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Á DIFFÉRENCES FINIE
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1. Let the differential equation

dy + yXdx = Zdx,

be proposed where X and Z express any functions of the variable x; we know
that in order to integrate this equation is suffices to make

y = uz,

that which gives
udz + zdu + uzXdx = Zdx,

where we can make two terms vanish by a convenient value of u and of z. We
suppose therefore

zdu + usXdx = 0,

and dividing by z, we will have

du + uXdx = 0,

and consequently

du

u
= −Xdx and lu = −

∫
Xdx,

namely
u = e−

∫
Xdx,

where e is the number of which the hyperbolic logarithm is 1. By this supposition
the proposed will become

udz = Zdx,
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that which gives

dz =
Zdx

u
, z =

∫
Zdx

u
=

∫
e
∫
XdxZdx,

and finally

y = uz =

∫
e
∫
XdxZdx

e
∫
Xdx

.

2. By observing the process of this method, we will see easily that it should
be able to be applied again with success to the differential equations which have
the same form as the preceding, although the differences are supposed finite.
Let therefore the equation be

dy + My = N,

of which the differential dy is finite, and the other quantities M and N are some
functions of another variable x. We suppose in first place

y = uz,

and we will have in this case

dy = udz + zdu + dudz,

and the equation will be changed into

udz + zdu + dudz + Muz = N.

Let us put as above the two terms

zdu + Muz = 0,

and we will have
du + Mu = 0,

namely
du

u
= −M ;

in order to resolve this equation in our case where the differential du is not
infinitely small, let us suppose u = et, and we will have

u + du = et+dt and du = et(edt − 1);

whence
du

u
= edt − 1 = −M and edt = 1 −M,

and taking the logarithms,
dt = l(1 −M),
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and next integrating,

t =

∫
l(1 −M);

but we know that the sum of the logarithms of many numbers is equal to the
logarithm of the product of all these numbers; therefore, if we express generally
by $(1−M) the continual product of all the quantities contained in the formula
1 −M , we will have

t = l$(1 −M),

and consequently
u = et = $(1 −M).

By the vanishing of these two terms the equation becomes

udz + dudz = N,

whence we deduce

dz =
N

u + du
,

and, by integrating,

z =

∫
N

u + du
.

But having already found u = $(1 − M), if we express by M1, the term con-
secutive to M , we will have

u + du = $(1 −M1),

and consequently

z =

∫
N

$(1 −M1)
;

and, since y = zu,

y = $(1 −M)

∫
N

$(1 −M1)
,

or else, by adding to this integration any constant A,

y = $(1 −M)

(
A +

∫
N

$(1 −M1)

)
.

3. Let at present the proposed equation be

y1 = Ry + T,

where y1 is the term which follows y in the series of y’s; since y1 = y + dy, it
will be reduced to

dy + (1 −R)y = T.

Let us make therefore
1 −R = M, T = N,
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and we will find for the value of y the following expression

y = $R

(
A +

∫
T

$R1

)
.

If R is a constant quantity, it is clear that $R and $R1, become some powers
of R, of which the exponent is equal to the number which denotes the place of
the terms y and y1 in the series of y’s; let therefore m be this number, so that
ym is the same as y, and we will have

ym = Rm

(
A +

∫
T

Rm+1

)
.

If T is constant,
∫

T
Rm+1 is equal to T

∫
1

Rm+1 , where the terms expressed by
1

Rm+1 form a geometric progression, of which it will be easy to have the sum;
let this sum, which begins with 1

R , be equal to S, namely that

1

R
+

1

R2
+

1

R3
+ · · · +

1

Rm
= S,

and we will have, by multiplying by R,

1 +
1

R
+

1

R2
+ · · · +

1

Rm−1
= SR = S + 1 − 1

Rm
;

from this equality we will deduce

S =
Rm − 1

Rm(R− 1)
,

consequently

ym = Rm

[
A + T

Rm − 1

Rm(R− 1)

]
,

or else

ym = ARm + T
Rm − 1

R− 1
.

4. In order to be convinced that this value of y satisfies entirely the conditions
of the given equation

y1 = Ry + T or else ym+1 = Rym + T,

we have only to multiply the found formula for ym by R, and add to it the
quantity T , and we will find the result

ARm+1 + T
Rm+1 −R

R− 1
+ T

which reduces to

ARm+1 + T
Rm+1 − 1

R− 1
,
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which is the value that the general formula gives us for the term ym+1.
5. After having found the method to integrate any differential equation in

finite differences, comprised under the general form

dy + My = N,

we can similarly proceed to the integration of the others which depend on those.
Now, Mr. d’Alembert, in the Mémoires de l’Académie Royale de Berlin, has
shown that all the differential equations, such as

y + A
dy

dx
+ B

d2y

dx2
+ C

d3y

dx3
+ · · · = X,

where A, B, C, . . . are arbitrary constants, and where X is any function of x,
is reduced to an equation of this form:

z + H
dz

dx
= V,

where H is a constant and V a function of x, which equation is the same as we
have learned to integrate in the same case of the finite differences. If therefore
the process of Mr. d’Alembert can take place also when the differences are finite,
we can integrate further in this circumstance every differential equation of this
form:

y + Ady + Bd2y + Cd3y + · · · = X,

and consequently the equation

y1 + Py2 + Qy3 + · · · = X,

which we can regard as the general formula of the recurrent series. The method
of Mr. d’Alembert is found detailed in the second volume of the Calcul intégral
of Mr. Bougainville; but, in order to spare the pain to the readers, I will try to
develop it here in a few words. Let us suppose

dy

dx
= p,

dp

dx
= q,

dq

dx
= r, . . . ,

and the proposed equation will be changed into

y + Ap + Bq + C
dq

dx
= X.

Let us multiply at present each of the equations which we have supposed by
some indeterminate coefficients a, b, c, . . ., and let us add them all to this one,
we will have

y + (A + a)p + (B + b)q − a
dy

dx
− b

dp

dx
+ C

dq

dx
= X.

Let it be made so that the first part of the first member of this equation becomes
an exact multiple of the integral of the second, namely that

dy + (A + a)dp + (B + b)dq = dy +
b

a
dp− C

a
dq,
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and by comparing term to term there will result from it

A + a =
b

a
, B + b = −C

a
;

from these two equations we deduce

b = −C

a
−B = Aa + a2 and a3 + Aa2 + Ba + C = 0,

of which the roots will give three values of a which will satisfy equally the
requisite conditions. We suppose now

y + (A + a)p + (B + b)q = z,

the found equation will become

z − a
dz

dx
= X,

which, compared with that of No. 1, will give by integrating

z = −e
x
a

∫
Xdx

ae
x
a
.

Now, as the quantity a can be three different values, we name them a1, a2, a3,
and we express by Z1 the value of z which contains a1, by Z2 the one which
contains a2, and by Z3 the one which contains a3; we will have therefore the
following three equations:

y + (A + a1)p + (B + b1)q = Z1,

y + (A + a2)p + (B + b2)q = Z2,

y + (A + a3)p + (B + b3)q = Z3.

From these three equations we will deduce the value of y, which, because of the
constant quantities A, B, a1, a2, . . . , will be reduced to this form

y = FZ1 + GZ2 + HZ3,

where F, G, H are some constants of which the value depends on the others
A, B, a1, a2, . . ..

6. If we examine the process of these methods, it will appear clearly that if
the equation had contained many more terms, for example if it had been

y + A
dy

dx
+ B

d2y

dx2
+ C

d3y

dx3
+ D

d4y

dx4
+ E

d5y

dx5
= X,

we would have found likewise

y = FZ1 + GZ2 + HZ3 + IZ4 + KZ5,
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where the quantities Z1, Z2, . . . are some functions of X and x, such as

Z = −e
x
a

∫
Xdx

aexa
,

by putting for a the roots a1, a2, a3, a4, a5 of this equation

a5 + Aa4 + Ba3 + Ca2 + Da + E = 0;

moreover we will notice that the operations which this method requires can
equally be made, either if the differences are finite, or if they are infinitely
small.

7. Having therefore the equation in finite differences

y + Ady + Bd2y + Cd3y + Dd4y + Ed5y = X,

and putting
dy = p, dp = q, dq = r, dr = s,

we will attain in the same manner to an equation such as

z − adz = X,

where
z = y + (A + a)p + (B + b)q + (C + c)r + (D + d)s,

and the quantity a will depend on this equation

a5 + Aa4 + Ba3 + Ca2 + Da + E = 0,

of which the roots have already been supposed a1, a2, a3, a4, a5. Let us compare
at present the equation

z − adz = X

with that of No. 2, namely
dy + My = N,

and we will have

M = −1

a
, N = −X

a
;

consequently

1 −M =
1 + a

a
,

that which gives next

z = $

(
1 + a

a

)[
const. +

∫ −X
a

$
(
1+a
a

)] ,
or else, since a is constant,

zm =

(
1 + a

a

)m
[

const. −
∫

Xam

(1 + a)
m+1

]
,
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m expressing as above which term z in the series of z’s. If we make moreover X
constant, we will have, by taking the sum of the geometric progression expressed
by
∫

am

(1+a)m+1 ,

zm =

(
1 + a

a

)m [
const. −X

(1 + a)m − am

(1 + a)
m

]
.

Now, as a can have the values a1, a2, a3, a4, a5, it is clear that by substituting
each of them into the found formula, there will result from it as many values of
zm which will satisfy all equally. Let therefore all these values be expressed by
Z1, Z2, Z3, Z4, Z5, and since

z = y + (A + a)p + (B + b)q + (C + c)r + (D + d)s,

we will deduce, by way of the five equations

z = Z1, z = Z2, z = Z3, z = Z4, z = Z5,

the following expression of y, namely

y = FZ1 + GZ2 + HZ3 + IZ4 + KZ5.

8. Let next the proposed equation be

y1 + Ay2 + By3 + Cy4 + · · · = X,

where y1, y2, y3, . . . express some consecutive terms of the series of y’s; it is first
evident that, since

y2 = y1 + dy1, y2 = y1 + 2y1 + d2y1,

and thus of the others, this equation can be restored to the form of that which
we just examined; but, since the calculation becomes in this fashion too long, it
will be useful to resolve it directly by the same principles as we have employed
to here. Moreover, in order to be able to apply more easily this equation to the
recurrent series, it will be better to consider the terms y1, y2, y3, . . . in a reverse
order, namely as

y2 + dy2 = y1, y3 + dy3 = y2,

and thus of the others, so that the indices 1, 2, 3, . . . denote the distance of each
term to the last y1. We suppose

y2 = p1, and we will have y3 = p2;

let therefore anew
p2 = q1 and p3 = q2;

let further
q2 = r1 and q3 = r2 = s1,
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and we will have

y2 = p1, y3 = q1, y4 = r1, y5 = s1, y6 = s2;

substituting these values into the proposed, it will become

y1 + Ap1 + Bq1 + Cr1 + Ds1 + Es2 = X.

If we reduce at present the preceding suppositions into equations, namely

p1 − y2 = 0, q1 − p2 = 0, r1 − q2 = 0, s1 − r2 = 0,

and after having multiplied them by the indeterminate coefficients a, b, c, . . . ,
let us add them all to that which we just found. There will result from it the
following

y1+(A + a)p1 + (B + b)q1 + (C + c)r1 + (D + d)s1

−ay2 − bp2 − cq2 − dr2 + Es1

}
= X.

If we make now that each coefficient of the first part is multiplied in the same
manner as its correspondent in the second, we will attain to the same equations
as we have found (6), and the quantity a will be determined by the equation

a5 + Aa4 + Ba3 + Ca2 + Da + E = 0,

of which we have supposed the roots a1, a2, a3, . . .. Therefore, if we make

y1 + (A + a)p1 + (B + b)q1 + (C + c)r1 + (D + d)s1 = z1,

the equation will be reduced to

z1 − az2 = X,

which, by an integration similar to that of No. 3, will give

zm = am
(

const. +

∫
X

am+1

)
,

where m will express which term zm in the series of z’s. Now, as for a, we can
substitute each of the five roots a1, a2, . . . of the equation a5 + Aa4 + · · · = 0,
we will have likewise five different values of zm which we will express as above
by Z1, Z2, Z3, . . . ; therefore, because

zm = ym + (A + a)pm + (B + b)qm + (C + c)rm + (D + d)sm,

we will attain, by driving out the letters pm, qm, . . . , in the formula

ym = FZ1 + GZ2 + HZ3 + IZ4 + KZ5,

where F, G, H, . . . are some constants which we must determine by the com-
parison of as many terms given in the series of y’s.
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9. If X is constant, by that which we have demonstrated (4), the sum
expressed by

∫
X

am+1 will become equal to X am−1
am(a−1) , and naming L the constant

added to this integration, we will have finally

Z = Lam + X
am − 1

am(a− 1)
,

whence we will deduce consequently the values Z1, Z2, Z3, . . ., by substituting
in the place of a its values a1, a2, a3, . . ..

10. From all this we can deduce the following general theorem; if we have
the equation

ym + Aym−1 + Bym−2 + Cym−3 + Dym−4 + Eym−5 + · · · = X,

where the indices of the y’s denote their places, if we seek all the roots a1, a2, a3, a4, . . ..
of the equation1

a5 + Aa4 + Ba3 + Ca2 + Da + E = 0,

and we will have generally

ym =Fam1

(
L +

∫
X

am+1
1

)
+ Gam2

(
L +

∫
X

am+1
2

)
+ Ham3

(
L +

∫
X

am+1
3

)
+ Iam4

(
L +

∫
X

am+1
4

)
+ Kam5

(
L +

∫
X

am+1
5

)
+ · · · ,

and, in the case where X is constant

ym =L (Fam1 + Gam2 + Ham3 + Iam4 + Kam5 + · · · )

+ X

(
F
am1 − 1

a1 − 1
+ G

am2 − 1

a2 − 1
+ H

am3 − 1

a3 − 1
+ I

am4 − 1

a4 − 1
+ K

am5 − 1

a5 − 1
+ · · ·

)
.

If X = 0, we can suppress the constant L, and we will have more simply

ym = Fam1 + Gam2 + Ham3 + Iam4 + Kam5 + · · · ,

a formula known for the expression of the general term of the series of y’s, such
that

ym + Aym−1 + Bym−2 + Cym−3 + Dym−4 + Eym−5 + · · · = 0,

that which is nothing other than a recurrent series, of which the scale of relation
is −A−B − C −D − E − · · ·

11. Here is therefore the theory of the recurrent series reduced to the dif-
ferential calculus, and established in this fashion on some direct and natural
principles, instead that until here it has been treated only by some entirely

1Translator’s note: This equation is clearly in error. Since the difference equation is of
indefinite order, the corresponding must be likewise.

10



indirect ways. Moreover, the researches which one has made on this material
has always been limited to the case X = 0, and a person, who I know, has
never undertaken to examine generally the other cases, where X is constant or
even variable, that which can nevertheless be of the greatest importance for the
resolution of many problems which lead to such equations, of which the theory
of chances is principally filled, as I propose myself to show another time by
applying to this kind of calculus the theory which I just explicated.

11


