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In the Memoir Sur les fractions continues1 I have given the series which presents
the definitive result of the parabolic interpolation by the method of least squares. As
this series furnishes directly the expression of the interpolated function under the form
of a polynomial with the most probable coefficients, and unless one fixes in advance the
number of its terms, one imagines that, under the theoretic reasoning, it leaves nothing
to desire for parabolic interpolation. But in order to render its usage completely practi-
cal, there remains to indicate the convenient direction to follow in the evaluation of its
terms. It is this that we have done for the simplest case where the values of the vari-
able, corresponding to the known values of the interpolated function, are equidistant.
By treating this particular case in the note Sur une nouvelle formule,2 we have indicated
a reduction of our series to the formula that is here, very proper to the application:

u =
1

n

∑
ui.φ0(z)

+
3

n(n2 − 12)

∑ i

1

n− i
1

∆ui.φ1(z)

+
5

n(n2 − 12)(n2 − 22)

∑ i(i+ 1)

1.2

(n− 1)(n− i− 1)

1.2
∆2ui.φ2(z)

+
7

n(n2 − 12)(n2 − 22)(n2 − 32)

∑ i(i+ 1)(i+ 2)

1.2.3

(n− 1)(n− i− 1)(n− i− 2)

1.2.3
∆3ui.φ3(z)

+ etc.,

by designating by
u1, u2, u3, . . . un

the given values of u which correspond to the equidistant values of x

x = x1, x2, x3, . . . xn,
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and by making, for brevity,

z =
x− 1

2 (x1 + xn)

x2 − x1
.

In this series the signs of summation extending to all the values of i, from i = 1 to
i = n, and

φ0(z), φ1(z), φ2(z), φ3(z), . . .

are the entire functions of z that one draws from the formula

∆l

(
z +

n− 1

2

)(
z +

n− 3

2

)
· · ·
(
z +

n− 2l + 1

2

)(
z − n+ 1

2

)(
z − n+ 3

2

)
· · ·
(
z − n+ 2l − 1

2

)
,

by adopting for l the values
0, 1, 2, 3, . . .

As these functions are linked among them by the equation

φl(z) = 2(2l − 1)zφl−1(z)− (l − 1)2[n2 − (l − 1)2]φl−2(z),

and as

φ0(z) = ∆01 = 1,

φ1(z) = ∆

(
z +

n− 1

2

)(
z − n+ 1

2

)
= 2z,

one finds immediately

φ2(z) = 12z2 − (n2 − 1),

φ3(z) = 120z3 − 6(3n2 − 7)z,

φ4(z) = 1680z4 − 120(3n2 − 13)z2 + 9(n2 − 1)(n2 − 9),

φ5(z) = 30240z5 − 8400(n2 − 7)z3 + 30(15n4 − 230n2 + 407)z,

· · · · · · · · ·

This development of u which results from our series, as long as the values

x1, x2, , x3, . . . xn

are equidistant, is very convenient for the evaluation of the expression of u, seeing that
its terms, as those of the formula of interpolation of Newton, contain the differences

∆ui, ∆2ui, ∆3ui, . . . ,

of which the orders are increasing, and that these differences, under the signs of sum-
mation, are accompanied only with the factors

i

n
,

n− i
1

,

i(i+ 1)

1.2
,

(n− i)(n− i− 1)

1.2
,

i(i+ 1)(i+ 2)

1.2.3
,

(n− i)(n− i− 1)(n− i− 2)

1.2.3
,

· · · · · · · · ·
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which according to the known property of the polygonal numbers, are evaluated easily
by way of addition. And as this series furnishes us the expression of u with the most
probable coefficients, one imagines that it leaves nothing to desire for interpolation in
the particular case where the values of the variable which correspond to the known
values of the function are equidistant.

But this is not the only part that one is able to draw from our series for the appli-
cation; its usage is also very useful in all the other cases of parabolic interpolation, as
we are going to demonstrate now, by indicating the direction which leads easily to the
successive determination of its terms. One will see, according to that, that our series
procures a very proper means to evaluate, term by term, the expression of the inter-
polated function u, and that it gives, at the same time, the sum of the squares of the
differences between its known values

u1, u2, u3, . . . un,

and those which result from the set of terms found for its expression. According to
what one will have, at once, the mean error with which the found terms of u represent
its given values, and thence one will recognize immediately the one to which one is
able to be arrested. Thus, by means of our series one will find all at once and the
number of terms of u which are important for the interpolation and their coefficients
determined by the method of least squares. In order to comprehend the superiority of
this method of interpolation over those of which one is ordinarily served, we note that
it will give precisely, in general more easily, the same results, as those that one finds by
the resolution of the equations furnished by the method of least squares which suppose
that the number of terms in the expression of u is fixed in advance. On the other hand,
by determining both the number of terms of u that one must calculate and their values
prescribed by the method of least squares, it will be, if it is not in certain exceptional
cases, more expeditious than the method of interpolation of Cauchy which is far from
giving the most probable results resulting from the method of least squares.

§I.

According to that which we have shown in the Memoir cited above, if the given values
of the function u

u1, u2, u3, . . . un

which correspond to
x = x1, x2, x3, . . . xn

are affected of errors of the same nature, and if one seeks its expression, by the method
of least squares, under the form of a polynomial of any degree, one will have3

u = K0ψ0(x) = K1ψ1(x) +K2ψ2(x) + · · · ,

where
K0, K1, K2, . . .

3We will borrow from our previous Memoir only the form of this series; but all that which is important
for its application will be given in that which follows.
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are some constant coefficients, and

ψ0(x), ψ1(x), ψ2(x), . . .

the denominators of the reductions from the sum∑ 1

x− xi
=

1

x− x1
+

1

x− x2
+

1

x− x3
+ · · ·+ 1

x− xn
,

that one finds by its development into continued fraction

α1

q1 +
α2

q2 +
α3

q3 + . . .

In this fraction the constants
α1, α2, α3, . . .

are able to be chosen arbitrarily. In order to fix the ideas, we will suppose that they are
chosen in a manner to this that the coefficients of x in the quotients

q1, q2, , q3, . . .

are equal to 1, and we will designate by

a1, −a2, −a3, . . .

the values of
α1, α2, α3, . . .

which fulfill this condition. According to that, and by noting that the denominators

q1, q2, , q3, . . .

will be some functions of the first degree, one will have, for the determination of the
functions

ψ0(x), ψ1(x), ψ2(x), . . .

this development of ∑ 1

x− xi
in continued fraction:∑ 1

x− xi
=

a1

x− b1 −
a2

x− b2 −
a3

x− b2 − · · ·
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Whence one draws, for the evaluation of its reductions

φ0(x)

ψ0(x)
,

φ1(x)

ψ1(x)
,

φ2(x)

ψ2(x)
, , . . .

φλ(x)

ψλ(x)
, , . . . ,

the following formulas:
(1) 

ψ0(x) = 1, φ0(x) = 0,
ψ1(x) = x− b1, φ1(x) = a1,
ψ2(x) = (x− b2)ψ1(x)− a2ψ0(x), φ2(x) = (x− b2)φ1(x)− a2φ0(x),
· · · · · ·
ψλ(x) = (x− bλ)ψλ−1(x)− aλψλ−2(x), φλ(x) = (x− bλ)φλ−1(x)− aλφλ−2(x),

and thence, by making

(2)


ψ0(x)

∑
1

x−xi − φ0(x) = R0,

ψ1(x)
∑

1
x−xi − φ1(x) = R1,

ψ2(x)
∑

1
x−xi − φ2(x) = R2,

· · · · · ·
ψλ(x)

∑
1

x−xi − φλ(x) = Rλ,

one obtains, relative to the functions

R0, R1, R2, . . . Rλ,

this sequence of equations:

(3)


R0 =

∑
1

x−xi ,

R1 = (x− b1)R0 − a1,
R2 = (x− b2)R1 − a2R0,
· · · · · ·
Rλ = (x− bλ)Rλ−1 − aλRλ−2.

It is by means of these formulas that we will arrive to determine all the quantities
which are important for the evaluation of the terms of our series.

§II.

As the reductions

φ0(x)

ψ0(x)
,

φ1(x)

ψ1(x)
,

φ2(x)

ψ2(x)
, . . .

φµ(x)

ψµ(x)
, ,

φµ+1(x)

ψµ+1(x)
. . .

of the continued fraction

a1

x− b1 −
a2

x− b2 −
a3

x− b2 − · · ·

,
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which results from the development of∑ 1

x− xi
,

have for denominators the functions

ψ0(x), ψ1(x), ψ2(x), . . . ψµ(x), ψµ+1(x), . . . ,

respectively of the degrees

0, 1, 2, . . . µ, µ+ 1, . . . ,

the fraction
φµ(x)

ψµ(x)

will represent the value of ∑ 1

x− xi
exactly to 1

x2µ , and, consequently, the difference

∑ 1

x− xi
− φµ(x)

ψµ(x)

will be of degree inferior to −2µ. But the function ψµ(x) being of degree µ, this
supposes that the expression

Rµ = ψµ(x)
∑ 1

x− xi
− φµ(x),

is of degree inferior to −µ, and thence one will conclude that its development is not
able to contain the terms with some powers of x superior to x−µ−1. Therefore, one
will have

Rµ =
(µ, µ)

xµ+1
+

(µ, µ+ 1)

xµ+2
+

(µ, µ+ 2)

xµ+3
+ · · · ,

by designating by
(µ, µ), (µ, µ+ 1), (µ, µ+ 2), . . .

the coefficients of
1

xµ+1
,

1

xµ+2
,

1

xµ+3
, . . .

in the development of Rµ.
According to this, by adopting for the index µ the values

0, 1, 2, . . . λ− 2, λ− 1, λ,

one finds for the functions

R0, R1, R2, . . . Rλ−1, Rλ−2, Rλ
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the following developments

(4)



R0 = (0,0)
x + (0,1)

x2 + (0,2)
x3 + · · · ,

R1 = (1,1)
x2 + (1,2)

x3 + (1,3)
x4 + · · · ,

R2 = (2,2)
x3 + (2,3)

x4 + (2,4)
x5 + · · · ,

· · · · · ·
Rλ−2 = (λ−2,λ−2)

xλ−1 + (λ−2,λ−1)
xλ

+ (λ−2,λ)
xλ+1 + · · · ,

Rλ−1 = (λ−1,λ−1)
xλ

+ (λ−1,λ)
xλ+1 + (λ−1,λ+1)

xλ+2 + · · · ,
Rλ = (λ,λ)

xλ+1 + (λ,λ+1)
xλ+2 + (λ,λ+2)

xλ+3 + · · · [2pt]

where
(0, 0), (0, 1), (0, 2), . . . ,
(1, 1), (1, 2), (1, 3), . . . ,
(2, 2), (2, 3), (2, 4), . . . ,
· · · · · ·
(λ− 2, λ− 2), (λ− 2, λ− 1), (λ− 2, λ), . . . ,
(λ− 1, λ− 1), (λ− 1, λ), (λ− 1, λ+ 1), . . . ,
(λ, λ), (λ, λ+ 1), (λ, λ+ 2), . . . ,

are some constant values which present themselves as auxiliary quantities.

§III.

By carrying in the formulas (3) the developments of

R0, R1, R2, . . . Rλ−2, Rλ−1, Rλ,

according to (4), one will obtain this sequence of formulas:

∑ 1

x− xi
=

(0, 0)

x
+

(0, 1)

x2
+

(0, 2)

x3
+ · · · ,

(1, 1)

x2
+

(1, 2)

x3
+

(1, 3)

x4
+ · · · = (x− b1)

[
(0, 0)

x
+

(0, 1)

x2
+

(0, 2)

x3
+ · · ·

]
−a1,

(2, 2)

x3
+

(2, 3)

x4
+

(2, 4)

x5
+ · · · = (x− b2)

[
(1, 1)

x2
+

(1, 2)

x3
+

(1, 3)

x4
+ · · ·

]
−a2

[
(0, 0)

x
+

(0, 1)

x2
+

(0, 2)

x3
+ · · ·

]
,

· · · · · · · · · · · ·
(λ, λ)

xλ+1
+

(λ, λ+ 1)

xλ+2
+

(λ, λ+ 2)

xλ+3
+ · · · = (x− bλ)

[
(λ− 1, λ− 1)

xλ
+

(λ− 1, λ)

xλ+1
+

(λ− 1, λ+ 1)

xλ+2
+ · · ·

]
−aλ

[
(λ− 2, λ− 2)

xλ−1
+

(λ− 2, λ− 1)

xλ
+

(λ− 2, λ)

xλ+1
+ · · ·

]
.
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The first of these formulas, according to the development of∑ 1

x− xi
into series ∑

x0i
x

+

∑
xi

x2
+

∑
x2i
x3

+ · · · ,

gives us ∑
x0i
x

+

∑
xi

x2
+

∑
x2i
x3

+ · · · = (0, 0)

x
+

(0, 1)

x2
+

(0, 2)

x3
+ · · ·

Whence it follows

(0, 0) =
∑

x0i , (0, 1) =
∑

xi, (0, 2) =
∑

x2i , . . .

By the second one obtains, by equating among them the coefficients of the same
powers of x,

0 = (0, 0)− a1, 0 = (0, 1)− b1(0, 0), (1, 1) = (0, 2)− b1(0, 1),
(1, 2) = (0, 3)− b1(0, 2), (1, 3) = (0, 4)− b1(0, 3), . . . . . . ,

this which gives us

a1 = (0, 0), b1 = (0,1)
(0,0) ,

(1, 1) = (0, 2)− b1(0, 1), (1, 2) = (0, 3)− b1(0, 2), (1, 3) = (0, 4)− b1(0, 3), . . .

By treating in the same manner all the other formulas one will recognize that in
general, in the case of λ > 1, the quantities aλ and bλ are determined thus:

aλ =
(λ− 1, λ− 1)

(λ− 2, λ− 2)
, bλ =

(λ− 1, λ)

(λ− 1, λ− 1)
− (λ− 2, λ− 1)

(λ− 2, λ− 2)
,

and that all the quantities

(λ, λ), (λ, λ+ 1), (λ, λ+ 2), . . . ,

as function of

(λ− 2, λ− 2), (λ− 2, λ− 1), (λ− 2, λ), . . . ,
(λ− 1, λ− 1), (λ− 1, λ), (λ− 1, λ+ 1), . . . ,

is found by this formula:

(λ, µ) = (λ− 1, µ+ 1)− bλ(λ− 1, µ)− aλ(λ− 2, µ).

One will find thus successively the quantities

a1, b1,
a2, b2,
a3, b3,
· · · · · ·
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and with these quantities, according to (1), one will obtain easily the functions

ψ0(x), ψ1(x), ψ2(x), . . .

which enter into the composition of the terms of our series.

§IV.

By passing to the determination of the coefficients of our series, we will show that by
virtue of formulas (2) and (4) one will have

(5)
∑

xµi ψλ(xi) = 0,

if µ < λ, and

(6)
∑

xµi ψλ(xi) = (λ, µ),

if µ = or > λ. In order to arrive there, we note that according to (2)

Rλ =
∑ ψλ(x)

x− xi
− φλ(x),

and as the rest of the division of ψλ(x) by x − xi is equal to ψλ(xi), this formula is
reduced to this here:

Rλ =
∑[

F (x, xi) +
ψλ(xi)

x− xi

]
− φλ(x),

where F (x, xi) is an entire function that one finds as quotient in the division of ψλ(x)
by x− xi. Now if one decomposes the sum∑[

F (x, xi) +
ψλ(xi)

x− xi

]
into two parts ∑

F (x, xi),
∑ ψλ(xi)

x− xi
,

and if one develops, in the sum ∑ ψλ(xi)

x− xi
,

the fraction
1

x− xi
into series

1

x
+
xi
x2

+
x2i
x3

+ · · · ,

this formula will give us

Rλ =
∑

F (x, xi)− φλ(x) +

∑
ψλ(xi)

x
+

∑
xiψλ(xi)

x2
+

∑
x2iψλ(xi)

x3
+ · · · ,
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this which supposes, according to (5), the identity of these two series:∑
F (x, xi)− φλ(x) +

∑
ψλ(xi)

x
+

∑
xiψλ(xi)

x2
+

∑
x2iψλ(xi)

x3
+ · · · ,

(λ, λ)

xλ+1
+

(λ, λ+ 1)

xλ+2
+

(λ, λ+ 2)

xλ+3
+ · · ·

But as ∑
F (x, xi), φλ(x)

are some entire functions, that are not able to take place unless the terms with the
denominators

x, x2, x3, . . . xλ, xλ+1, xλ+2, . . . ,

in these two sequences, are not respectively equal. Therefore∑
ψλ(xi) = 0,

∑
xiψλ(xi) = 0,

∑
x2iψλ(xi) = 0, . . .

∑
xλ−1
i ψλ(xi) = 0,∑

xλi ψλ(xi) = (λ, λ),
∑
xλ+1
i ψλ(xi) = (λ, λ+ 1), . . . ,

this which proves the equations (5) and (6).
According to this it is easy to determine the coefficients

K0, K1, K2, . . .

of the series
u = K0ψ0(x) +K1ψ1(x) +K2ψ2(x) + · · ·

For this we multiply the series by xµi , where µ is any number, and we sum its terms for
all the values of

x = x1, x2, x3, . . . xn.

We will obtain thus∑
xµi ui = K0

∑
xµi ψ0(xi) +K1

∑
xµi ψ1(xi) +K2

∑
xµi ψ2(xi) + · · · ,

where by ui we designate the value of uwhich corresponds to x = xi, and as, by virtue
of (5) and (6), one will have∑

xµi ψ0(x) = (0, µ),
∑
xµi ψ1(xi) = (1, µ), . . .

∑
xµi ψµ(xi) = (µ, µ),∑

xµi ψµ+1(xi) = 0,
∑
xµi ψµ+2(xi) = 0,

∑
xµi ψµ+3(xi) = 0, . . . ,

there results from it∑
xµi ui = (0, µ)K0 + (1, µ)K1 + · · ·+ (µ− 1, µ)Kµ−1 + (µ, µ)Kµ.

Whence, for the determination of the coefficientKµ, as function of the coefficientsK0,
K1,. . .Kµ−1, one draws this very simple formula:

Kµ =

∑
xµi ui − (0, µ)K0 − (1, µ)K1 − · · · − (µ− 1, µ)Kµ−1

(µ, µ)
.
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By adopting here for the index µ the values 0, 1, 2, 3,. . . , one obtains, for the successive
determination of the coefficients

K0, K1, K2, K3, . . . ,

this sequence of equations:

K0 =

∑
ui

(0, 0)
,

K1 =

∑
xiui − (0, 1)K0

(1, 1)
,

K2 =

∑
x2iui − (0, 2)K0 − (1, 2)K1

(2, 2)
,

K3 =

∑
x3iui − (0, 3)K0 − (1, 3)K1 − (2, 3)K2

(3, 3)
,

· · · · · · · · ·

§V.

There remains to show us how one will arrive in an easy manner to find the sum of the
squares of the differences among the given values of u

u1, u2, u3, . . . un,

corresponding to
x = x1, x2, x3, . . . xn,

and those which, for the same values of x, result from our series arrested at the term
Kλψλ(x), λ being any number.

In order to arrive there, we are going to show that one will have

(7)
∑

ψµ(xi)ψν(xi) = 0,

as long as ν < µ, and

(8)
∑

ψµ(xi)ψν(xi) = (µ, µ),

in the case of µ = ν.
In fact, according to (1), the function ψν(x) will be of the form

xν +A1x
ν−1 +A2x

ν−2 + · · · ,

and consequently one will have
(9) ∑

ψµ(xi)ψν(xi) =
∑

xνi ψµ(xi)+A1

∑
xν−1
i ψµ(xi)+A2

∑
xν−2
i ψµ(xi)+· · ·

But by virtue of (5), in the case of ν < µ, all the sums∑
xνi ψµ(xi),

∑
xν−1
i ψµ(xi),

∑
xν−2
i ψµ(xi), . . .

11



are reduced to zero, and thence, according to the preceding formula, one will find∑
ψµ(xi)ψν(xi) = 0,

this which proves equation (7).
Likewise, in the case of

µ = ν,

one finds, according to (5) and (6), that the sum∑
xνi ψµ(xi)

is equal to (µ, µ), and that the sums∑
xν−1
i ψµ(xi),

∑
xν−2
i ψµ(xi), . . .

are annulled. By virtue of which, for µ = ν, formula (9) gives us equation (8)∑
ψµ(xi)ψν(xi) = (µ, µ).

By means of equations (7) and (8), that we just proved, it is easy to show that one
will have always

(10)
∑

uiψµ(xi) = (µ, µ)Kµ.

In order to be assured of it, we observe that our series

u = K0ψ0(x) +K1ψ1(x) +K2ψ2(x) + · · · ,

prolonged to the last term, represents exactly all the given values of u

u1, u2, u3, . . . un,

and thence one will have∑
uiψµ(xi) = K0

∑
ψ0(xi)ψµ(xi)+K1

∑
ψ1(xi)ψµ(xi)+K2

∑
ψ2(xi)ψµ(xi)+· · ·

But according to (7) the sums∑
ψ0(xi)ψµ(xi),

∑
ψ1(xi)ψµ(xi), . . .

∑
ψµ−1(xi)ψµ(xi),

∑
ψµ+1(xi)ψµ(xi), . . .

are annulled, and according to (8) one finds∑
ψµ(xi)ψµ(xi) = (µ, µ).

Therefore the preceding development of
∑
uiψ(xi) will be reduced to a term

(µ, µ)Kµ,

12



this which gives equation (10).
By virtue of the demonstrated equations, it is easy to find the sum∑

[ui −K0ψ0(xi)−K1ψ1(xi)− · · · −Kλψλ(xi)]
2,

where
ui,

for i = 1, 2, 3, . . .n, designates the given values of u

u1, u2, u3, . . . un,

and the expression

K0ψ0(xi) +K1ψ1(xi) +K2ψ2(xi) + · · ·+Kλψλ(xi)

their approximate values, obtained by our series, arrested at the term Kλψλ(x).
For that we set the square

[ui −K0ψ0(xi)−K1ψ1(xi)−K2ψ2(xi)− · · · −Kλψλ(xi)]
2

under the form

u2i − 2ui[K0ψ0(xi) +K1ψ1(xi) +K2ψ2(xi) + · · ·+Kλψλ(xi)]

+ K0ψ0(xi)[K0ψ0(xi) +K1ψ1(xi) +K2ψ2(xi) + · · ·+Kλψλ(xi)]

+ K1ψ1(xi)[K0ψ0(xi) +K1ψ1(xi) +K2ψ2(xi) + · · ·+Kλψλ(xi)]

+ · · · · · · · · ·
+ Kλψλ(xi)[K0ψ0(xi) +K1ψ1(xi) +K2ψ2(xi) + · · ·+Kλψλ(xi)],

this which gives∑
[ui −K0ψ0(xi)−K1ψ1(xi)−K2ψ2(xi)− · · · −Kλψλ(xi)]

2

=
∑
u2i − 2K0

∑
uiψ0(xi)− 2K1

∑
uiψ1(xi)− 2K2

∑
uiψ2(xi)− · · · − 2Kλ

∑
uiψλ(xi)

+K2
0

∑
ψ0(xi)ψ0(xi) +K0K1

∑
ψ0(xi)ψ1(xi) +K0K2

∑
ψ0(xi)ψ2(xi) + · · ·+K0Kλ

∑
ψ0(xi)ψλ(xi)

+K1K0

∑
ψ1(xi)ψ0(xi) +K2

1

∑
ψ1(xi)ψ1(xi) +K1K2

∑
ψ1(xi)ψ2(xi) + · · ·+K1Kλ

∑
ψ1(xi)ψλ(xi)

+ · · · · · · · · ·
+KλK0

∑
ψλ(xi)ψ0(xi) +KλK1

∑
ψλ(xi)ψ1(xi) +KλK2

∑
ψλ(xi)ψ2(xi) + · · ·+K2

λ

∑
ψλ(xi)ψλ(xi)

But according to (10) we will have∑
uiψ0(xi) = (0, 0)K0,

∑
uiψ1(xi) = (1, 1)K1,

∑
uiψ2(xi) = (2, 2)K2, . . . ,

and according to (8) and (9)∑
ψ0(xi)ψ0(xi) = (0, 0),

∑
ψ1(xi)ψ1(xi) = (1, 1),

∑
ψ2(xi)ψ2(xi) = (2, 2), . . . ,∑

ψ1(xi)ψ0(xi) = 0,
∑
ψ2(xi)ψ0(xi) = 0, . . . ,∑

ψ0(xi)ψ1(xi) = 0,
∑
ψ2(xi)ψ1(xi) = 0, . . . ,∑

ψ0(xi)ψ2(xi) = 0,
∑
ψ1(xi)ψ2(xi) = 0, . . . ,

· · · · · · ,
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By virtue of what the preceding formula becomes∑
[ui −K0ψ0(xi)−K1ψ1(xi)−K2ψ2(xi)− · · · −Kλψλ(xi)]

2

=
∑
u2i − 2(0, 0)K2

0 − 2(1, 1)K2
1 − 2(2, 2)K2

2 − · · · − 2(λ, λ)K2
λ

+(0, 0)K2
0 + (1, 1)K2

1 + (2, 2)K2
2 + · · ·+ (λ, λ)K2

λ,

and is reduced to this here:∑
[ui −K0ψ0(xi)−K1ψ1(xi)−K2ψ2(xi)− · · · −Kλψλ(xi)]

2

=
∑
u2i − (0, 0)K2

0 − (1, 1)K2
1 − (2, 2)K2

2 − · · · − (λ, λ)K2
λ.

Such is the formula giving the sum of the squares of the differences which exist be-
tween the given values of u and their representations by the series

u = K0ψ0(x) +K1ψ1(x) +K2ψ2(x) + · · · ,

arrested at the term Kλψλ(x). By designating, for brevity, this sum by∑
d2λ,

we will have∑
d2λ =

∑
u2i − (0, 0)K2

0 − (1, 1)K2
1 − (2, 2)K2

2 − · · · − (λ, λ)K2
λ.

Whence, for the successive determination of the sums∑
d20,

∑
d21,

∑
d22, . . .

which correspond respectively to the case where our series is arrested at the terms 1, 2,
3, . . . , results this sequence of equations:∑

d20 =
∑

u21 − (0, 0)K2
0 ,∑

d21 =
∑

d20 − (1, 1)K2
1 ,∑

d22 =
∑

d21 − (2, 2)K2
2 ,

· · · · · ·

§VI.

We are going now to summarize the definitive formulas by which one will arrive to
calculate, term by term, the expression of u according to the series

u = K0ψ0(x) +K1ψ1(x) +K2ψ2(x) + · · · ,

and one will understand, at the same time, the sum of the squares of the errors commit-
ted in the representation of the given values of u, by being arrested at the terms 1, 2, 3,
. . .λ.

14



In these formulas, following the notation employed, the given values of the function
u and of the variable x are represented by

u1, u2, u3, . . . un,
x1, x2, x3, . . . xn.

The summations extending to all the values of the index i, from i = 1 to i = n, and∑
d2λ designates the sum of the squares of the errors in the representation of the values

given of u by our series, arrested at the term Kλψλ(x), a sum according to which one
will find the mean error by the formula

E =

√
1

n

∑
d2λ.

Formulas relative to the determination of the term K0ψ0(x).

(0, 0) =
∑
x0i = n,

K0 =
∑
ui

(0,0) ,

ψ0(x) = 1,∑
d20 =

∑
u2i − (0, 0)K2

0 .

Formulas relative to the determination of the term K1ψ1(x).

(0, 1) =
∑
xi, (0, 2) =

∑
x2i ,

a1 = (0, 0)

b1 = (0,1)
(0,0) , (1, 1) = (0, 2)− b1(0, 1),

K1 =
∑
xiui−(0,1)K0

(1,1) ,

ψ1(x) = x− b1,∑
d21 =

∑
d20 − (1, 1)K2

1 .

Formulas relative to the determination of the term K2ψ2(x).

(0, 3) =
∑
x2i , (0, 4) =

∑
x4i ,

(1, 2) = (0, 3)− b1(0, 2), (1, 3) = (0, 4)− b1(0, 3),

a2 = (1,1)
(0,0) ,

b2 = (1,2)
(1,1) −

(0,1)
(0,0) , (2, 2) = (1, 3)− b2(1, 2)− a2(0, 2),

K2 =
∑
x2
iui−(0,2)K0−(1,2)K1

(2,2) ,

ψ2(x) = (x− b2)ψ1(x)− a2ψ0(x),∑
d22 =

∑
d21 − (2, 2)K2

2 .

· · ·
· · ·
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Formulas relative to the determination of the term Kλψλ(x).

(0, 2λ− 1) =
∑
x2λ−1
i , (0, 2λ) =

∑
x2λi ,

(1, 2λ− 2) = (0, 2λ− 1)− b1(0, 2λ− 2), (1, 2λ− 1) = (0, 2λ)− b1(0, 2λ− 1),

(2, 2λ− 3) = (1, 2λ− 2)− b2(1, 2λ− 3)− a2(0, 2λ− 3), (2, 2λ− 2) = (1, 2λ− 1)− b2(1, 2λ− 2)− a2(0, 2λ− 2),

(3, 2λ− 4) = (2, 2λ− 3)− b3(2, 2λ− 4)− a3(1, 2λ− 4), (3, 2λ− 3) = (2, 2λ− 2)− b3(2, 2λ− 3)− a3(1, 2λ− 3),

· · · · · · · · ·
(λ− 1, λ) = (λ− 2, λ+ 1)− bλ−1(λ− 2, λ)− aλ−1(λ− 3, λ),

(λ− 1, λ+ 1) = (λ− 2, λ+ 2)− bλ−1(λ− 2, λ+ 1)− aλ−1(λ− 3, λ+ 1),

aλ = (λ−1,λ−1)
(λ−2,λ−2)

bλ = (λ−1,λ)
(λ−1,λ−1) −

(λ−2,λ−1)
(λ−2,λ−2) , (λ, λ) = (λ− 1, λ+ 1)− bλ(λ− 1, λ)− aλ(λ− 2, λ),

Kλ =
∑
xλi ui−(0,λ)K0−(1,λ)K1−(2,λ)K2−···−(λ−1,λ)Kλ−1

(λ,λ) ,

ψλ(x) = (x− bλ)ψλ−1(x)− aλψλ−2(x),∑
d2λ =

∑
d2λ−1 − (λ, λ)K2

λ.

§VII.

The formulas that we just gave to determine successively the terms

K0ψ0(x), K1ψ1(x), K2ψ2(x), . . .Kλψλ(x)

in the development of u according to our series, and in order to evaluate, at the same
time, the sum of the squares of the errors with which the found terms of u represent
all its given values, furnish us a method of parabolic interpolation, important for more
than one reason. By virtue of the remarkable property of our series, this method gives
the expression of u under form of a polynomial with the most probable coefficients.
Without fixing in advance the number of its terms, by this method, one will find them
successively the one after the other, and one will encounter immediately the one to
which one is able to be arrested according to the sum of the squares of the errors with
which the found terms of u represent its given values, a sum which gives immediately
the mean error of their representation. Moreover, it is easy to see by the composition
of our formulas that when the number of given values of u and the one of the terms of
its expression are considerable, in our method of interpolation the calculations are less
prolix than in those now in use.

This prolixity of the calculations is due nearly entirely to the differennt multiplica-
tions and divisions of which the number increases more or less rapidly, with those of
the given values of u and of the terms in its expression. It is for this reason that we
are going to show the advantage of our method of interpolation, by leaving aside the
additions and the subtractions which, in the work of these calculations, enter only for
quite little of the thing, and for which one is able also to well manifest the advantage
of our method.

In order to find by our formulas the expression of u with λ + 1 terms, one must
evaluate 3λ+ 1 sums ∑

xi,
∑
x2i ,

∑
x3i , . . .

∑
x2λi ,∑

ui,
∑
xiui,

∑
x2iui, . . .

∑
xλi ui,
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and by means of these sums, by seeking the terms

K0ψ0(x), K1ψ1(x), K2ψ2(x), . . .Kλψλ(x),

by that which we have seen, and by reducing them to the definitive form

A+Bx+ Cx2 + · · · ,

one will have by making some multiplications or divisions only in number 4λ2 + 2.
But if one seeks this expression of u, ordinarily, by the method of least squares,

one is led to calculate the same sums∑
xi,

∑
x2i ,

∑
x3i , . . .

∑
x2λi ,∑

ui,
∑
xiui,

∑
x2iui, . . .

∑
xλi ui,

for the composition of the equations determining λ+1 coefficients of u, and by resolv-
ing these equations in λ + 1 unknowns, one finds out of these multiplications and the
divisions of which the number, with the growth of λ, increases, as one knows, much
more rapidly than 4λ2 + 2.

According to the method of Cauchy, by seeking, in the development of u, the terms

A+Bx+ Cx2 + · · ·+Hxλ,

one must, for x = x1, x2, x3, . . .xn, to evaluate many functions, of which the de-
grees climb to λ, and to compose by their means the sums that one names subordinate.
Now this requires, evidently, many more multiplications than it is necessary in order to
calculate the sums ∑

xi,
∑
x2i ,

∑
x3i , . . .

∑
x2λi ,∑

ui,
∑
xiui,

∑
x2iui, . . .

∑
xλi ui,

which present themselves in the evaluation of λ + 1 terms of our series, and also in
order to find this here:

u2i ,

which enters into the determination of the sums∑
d20,

∑
d21,

∑
d22, . . . ,

by which, in our method, one will encounter the number of important terms for the
interpolation.

On the other hand, in order to find the functions, comprehended in the subordinated
sums, and in order to evaluate by them the coefficientsA,B, C, . . .H of the expression
of

u = A+Bx+ Cx2 + · · ·+Hxλ,

in the method of Cauchy, it is important to make many multiplications and divisions of
which the total number, with the growth of λ, increases more rapidly than 4λ2+λ+3, a
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number of like observations which present themselves when, by our method, according
to the values of ∑

xi,
∑
x2i ,

∑
x3i , . . .

∑
x2λi ,∑

ui,
∑
xiui,

∑
x2iui, . . .

∑
xλi ui,

∑
u2i ,

one seeks λ+ 1 terms and one determines successively the sums∑
d20,

∑
d21,

∑
d22, . . .

∑
d2λ.

Thence it is cerain that, because of the number of these operations, the method of
Cauchy is far from being as simple as that which results from our series. But as many
of these operations, in the method of Cauchy, simplify themselves more and more in
measure as the convergence of the series

u = A+Bx+ Cx2 + · · ·+Hxλ,

is increased, there is no doubt that one encounters in some particular cases where it
becomes more expeditious than ours.

§VIII.

In order to show by an example the use of our method of interpolation, we are going to
apply it to this sequence of values of x and u:4

x1 = 0.15411 u1 = 19.47

x2 = 0.19516 u2 = 21.83

x3 = 0.22143 u3 = 23.11

x4 = 0.28802 u4 = 26.11

x5 = 0.32808 u5 = 27.60

x6 = 0.38183 u6 = 28.89

x7 = 0.45517 u7 = 33.17

x8 = 0.57012 u8 = 33.38

x9 = 0.75930 u9 = 32.31

x10= 0.91075 u10= 31.88

x11= 1.13895 u11= 25.46

In seeking to express u by a single term

K0ψ0(x),

4These values represent the results of the first series of observations of Mr. Marié-Davy on the resis-
tance in the changing of conductor which he gives in his Memoir, entitled: Recherches expérimentales sur
l’électricité voltaı̈que (Annales de chimie et de physique, series III, tome 19). — By x we designate the
inversie of the intensity of the current, reduced to its hundredth part, and by u the resistance. Translator’s
note: This is for the year 1847, pp. 401–444.
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one will take
(0, 0) =

∑
x0i = 11, u1 = 19.47

u2 = 21.33

u3 = 23.11

u4 = 26.11

u5 = 27.60

u6 = 28.89

u7 = 33.17

u8 = 33.38

u9 = 32.31

u10= 31.88

u11= 25.46∑
ui= 303.21

K0 =
∑
ui

(0,0) = 27.5645,

ψ0(x)= 1,

this which gives, exactly to 0.001,

K0ψ0(x) = 27.564.

In order to find the sum of the squares of the errors with which the found term
represents the given values, one will make the following calculations:

u21 = 379.08

u22 = 476.55

u23 = 534.07

u24 = 681.73

u25 = 761.76

u26 = 834.63

u27 = 1100.25

u28 = 1114.22

u29 = 1043.94

u210= 1016.33

u211= 648.21∑
u2i= 8590.77

−(0, 0)K2
0= −8357.84∑

d20 =
∑
u2i − (0, 0)K2

0= 232.93

this which gives for the mean error

E =

√
1

n

∑
d20 =

√
232.93

11
= 4.6.

By noting according to this the insufficiency of the expression of u by a single term

Koψ0(x),
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one will seek the second term
K1ψ1(x),

and for that one will calculate successively

(0, 1) =
∑
xi, (0, 2) =

∑
x2i ,

a1 = (0, 0), b1 = (0,1)
(0,0) ,

(1, 1) = (0, 2)− b1(0, 1),∑
xiui,

∑
xiui − (0, 1)K0,

K1 =
∑
xiui−(0,1)K0

(1,1) ψ1(x)

thus there follows:

x1 = 0.15411 x21 = 0.02375

x2 = 0.19516 x22 = 0.03809

x3 = 0.22143 x23 = 0.04903

x4 = 0.28802 x24 = 0.08295

x5 = 0.32808 x25 = 0.10764

x6 = 0.38183 x26 = 0.14579

x7 = 0.45517 x27 = 0.20718

x8 = 0.57012 x28 = 0.32504

x9 = 0.75930 x29 = 0.57654

x10= 0.91075 x210= 0.82947

x11= 1.13895 x211= 1.29721
(0, 1) =

∑
xi= 5.40292 (0, 2) =

∑
x2i= 3.68269

a1 = (0, 0)= 11. −b1(0, 1)= −2.65378

b1 = (0,1)
(0,0)= 0.49117 (1, 1) = (0, 2)− b1(0, 1)= 1.02891
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x1 u1 = 3.00052

x2 u2 = 4.26034

x3 u3 = 5.11725

x4 u4 = 7.52020

x5 u5 = 9.05501

x6 u6 = 11.03105

x7 u7 = 15.09799

x8 u8 = 19.03060

x9 u9 = 24.53298

x10u10= 29.03417

x11i11= 28.99767∑
xiui= 156.67832

−(0, 1)K0= −148.92903∑
xiui − (0, 1)K0= 7.74929

K1 =
∑
xiui−(0,1)K0

(1,1) = 7.5315,

ψ1(x) = x− b1 = x− 0.49117.

Therefore,
K1ψ1(x) = 7.5315(x− 0.19117) = 7.532x− 3.699.

In passing to the determination of
∑
d21, one will take∑

d20= 232.93

−(1, 1)K2
1= −58.37∑

d21 =
∑
d20 − (1, 1)K2

1= 174.58,

whence, for the mean error of the representation of the given values of u by its two
found terms, results

E =

√
1

n

∑
d21 =

√
174.56

11
= 3.98.

An mean error so considerable not being admissible, one will seek the third term

K2ψ2(x),

and for that one will determine successively the quantities

(0, 3) =
∑
x2i , (0, 4) =

∑
x4i .

(1, 2) = (0, 3)− b1(0, 2), (1, 3) = (0, 4)− b1(0, 3),

a2 = (1,1)
(0,0) , b2 = (1,2)

(1,1) −
(0,1)
(0,0) ,

(2, 2) = (1, 3)− b2(1, 2)− a2(0, 2),∑
x2iui,

∑
x2iui − (0, 2)K0 − (1, 2)K1,

K2 =
∑
x2
iui−(0,2)K0−(1,2)K1

(2,2)
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and the function ψ2(x) in the following manner:

x31 = 0.00367 x41 = 0.00056

x32 = 0.00743 x42 = 0.00145

x33 = 0.01086 x43 = 0.00240

x34 = 0.02389 x44 = 0.00688

x35 = 0.03531 x45 = 0.01158

x36 = 0.05567 x46 = 0.02126

x37 = 0.09430 x47 = 0.04292

x38 = 0.18531 x48 = 0.10565

x39 = 0.43776 x49 = 0.33240

x310= 0.75544 x410= 0.68801

x311= 1.47745 x411= 1.68275
(0, 3) =

∑
x3i= 3.08709 (0, 4) =

∑
x4i= 2.89586

−b1(0, 2) = −1.80884 −b1(0, 3) = −1.51630
(1, 2) = (0, 3)− b1(0, 2)= 1.27825 (1, 3) = (0, 4)− b1(0, 3)= 1.37956

a2 = (1,1)
(0,0)= 0.09354 −b2(1, 2)= −0.96020
(1,2)
(1,1)= 1.24235 −a2(0, 2)= −0.34446

− (0,1)
(0,0)= −0.49117 (2, 2) = (1, 3)− b2(1, 2)− a2(0, 2)= 0.07490

b2 = (1,2)
(1,1) −

(0,1)
(0,0)= 0.75118

x21 u1 = 0.43241

x22 u2 = 0.83145

x23 u3 = 1.13311

x24 u4 = 2.16596

x25 u5 = 2.97075

x26 u6 = 4.21199

x27 u7 = 6.87215

x28 u8 = 10.84949

x29 u9 = 18.62790

x210u10= 26.44337

x211i11= 33.02691∑
x2iui= 107.59549

−(0, 2)K0= −101.51151

−(1, 2)K1= −9.62778∑
x2iui − (0, 2)K0 − (1, 2)K1= −3.54380

K2 =
∑
x2
iui−(0,2)K0−(1,2)K1

(2,2) = −47.313
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ψ2(x) =(x− b2)ψ1(x)− a2 = (x− 0.75118)(x− 0.49117)− 0.09354

=x2 − 1.24235x+ 0.27542.

Whence it follows

K2ψ2(x) =− 47.313(x2 − 1.24235x+ 0.27542)

=− 47.313x2 + 58.779x− 13.031;

and as ∑
d21= 174.56,

−(2, 2)K2
2= −167.64,∑

d22 =
∑
d21 − (2, 2)K2

2= 6.92,

one finds for the mean error

E =

√
1

n

∑
d22 =

√
6.92

11
= 0.79.

By proceeding so, one will obtain the expression of u term by term, and thence the
mean error in the representation of the given values of u will approach more and more
to zero. But if one finds sufficing to reduce this error to 0.79, one will be arrested at the
found terms

K0ψ0(x) = 27.564

K1ψ1(x) = 7.532x− 3.699

K2ψ2(x) = −47.313x2 + 58.779x− 13.031,

and thence, for the sought expression of u, one will have

+27.564
− 3.699 + 7.532x

−13.031 + 58.779x− 47.313x2

u = 10.834 + 66.311x− 47.313x2.
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