
case where p1 + p2 > 1, one will be able to change p1 into 1, p2 into p1 + p2 − 1, that
which proves the theorem announced. This theorem leads us next to the following:

Theorem. “The greatest value that Pm is able to have in the case where p1 + p2 +
p3+ · · ·+pµ = S, corresponds to the values of p1, p2, p3, . . .pµ given by the equations

p1 = 0, p2 = 0, pρ = 0, pρ+1 = 1, pρ+2 = 1, . . . pρ+σ = 1,

pρ+σ+1 =
S − σ

µ− ρ− σ
, pρ+σ+2 =

S − σ
µ− ρ− σ

, . . . pµ =
S − σ

µ− ρ− σ
,

where ρ, σ designate certain numbers.”
Demonstration. We suppose that π1, π2, π3, . . .πµ are the system of values of p1,

p2, p3, . . .pµ which, verifying the equation

p1 + p2 + p3 + · · ·+ pµ = S,
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give the greatrial value of Pm and contain at the same time the greatest number possible
of values equal to 1 and 0 under these conditions.

Let besides π1, π2, π3, . . .πρ be those among the quantities π1, π2, π3, . . .πµ
which are equal to 0; πρ+1, πρ+2,. . .πρ+σ those which are equal to unity; all the others
πρ+σ+1, πρ+σ+2, . . .πµ being according to the supposition different from 0 and 1,
must be equal among themselves, as we are going to prove it just now.

In fact, if πρ+σ+1 is not equal to πρ+σ+2, it is possible, according to the preceding
theorem, either to render Pm greater, without changing the sum

π1 + π2 + · · ·+ πρ+σ+1 + πρ+σ+2 + · · ·+ πµ,

by taking πρ+σ+1 = πρ+σ+2 or by making πρ+σ+1 equal to 1 or 0, without diminishing
the value of Pm.

But the one is contrary to the supposition that the system π1, π2, π3, . . .πµ gives
the greatest value to Pm under the condition

π1 + π2 + π3 + · · ·+ πµ = S;

the other is contrary to the supposition that of all the systems that have this property,
π1, π2, π3, . . .πµ is the one which contains the greatest number of values equal to 1
and 0. Therefore it is necessary that it be

πρ+σ+1 = πρ+σ+2 = · · · = πµ.

But beyond these equations we have

π1 = 0, π2 = 0, . . . πρ = 0, πρ+1 = 1, . . . πρ+σ = 1;

π1 + π2 + π3 + · · ·+ πµ = S;

whence results the equations of the proposed theorem.
§3. We pass now to the research on the values of the expression of Pm which

corresponds to

p1 = 0, p2 = 0, pρ = 0, pρ+1 = 1, pρ+2 = 1, . . . pρ+σ = 1,

pρ+σ+1 =
S − σ

µ− ρ− σ
, pρ+σ+2 =

S − σ
µ− ρ− σ

, . . . pµ =
S − σ

µ− ρ− σ
.

From the remark that we just made with respect to the expression Pm, it follows
that the value of Pm which corresponds to

p1 = 0, p2 = 0, p3 = 0, pρ+1 = 1, pρ+2 = 1, . . . pρ+σ = 1,

pρ+σ+1 =
S − σ

µ− ρ− σ
, pρ+σ+2 =

S − σ
µ− ρ− σ

, . . . pµ =
S − σ

µ− ρ− σ
,

is the sum of the coefficients of tm, tm−1, . . . tµ in the development of the product

tσ
(

S − σ
µ− ρ− σ

t+
µ− S − ρ
µ− ρ− σ

)µ−ρ−σ
,
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and that, consequently, it is equal to

1.2 . . . (µ− ρ− σ)
1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ (
µ− S − ρ
µ− ρ− σ

)µ−m−ρ

{
1 +

µ−m− ρ
m− σ + 1

S − σ
µ− S − ρ

+
µ−m− ρ
m− σ + 1

S − σ
µ− S − ρ

µ−m− ρ− 1

m− σ + 2

S − σ
µ− S − ρ

+ · · ·

+
µ−m− ρ
m− σ + 1

S − σ
µ− S − ρ

µ−m− ρ− 1

m− σ + 2

S − σ
µ− S − ρ

· · · 1

µ− ρ− σ
S − σ

µ− S − ρ

}
.

Here is the expression which, in consequence of the preceding theorem, for certain
positive whole numbers ρ and σ, will be the upper limit of all the values of Pm, in the
case, where p1 + p2 + p3 + · · ·+ pµ = S.

In noting that the value of the expression

1 +
µ−m− ρ
m− σ + 1

S − σ
µ− S − ρ

+
µ−m− ρ
m− σ + 1

S − σ
µ− S − ρ

µ−m− ρ− 1

m− σ + 2

S − σ
µ− S − ρ

+ · · ·

· · ·+ µ−m− ρ
m− σ + 1

S − σ
µ− S − ρ

µ−m− ρ− 1

m− σ + 2

S − σ
µ− S − ρ

+ · · · 1

µ− ρ− σ
S − σ

µ− S − ρ

is smaller than that of

1+
µ−m− ρ
m− σ

S − σ
µ− S − ρ

+

(
µ−m− ρ
m− σ

S − σ
m− σ − ρ

)2

+· · ·+
(
µ−m− ρ
m− σ

S − σ
µ− S − ρ

)µ−m−ρ

,

which is the development of

1−
(
µ−m−ρ
m−σ

S−σ
µ−S−ρ

)µ−m−ρ+1

1− µ−m−ρ
m−σ

m−σ
µ−S−ρ

,

or of

(m− σ)
(m− S)

(µ− S − ρ)
(µ− ρ− σ)

[
1−

(
µ−m− ρ
m− σ

S − σ
m− σ − ρ

)µ−m−ρ+1
]
,

we will arrive to this theorem.
Theorem “For certain whole and positive numbers ρ and σ the value of the expres-

sion

1.2 . . . (µ− ρ− σ)
1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ (
µ− S − ρ
µ− ρ− σ

)µ−m−ρ+1

(m− σ)
(m− S)

[
1−

(
µ−m− ρ
m− σ

S − σ
µ− S − ρ

)µ−m−ρ+1
]

surpasses the value Pm of the probability that in the µ trials the event E having the
chances p1, p2, p3, . . .pµ, will arrive at least m times, where S is the sum p1 + p2 +
p3 + · · ·+ pµ.”
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§4. We stop ourselves at the case, where m surpasses S + 1. According to the last
theorem we have

Pm <
1.2 . . . (µ− ρ− σ)

1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ (
µ− S − ρ
µ− ρ− σ

)µ−m−ρ+1

(m− σ)
(m− S)

[
1−

(
µ−m− ρ
m− σ

S − σ
µ− S − ρ

)µ−m−ρ+1
]

and more so

Pm <
1.2 . . . (µ− ρ− σ)

1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ

(
µ− S − ρ
µ− ρ− σ

)µ−m−ρ+1
(m− σ)
(m− S)

(1)

But m being greater than S + 1, the value of the expression

1.2 . . . (µ− ρ− σ)
1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ (
µ− S − ρ
µ− ρ− σ

)µ−m−ρ+1
m− σ
m− S

will increase with the diminution of the positive whole numbers ρ and σ.
In fact, if we divide by this expression the value that it takes after the changing of

σ into σ − 1, we will find for their ratio

µ− ρ− σ + 1

m− σ
(S − σ + 1)m−σ+1

(S − σ)m−σ
(µ− ρ− σ)µ−ρ−σ+1

(µ− ρ− σ + 1)µ−ρ−σ+2
,

or else
S − σ + 1

m− σ

(
S − σ + 1

S − σ

)m−σ (
µ− ρ− σ

µ− ρ− σ + 1

)µ−ρ−σ+1

,

this which, being set under the form

1

1 + m−S−1
S−σ+1

e−(m−σ) log(1− 1
S−σ+1 )+(µ−ρ−σ+1) log(1− 1

µ−ρ−σ+1 ),

is reduced to

1

1 + m−S−1
S−σ+1

e
m−S−1
S−σ+1 + 1

2

{
m−σ

(S−σ+1)2
− 1
µ−ρ−σ+1

}
+ 1

3

{
m−σ

(S−σ+1)3
− 1

(µ−ρ−σ+1)2

}
+···

Now, this value is evidently greater than 1; for

1

1 + m−S−1
S−σ+1

e
m−S−1
S−σ+1

is equal to

1 + m−S−1
S−σ+1 + 1

2

(
m−S−1
S−σ+1

)2
+ 1

2.3

(
m−S−1
S−σ+1

)3
+ · · ·

1 + m−S−1
S−σ+1

,
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and this here surpasses unity, because, m being, by assumption, greater than S + 1,
m− S + 1 will have a positive value.

As for the values of

m− σ
(S − σ + 1)2

− 1

µ− ρ− σ + 1
,

m− σ
(S − σ + 1)3

− 1

(µ− ρ− σ + 1)2
, . . . ,

they are positive, seeing that, by assumption, m−σ surpasses S−σ+1, and S−σ+1
is not able to surpass µ − ρ − σ + 1; for otherwise S−σ

µ−ρ−σ , which is the value of a
certain probability (see §2), would be greater than unity.

We ourselves are therefore convinced that with the diminution of σ the value of the
expression

1.2 . . . (µ− ρ− σ)
1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ (
µ− S − ρ
µ− ρ− σ

)µ−m−ρ+1
m− σ
m− S

increases. The same holds with respect to ρ.
We conclude thence that for m > S + 1 the value of the expression

1.2 . . . (µ− ρ− σ)
1.2 . . . (m− σ).1.2. . . . (µ−m− ρ)

(
S − σ

µ− ρ− σ

)m−σ (
µ− S − ρ
µ− ρ− σ

)µ−m−ρ+1
m− σ
m− S

in inequality (1) is not able to surpass that which corresponds to ρ = 0, σ = 0 and
which is equal to

1.2 . . . µ

1.2 . . .m.1.2. . . . (µ−m)

(
S

µ

)m(
µ− S
µ

)µ−m+1
m

m− S
.

We are able therefore to deduce from inequality (1) this here:

(2) Pm <
1.2 . . . µ

1.2 . . .m.1.2. . . . (µ−m)

(
S

µ

)m(
µ− S
µ

)µ−m+1
m

m− S
,

where m is supposed greater than S + 1.
§5. But one knows, that the value of the product 1.2 . . . (x − 1).x is smaller than

2.53xx+
1
2 e−x+

1
12x and greater than 2.50xx+

1
2 e−x.1

1Here is how one arrives very simply to this result.
By dividing respectively the values of the expressions 1.2...(x−1).x

x
x+1

2 e
−x+ 1

12x

, 1.2...(x−1).x

x
x+1

2 e−x
corresponding to

x = n+ 1, by their values, which correspond to x = n, one finds for their ratios(
n

n+ 1

)n+ 1
2

· e1+
1
12

(
1
n
− 1
n+1

)
,

(
n

n+ 1

)n+ 1
2

· e,

this which is reduced to

e

(
n
n+1

)
log n

n+1
+1+ 1

12

(
1
n
− 1
n+1

)
, e(

n+ 1
2 ) log

n
n+1

+1

or finally to

e
( 1
12

− 3
2.4.5 )

1
(n+1)4

+( 1
12

− 4
2.5.6 )

1
(n+1)5

+···
, e

− 1
12(n+1)2

− 1
12(n+1)3

−···
.
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According to this the value of the expression

1.2 . . . µ

1.2 . . .m.1.2. . . . (µ−m)

(
S

µ

)m(
µ− S
µ

)µ−m+1
m

m− S

is smaller than

2.53e
1

12µ

(2.50)2
µµ+

1
2

mm+ 1
2 (µ−m)µ−m+ 1

2

(
S

µ

)m(
µ− S
µ

)µ−m+1
m

m− S
,

and the more so smaller than
1
2µ

µ+ 1
2

mm+ 1
2 (µ−m)µ−m+ 1

2

(
S

µ

)m(
µ− S
µ

)µ−m+1
m

m− S
;

because the greatest value of e
1

12µ , which is e
1
12 , the product

2.53

(2.50)2
e

1
12µ

is yet smaller than 1
2 .

One has therefore according to (2):

Pm <
1
2µ

µ+ 1
2

mm+ 1
2 (µ−m)µ−m+ 1

2

(
S

µ

)m(
µ− S
µ

)µ−m+1
m

m− S
,

or, that which is the same:

Pm <
1

2(m− S)

√
m(µ−m)

µ

(
S

m

)m(
µ− S
µ−m

)µ−m+1

.

The first quantity being greater than unity, the second smaller, it is clear that when x increases, the value
of 1.2...(x−1).x

x
x+1

2 e
−x+ 1

12x

increases also and that of 1.2...(x−1).x

x
x+1

2 e−x
diminishes.

Therefore for all the values of x, less than s, one will have

1.2 . . . (x− 1).x

xx+ 1
2 e−x+ 1

12x

<
1.2 . . . (s− 1).s

ss+
1
2 e−s+ 1

12s

,
1.2 . . . (x− 1).x

xx+ 1
2 e−x

>
1.2 . . . (s− 1).s

ss+
1
2 e−s

and, consequently,

(A) 1.2. . . . (x− 1).x < Te−
1

12s xx+ 1
2 e−x+ 1

12x , 1.2 . . . (x− 1).x > Txx+ 1
2 e−x,

where T designates the value of the expression 1.2...(s−1).s

s
s+1

2 e−s
.

We put s =∞ and we name T0 the value of 1.2...(s−1).s

s
s+1

2 e−s
for s =∞; it follows from (A) that for all the

finite values of x one will have

1.2. . . . (x− 1).x < T0x
x+ 1

2 e−x+ 1
12x , 1.2 . . . (x− 1).x > T0x

x+ 1
2 e−x,

where T0 is a constant.
By making in these inequalities x = 10, one will find that T0 is greater than 2.50 and less than 2.53;

consequently the preceding inequality gives

1.2. . . . (x− 1).x < 2.53xx+ 1
2 e−x+ 1

12x , 1.2 . . . (x− 1).x > 2.50xx+ 1
2 e−x.
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This inequality gives the following theorem:
Theorem. “If the chances of the eventE in µ consecutive trials are p1, p2, p3, . . .pµ,

and if their sum is S, the value of the expression

1

2(m− S)

√
m(µ−m)

µ

(
S

m

)m(
µ− S
µ−m

)µ−m+1

,

for m greater than S + 1, surpasses always the probability that E will arrive at least m
times in these µ trials.”

By changing m, p1, p2, p3,. . .pµ, S into µ − n, 1 − p1, 1 − p2, 1 − p3,. . . 1 − pµ,
µ−S, it follows from this theorem that, if the sum 1−p1+1−p2+1−p3+· · ·+1−pµ
is equal to µ− S, the value of the expression

1

2(S − n)

√
n(µ− n)

µ

(
µ− S
µ− n

)µ−n(
S

n

)n+1

for µ− n > µ− S + 1 surpass that of the probability that the event contrary to E will
arrive at least µ− n times in µ trials, where p1, p2, p3, . . .pµ are the chances of E.

By observing that the conditions

1− p1 + 1− p2 + 1− p3 + · · ·+ 1− pµ = µ− S; µ− n > µS + 1

is reduced to
p1 + p2 + p3 + · · ·+ pµ = S; n < S − 1,

and that the event contrary to E does not arrive at least µ − n times in µ trials, if
E presents itself in these trials no more than n times, we will arrive to the following
theorem:

Theorem. “If the chances of the eventE in µ consecutive trials are p1, p2, p3, . . .pµ,
and if their sum is S, the value of the expression

1

2(S − n)

√
n(µ− n)

µ

(
µ− S
µ− n

)µ−n(
S

n

)n+1

for n smaller than S − 1, will surpass always that of the probability that E will arrive
in these trials no more than n times.”
§6. But the repetition of the event E is able to take place only in one of these three

cases: either the event will return at least m times, or it will not return more than n
times, or finally it will return more than n times and less than m times.

Therefore the probability of the last case will be determined by the difference be-
tween unity and the sum of the probabilities of the first two cases.

Therefore, as consequence of the last two theorems, results the following:
Theorem. “If the chances of the eventE in µ consecutive trials are p1, p2, p3,. . .pµ,

and if their sum is S, the probability that the number of repetitions of the event E in
these µ trials will be less than m and greater than n, will surpass, for m greater than
S + 1 and for n smaller than S − 1, the value of the expression

1− 1

2(m− S)

√
m(µ−m)

µ

(
S

m

)m(
µ− S
µ−m

)µ−m+1

− 1

2(S − n)

√
n(µ− n)

µ

(
µ− S
µ− n

)µ−n(
S

n

)n+1

.
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In order to deduce from this theorem the proposition enunciated at the beginning
of the note, we note that the ratio of the number of repetitions of the event E in µ trials
to the number µ does not attain the limits

S

µ
+ z and

S

µ
− z,

if E in these trials arrives less than S + µz and more than S − µz times.
But the probability that this here takes place, will surpass (according to the last

theorem), for z > 1
µ , the value of the expression

1 − 1

2µz

√
(S + µz)(µ− S − µz)

µ

(
S

S + µz

)S+µz (
µ− S

µ− S − µz)

)µ−S−µz+1

− 1

2µz

√
(S − µz)(µ− S + µz)

µ

(
µ− S

µ− S + µz

)µ−S+µz (
S

µ− µz)

)S−µz+1

which is able to be set under the form

(3) 1− 1− p
2z
√
µ

√
p+ z

1− p− z
Hµ − p

2z
√
µ

√
1− p+ z

p− z
Hµ

1 ,

where one has made for brevity S
µ = p and(

p

p+ z

)p+z (
1− p

1− p− z

)1−p−z

= H;(
1− p

1− p+ z

)1−p+z (
p

p+ z

)p−z
= H1.

(4)

The equations (4) will give us for the natural logarithms of H , H1 the following
series:

− z
2

2p

(
1− 1

3

z

p

)
− z4

12p2

(
1− 3

5

z

p

)
− · · · − z2

2(1− p)
− z3

6(1− p)2
− · · ·

and

− z
2

2p
− z3

6p2
− · · · − z2

2(1− p)

(
1− 1

3

z

1− p

)
− z4

12(1− p)2

(
1− 3

5

z

1− p

)
− · · ·

whence it is clear that H , H1 have some values less than 1.
It follows thence that the expression (3) approaches indefinitely toward 1 by the

increase of µ, in a manner that one will render its difference from 1 much smaller than
Q, by taking for µ any number greater than

log
[
Q. z

1−p

√
1−p−z
p+z

]
logH

and
log
[
Q. zp

√
p−z

1−p+z

]
logH1

.

We are therefore arrived to the rigorous demonstration of the proposition which is
the object of this note.
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