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I have given, in the first volume of the Mémoires de la Societé des Sciences de Turin,
a new method for treating the theory of recurrent series, and by making it depend on
the integration of linear equations in the finite differences. I myself proposed then to
push these Researches further, and to apply them principally to the solution of several
problems of the theory of chances; but other objects having since made me lose this
from sight, M. de Laplace has preceded me in great part, in two excellent Memoirs
sur les suites récurro-récurrentes, and sur l’intégration des équations différentielles
finies et leur usage dans la théorie des hasards, printed in volumes VI and VII of the
Mémoires presented to the Academy of Sciences of Paris. I believe however that we
can again add something to the work of this illustrious Geometer, and to treat the same
subject in a more direct, more simple and especially more general manner; this is the
object of the Researches that I am going to give in this Memoir; we will find some
new methods for the integration of linear equations in finite and partial differences,
and the application of these methods to several interesting Problems of the Calculus of
probabilities; but the question here is only of equations of which the coefficients are
constants, and I reserve for another Memoir examination of those which have some
variable coefficients.

ARTICLE I. — On simple recurrent sequences, or on the integration of linear
equations in finite differences between two variables.

Although the theory of the ordinary recurrent sequences is enough known, I believe
I must begin by treating it in a few words in order to serve as introduction to that of the
∗Read 29 April and 9 May 1776.
†Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-

sity, Cincinnati, OH. November 24, 2009
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récurro-récurrente sequences which form the principal object of this Memoir. Besides
I will have need to employ, as much as it will be possible, only some new and more
simple methods than those which one has already.

1. Let the sequence be

y0 , y1,y2, y3, . . . yx, yx+1, yx+2,yx+3, . . . ,

in which one has constantly this linear equation among n successive terms

Ayx +Byx+1 + Cyx+2 + · · ·+Nyx+n = 0, (A)

A, B, C, . . . N being any constant coefficients whatsoever; this will be a simple re-
current sequence of order n, and equation (A) will be the finite differential equation
which there is question to integrate in order to have the expression of the general term
yx of the proposed sequence.

For this I suppose
y = aαx,

a and α being some undetermined constants; I will have therefore

yx+1 = aαx+1, yx+2 = aαx+2, . . . ,

and the substitutions being made into equation (A), it will become divisible by aαx;
and one will have after this division

A+Bα+ Cα2 + . . .+Nαn = 0. (B)

One sees by this equation: 1◦ that, since the coefficient a is not found, this coefficient
remains arbitrary: 2◦ that the equation being with respect to α of degree n, it will
furnish, in general, n different values of α, which I will denote by α, β, γ,. . .. One will
have therefore thus, by taking also different coefficients a, b, c, . . . n different values
of y, namely aαx, aβx, aγx,. . .; and, as equation (A) is linear, it is easy to see that the
sum of these different values of yx will satisfy it also. So that one will have, in general,

y = aαx + aβx + aγx + . . . ;

and as this value of yx contains n arbitrary constants a, b, c, . . . , it will be the complete
integral of equation (A) of the nth order.

2. If one supposes that the first n terms of the proposed sequence are given, one
could by their means determine the n arbitrary constants a, b, c, . . .; there will be for
this only to resolve the n equations

y0 = a+ b+ c+ . . . ,
y1 = aα+ bβ + cγ + . . . ,
y2 = aα2 + bβ2 + cγ2 + . . . ,

· · ·
yn−1 = aαn−1 + bβn−1 + cγn−1 + . . . ,

In the case n = 1, one has
a = y0,
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in the case of n = 2, one will have

a =
y1 − βy0
α− β

, b =
y1 − αy0
β − α

;

in the case of n = 3, one will have

a =
y2 − (β + γ)y1 + βγy0

(α− β)(α− γ)
, b =

y2 − (α+ γ)y1 + αγy0
(β − α)(β − γ)

, c =
y2 − (α+ β)y1 + αβy0

(γ − α)(γ − β)

and thus in sequence.
Thence and from the known theory of equations it is easy to conclude that if one

makes, for brevity,

A+Bα+ Cα2 +Dα3 + . . .+Nαn = P,

B + Cα+Dα2 + . . . = Q,

C +Dα+ . . . = R,

D + . . . = S,

. . . ,

one will have, in general,

a =
Qy0 + ry1 + Sy2 + . . .

dP
dα

,

and changing in this expression of a the quantity α into β, γ, . . ., one will have the
values of the other coefficients b, c, . . ..

If it happens that two or more roots are equals, there will be only to suppose their
differences infinitely small, and one will find, in the case of β = α, that the two terms

aαx + bβx

of the expression of yx will become of this form

a′αx + b′xαx−1,

where one will have

a′ =
dQ
dα y0 + dR

dα y1 + dS
dαy2 + . . .

1
2
d2P
dα2

,

b′ =
Qy0 +Ry1 + Sy2 + . . .

1
2
d2P
dα2

;

and if one has γ = β = α, then the three terms

aαx + bβx + cγx

will become

a′′αx + b′′xαx−1 + c′′
x(x− 1)

2
αx−2,
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whence one will have

a′′ =
1
2
d2Q
dα2 y0 + 1

2
d2R
dα2 y1 + 1

2
d2S
dα2 y2 + . . .

1
2.3

d3P
dα3

,

b′′ =
dQ
dα y0 + dR

dα y1 + dS
dαy2 + . . .

1
2.3

d3P
dα3

,

c′′ =
Qy0 +Ry1 + Sy2 + . . .

1
2.3

d3P
dα3

;

and thus of the rest.
3. If in the proposed equation (A) the coefficients A, B, C, . . . N, instead of being

constants, are some given functions of x, which we will designate by Ax, Bx, Cx,
. . .Nx, so that one has the equation

Axyx +Bxyx+1 + Cxyx+2 + . . .+Nxyx+n = 0, (C)

one will not be able, by the preceding method nor by any other known method, to
integrate it in general, unless it is only of the first order; but if one supposes that one
knows a posteriori n particular values of yx which we will designate by αx, βx, γx,
. . . it is clear that one will have, in general,

yx = aαx + bβx + cγx + . . . ,

and that this expression of yx will be complete, since it contains n arbitrary constants
a, b, c, . . ..

4. Moreover one could in this same case find the complete integral of the equation

Axyx +Bxyx+1 + Cxyx+2 + . . .+Nxyx+n = Xx, (D)

Xx being any function of x whatsoever.
Because since, in the case of Xx = 0, one has

yx = aαx + bβx + cγx + . . .

for the complete integral, a, b, c, . . . being some constants, we suppose now that the
quantities a, b, c, . . . are, in general, some functions of x which we will designate by
ax, bx, cx, . . ., so that the integral of equation (D) is

yx = axαx + bxβx + cxγx + . . . ; (E)

making x vary, one will have

yx+1 = ax+1αx+1 + bx+1βx+1 + cx+1γx+1 + . . . ,

or else, by designating by the characteristic ∆ the finite differences, so that

∆ax = ax+1 − ax,
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and thus of the others,

yx+1 =axαx+1 + bxβx+1 + cxγx+1 + . . .

+ αx+1∆ax + βx+1∆bx + γx+1∆cx + . . .

Therefore, if I make

αx+1∆ax + βx+1∆bx + γx+1∆cx + . . . = 0, (1)

I will have
yx+1 = axαx+1 + bxβx+1 + cxγx+1 + . . .

as if the quantities ax, bx, cx, . . . had varied not at all.
Making x vary anew, I will have therefore

yx+2 = ax+1αx+2 + bx+1βx+2 + cx+1γx+2 + . . .

= axαx+2 + bxβx+2 + cxγx+2 + . . .

+ αx+2∆ax + βx+2∆bx + γx+2∆cx + . . . ,

and, making similarly

αx+2∆ax + βx+2∆bx + γx+2∆cx + . . . = 0, (2)

I will have
yx+2 = axαx+2 + bxβx+2 + cxγx+2 + . . .

Likewise, by making x vary and supposing

αx+3∆ax + βx+3∆bx + γx+3∆cx + . . . = 0, (3)

one will have
yx+3 = axαx+3 + bxβx+3 + cxγx+3 + . . .

I continue thus to make x vary and to suppose null the part of y depending on the
variations of ax, bx, cx, . . . to the following equations inclusively,

αx+n−1∆ax + βx+n−1∆bx + γx+n−1∆cx · · · = 0 (n− 1)
yx+n−1 = axαx+n−1 + bxβx+n−1 + cxγn+n−1 + · · · ;

and, making again x vary in the last equation, I will have

yx+n =axαx+n + bxβx+n + cxγx+n + . . .

+ αx+n∆ax + βx+n∆bx + γx+n∆cx + . . .

Let one substitute now these values of yx, yx+1, . . . , yx+n into equation (D); and as all
these values, the last excepted, are the same as if ax, bx, cx . . . had not varied, and as
the last differs from that which it was under this hypothesis only by the terms

αx+n∆ax + βx+n∆bx + γx+n∆cx + . . .
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which are added to it; that besides the values of yx, yx+1, . . . in the case ofαx, βx, γx, . . .
constants, satisfy by hypothesis equation (C), whatever be the values of these constants;
it follows that the first member of equation (D) will be reduced to

Nx(αx+n∆ax + βx+n∆bx + γx+n∆cx + . . .),

so that one will have the equation

αx+n∆ax + βx+n∆bx + γx+n∆cx + . . . =
Xx

Nx
. (n)

Therefore one has thus n linear equations (1), (2), (3), . . ., (n) among the quantities
∆ax,∆bx, ∆cx, . . ., whence one will draw the values of these quantities as functions of
x, which I will designate by Px, Qx, Rx, . . .. Therefore, passing from the differences
to the sums and designating these by the characteristic Σ, one will have

ax =
∑

Px, bx =
∑

Qx, cx =
∑

Rx, . . . ,

this which being substituted into formula (E), it will become

yx = αx
∑

Px + βx
∑

Qx + γx
∑

Rx + . . .

for the complete integral of equation (D).
It follows thence that the equation

Axyx +Bxyx+1 + Cxyx+2 + . . .+Nxyx+n = Xx

is generally integrable all the time that one knows n particular values of yx in the case
of Xx = 0; the Theorem analogous to this that I have given for linear differential
equations in Volume III of the Mémoires de Turin.1 Mr. le Marquis de Condorcet and
Mr. de Laplace had already remarked that this Theorem on the equations in infinitely
small differences was also applicable to the case of the finite differences: and this last
has given a general and ingenious demonstration of it, but a little complicated (see
Tome IV of the Mémoires de Turin and the Mémoires presented to the Academy of
Sciences of Paris in 1773).2 It is this which has engaged me to treat here this matter by
a new and as simple a method as one can desire it.

5. REMARK. — The principles of the preceding method can be applied also to
ordinary differential equations, and are, in general, of very great usage in all the integral
Calculus. Although this is not the place here to occupy ourselves with this matter, I am
going nevertheless to treat it in a few words, reserving for myself to treat it elsewhere
with more extent.

And first, if one has a linear equation of order n such as

Py +Q
dy

dx
+R

d2y

dx2
+ . . .+ V

dny

dxn
= X,

1Oeuvres de Lagrange, t. 1, p. 471.
2The paper of Laplace is “Recherches, sur l’integration des équations differentielles aux différences

finies, & sur leur usage dans la théorie des hasards,” Savants étranges, 1773 (1776) p. 37-162. See also
Oeuvres 8, p. 69-197.
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where P, Q, R, . . . , V and X are some given functions of x, and if one knows the
complete integral of this equation in the case of X = 0, which will be necessarily of
the form

y = ap+ bq + cr + . . . ,

a, b, c, . . . being some arbitrary constants in the number of n, and p, q, r, . . . some
functions of x where the constants a, b, c, . . . do not enter, and which are so many
particular values of y under the hypothesis of X = 0, one will be able to deduce
easily from it the complete integral of the proposed. Because by regarding the arbi-
traries a, b, c, . . . as some indeterminate variables, and supposing null in the values of
dy, d2y, d3y, . . . , dn−1y the parts which depend on the variability of these quantities
a, b, c, . . ., one will have

dy = a dp+ b dq + c dr + . . . , 0 = p da+ q db+ r dc+ . . . ,
d2y = a d2p+ b d2q + c d2r + . . . , 0 = dp da+ dq db+ dr dc+ . . . ,
d3y = a d3p+ b d3q + c d3r + . . . , 0 = d2p da+ d2q db+ d2r dc+ . . . ,
· · · · · ·
dn−1y = a dn−1p+ b dn−1q + c dn−1r + . . . , 0 = dn−1p da+ dn−1q db+ dn−1r dc+ . . . ,

next

dny = a dnp+ b dnq + c dnr + . . .+ dn−1p da+ dn−1q db+ dn−1r dc+ . . .

In this manner one sees that the expressions of y, dy, d2y, . . . , dn−1y have the same
form as if a, b, c, . . . were constants, and that that of dny differs from that which it was
in this case only by the terms

dn−1p da+ dn−1q db+ dn−1r dc+ . . .

which are added; now as in the case of a, b, c, . . . constants, the values of y, dy,
d2y,. . . , dny satisfy by the hypothesis to the proposed equation when one supposes
X = 0, whatever be besides the values of these constants, it is easy to conclude that
if one substitutes into this equation the values above of y, dy, d2y, . . . , dny, all the
terms will be destroyed, with the exception of the terms of the value of dny which de-
pends on the variation of the quantities a, b, c, . . . and on the term X , which had been
supposed before null. So that one will have, in dividing by V , the equation

dn−1p da+ dn−1q db+ dn−1r dc+ . . . =
X

V
dxn;

and this equation being combined with the n− 1 equations of condition

p da+ q db+ r dc+ . . . = 0,

dp da+ dq db+ dr dc+ . . . = 0,

· · ·
dn−2p da+ dn−2q db+ dn−2r dc+ . . . = 0,

one will draw from it by the ordinary rules of the elimination of values of the n dif-
ferentials da, db, dc, . . . ; and thence one will have by integration those of a, b, c, . . .
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which one will substitute into the expression of y. This which is much more simple
than all that which one finds in Tomes III and IV of the Mémoires de Turin on this
matter.

In general, if one knows the complete integral of any equation whatever of order n
such as

dny

dxn
+ P = 0,

P being a function of x, y, dydx , . . . ,
dn−1y
dxn−1 , one will be able to make this integral serve

to find that of the equation
dny

dxn
+ P = Π,

Π being also a given function of x, y, dydx , . . . ,
dn−1y
dxn−1 .

Because let M = 0 be the complete integral of which there is question, M will be
a function of x, y and of n arbitrary constants a, b, c, . . .; so that y will be reciprocally
a function of x and of the same constants, which will satisfy consequently the equation

dny

dxn
+ P = 0,

whatever be the values of these constants.
We suppose now that M = 0 is equally the integral of the equation

dny

dxn
+ P = Π,

but in regarding there the quantities a, b, c, . . . as variables; under this hypothesis, the
expression of y in x, a, b, c, . . .will be the same as in the case of a, b, c, . . . constants,
but those of dy, d2y, . . . will be different; however, if in the successive differentiations
one supposes null the parts of the differentials dy, d2y, . . . , dn−1y which result from
the variability of the quantities a, b, c, . . ., one will have these n − 1 equations of
condition

dy

da
da+

dy

db
db+

dy

dc
dc+ . . . = 0,

d2y

dx da
da+

d2y

dx db
db+

d2y

dx dc
dc+ . . . = 0,

· · · ,
dn−1y

dxn−2 da
da+

dn−1y

dxn−2 db
db+

dn−1y

dxn−2 dc
dc+ . . . = 0,

by means of which the values of these differentials will be yet the same as if a, b, c, . . .
were constants; so that by substituting these values like that of y in the quantity P , one
will have again the same function of x, a, b, c, . . . as in the case where the quantities
a, b, c, . . . would be constants. Now as the value of d

n−1y
dxn−1 is the same as in the case of

a, b, c, . . . constants, it is clear that that of d d
n−1y
dxn−1 will be equal to that which it would

be in the same case, more to the variation of d
n−1y
dxn−1 owing to the quantities a, b, c, . . .,

which is
dny

dxn−1 da
da+

dny

dxn−1 db
db+

dny

dxn−1 dc
dc+ . . . ;
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consequently, if one denotes by Y dx the first part of this value, one will have for the
complete value of d d

n−1y
dxn−1 the quantity

Y dx+
dny

dxn−1 da
da+

dny

dxn−1 db
db+

dny

dxn−1 dc
dc+ . . . ,

where Y will be, after the substitutions, the same function of x, a, b, c, . . . as in the
case of a, b, c, . . . constants; but in this case one has, by hypothesis,

Y + P = 0,

whatever be the values of these constants; therefore the same equations will yet hold
in the case where the quantities a, b, c, . . . are not constants; consequently in this last
case the equation

dny

dxn
+ P = Π

will become, being multiplied by dx,

dny

dxn−1 da
da+

dny

dxn−1 db
db+

dny

dxn−1 dc
dc+ . . . = Π dx.

This equation being combined with the n− 1 equations of condition found above, one
will have, after having substituted throughout the values of y and of its differentials
in x, a, b, c, . . . drawn from the finite equation M = 0, values which are the same
as in the case of a, b, c, . . . constants, one will have, I say, n differential equations
of the first order among the n variables a, b, c, . . . and the variable x; if therefore one
integrates these equations, one will have the values of a, b, c, . . . in x, which being next
substituted into the equation M = 0 will give the integral of the proposed equation.

I swear that the integration of the equations in a, b, c, . . . and x will be most often
very difficult, at least as difficult as that of the proposed equation

dny

dxn
+ P = Π;

and there is perhaps only the single case of the linear equations which we have treated
above, where the integration of the equations of which there is question succeeds, in
general, because the constants a, b, c, . . . are also necessarily linear in the complete
integral M = 0; but the grand use of the preceding method is in order to integrate
by approximation the equations of which one knows the complete integral very nearly,
that is to say by neglecting some quantities which one regards as very small.

For example, if in the equation

dny

dxn
+ P = Π,

one supposes that the function Π is very small vis-a-vis P , and that one knows already
the complete integral M = 0, in the case of Π = 0, by employing the preceding
method, and drawing from the n differential equations in a, b, c, . . . and x, the values
of da, db, dc, . . ., one will have some equations of this form

da = AΠ dx, db = BΠ dx, dc = C Π dx, . . . ,
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A, B, C being some finite functions of x, a, b, c, . . ., and Π being also a function of
the same quantities, but very small by hypothesis; whence one sees that the values
of da

dx ,
db
dx ,

dc
dx , . . . are also very small of the same order; thus, by regarding first the

quantities a, b, c, . . . as constants, one will be able by the known methods to approach
more and more the true values of these quantities.

It is not to fear that the functions A, B, C,. . . become infinities; because that sup-
position contains the necessary conditions in order that the complete integral M = 0
of the equation

dny

dxn
+ P = 0,

becomes from it a particular integral; for why one can see my Memoir sur les intégrales
particulières des équations différentialles.3

It is clear moreover that this method, that I only exhibited here in passing, can be
applied equally to the case where one would have many differential equations among
many variables of which one would know the approximate complete integral, that is to
say by neglecting some quantities supposed very small. It will be consequently quite
useful for calculating the movements of the planets as much as they are altered by their
mutual action, since by setting aside this action the complete solution of the Problem is
known; and it is good to remark that, as in this case the constants a, b, c, . . . represent
that which one names the elements of the planets, our method will give immediately
the variations of these elements originating from the action that the planets exert on
one another. I have already given an essay on this method in my Researches on the
theory of Jupiter and of Saturn [Mémoires de Turin, Tome III4]. It is presented here in
a more direct and more general manner; but I myself propose to develop it elsewhere
with more extension, and to apply it to the solution of some important Problems on the
System of the world.

ARTICLE II. — On doubly recurrent sequences, or on the integration of linear
equations in finite and partial differences among three variables.

6. We suppose that one has a sequence of which the terms vary in two different
ways and form a kind of Table in double entry of this form

y0,0, y1,0, y2,0, y3,0, . . . , yx,0, yx+1,0, . . . ,
y0,1, y1,1, y2,1, y3,1, . . . , yx,1, yx+1,1, . . . ,
y0,2, y1,2, y2,2, y3,2, . . . , yx,2, yx+1,2, . . . ,
y0,3, y1,3, y2,3, y3,3, . . . , yx,3, yx+1,3, . . . ,
. . . , . . . , . . . , . . . . . . . . . , . . . , . . . . . . . . . ,
y0,t, y1,t, y2,t, y3,t, yx,t, yx+1,t,
y0,t+1, y1,t+1, y2,t+1, y3,t+1, . . . , yx,t+1, yx+1,t+1,
. . . , . . . , . . . , . . . . . . . . . , . . . , . . . . . . . . . ,

and that one had constantly among the terms of this sequence a linear equation of this

3Oeuvres de Lagrange, T. IV, p. 5.
4Oeuvres de Lagrange, T. 1, p. 609.
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form
Ayx,t +Byx+1,t + Cyx+2,t + . . .+Nyx+n,t

+B′yx,t+1 + C ′yx+1,t+1 + . . .+N ′yx+n−1,t+1

+ C ′′yx,t+2 + . . .+N ′′yx+n−2,t+2

+ . . . . . . . . . . . . . . .

+N (n)yx,t+n


= 0,

in which A, B, B′, C, C ′, C ′′, . . . , N, N ′, . . . are any constant coefficients what-
ever; the sequence of which there is question will be a double recurrent sequence of
the order n, and the preceding equation will be a linear equation in finite and partial
differences among three variables, of the integration on which will depend the research
of the general term yx,t of the sequence.

7. We suppose first that the proposed differential equation had only four terms and
that it is of the form

Ayx,t +Byx+1,t +B′yx,t+1 + C ′yx+1,t+1 = 0. (F)

I make
yx,t = aαxβt,

a, α, β being some indeterminate constants; I will have thus

yx+1,t = aαx+1βt, yx.t+1 = aαxβt+1, yx+1,t+1 = aαx+1βt+1;

substituting these values and dividing next each equation by aαxβt, there will come
this here

A+Bα+B′β + C ′αβ = 0,

by which one will be able to determine one of the two constants α, β by the other.
I draw β from this equation, I have

β = − A+Bα

B′ + C ′α
;

therefore, substituting this value of β, I will have

yx,t = aαx
(
− A+Bα

B′ + C ′α

)t
,

where a and α remain indeterminate.
Let one reduce now the quantity

(
− A+Bα
B′+C′α

)t
into a series which proceeds accord-

ing to the powers of α, but so that these powers go by diminishing, and if one supposes,
in general,(

− A+Bα

B′ + C ′α

)t
= Tαµt + T ′αµt−1 + T ′′αµt−2 + T ′′′αµt−3 + . . . ,

one will have

yx,t = Taαx+µt + T ′aαx+µt−1 + T ′′aαx+µt−2 + . . .

11



Now, as a and α are arbitraries, one will have an infinity of different values of yx,t,
and it follows from this that the differential equation (F) is linear, that one will be able
equally to take for yx,t the sum of as many of these different values as one will wish.

Therefore, if one takes any number whatever of different constants a, b, c, . . . , α,
β, γ, . . . , one will have, in general,

yx,t = T
(
aαx+µt + bβx+µt + cγx+µt + . . .

)
+ T ′

(
aαx+µt−1 + bβx+µt−1 + cγx+µt−1 + . . .

)
+ T ′′T

(
aαx+µt−2 + bβx+µt−2 + cγx+µt−2 + . . .

)
+ T ′′′T

(
aαx+µt−3 + bβx+µt−3 + cγx+µt−3 + . . .

)
. . . . . . . . . . . . . . . . . . . . .

I remark now that because of the indefinite number of arbitrary constants a, b, c,. . . ,
α, β, γ, . . ., the quantity

aαx+µt + bβx+µt + cγx+µt + . . .

must be able to represent any function of x+µt that I will designate by the characteristic
f thus, f(x+ µt); and then it is clear that the similar quantities

aαx+µt−1+bβx+µt−1+cγx+µt−1+. . . , aαx+µt−2+bβx+µt−2+cγx+µt−2+. . . , . . .

will become
f(x+ µt− 1), f(x+ µt− 2), . . . ;

therefore making these substitutions one will have, in general,

yx,t = Tf(x+ µt) + T ′f(x+ µt− 1) + T ′′f(x+ µt− 2) + . . .

8. The determination of the form of the function f(x + µt) depends on the values
of yx,t when t = 0; indeed, if one makes t = 0, one has

T = 1, T ′ = 0, T ′′ = 0, . . . ;

therefore
yx,0 = f(x).

Whence it follows that one will have, in general,

yx,t = Tyx+µt,0 + T ′yx+µt−1,0 + T ′′yx+µt−2,0 + . . . ,

where one sees that the quantities yx+µt,0, yx+µt−1,0, . . . are contained among the
terms which form the first horizontal rank of the Table of n◦ 6, provided that one
supposes that the sequence of this rank is also continued to the left in this manner

. . . , y−(x+1),0, y−x,0, . . . , y−3,0, y−2,0, y−1,0, y0,0.

If therefore one regards all these terms as givens, one will have by the preceding
formula the value of any term yx,t whatever of the Table of which there is question, in

12



the case where it is supposed formed by one such law, that one has constantly, among
four terms contiguous or arranged in a square, an equation of the form (F) of n◦ 7.

9. If one supposes that all the terms of the first horizontal rank, which precede y0,0,
that is to say the terms of this rank continued to rear, are nulls, this which can take place
in a great number of Problems, then the expression of yx,t will be always composed of
a finite number of terms, because it will be necessary to reject all those where ys,0 will
be found s being any negative number whatever. One will have therefore in this case

yx,t = Tyx+µt,0 + T ′yx+µt−1,0 + T ′′yx+µt−2,0 + . . .+ T (x+µt)y0,0.

In all the other cases the series will go to infinity, unless one has B′ = 0 or C ′ = 0;
since then, because t equal to a positive whole number, the sequence of quantities
T, T ′, . . . will be finite and will have only t+ 1 terms.

10. In order to show, by a known example, the application of the preceding formula,
I take the one of the Table of Pascal for the combinations, in which one knows that each
term is equal to the sum of the one which precedes it in the same horizontal rank and of
the one which is above this last in the same vertical rank; moreover the first horizontal
rank is entirely formed of units and the first vertical rank is entirely zero. Whence it
follows that one has first, in general, this equation

yx+1,t+1 = yx,t+1 + yx,t,

and that next one has

yx,0 = 1, as much as x = 0, 1, 2, . . . ,

y0,t = 0, as much as t = 0, 1, 2, . . . .

This equation being compared to that of n◦ 7, one has

A = 1, B = 0, B′ = 0, C ′ = −1;

therefore
− A+Bα

B′ + C ′α
=

1

α− 1
;

this which being raised to the power t gives the series

α−t + tα−t−1 +
t(t+ 1)

2
α−t−2 +

t(t+ 1)(t+ 2)

2.3
α−t−3 + . . . ,

so that one will have in the general formula of the number cited µ = −1 and

T = 1, T ′ = t, T ′′ =
t(t+ 1)

2
, . . . .

Therefore, by the formula of n◦ 8, one will have, in general,

yx,t = yx−t,0 + tyx−t−1,0 +
t(t+ 1)

2
yx−t−2,0 + . . .

13



But by making x = 0 one must have, by hypothesis, y0,t = 0, by supposing t =
1, 2, 3, . . .; therefore it will be necessary that one has, in general,

y−t,0 = ty−t−1,0 +
t(t+ 1)

2
y−t−2,0 + . . . ,

whatever be t, provided that this is a whole positive number; whence it is easy to
conclude that one must have

y−1,0 = 0, y−2,0 = 0, . . . ,

and, in general,
ys,0 = 0,

as much as s will be an entire negative, this which is the case of n◦ 9, in which we have
seen that the series becomes finite.

One will have therefore, according to the formula of this number,

yx,t = yx−t,0 + tyx−t−1,0 +
t(t+ 1)

2
yx−t−2,0 + . . .+

t(t+ 1) . . . (x− 1)

1.2 . . . (x− t)
y0,0.

Such is the general expression of any term whatsoever of the Table of Pascal, by sup-
posing that the terms which form the first horizontal rank, and which are represented
by y0,0, y1,0, y2,0, . . ., are any. But in the case of the Table of Pascal these terms are
all equal to unity; substituting therefore unity in the place of these quantities in the
formula above, one will have

yx,t = 1 + t+
t(t+ 1)

2
+
t(t+ 1)(t+ 2)

2.3
+ . . .+

t(t+ 1) . . . (x− 1)

1.2 . . . (x− t)
,

this which is reduced, as one knows, to this more simple expression

yx,t =
(t+ 1)(t+ 2)(t+ 3) . . . x

1.2.3 . . . (x− t)
.

11. We have remarked above that the preceding solution gives, in general, a finite
expression of yx,t, when C ′ = 0 orB′ = 0; we examine therefore first these two cases.

1◦ Let C ′ = 0; then the differential equation (F) will have only three terms and will
be of the first order. And if one makes, for brevity,

− B
B′

= p,
A

B
= q,

one will have
−A+Bα

B′
= pα

(
1 +

q

x

)
,

this which being raised to the power t and next compared to the general formula Tαµt+
T ′αµt−1 + . . . , will give

µ = 1, T = pt, T ′ = tptq, T ′′ =
t(t− 1)

2
ptq2, . . .

14



Therefore (8)

yx,t = pt
[
yx+t,0 + tqyx+t−1,0 +

t(t− 1)

2
q2yx+t−2,0 + . . .

]
.

One sees here not only that the series is always finite when t is an entire positive
number, but yet that it contains only some quantities of the form ys,0, s being positive;
whence it follows that in this case it suffices that the first horizontal rank of the Table
of n◦ 6 be given, in order that one can determine the value of any term that there is of
the same Table.

2◦ We suppose that one has B′ = 0; the differential equation will have also only
three terms, but it will be of the second order. Making in this case

− B
C ′

= p,
A

B
= q,

one will have
−A+Bα

C ′α
= p

(
1 +

q

α

)
;

raising this quantity to the power t, and comparing with the general formula, one will
have µ = 0, and the values T, T ′, T ′′, . . . will be the same as in the preceding case.

Thus one will have

yx,t = pt
[
yx,0 + tqyx−1,0 +

t(t− 1)

2
q2yx−2,0 + . . .

]
.

This expression is always finite as long as t is an entire positive number; but, when t is
> x, it contains necessarily some quantities such as ys,0, s being negative. Thus it will
not suffice, in this case, that the first horizontal rank of the Table of n◦ 6 is given, it
will be necessary again to suppose given the preceding terms y−1,0, y−2,0, . . .. If one
does not know these terms, but that one knows those which form the first vertical rank
of the Table, one will be able then to deduce these from those in the following manner.

I make x = 0 and t successively = 1, 2, 3, . . .; I will have

y0,1 = p(y0,0 + qy−1,0),

y0,2 = p2(y0,0 + 2qy−1,0 + q2y−2,0),

y0,3 = p3(y0,0 + 3qy−1,0 + 3q2y−2,0 + q3y−3,0),

. . . . . . . . . . . . . . . . . . ,

whence it is easy to draw

qy−1,0 =
1

p
y0,1 − y0,0,

q2y−2,0 =
1

p2
y0,2 −

2

p
y0,1 + y0,0,

q3y−3,0 =
1

p3
y0,3 −

3

p2
y0,2 +

3

p
y0,1 − y0,0,

. . . . . . . . . . . . . . . . . . ,
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and, in general,

qsy−s,0 =
1

ps
y0,s −

s

ps−1
y0,s−1 +

s(s− 1)

2ps−2
y0,s−2 − . . .

I conclude thence that, if one considers these two sequences

y0,0,
1
q y1,0,

1
q2 y2,0,

1
q3 y3,0, . . . ,

y0,0,
1
py0,1,

1
p2 y0,2,

1
p3 y0,3, . . . ,

which are supposed givens, and if one denotes for more simplicity the terms of the first
by

Y, Y1, Y2, Y3, . . . ,

and those of the second by
Y, Y ′, Y ′′, Y ′′′, . . . ;

if next one takes the successive differences of the terms of this last, which are denoted
by the characteristic ∆, so that one has, as one knows,

∆Y = Y ′ − Y,
∆2Y = Y ′′ − 2Y ′ + Y,

∆3Y = Y ′′′ − 3Y ′′ + 3Y ′ − Y,
. . . . . . . . . . . . . . . . . . ;

if one supposes finally that the first sequence is continued to the rear by the terms

Y−1, Y−2, Y−3, . . . ,

which are respectively equal to

∆Y, ∆2Y, ∆3Y, . . . ,

so that one has, in general
Y−3 = ∆sY ;

one will have the formula

yx,t = (pq)t
[
Yx + tYx−1 +

t(t− 1)

2
Yx−2 +

t(t− 1)(t− 2)

2.3
Yx−3 + . . .

]
,

in which all the quantities Yx, Yx−1, . . . are known.
12. But, if neither C ′ nor B′ is equal to zero, then it is impossible to have, in

general, a finite expression for yx,t by the method of n◦ 7; however one can arrive there
by another method which we are going to expose.

I take the expression of β in α (7), which is

β = − A+Bα

B′ + C ′α
;
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I make
B′ + C ′α = −ω,

whence I draw

α = −ω +B′

C ′
,

and substituting in the value of β, there arrives to me

β = − B
C ′

+

(
A− BB′

C ′

)
1

ω
.

I will have therefore thus

α = − ω

C ′

(
1 +

B′

ω

)
, β = − B

C ′

[
1 +

(
B′ − AC ′

B

)
1

ω

]
.

These values being substituted into the quantity αxβt, reducing next this quantity to a
series according to the powers of 1

ω , one will have an expression of the form

αxβt = V ωx + V ′ωx−1 + V ′′ωx−2 + V ′′′ωx−3 + . . . ,

which will be composed always of a finite number of terms, x and t being some entire
positive numbers.

Now, since ω is an indeterminate constant, it is easy to prove, by a reasoning similar
to the one which one has made in n◦ 7 relatively to the indeterminate α, that one will
have, in general,

yx,t = V f(x) + V ′f(x− 1) + V ′′f(x− 2) + V ′′′f(x− 3) + . . . ,

the characteristic f denoting any function whatever.
Such is therefore the general expression of yx,t, and this expression has over that

of the number cited the advantage to be always finite.
13. We suppose now that the values given of y are those which form the first

horizontal rank, and the first vertical rank of the Table of n◦ 6, that is to say which
corresponds to t = 0 and to x = 0; and we see how one must determine by their means
the different values of the function f(x), f(x− 1), . . ..

1◦ Let therefore t = 0, and making for more simplicity

− 1

C ′
= m, B′ = n,

so that

α = mω
(

1 +
n

ω

)
and αx = mx

[
ωx + xnωx−1 +

x(x− 1)

2
n2ωx−2 + . . .

]
,

one will have

V = mx, V ′ = xnmx, V ′′ =
x(x− 1)

2
n2mx, . . . ;
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therefore

yx,0 = mx

[
f(x) + xnf(x− 1) +

x(x− 1)

2
n2f(x− 2) + . . .

]
.

We suppose successively
x = 0, 1, 2, 3, . . . ;

one will have

y0,0 = f(0),

y1,0 = m[f(1) + nf(0)],

y2,0 = m2[f(2) + 2nf(1) + n2f(0)],

y3,0 = m3[f(3) + 3nf(2) + 3n2f(1) + n3f(0)],

. . . . . . . . . . . . . . . . . . . . . ,

whence one draws

f(0) = y0,0,

1

n
f(1) =

1

mn
y1,0 − y0,0,

1

n2
f(2) =

1

m2n2
y2,0 −

2

mn
y1,0 + y0,0,

1

n3
f(3) =

1

m3n3
y3,0 −

3

m2n2
y2,0 +

3

mn
y1,0 − y0,0,

. . . . . . . . . . . . . . . . . . . . . ,

Whence one can conclude that, if one considers the sequence of terms

y0,0,
1

mn
y1,0,

1

m2n2
y2,0,

1

m3n3
y3,0, . . . ,

and if one designates them by Y, Y ′, Y ′′, Y ′′′, . . . , if next one takes the successive
differences of these terms and if one designates them in the ordinary manner by the
characteristic ∆, one will have

f(0) = Y, f(1) = n∆Y, f(2) = n2∆2Y, f(3) = n3∆3Y, . . . , f(s) = ns∆sY,

2◦ Let x = 0, and making, for brevity,

− B
C ′

= p, B′ − AC ′

B
= q,

so that
β = p

(
1 +

q

ω

)
,

and consequently

βt = pt
[
1 +

tq

ω
+
t(t− 1)q2

2ω2
+
t(t− 1)(t− 2)q3

2.3.ω3
+ . . .

]
,
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one will have

V = pt, V ′ = tqpt, V ′′ =
t(t− 1)

2
q2pt, . . . ;

therefore

y0,t = pt
[
f(0) + tqf(−1) +

t(t− 1)

2
q2f(−2) + . . .

]
.

Making successively
t = 0, 1, 2, 3, . . . ,

one will have

y0,0 = f(0),

y0,1 = p[f(0) + qf(−1)],

y0,2 = p2[f(0) + 2qf(−1) + q2f(−2)],

y0,3 = p3[f(0) + 3qf(−1) + 3q2f(−2) + q3f(−3)],

. . . . . . . . . . . . . . . . . . . . . ,

whence one draws

f(0) = y0,0,

qf(−1) =
1

p
y0,1 − y0,0,

q2f(−2) =
1

p2
y0,2 −

2

p
y0,1 + y0,0,

q3f(−3) =
1

p3
y0,3 −

3

p2
y0,2 +

3

p
y0,1 − y0,0,

. . . . . . . . . . . . . . . . . . . . . , ;

therefore if one considers the series

y0,0,
1

p
y0,1,

1

p2
y0,2,

1

p3
y0,3, . . . ,

and if one designates the terms of this sequence by Y,
′
Y,

′′
Y,

′′′
Y, . . . , if next one

takes the successive differences of these terms and if one designates them by the char-
acteristic δ, one will have

f(0) = Y, f(−1) =
δY

q
, f(−2) =

δ2Y

q2
, f(−3) =

δ3Y

q3
, . . . , f(−s) =

δsY

qs
.

Thus one will know the values of f(s), be it that s is positive or negative; and one will
have, in general, as above,

yx,t = V f(x) + V ′f(x− 1) + V ′′f(x− 2) + . . .
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In regard to the values of V, V ′, V ′′, . . . , it is clear that in order to find them it will be
only to multiply together the series above which gives the values of αx and of βt; one
will have by this means

V =mxpt,

V ′ =mxpt(xn+ tq),

V ′′ =mxpt
[
x(x− 1)

2
n2 + xn.tq +

t(t− 1)

2
q2
]
,

V ′′′ =mxpt
[
x(x− 1)(x− 2)

2.3
n3 +

x(x− 1)

2
n2.tq

+ xn.
t(t− 1)

2
q2 +

t(t− 1)(t− 2)

2.3
q3
]

. . . . . . . . . . . . . . . . . . . . . ,

And if q = n, this which has place when A = 0, one will have more simply

V = mxpt,

V ′ = mxpt(x+ t)n,

V ′′ = mxpt
(x+ t)(x+ t− 1)

2
n2,

V ′′′ = mxpt
(x+ t)(x+ t− 1)(x+ t− 2)

2.3
n3,

. . . . . . . . . . . . . . . . . . . . . ,

The Problem is therefore resolved with all the simplicity and the generality that one
can desire.

14. In the Example of n◦ 10 one has

A = 1, B = 0, B′ = 1, C ′ = −1;

therefore
m = 1, n = 1, p = 0, q =∞ and pq = 1.

Therefore one will find (because of p = 0, q =∞ and p = 1)

V = 0, V ′ = 0, V ′′ = 0, . . . , V (t−1) = 0,

V (t) = mx, V (t+1) = mxxn, V (t+2) = mx x(x−1)
2 n2, V (t+2) = mx x(x−1)(x−2)

2.3 n3, . . .

Next the sequence Y, Y ′, Y ′′, . . . will become y0,0, y1,0, y2,0, . . . , so that one will
have, in general,

f(s) = ∆sy0,0,

s being a positive number. Finally, because p = 0, q =∞ and pq = 1, one will find

f(0) = y0,0, f(−1) = −y0,1, f(−2) = y0,2, . . . , f(−s) = ±y0,s;

the superior sign being for the case of s even, and the inferior for the one of s odd.
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Substituting therefore these values into the general expression of yx,t, one will have

yx,t = mx


∆x−ty0,0 + x∆x−t−1y0,0 +

x(x− 1)

2
∆x−t−2y0,0 + . . .+

x(x− 1)(x− 2) . . . (t+ 1)

1.2.3 . . . (x− t)
y0,0

− x(x− 1)(x− 2) . . . t

1.2.3 . . . (x− t+ 1)
y0,0 +

x(x− t) . . . (t− 1)

1.2 . . . (x− t+ 2)
y0,0 −

x(x− 1) . . . (t− 2)

1.2 . . . (x− t+ 3)
y0,0 + . . .

 ,

where the differences ∆y0,0, ∆2y0,0, . . . return uniquely to the terms of the first hori-
zontal rank y0,0, y1,0, y2,0, . . ., so that

∆y0,0 = y1,0 − y0,0, ∆2y0,0 = y2,0 − 2y1,0 + y0,0, . . .

By means of this formula one can therefore have the value of any term whatsoever
of the Table of Pascal, by supposing that in this Table the first horizontal rank and the
first vertical rank are anything.

In the same Table of Pascal, the first horizontal rank is entirely formed of units, and
the first vertical rank is entirely zero with the exception of the first term, so that one has

y0,0 = 1, y1,0 = 1, y2,0 = 1, . . . ,

y0,1 = 0, y0,2 = 0, . . . ;

therefore
∆y0,0 = 0, ∆2y0,0 = 0, . . . ,

Thus the preceding formula will become in this case

yx,t =
x(x− 1)(x− 2) . . . (t+ 1)

1.2.3 . . . (x− t)
;

this which accords with that which one has found at the end of n◦ 10.
15. Let be proposed now the general equation of the second order

Ayx,t +Byx+1,t + Cyx+2,t

+B′yx,t+1 + C ′yx+1,t+1

+ C ′′yx,t+2

 = 0. (G)

I make, as above,
yx,t = aαxβt;

substituting and dividing next all the terms by aαxβt, there comes to me this equation
in α and β

A+Bα+B′β + Cα2 + C ′αβ + C ′′β2 = 0, (H)

by which one will be able to determine β in α.
I seek therefore by the known method of Newton the value of β in α expressed by a

descending series, that is to say in which the exponents of α go by diminishing. I raise
next this series to the power t by means of the formulas known for this object; I obtain
thence a value of βt in α of the following form

βt = Tαµt + T ′αµt−µ
′
+ T ′′αµt−µ

′′
+ T ′′′αµt−µ

′′′
+ . . . ,
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where the numbers µ’, µ′′, µ′′′, . . . will be necessarily all positives and increasing.
Therefore, substituting this value of βt, one will have this particular expression of

yx,t, namely

yx,t = Taαx+µt + T ′aαx+µt−µ
′
+ T ′′aαx+µt−µ

′′
+ . . . ,

in which a and α will be some indeterminate constants.
Thence, by a reasoning similar to the one of n◦ 7, one will draw immediately the

general expression

yx,t = Tf(x+ µt) + T ′f(x+ µt− µ′) + T ′′f(x+ µt− µ′′) + . . . ,

the characteristic f denoting any undetermined function whatsoever.
Now, as long as C ′′ will not be null, the equation in β will rise to the second degree

and will have consequently two roots; one will have therefore for β, and consequently
also for βt, two different series; therefore, if the other value of βt is represented by the
series

βt = Uανt + U ′ανt−ν
′
+ U ′′ανt−ν

′′
+ U ′′′ανt−ν

′′′
+ . . . ,

then numbers ν′, ν′′, ν′′′, . . . being also positives and increasing, one will draw from
it similarly a value of yx,t, which will be

yx,t = Uφ(x+ νt) + U ′φ(x+ νt− ν′) + U ′′φ(x+ νt− ν′′) + . . . ,

the characteristic φ designating also any indeterminate function whatsoever.
Reuniting now the two values of yx,t, one will have, in general,

yx,t =Tf(x+ µt) + T ′f(x+ µt− µ′) + T ′′f(x+ µt− µ′′) + . . .

+ Uφ(x+ νt) + U ′φ(x+ νt− ν′) + U ′′φ(x+ νt− ν′′) + . . . ,

an expression which is necessarily the complete integral of the proposed, since it con-
tains two indeterminate functions.

16. It is clear that this expression of yx,t will always be composed of an infinite
number of terms, unless the two values of β in α are not finite; this which takes place
only when equation (H) can be decomposed into two equations of the first degree. In
this case one will have for yx,t a finite expression, and consequently one will have the
finite integral of the proposed differential equation. But it can happen in this same case
that the two values of β in α are equals; this which will give

U = T, U ′ = T ′, . . . ,

ν = µ, ν′ = µ′, . . . ,

so that the two arbitrary functions will merge into one alone; this which will render the
value of yx,t incomplete.

In order to remedy this inconvenience one will suppose, according to the method
used in these sorts of cases, that the two values of β differ between them by a very small
quantity, that is to say that one will take for the second value of β, β + dβ; this which
will give for the second value of βt, βt + tβt−1dβ, where it is necessary to remark
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that the differential dβ remains undetermined, because by differentiating equation (H)
it will happen necessarily that the quantities by which the two differentials dα and
dβ will be found multiplied, will be null all at once. Thence it is easy to conclude
that if one denotes by ′T, ′T

′, ′T
′′, ′T

′′′, . . . the values of T, T ′, T ′′, T ′′′, . . . which
correspond to t−1, that is to say which result from the substitution of t−1 in the place
of t, one will have for yx,t this other expression

yx,t =Tf(x+ µt) + T ′f(x+ µt− µ′) + T ′′f(x+ µt− µ′′) + . . .

+ t ′TF [x+ µ(t− 1)] + t ′T
′F [x+ µ(t− 1)− µ′] + t ′T

′′F [x+ µ(t− 1)− µ′′] + . . . ,

in which the characteristics f and F denote some functions any whatsoever.
17. In order to determine now the arbitrary functions, one supposes that the first

two horizontal ranks of the Table of n◦ 6 are given, that is to say one knows all the
values of yx,0 and yx,1; one will make therefore 1 ˚ t = 0, and, as in this case one has

T = 1, T ′ = 0, T ′′ = 0, . . .

and likewise
U = 1, U ′ = 0, U ′′ = 0, . . .

the formula of n◦ 15 will give

yx,0 = f(x) + φ(x);

one will make 2◦ t = 1, and, denoting by θ, θ′, θ′′, . . . , υ, υ′, υ′′, . . .the values of
T, T ′, T ′′, . . . , U, U ′, U ′′, . . . which correspond to t = 1, the same formula will
give

yx,t =θf(x+ µ) + θ′f(x+ µ− µ′) + θ′′f(x+ µ− µ′′) + . . .

+ υφ(x+ ν) + υφ′(x+ ν − ν′) + υφ′′(x+ ν − ν′′) + . . . ;

thus one will have two equations, by the aid of which, by giving successively to x all
the values 0, 1, 2, 3, . . ., one will be able to determine those of the functions f(x) and
φ(x); but it is clear that this determination will be very difficult, in general, unless the
expression of yx,t is not finite, this which will happen only when the value of β in α is
finite.

If the two values of β are equal, the determination of the functions f(x) and F (x)
of the formula of n◦ 6 will be very easy; because by making t = 0 one will have first

yx,0 = f(x);

and making next t = 1, one will have

′T = 1, ′T
′ = 0, ′T

′′ = 0, . . . ,

therefore

yx,1 = θf(x+ µ− µ′) + θ′f(x+ µ− µ′′) + . . .+ F (x);
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so that one will know immediately thence the general values of the two functions.
18. Moreover, although the expression of yx,t found by the preceding method is, in

general, composed of an infinite number of terms, it is however a very extended case,
and which takes place in the greater part of the questions which lead to these sorts of
differential equations, in which the expression becomes finite; so that the determination
of the arbitrary functions are no longer of difficulty. This case is the one where one
supposes that if one continues to the rear the first two horizontal ranks of the Table of
n◦ 6, all the terms which would form these ranks so continued are nulls; that is to say
when one will have, in general,

yx,0 = 0, yx,1 = 0

as long as x will be negative.
Indeed, it is easy to see that one will have then

f(−s) = 0 and φ(−s) = 0,

as long as s will be greater than µ and ν; so that as the numbers which are after the
characteristics f and φ in the general expression of yx,t go continually by diminishing,
the functions of these numbers will become finally null, this which will render the
expression of which there is the question is finite.

It is easy now to apply to the differential equations of all orders, included under
the general formula of n◦ 6, the method that we just exposed for the equations of the
second order, and to draw some similar conclusions from it; thus we ourselves will not
expand further on this method.

19. In the case of the equations of the second order in three terms we have found
means to remedy the inconvenience of the general method, and to obtain a finite ex-
pression for yx,t (12); by considering the artifice that one has employed in the place
cited, and that consists in expressing the two quantities α and β by a third indetermi-
nate ω, in a finite manner, one will be convinced easily that it can also serve for all the
equations of second order, as one is going to see.

I take again therefore equation (H) of n◦ 15, and I make first the terms vanish where
the indeterminates are in the first dimension, by supposing

α = m+ ε, β = n+ θ,

and taking m and n such that one has

B + 2Cm+ C ′n = 0, B′ + 2C ′′n+ C ′m = 0,

this which gives

m =
2BC ′′ −B′C ′

C ′2 − 4CC ′′
, n =

2B′C −BC ′

C ′2 − 4CC ′′
;

for what if one makes, for brevity,

K = A+Bm+B′n+ Cm2 + C ′mn+ C ′′n2,

24



one has this transformed by ε and θ

Cε2 + C ′εθ + C ′′θ2 +K = 0,

which being multiplied by C can be put under this form

(Cε+ hθ)(Cε+ lθ) + CK = 0,

by supposing

h =
C ′

2
+

√
C ′2

4
− CC ′′, l =

C ′

2
−
√
C ′2

4
− CC ′′.

I make now
Cε+ hθ = ω,

I will have
Cε+ lθ = −CK

ω
, 5

where I draw immediately

ε =
lω + hCK

ω

Cl − h
, θ =

ω + CK
ω

h− l
;

therefore finally

α = m+
lω + hCK

ω

C(l − h)
, β = n+

ω + CK
ω

h− l
.

Thus the two indeterminates α and β are expressed by a third indeterminate ω in a
finite manner and without complex fraction, so that the value of αxβt will be always
finite as long as x and t will be integral positive.

And one remarks with regard to the preceding expressions that the ambiguity of the
radical which enters into the values of h and of l influence not at all on the form of
these expressions; because by changing the sign of this radical one does only to change
h into l and vice versa; now by making this change and setting at the same time −CKη
in the place of ω, and consequently η in the place of −CKω , one will see that the new
expressions of α and β in η will be the same as the first in ω.

This set, if one makes, in order to abridge further,

p =
l

C(l − h)
, q =

hK

l − h
, r =

1

h− l
, s =

CK

h− l
,

one will have
α = m+ pω +

q

ω
, β = n+ rω +

s

ω
,

5Editor’s note: In the original text the second member of this formula has the + sign, which has the effect
to change K into −K in the expressions of α and of β. We have believed we must restore the exactness of
the formulas.
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consequently

αxβt =
(
m+ pω +

q

ω

)x (
n+ rω +

s

ω

)t
.

This expression of αxβt, being developed and ordered according to the powers of ω,
will be reduced to a finite series of the form

V+V ′ω + V ′′ω2 + V ′′′ω3 + . . .+ V (x+t)ωx+t

+
′V

ω
+
′′V

ω2
+
′′′V

ω3
+ . . .+

(x+t)V

ωx+t
,

where the coefficients V, V ′, V ′′, . . . , ′V, ′′V, ′′′V, . . . will be some functions of x
and t, which one can determine by different means after known methods.

Therefore as ω is an absolutely arbitrary quantity, one will be able to conclude from
it immediately by some reasonings analogous to those that we have made above (7) the
general expression of yx,t, which will be

yx,t =V f(0) + V ′f(1) + V ′′f(2) + V ′′′f(3) + . . .+ V (x+t)f(x+ t)

+ ′V f(−1) + ′′V f(−2) + ′′′V f(−3) + . . .+ (x+t)V f(−x− t),

the characteristic f denoting an arbitrary function.
20. In order to determine this function, or at least its different particular values

which enter into the preceding expression, we will suppose that in the Table of n◦ 6
the first horizontal rank and the first vertical rank are given, so that one knows all the
values of yx,0 and of y0,t. One will suppose therefore first t = 0 and x successively
0, 1, 2, 3, . . . ; next x = 0 and t successively 0, 1, 2, 3, . . .; one will have by this
means the equations necessary in order to determine the values of f(0), f(1), f(−1),
. . . But as by taking thus one falls into some rather complicated formulas, I am going
to give another way to arrive more easily to the end.

21. For this I remark first that as

pω +
q

ω
= ε, rω +

s

ω
= θ,

one will have, by known formulas,

pω +
q

ω
= ε, p2ω2 +

q2

ω2
= ε2 − 2pq, p3ω3 +

q3

ω3
= ε3 − 3pqε, . . . ,

and, in general,

pλωλ+
qλ

ωλ
= ελ−λpqελ−2+

λ(λ− 3)

2
p2q2ελ−4− λ(λ− 4)(λ− 5)

2.3
p3q3ελ−6+ . . . ,

and likewise one will have

rλωλ+
sλ

ωλ
= θλ−λrsθλ−2+

λ(λ− 3)

2
r2s2θλ−4− λ(λ− 4)(λ− 5)

2.3
r3s3θλ−6+. . . ,
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whence one draws

ωλ =
(sλελ − qλθλ)− λ(pqsλελ−2 − rsqλθλ−2) + . . .

pλsλ − qλrλ
,

1

ωλ
=

(rλελ − pλθλ)− λ(pqrλελ−2 − rspλθλ−2) + . . .

qλrλ − pλsλ
.

If one substitutes these values into the series

V + V ′ω +
′V

ω
+ V ′′ω2 +

′′V

ω2
+ . . .

it is clear that one will have a conversion to this form

Z+Z ′ε+ Z ′′ε2 + Z ′′′ε3 + . . .+ Z(x+t)εx+t

+ ′Zθ + ′′Zθ2 + ′′′Zθ3 + . . .+ (x+t)Zθx+t,

which will be consequently equal and identical to the quantity

αxβt = (m+ ε)x(n+ θ)t,

by supposing that there is between ε and θ (19) the equation

Cε2 + C ′εθ + C ′′θ2 +K = 0.

Now as ε and θ are two different functions of the indeterminate ω, one can con-
clude from it immediately, by a reasoning analogous to the one of n◦ 7, this general
expression of yx,t, namely

yx,t =ZF (0) + Z ′F (1) + Z ′′F (2) + . . .+ Z(x+t)F (x+ t)

+ ′Zφ(1) + ′′Zφ(2) + ′′′Zθ3 + . . .+ (x+t)Zφ(x+ t),

where the characteristics F and φ denote any functions whatsoever.
22. Let one suppose now, in order to determine these functions, t = 0 and next

x = 0, one will have:
1◦ When t = 0,

(m+ s)x(n+ θ)t = (m+ ε)x = mx + xmx−1ε+
x(x− 1)

2
mx−2ε2 + . . . ;

therefore

Z = mx, Z ′ = xmx−1, Z ′′ =
x(x− 1)

2
mx−2, . . . ,

′Z = 0, ′′Z = 0, . . . ,

therefore

yx,0 = mx

[
F (0) + x

F (1)

m
+
x(x− 1)

2

F (2)

m2
+ . . .

]
,
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whence by making successively x = 0, 1, 2, . . . one will draw easily the values of
F (0), F (1), F (2), . . .. And by the method of n◦ 13 one will find that if one designates
the sequence of quantities

y0,0,
1

m
y1,0,

1

m2
y2,0,

1

m3
y3,0, . . .

by Y, Y ′, Y ′′, . . ., and if one denotes by ∆, ∆2, . . . the successive differences of the
terms of this sequence, one will have, in general,

F (µ) = mµ∆µY.

2◦ When x = 0,

(m+ ε)x(n+ θ)t = (n+ θ)t = nt + tnt−1θ +
t(t− 1)

2
nt−2θ2 + . . . ;

therefore
Z = nt, ′Z = tnt−1, ′′Z = tnt−2, . . . ,

Z ′ = 0, Z ′′ = 0, . . . ,

therefore

y0,t = nt
[
φ(0) + t

φ(1)

n
+
t(t− 1)

2

φ(2)

n2
+ . . .

]
,

by supposing φ(0) = F (0).
Thence one will find, as before, that if one considers the sequence

y0,0,
1

n
y0,1,

1

n2
y0,2,

1

n3
y0,3, . . . ,

and if one designates the terms of it by Y, ′Y, ′′Y, ′′′Y, . . . , if one denotes next by δ,
δ2, . . . the successive differences of these terms, one will find, I say, in general,

φ(ν) = nνδνY.

Now by making µ = 0, ν = 0, one has

F (0) = Y = φ(0),

as this must be by the hypothesis.
Therefore if one substitutes these values into the expression of yx,t of the preceding

number, one will have

yx,t = ZY+mZ ′∆Y +m2Z ′′∆2Y + . . .+mx+tZ(x+t)∆x+tY

+n ′ZδY + n2 ′′Zδ2Y + . . .+ nx+t (x+t)Zδx+tY,

a formula by which one will be able to know any term whatsoever of the Table of n◦ 6,
as soon as one will know those of the first two ranks, the one horizontal, the other
vertical.
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23. If now one compares together the two expressions of yx,t in nos 19 and 21,
it will be easy to conclude from it the values of the function f through those of the
functions F and φ; and it is not difficult to see that one will have, in general, among

f(λ), f(−λ), F (λ), F (λ− 2), . . . φ(λ), φ(λ− 2), . . .

the same relations as among

ωλ,
1

ωλ
, ελ, ελ−2, . . . , θλ, θλ−2, . . .

So that if one substitutes the values of the functions F and φ found above, and if one
makes, for brevity,

pλsλ − qλrλ =
1

Λ
,

one will have, λ being positive,

f(λ) =Λsλmλ

[
∆λY − λ pq

m2
∆λ−2Y +

λ(λ− 3)

2

p2q2

m4
∆λ−4Y − . . .

]
+ Λqλnλ

[
δλY − λ rs

n2
δλ−2Y +

λ(λ− 3)

2

r2s2

n4
δλ−4Y − . . .

]
f(−λ) =Λpλnλ

[
δλY − λ rs

n2
δλ−2Y +

λ(λ− 3)

2

r2s2

n4
δλ−4Y − . . .

]
− Λrλmλ

[
∆λY − λ pq

m2
∆λ−2Y +

λ(λ− 3)

2

p2q2

m4
∆λ−4Y − . . .

]
;

these are the values of the function f which would result from the equations of n◦ 20, as
it is easy to convince ourselves of it by the calculus; thus there will be only to substitute
these values into the formula of n◦ 19.

24. The method by which we just integrated in a finite and complete manner all the
differential equations of the second order among three variables could be extended also
to the equations of the superior orders if, in any equation in two indeterminates, it was
always possible to express each of these indeterminates by a finite rational function
and without a complex fraction of a third indeterminate; but as this takes place, for
the equations which pass the second degree, only in some particular cases, one must
regard the preceding method as limited to the differential equations of the first and of
the second order.

In order to take the place of this defect, we are going to give in the following Article
another method which will extend to the equations of all orders, and which will join in
the advantage to give always finite integrals, the one to render the determination of the
arbitrary functions very easy in all the cases.

ARTICLE III. — Where one gives a general method for the integration of linear
equations in finite differences among three variables.

25. We consider the differential equation of the nth degree of n◦ 6, and we make,
in general,

yx,t = aαxβt;
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it is easy to see that after the substitutions and division by aαxβt, there will come this
equation of the nth degree in α and β

A+Bα+ Cα2 + . . .+Nαn

+B′β + C ′αβ + . . .+N ′αn−1β

+ C ′′β2 + . . .+N ′′ αn−2β

· · · · · · · · · · · · · · · · · ·
+N (n)βn


= 0, (I)

by which it will be necessary to determine β in α or vice versa.
I remark now that one can express, in general, β in powers of α only by an infinite

series, this which will give, as one has seen it in Article II, an expression of yx,t in
infinite series; but as one has no need of the value of β, but only of that of βt, where
t is counted greater than n, I observe that one can reduce this value to a rational and
finite series of terms ordered according to the powers of α, provided that one admits
also the powers of β inferior to βn; because it is clear that if one takes the value of βn

given by the preceding equation, and if one substitutes it as much as is possible into
the value of βt, if next in the terms resulting from this first substitution, one substitutes
anew as much as it is possible the same value of βn, and thus in sequence until one has
lowered the powers of β to below βn; it is clear, I say, that one will arrive to a formula
of this form

βt = T + T ′α+ T ′′α2 + T ′′′α3 + . . .+ T (t)αt

+ ′Tβ + ′T
′αβ + ′T

′′α2β + . . .+ ′T
(t−1)αt−1β

+ ′′Tβ
2 + ′′T

′αβ2 + . . .+ ′′T
(t−2)αt−2β2

· · · · · · · · · · · · · · · · · ·
+ (n−1)Tβ

n−1 + . . .+ (n−1)T
(t−n+1)αt−n+1βn−1,


(K)

where the coefficients T, T ′, T ′′, . . . , ′T, ′T
′, . . . will be some given rational func-

tions of t and of the coefficients A, B, B′, . . . of the equation in α and β.
26. Multiplying therefore this expression of βt by aαx, one will have a particular

value of yx,t in which the two constants a and α will be at will; and as the proposed
differential equation is linear and contains only terms without y, it is clear that one will
be able also to take for yx,t the sum of as many similar particular values as one will
wish, by supposing that the quantities a and α are different in each of these values.

Thence and from this that the quantities β, β2, β3, . . . to βn−1 are necessarily some
irrational functions of α, irreducibles among them, it is easy to conclude by a reasoning
analogous to the one which one has employed in n◦ 7 that one will have, in general,

yx,t = Tf(x) + T ′f(x+ 1) + T ′′f(x+ 2) + T ′′′f(x+ 3) + . . .+ T (t)f(x+ t)

+ ′T
1f(x) + ′T

′ 1f(x+ 1) + ′T
′′ 1f(x+ 2) + . . .+ ′T

(t−1) 1f(x+ t− 1)

+ ′′T
2f(x) + ′′T

′ 2f(x+ 1) + . . .+ ′′T
(t−2) 2f(x+ t− 2)

· · · · · · · · · · · · · · · · · ·
+ (n−1)T

n−1f(x) + . . .+ (n−1)T
(t−n+1) n−1f(x+ t− n+ 1),
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where the characteristics f, 1f, 2f, . . . , n−1f denote some arbitrary functions any
whatsoever independent among themselves; so that as the number of these different
functions is n, and consequently equal to the exponent of the order of the proposed
differential equation, one must regard the preceding expression as the complete integral
of this same equation.

27. In order to determine now the values of these different functions, I suppose
that the first n horizontal ranks of the Table of n◦ are given, so that one knows all
the different values of yx,0, yx,1, yx,2, . . . , yx,n−1, that is to say all the values of yx,t
which correspond to t = 0, 1, 2, . . . , n− 1.

Now making t = 0 one has βt = 1; therefore in formula (K) of n◦ 25 one will have

T = 0, T ′ = 0, . . . , ′T = 0, . . . , . . . ;

making t = 1 one will have βt = β; therefore

′T = 1, and all the other coefficients nulls;

making t = 2 one has βt = β2; therefore

′′T = 2, and all the other coefficients nulls;

and thus in sequence.
Therefore: if one makes t = 0, one will have in the formula of n◦ 26

yx,0 = f(x);

if one makes t = 1, one will have

yx,1 = 1f(x);

if one makes t = 2, one will have

yx,2 = 2f(x);

and thus in sequence until
yx,n−1 = n−1f(x).

One knows therefore by this means all the arbitrary functions; and substituting their
values into the general formula, one will have

yx,t =Tyx,0 + T ′yx+1,0 + T ′′yx+2,0 + T ′′′yx+3,0 + . . .+ T (t)yx+t,0

+ ′Tyx,1 + ′T
′yx+1,1 + ′T

′′yx+2,1 + . . .+ ′T
(t−1)yx+t−1,1

+ ′′Tyx,2 + ′′T
′yx+1,2 + . . .+ ′′T

(t−2)yx+t−2,2

· · · · · · · · · · · · · · · · · ·
+ (n−1)Tyx,n−1 + . . .+ (n−1)T

(t−n+1)yx+t−n+1,n−1.

28. In order to determine the coefficients T, T ′, T ′′, . . . , ′T, ′T
′, ′T

′′, . . . , . . .
of formula (K) of n◦ 25, one can employ different methods.
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And first it is clear that if one draws from equation (I) the value of β in α, if one
substitutes it next into equation (K), and if after having ordered the terms according
to the powers of α, one makes each term equal to zero, one will have a sequence of
equations by which one will be able to determine the sought coefficients.

This method can be rendered simpler by the consideration of the different roots of
equation (I). Indeed, if one represents equation (K) thus

βt = A+ ′Aβ + ′′Aβ
2 + . . .+ (n−1)Aβ

n−1,

A being a polynomial in α of degree t, ′A another polynomial in α of degree t− 1 and
thus in sequence; and if on the other hand one designates by β′, β′′, . . . the n roots of
equation (I) ordered with respect to β, one will have these n different equations

β′t =A+ ′Aβ
′ + ′′Aβ

′2 + . . .+ (n−1)Aβ
′n−1,

β′′t =A+ ′Aβ
′′ + ′′Aβ

′′2 + . . .+ (n−1)Aβ
′′n−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

by means of which one will determine separately the n quantities A, ′A, ′′A, . . . in
β′, β′′, . . .. Then there will be no more than to substitute in the place of β′, β′′, . . .
their values in α reduced to ascendant series, and advanced only to the tth power for
the quantity A, to the (t− 1)st power for the quantity ′A, and thus in sequence.

29. But as soon as one will have determined by this method or by any other what-
soever the first terms of the polynomialsA, ′A, ′′A, . . ., one will be able to find all the
following in a more simple manner while searching by aid of the differential Calculus
the law which must rule among them. For this one will differentiate logarithmically the
equation

βt = A+ ′Aβ + ′′Aβ
2 + . . .+ (n−1)Aβ

n−1,

by making vary altogether the quantities α and β, this which will give

tdβ

β
=
dA+ β d ′A+ β2 d ′′A+ . . .+ (A+ 2 ′′Aβ + . . .) dβ

A+ ′Aβ + ′′Aβ
2 + . . .

;

one will substitute in the place of dβ its value in α and dα drawn from equation (I)
by differentiation, and making the fractions vanish one will order all the terms with
respect to the powers of β; it is easy to understand that in this new equation the highest
power of β will be able to be only β2n−1; thus there will be only to lower the n − 1
powers βn, βn+1, . . . , β2n−1 below the nth degree by means of equation (I); after what
one will order the equation with respect to the n remaining powers of β and one will
make separately equal to zero all the quantities multiplied by each of these different
powers of β; one will have n differential equations of the first order between α and
the n quantities A, ′A, ′′A, . . .. One will substitute now into each of these equations
the expressions of A, ′A, . . . in α, and by the comparison of the terms one will obtain
some equations among the coefficients T, T ′, T ′′, . . ., ′T, ′A

′, . . . , . . . by which one
will be able to determine the coefficients.

30. If instead of supposing givens the n first horizontal ranks of the Table of n◦ 6,
in the same way as one has done in the preceding solution, one would wish to re-
gard as givens the n first vertical ranks of the same Table, that is to say the values of

32



y0,t, y1,t, y2,t, . . . yn−1,t; it is clear that one could resolve this case by the same method
by changing only t into x, that is to say β into α, or, that which reverts to the same, by
operating in regard to β and to α as one has done in regard to α and β; there will be for
this no new difficulty.

It will not be the same if the given ranks were in part horizontal and in part vertical;
however, as this case can take place in many of the questions, we are going to give the
method to resolve it.

31. We suppose therefore that one knows the first m horizontal ranks of the Table
of n◦ 6 and the first n−m vertical ranks of the same Table, that is to say that one knows
the values of yx,0, yx,1, yx,2, . . . , yx,m at the same time as y0,t, y1,t, y2,t, . . . , yn−m,t
and that one demands the value of any term whatever yx,t.

Having made yx,t = aαxβt, one will have (25) equation (I) between α and β; I
consider in this equation the termN (m)αn−mβm, which is given by all the other terms
of the same equation, and I observe that by substituting the value of αn−mβm which
comes from this term in the quantity αxβt, and next in the terms arising from this
substitution, as much as it will be possible, one will arrive necessarily to an expression
of αxβt by the powers of α and of β, in which the highest of these powers will be
the (x + t)th, and where the two powers αn−m and βm will never be found together,
since one supposes that one has made them vanish by the substitution of the value of
αn−mβm.

This equation of αxβt will be therefore of the following form

αxβt = V + V ′α+ V ′′α2 + V ′′′α3 + . . .+ V (x+t)αx+t

+ ′V β + ′V
′αβ + ′V

′′α2β + ′V
′′′α3β + . . .+ ′V

(x+t−1)αx+t−1β

+ ′′V β
2 + ′′V

′αβ2 + ′′V
′′α2β2 + ′′V

′′′α3β2 + . . .+ ′′V
(x+t−2)αx+t−2β2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+ (m)V β
m + (m)V

′αβm + (m)V
′′α2βm + . . .+ (m)V

(n−m-1)αn−m−1βm

+ (m+1)V β
m+1 + (m+1)V

′αβm+1 + (m+1)V
′′α2βm+1 + . . .+ (m+1)V

(n−m−1)αn−m−1βm+1

+ (m+2)V β
m+2 + (m+2)V

′αβm+2 + (m+2)V
′′α2βm+2 + . . .+ (m+2)V

(n−m−1)αn−m−1βm+2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ (x+t)V β

x+t + (x+t)V
′αβx+t + (x+t)V

′′α2βx+t + . . .+ (x+t)V
(n−m−1)αn−m−1βx+t,

where the coefficients V, V ′, . . . , ′V, ′V
′, . . . will be some known functions of x and

t, and some coefficients of equation (I).
32. I remark now the values of the powers and of the products of α and of β which

comprise the preceding expression of αxβt are necessarily different and irreducibles
among them, since equation (I), whence the relation between α and β depends, contains
moreover the product αn−mβm, which is not found at all in this expression. From this
consideration and the principles posed higher, it is easy to conclude immediately the
general expression of yx,t by doing in it only to substitute into that of αxβt, in the
place of each product such as αrβs, any function whatever of r and s, that one will be
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able to designate by f(r, s); one will have thus

yx,t = V f(0, 0) + V ′f(1, 0) + V ′′f(2, 0) + V ′′′f(3, 0) + . . .+ V (x+t)f(x+ t, 0)

+ ′V f(0, 1) + ′V
′f(1, 1) + ′V

′′f(2, 1) + ′V
′′′f(3, 1) + . . .+ ′V

(x+t−1)f(x+ t− 1, 1)

+ ′′V f(0, 2) + ′′V
′f(1, 2) + ′′V

′′f(2, 2) + ′′V
′′′f(3, 2) + . . .+ ′′V

(x+t−2)f(x+ t− 2, 2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+ (m)V f(0,m) + (m)V
′f(1,m) + (m)V

′′f(2,m) + . . .+ (m)V
(n−m-1)f(n−m− 1,m)

+ (m+1)V f(0,m+ 1) + (m+1)V
′f(1,m+ 1) + (m+1)V

′′f(2,m+ 1) + . . .+ (m+1)V
(n−m−1)f(n−m− 1,m+ 1)

+ (m+2)V f(0,m+ 2) + (m+2)V
′f(1,m+ 2) + (m+2)V

′′f(2,m+ 2) + . . .+ (m+2)V
(n−m−1)f(n−m− 1,m+ 2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ (x+t)V f(0, x+ t) + (x+t)V

′f(1, x+ t) + (x+t)V
′′f(2, x+ t) + . . .+ (x+t)V

(n−m−1)f(n−m− 1, x+ t).

33. In order to determine the values of the function f , one will suppose successively
t = 0, 2, . . . , m− 1, and next x = 0, 1, 2, . . . , n−m− 1, since by the hypothesis the
corresponding values of yx,t are givens.

Now, by making t = 0, the quantity αxβt becomes αx; therefore in the formula of
n◦ 31, one will have then

V (x) = 1, and the other coefficients nulls;

by making t = 1, one has αxβ; therefore

′V
(x) = 1, and the other coefficients nulls;

by making t = 2, one has αxβ2; therefore

′′V
(x) = 1, and the other coefficients nulls;

and thus in sequence until

(m−1)V
(x) = 1,

when t = m− 1.
Likewise, by making x = 0, αxβt becomes βt; therefore one will have, in the same

formula,

(t)V = 1, and the other coefficients nulls;

by making x = 1, one will have αβt; therefore

(t)V
′ = 1, and the other coefficients nulls;

one will have similarly, when x = 2,

(t)V
′′ = 1, and the other coefficients nulls;

and thus in sequence until

(t)V
n−m−1 = 1,
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when x = n−m− 1.
If one makes therefore in the expression of yx,t of the preceding number succes-

sively t = 0, 1, 2, . . . , m− 1, one will have

yx,0 = f(x, 0), yx,1 = f(x, 1), yx,2 = f(x, 2), . . . , yx,m−1 = f(x,m− 1),

whatever be x. And if one makes successively x = 0, 1, 2, . . . , n−,−1, one will have

y0,t = f(0, t), y1,t = f(1, t), y2,t = f(2, t), . . . , yn−m−1,t = f(n−m− 1, t),

whatever be t. One will know therefore in this manner the values of the functions which
enter into the expression of which there is question, and substituting these values, one
will have the following formula, which contains only some known quantities.

yx,t = V y0,0 + V ′y1,0 + V2,0 + V ′′′y3,0 + . . .+ V (x+1)yx+t,0

+ ′V y0,1 + ′V
′y1,1 + ′V

′′y2,1 + ′V
′′′y3,1 + . . .+ ′V

(x+t−1)yx+t,1

+ ′′V y0,2 + ′′V
′y1,2 + ′′V

′′y2,2 + ′′V
′′′y3,2 + . . .+ ′′V

(x+t−2)yx+t−2,2

+ ′′′V y0,3 + ′′′V
′y1,3 + ′′′V

′′y2,3 + ′′′V
′′′y3,3, + . . .+ ′′′V

(x+t−3)yx+t−3,3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+
(m)

V y0,m +
(m)

V ′y1,m +
(m)

V ′′y2,m +
(m)

V ′′′y3,m + . . .+
(m)

V (n−m−1)yn−m−1,m

+
(m+1)

V y0,m+1 + (m+1)
V ′y1,m+1 + (m+1)

V ′′y2,m+1 + (m+1)
V ′′′y3,m+1 + . . .+

(m+1)
V (n−m−1)yn−m−1,m+1

+
(m+2)

V y0,m+2 + (m+2)
V ′y1,m+2 + (m+2)

V ′′y2,m+2 + (m+2)
V ′′′y3,m+2 + . . .+

(m+2)
V (n−m−1)yn−m−1,m+2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+
(x+t)

V y0,x+t + (x+t)
V ′y1,x+t + (x+t)

V ′′y2,x+t + (x+t)
V ′′′y3,x+t + . . .+

(x+t)
V (n−m−1)yn−m−1,x+t

34. As for the manner to determine the coefficients V, V ′, V ′′, . . . , ′V, ′V
′, ′V

′′, . . . ,
one will be able to employ some methods analogous to those that we have proposed
above (28).

Indeed, if one seeks the value of β in α or of α in β by equation (I), and if one
substitutes it into the formula of n◦ 31, one will have, by the comparison of the terms
affected with the same powers of α and of β, a sequence of equations by which one
will be able to determine the coefficients of which there is question. One will be able
also to employ the differential Calculus in order to find the law of these coefficients:
because by differentiating logarithmically the equation

αxβt = V + . . .

of n◦ 31, substituting next in the place of dβ
dα its value drawn from equation (I), and

making vanish, by means of this equation, the terms where will be found αn−mβm,
in the same way one has taught it in n◦ 29, one will have an equation of which each
term must next be supposed equal to zero; this which will give a sequence of equations
which will contain the relation which must rule among the coefficients of which there
is question.

Further, as all that is no more than an affair of analysis, we will not occupy our-
selves with it further, contenting ourselves for the present to have reduced the integra-
tion of the linear equations in the finite and partial differences to a known theory, which
demands of other help only those which the ordinary methods can furnish.
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REMARK I.

35. I am going to terminate this Article with some important Remarks. The first,
that one will be able always to find as many different expressions of yx,t as there will
be terms in the last column of equation (I), which correspond to the last column, or
to the highest rank of the proposed differential equation of n◦ 6. Indeed, to each of
the terms to which of which there is question such as N (m)αn−mβm, which comes
from the term N (m)yx+n−m,t+m of the differential equation, will correspond, as one
has seen, an expression for yx,t in which the terms given from the Table of n◦ 6 will
be those which form the first m horizontal ranks, and the first n − m vertical ranks;
and it is easy to be convinced, with a little reflection, that one would know how to find
one such expression only by means of a similar term; so that, if the term of this form
lacked in the differential equation, it would be then impossible to be able to express,
in general, the value of yx,t by means of the first m horizontal ranks and of the first
n −m vertical ranks of the Table of n◦ 6. For example, in the case of the differential
equation (F) of n◦ 7, where one has only a single term of the highest order, so that n
being equal to 2, m has only a single value equal to 1, the general expression of yx,t
demands necessarily that one knows the first horizontal rank and the first vertical rank
of the Table cited, and it is also that which we have supposed in the solution of n◦ 13.

REMARK II.

36. The second Remark concerns the case where equation (I) has some rational
factors, so that it can be decomposed into as many particular equations. In this case,
one can simplify the general method by considering in part each of these equations and
seeking the expression of yx,t which results from each of them; because the sum of
these different expressions of yx,t will be the complete expression of yx,t which agrees
with the differential equation proposed. Indeed, we suppose that equation (I) of degree
n can be decomposed into two rational equations of degrees p and q, so that p+ q = n;
it is easy to prove that, if one makes

yx,t = y′x,t + y′′x,t,

the differential equation in yx,t of order n will be able also to be decomposed into
two equations, the one in y′x,t of order p, the other in y′′x,t of order q; and these two
equations will be such that, if one sets into the first αxβt in the place of y′x,t and in
the second place αxβt in the place of y′′x,t, there will result from it the two equations
of degrees p and q which are the factors of equation (I) resulting from the substitution
of αxβt in the place of yx,t in the proposed differential equation. And this conclusion
will take place for all the factors of the same equation (I).

In regard to the arbitrary functions, it is clear that the expression of y′x,t will contain
in it a number p, and that the expression of y′′x,t will contain in it a number q; so that
the expression of yx,t will contain in it a number equal to p+ q, that is to say equal to
n; consequently this expression will be complete.

In order to determine now these functions according to the values given by yx,0,
yx,1, . . . , y0,t, y1,t, . . . (33), one will suppose first that the given quantities are

y′x,0, y
′
x,1, . . . , y

′
0,t, y

′
1,t, . . . , at the same time as y′′x,0, y

′′
x,1, . . . , y

′′
0,t, y

′′
1,t, . . . ;
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one will determine, by aid of the first ones, the arbitrary functions of the expression of
y′x,t, and, by aid of the second ones, the arbitrary functions of the expression of y′′x,t, by
the general method of the number cited; next there will be no more than to substitute
in the place of these quantities their values in yx,0, yx,1, . . . , y0,t, y1,t, . . ..

For this one will remark that, since one has a differential equation in y′x,t, and one
in y′′x,t, and since moreover

yx,t = y′x,t + y′′x,t,

one can always, by elimination, find the value of y′x,t, at the same time as that of y′′x,t,
in yx,t and its differences; thus one will know thence the values of the quantities of
which there is question through those of yx,0, yx,1, . . .

If equation (I) had many rational factors, one would make relatively to all these
factors some reasonings analogous to the preceding, and one will draw from it some
similar conclusions.

REMARK III.

37. The third Remark has for object the case where equation (I) has some equal
factors; in this case one knows by the theory of equations that these factors will be
necessarily rationals; so that, according to the method of the previous number, one
will be able to consider these factors equal apart and independently of the others; thus
the difficulty is reduced to the case where the equation in α and β will be any power
whatsoever of another equation. We designate this last equation by

Π = 0,

and let the proposed equation in α and β be,

Πm = 0;

I say that if one seeks the general expression of yx,t according to the equation Π = 0 by
the methods explicated above, and if one names this value y′x,t, if next one designates
by y′′x,t, y

′′′
x,t, . . . some other similar expressions, in which the arbitrary functions are

different, one will have for the general expression of yx,t resulting from the equation
Πm = 0,

yx,t = y′x,t + y′′x−1,t, or yx,t = y′x,t + y′′x,t−1,

if m = 2;
yx,t = y′x,t + xy′′x−1,t + x(x− 1)y′′x−2,t,

or
yx,t = y′x,t + xy′′x−1,t + xy′′′x−1,t−1,

or
yx,t = y′x,t + ty′′x,t−1 + txy′′′x−1,t−1,

or finally
yx,t = y′x,t + ty′′x,t−1 + t(t− 1)y′′′x,t−2,

if m = 3; and thus in sequence; these different expressions of yx,t revert always to the
same.
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Indeed, if one seeks the value of αxβt according to the equation Π = 0, one will
have for the equation Π2 = 0 the same value of αxβt and moreover this here

xαx−1βtdα or tαxβt−1 dβ,

dα and dβ being some indeterminate quantities; and for the equation Π3 = 0, one will
have, beyond the value of αxβt which corresponds to Π = 0, these two others here

xαx−1βtdα, x(x− 1)αx−2 dα2,

or else these two here

xαx−1βtdα, xtαx−1βt−1 dαdβ,

or
tαxβt−1dβ, txαx−1βt−1 dαdβ,

or else again
tαxβt−1dβ, t(t− 1)αxβt−2 dβ2,

and thus in sequence; being indifferent to make α or β vary at each new differentiation.
Thence and from this which we have already said in n os 16 and 36 it is easy to deduce
the preceding formulas for the general expression of yx,t and to continue them farther
for all the exponents m.

As for the determination of the arbitrary functions, it has no difficulty; because there
will be only to determine first those which enter into the expressions of y′x,t, of y′′x,t, . . .
by y′x,0, y

′
x,1, . . . , y

′
0,t, y

′
1,t, . . ., by the values of y′′x,0, y

′′
x,1, . . . , y

′′
0,t, y

′′
1,t, . . .; next

one will determine these last by those of yx,0, yx,1, . . . , y0,t, y1,t, . . . according to the
formulas

yx,t = y′x,t + xy′′x−1,t + . . .

given above, combined with the differential equation which corresponds to the equation
Π = 0, and which is the same for all the quantities y′x,t, y

′′
x,t, . . . since they differ

among themselves only by the arbitrary functions.

REMARK IV.

38. The fourth Remark will take in some transformations that one can use in order
to facilitate the integration of the equations in the finite and partial differences. If in the
equations in α and β resulting from the substitution of αxβt in the place of yx,t in the
proposed differential equation, one makes

α = aεmγn + a′εm
′
γn
′
+ a′′εm

′′
γn
′′

+ . . . ,

β = bεpγq + b′εp
′
γq
′
+ b′′εp

′′
γq
′′

+ . . . ,

a, a′, a′′, . . . , b, b′, b′′, . . . , m, m′, m′′, . . . , n, n′, n′′, . . . , p, p′, p′′,. . . , q, q′, q′′,
. . . being some given constants any whatsoever, and ε, γ two new indeterminates, one
will have one transformed from ε, γ which will be able in many cases to be simpler and
more tractable than the first equation in α, β.
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Now I say that if one regards this equation in ε, γ as resulting immediately from
an equation in finite and partial differences among the three variables x, t and zx,t, by
the substitution of εxγt in the place of zx,t, and if one deduces from it by the methods
above the general expression of zx,t, it will be easy to conclude from it the general
expression of yx,t in the following manner. One will substitute for that the same values
of α and β in the quantity αxβt, and developing the terms one will have an expression
of this form

αxβt = Aεmx+ptγnx+qt +Bεmx+pt+µγnx+qt+ν + Cεmx+pt+πγnx+qt+ρ + . . .

Now εxγt is a particular value of zx,t, likewise as αxβt is a particular value of yx,t;
thus passing from the particular values to the general expressions, one will have imme-
diately

yx,t = Azmx+pt, nx+qt +Bzmx+pt+µ,nx+qt+ν + Czmx+pt+π,nx+qt+ρ + . . .

One would be able to transform anew the equation in ε and γ, and one would find
in the same manner the corresponding value of zx,t.

We suppose, for example,

α = a+ pt, β = b+ qγ,

one will have

αxβt = A+Bε+ Cγ +Dε2 + Eεγ + Fγ2 + . . .

by making

A = axbt,

B = xat−1p× bt, C = tbt−1q × ax,

D =
x(x− 1)

2
ax−2p2 × bt, E = xax−1p× tbt−1q, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . ,

and thence
yx,t = Az0,0 +Bz1,0 + Cz0,1 +Dz2,0 + Ez1,1 + . . .

If one would wish to make successively the two substitutions, one would have first

yx,t = axy′0,t + xax−1py′1,t +
x(x− 1)

2
ax−1p2y′2,t + . . . ,

and next

y′x,t = btzx,0 + tbt−1qzx,1 +
t(t− 1)

2
bt−2q2zx,2 + . . .

Reciprocally one will be able to determine the values of zx,t by those of yx,t by
substituting into εxγt the values of ε and γ in α and β and changing next each product
from α and β such as αrβs into yr,s.
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REMARK V.

39. The fifth Remark is that it can happen in the solution of the Problems that
the terms given in the Table of n◦ 6 are not those which form the first horizontal or
vertical rank of this Table, as we have always supposed until here, but of some others
whatever. Then among the different forms that one can give to the general expression
of yx,t it will be necessary to choose that which will render the determination of the
arbitrary functions by the given terms, the easiest; but one would not know how to give
the general rules for this, and it is necessary to abandon this research to the sagacity of
the Analyst.

In general, it will be necessary always that there be as many indefinite lines of
terms given in the Table of n◦ 6, as there are units in the exponent of the order of the
differential equation; but it is not necessary that these lines be horizontal or vertical;
they can equally be inclined in any manner whatever, and even they can be curved or
rather composed of an assembly of straight lines differently inclined. We will see some
Examples of it in Article V.

REMARK VI.

40. My last Remark concerns the case where one has to integrate many linear
equations which contain as many different unknowns such as yx,t, zx,t, ux,t, . . . ; it
is easy to convince oneself that one can always by elimination arrive to a single final
equation which contains only a single unknown yx,t; but it will be often very painful to
start in this way, and one will arrive to the end in a much simpler manner by applying
immediately our methods to the proposed equations. For this one will make first

yx,t = aαxβt, zz,t = bαxβt, ux,t = cαxβt, . . . ,

this which will give, after having divided each equation by αxβt, as many equations in
α, β and in a, b, c,. . . as there are of these last quantities, and where these quantities
will be all linear; so that if one eliminates the quantities b

a ,
c
a , . . ., one will arrive to a

final equation in α and β which will contain the relation which it must have between
these two indeterminates, and which will be the same as one had found by the substitu-
tion of aαxβt in the place of yx,t in the equation in yx,t resulting from the elimination
of the other unknowns zx,t, ux,t, . . . One will be able therefore to find according to
this equation and by means of the methods exposed until here, the general expression
of yx,t; we will denote this expression by y′x,t. Now as the equations in a, b, c, . . .
are purely linear, one will be able to find the values of b

a .
c
a , . . . through some rational

functions of α and β; let be therefore

b

a
=
A

B
,

c

a
=
C

A
, . . . ,

A, B, C, . . . being some rational entire functions of α and β; as a is a constant which
remains arbitrary, one will be able to set everywhere aA in the place of a; by this means
the quantities aαxβt, bαxβt, cαxβt, . . . which are the particular values of yx,t, zx,t,

40



ux,t, . . . will become aAαxβt, bBαxβt, cCαxβt, . . . Now the quantities A, B, C . . .
are necessarily of this form

A = Pαmβn + P ′αm
′
βn
′
+ . . . ,

B = Qαpβq +Q′αp
′
βq
′
+ . . . ,

C = Rαrβs +R′αr
′
βs
′
+ . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

P, Q, R, P ′, . . . ,m, n,m′, . . . being some given constants; therefore the particular
values of which the is question will become of the form

Paαx+mβt+n + P ′aαx+m
′
βt+n

′
+ . . . ,

Qaαx+pβt+q +Q′aαx+p
′
βt+q

′
+ . . . ,

Raαx+rβt+s +R′aαx+r
′
βt+s

′
+ . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

but, by hypothesis, aαxβt is the particular value of y′x,t; therefore passing from the
particular values to the general expressions, one will have also, in general

yx,t = Py′x+m,t+n + P ′y′x+m′,t+n′ + . . . ,

zx,t = Qy′x+p,t+q +Q′y′x+p′,t+q′ + . . . ,

ux,t = Ry′x+r,t+s +R′y′x+r′,t+s′ + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

and there will be no more than to substitute in the place of y′x,t its general expression
found previously.

ARTICLE IV. — On the triply recurrent sequences, or on the integration of the
linear equation in finite and partial differences among four variables.

41. If one imagines a sequence of which the terms vary in three different ways, and
if one supposes that there is always among a certain number of successive terms of this
sequence one same linear equation, of which the coefficients are constants, this will be
thence a triply recurrent sequence; and the equation of which there is question will be
a linear equation in the finite and partial differences among four variables, of which the
integration will be the object of this Article.

In imitation of that which we have practiced with regard to the doubly recurrent
sequences, we will designate any term whatsoever of a triply recurrent sequence by
yx,t,u, so that by making successively

x = 0, 1, 2, 3, . . . , t = 0, 1, 2, 3, . . . , u = 0, 1, 2, 3, . . . ,

one will have all the terms which will be able to enter into this sequence; whence
one sees that these terms will be able to form a Table in triply entry in the form of a
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parallelepiped, just as the terms yx,t of the doubly recurrent sequences form a Table in
double entry in the form of a rectangle (6).

42. This put, let the equation of the third order be
Ayx,t,u+Byx+1,t,u + Cyx+1,t+1,u +Dyx+1,t+1,u+1

+B′yx,t+1,u + C ′yx+1,t,u+1

+B′′yx,t,u+1 + C ′′yx,t+1,u+1

 = 0, (L)

which is, as one sees, of a form similar to that of equation (F) of n◦ 7.
In order to integrate this equation I suppose

yx,t,u = aαxβtγu,

a, α, β, γ being some constants; substituting this value and dividing next the whole
equation by aαxβtγu, I have this here

A+Bα+B′β +B′′γ + Cαβ + C ′αγ + C ′′βγ +Dαβγ = 0. (M)

whence I draw the value of γ in α and β, namely

γ = − A+Bα+B′β + Cαβ

B′′ + C ′α+ C ′′β +Dαβ
,

or else, by dividing the top and the bottom of this fraction by αβ,

γ = −
C + B′

α + B
β + A

αβ

D + C′′

α + C′

β + B′′

αβ

.

I raise now this quantity to the power u, and developing the terms according to the
different powers of 1

α and of 1
β , I will have

γu = V + V ′
1

α
+ V ′′

1

α2
+ V ′′′

1

α3
+ . . .

+ ′V
1

β
+ + ′V

′ 1

αβ
+ ′V

′′ 1

α2β
+ . . .

+ ′′V
1

β2
+ ′′V

′ 1

αβ2
+ . . .

+ ′′′V
1

β3
+ . . . ,

where the coefficients V, V ′, . . . , ′V, ′V
′, . . . will be some known functions of u and

of the constants A, B, B′, . . ..
Multiplying therefore this expression of γu in series by aαxβt, one will have a

particular value of yx,t,u; and because a, α and β are indeterminates and because the
equation is linear, one will be able to take also for yx,t,u the sum of as many similar
expressions as one will wish by changing at will the values of a, α and β. Thence it is
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easy to conclude, by a reasoning analogous to the one of n◦ 7, that one will have the
general expression of yx,t,u by setting in that of αxβtγu in the place of each product
of α and β such as αrβs any function whatsoever of r and s, that one will be able to
designate by f(r, s). Thus therefore, one will have immediately

yx,t,u =V f(x, t) + V ′f(x− 1, t) + V ′′f(x− 2, t) + V ′′′f(x− 3, t) + . . .

+ ′V f(x, t− 1) + ′V
′f(x− 1, t− 1) + ′V

′′f(x− 2, t− 1) + . . .

+ ′′V f(x, t− 2) + ′′V
′f(x− 1, t− 2) + . . .

+ ′′′V f(x, t− 3) + . . .

. . . . . . . . . . . . . . . . . . . . . . . .

43. In order to determine now the values of the function f(x, t), I suppose that one
knows all the values of yx,t,u when u = 0; now making u = 0, it is clear that one has
γu = 1; therefore V = 1, and all the other coefficients are null; therefore the preceding
formula will give, when u = 0,

yx,t,u = f(x, t).

Therefore, if one makes this substitution, one will have

yx,t,u =V yx,t,0 + V ′yx−1,t,0 + V ′′yx−2,t,0 + V ′′′yx−3,t,0 + . . .

+ ′V yx,t−1,0 + ′V
′yx−1,t−1,0 + ′V

′′yx−2,t−1,0 + . . .

+ ′′V yx,t−2,0 + ′′V
′yx−1,t−2,0 + . . .

+ ′′′V yx,t−3,0 + . . .

. . . . . . . . . . . . . . . . . . . . .

This solution is, as one sees, completely analogous to that of n◦ 8; also it is subject
to the same inconvenience, which is to give for yx,t,u an expression composed of an
infinite number of terms, unless three of the four quantities B′′, C ′, C ′′, D vanish
at once, in which case the value of γu will be finite, u being (hypothesis) a integral
positive number.

However the preceding solution will be able to be used in each case where the given
terms yx,t,0 are null for all the negative values of x and of t; because then it is clear
that the expression above of yx,t,u will always be terminated; and this is that which can
take place in a great number of questions.

44. But one can, by means similar to the one of n◦ 12, obtain a finite expression of
yx,t,u in all cases. Indeed, if in the value of γ of n◦ 42 one makes

B′′ + C ′α+ C ′′β +Dαβ = ω,

this which gives

β =
ω −B′′ − C ′α
C ′′ +Dα

,

and if next one makes in this value of β

C ′′ +Dα = η, whence α =
η − C ′′

D
,
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one will have, by substituting successively these values

α =
η − C ′′

D
,

β =
C ′C ′′ −DB′′ − C ′η +Dω

Dη
,

γ =
D(BC ′ −DA−Bη) + (C ′C ′′ −DB′ − Cη)(C ′C ′′ −DB′′ − C ′η +Dω)

D2ηω
,

expressions which have the advantage of being under a finite form and of not contain-
ing at all a complex fraction; so that if one multiplied together these quantities raised
respectively to the powers x, t, u, and if one developed the terms according to the
powers and the products of η and of ω, one will have for αxβtγu a finite expression,
as long as x, t, u will be entire positives.

We suppose therefore(
η − C ′′

D

)x
×
(
C ′C ′′ −DB′′ − C ′η +Dω

D

)t
×
(
BC ′ −DA−Bη

D
+

(C ′C ′′ −DB′ − Cη)(C ′C ′′ −DB′′ − C ′η +Dω)

D2

)u
= Z + Z ′η + Z ′′η2 + Z ′′′η3 + . . .+ Z(x+t+2u)ηx+t+2u

+ ′Zω + ′Z
′ηω + ′Z

′′η2ω + . . .

+ ′′Zω
2 + ′′Z

′ηω2 + . . .

+ ′′′Zω
3 + . . .

. . . . . . . . . . . . . . .

+ (t+u)Zω
t+u + . . .+ (t+u)Z

(x+u)ηx+uωt+u

where the coefficients Z, Z ′, . . . , ′Z, . . . are some known functions of x, t, u and
of the constants A, B, B′, . . .; there will be no more than to multiply this series by
η−t−uω−u in order to have the value of αxβtγu in η and ω; and as η and ω are indeter-
minates, one will be able to draw from it immediately the complete value of yx,t,u by
doing only to change each product such as η−rω−s into f(r, s); in such manner, one
will have therefore

yx,t,u =Zf(t+ u, u) + Z ′f(t+ u− 1, u) + Z ′′f(t+ u− 2, u) + Z ′′′f(t+ u− 3, u) + . . .

+ ′Zf(t+ u, u− 1) + ′Z
′f(t+ u− 1, u− 1) + ′Z

′′f(t+ u− 2, u− 1) + . . .

+ ′′Zf(t+ u, u− 2) + ′′Z
′f(t+ u− 1, u− 2) + . . .

+ ′′′Zf(t+ u, u− 3) + . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45. In order to determine now the values of the function f(r, s), one will do as above
u = 0, and one will suppose next successively x = 0, 1, 2, 3, . . . , t = 0, 1, 2, 3, . . . ;
one will have, by this means, a sequence of equations, whence one will draw the differ-
ent values of the function of which there is question in y0,0,0, y1,0,0, y0,1,0, . . .; but it
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will be difficult to arrive by this means to some formulas simple enough, such as those
which we have found for the case of three variables alone (13).

46. One can also apply to the equations which are the object of this Article the
general method of the preceding Article, and to draw from it some similar conclusions.

Indeed, it is first evident that if αlβmγn is one of the terms of the highest dimen-
sion of the equation in α, β, γ resulting from the substitution of αxβtγu in the place
of yx,t,u in the proposed differential equation, it is evident, I say, that by substituting
successively, as much as it is possible, the value of this term into the quantity αxβtγu,
one will be able to reduce it to a finite sequence of powers of α, β, γ, among which
there will never be found the product αlβmγn. Next one will be able to prove by the
principles of n◦ 32 that there will be only to put into this expression of αxβtγu in the
place of any product whatsoever such as αrβsγq any function whatsoever of the three
numbers r, s, q that one will be able to designate by f(r, s, q), in order to have imme-
diately the general and complete expression of yx,t,u. Finally one will demonstrate as
in n◦ 33, that these functions will be respectively equal to the first terms of the proposed
recurrent sequence, so that one will have, in general,

f(r, s, q) = yx,t,u;

it will be necessary therefore to suppose given all the terms of the form yr,s,q in which
one will not have all at once

r = or > l, s = or > m, q = or > n;

and then one will have, by means of these terms, the general expression of yx,t,u.
47. For example in the case of n◦ 42, the equation in α, β, γ, containing in the

rank of the highest dimension the term Dαβγ, one will be able to reduce the quantity
αxβtγu to a finite series of the form

P +Qα +Rα2 + Sα3 + Tα4 . . .

+Q′β +R′αβ + S′α2β + T ′α3β . . .

+Q′′γ +R′′αγ + S′′α2γ + T ′′α3γ . . .

+R′′′β2 + S′′′αβ2 . . . . . . . . .

+Rivβγ + Sivαγ2 . . . . . . . . .

+Rvγ2 + Svβ2 . . . . . . . . .

+ Sviβ2γ . . . . . . . . .

+ Sviiβγ2 . . . . . . . . .

+ Sviiiγ3 . . . . . . . . .

. . . . . . . . .

in which is found all the powers of α, β, γ, either alone, or combined among themselves
two by two, but never the three quantities together. And as the term Dαβγ is the only
one of the highest dimension in the equation of which there is question, it follows that
one will be able to find only this single finite expression of αxβtγu. Consequently one
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will be able to have only a single complete expression of yx,t,u, which will result from
the substitution of f(r, s, q) or else of yr,s,q in the place of αrβsγq in the preceding
formula.

In this case therefore it will be necessary to suppose known all the terms such
as yr,s,q , one of the three numbers r, s, q being null; that is to say all the terms
yr,s,0, yr,0,q, y0, s,q , which form the three faces of the parallelepiped of the Table in
triple entry of which we have spoken in n◦ 41.

In regard to the coefficients P, Q, Q′, Q′′, R, . . . one will be able to employ some
methods analogous to those that one has proposed in Article III; but as in the case of
equation (M) one can represent the three quantities α, β, γ by some finite and rational
functions of two other indeterminates, as one has found in n◦ 44, it will be simpler to
substitute these values of α, β, γ into η and ω into the expression αxβtγu, and next in
the series

P +Qα+Q′β + . . . ,

and to determine next by the comparison of the homologous terms the values of the
coefficients P, Q, Q′.

48. I will not push further these Researches on the integration of the linear equa-
tions in the partial and finite differences of which the coefficients are constants; it is
easy to see through what means one will be able to apply to the equations of all orders
the methods which we just exposed; I am going to show now the usage of these meth-
ods in a small number of chosen Problems concerning the theory of probabilities, this
which will serve not only to cast more publicly on these methods, but yet to give to the
Analysis of hazards a new degree of perfection.

ARTICLE V. — Application of the preceding methods to the solution of different
Problems in the Analysis of chances.

PROBLEM I.

49. A player wagers to bring forth a given event, b times at least, in a number a of
trials, the probability of bringing it forth at each trial being p; we demand the lot of
this player.

We designate by yx,t his lot when there are more than x trials to play, and when he
has yet to bring forth the event in question t times; it is clear that the sought lot will be
ya,b. Now by supposing that we play a trial, it is easy to form by the known principles
of the Analysis of chances the following equation

yx,t = pyx−1,t−1 + (1− p)yx−1,t;

which is, as we see, linear of the second order in finite and partial differences among
three variables.

Moreover, we see by the conditions of the Problem that the player wins when t = 0,
x being any whatsoever; and that he loses when x being equal to zero, t is greater than
zero; thus we will have yx,0 = 1, x being any whatsoever, and y0,t = 0, t being > 0;
so that, in this case, the given terms of the Table of no. 6 will be those which form the
first horizontal rank and the first vertical.
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Such are therefore the conditions of the Problem; in order to resolve it, there is no
concern but to integrate conveniently the differential equation found according to the
methods exposed in Article II.

For this, I put this equation under the following form, by increasing by one unit the
numbers x and t,

pyx,t + (1− p)yx,t+1−yx+1,t+1 = 0,

and I note that it is contained in formula (F) of no. 7 by making

A = p, B = 0, B′ = 1− p, C ′ = −1.

Employing therefore the solution of the same section, we will have

β = − p

1− p− α
=
p

α
× 1

1− 1−p
α

;

therefore

βt = pt
[
α−t + t(1− p)α−t−1 +

t(t+ 1)

2
(1− p)2α−t−2 + · · ·

]
;

whence we deduce (8) the general expression

yx,t = px
[
yx−t,0 + t(1− p)yx−t−1,0 +

t(t+ 1)

2
(1− p)2yx−t−2,0 + · · ·

]
.

This expression goes to infinity; but as it is necessary, by the conditions of the Problem,
that we have y0,t = 0 when t is > 0, it is clear that it will be necessary that we have
separately

y−t,0 = 0, y−t−1,0 = 0, y−t−2,0 = 0, . . . ,

whatever be t, provided that it be > 0; whence it follows that the quantities ys,0 must
always be null when s will be a negative number, which is the case of no. 9, where
we have seen that the series must be finite. Next the conditions of the Problem give
also yx,0 = 1, whatever be x; therefore, substituting these values into the preceding
expression, we will have

yx,t = pt
[
1 + t(1− p) +

t(t+ 1)

2
(1− p)2 + · · ·

]
,

where it will be necessary to take only as many terms as there are units in x− t− 1.
Therefore finally, changing x to a and t to b, we will have for the sought lot

ya,b = pb
[
1 + b(1− p) +

b(b+ 1)

2
(1− p)2 + · · ·+ b(b+ 1) · · · (a− 1)

1.2 . . . (a− b)
(1− p)a−b

]
,

This Problem is resolved in the Doctrine of Chances of Moivre (page 13, edition of
1756), by induction, and our solution agrees perfectly.
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COROLLARY.

50. If the question were to bring forth the given event b times neither more nor
less, in a trials, conserving the same denominations as above, we would find first the
same differential equation, and consequently the same general expression of yx,t; next
we will prove also that y0,t must be zero when t > 0; which will render null all the
quantities ys,0, where s will be negative; but, in regard to yx,0, it will be necessary to
consider that this quantity expresses the lot of the player when he must again play x
trials, and that he must no longer bring forth the given event; now, as the probability
of not bringing forth this event at each trial is 1 − p, that of not bringing it forth in x
successive trials will be (1− p)x; thus we will have

yx,0 = (1− p)x,

and, in general,
ys,0 = (1− p)s,

s being any positive number or zero. By these substitutions, the expression yx,t will
become

yx,t = pt(1− p)x−t
[
1 + t+

t(t+ 1)

2
(1− p)2 + · · ·+ t(t+ 1) · · · (x− 1)

1.2 . . . (x− t)

]
,

which can be reduced to this simpler form

yx,t =
(t+ 1)(t+ 2) · · ·x

1.2 . . . (x− t)
pt(1− p)x−t.

Therefore, changing x to a, t to b, we will have for the sought lot

ya,b =
(b+ 1)(b+ 2) · · · a

1.2 . . . (a− b)
pb(1− p)a−b.

We would be able, besides, to deduce immediately the solution of this last Problem
from that of the preceding section; because it is easy to understand that, if from the
probability of bringing forth a given event at least b times in a trials we take off that
of the bringing it forth at least b + 1 times in a similar number of trials, there must
remain the probability of bringing forth the same event only b times in a trials; whence
it follows that, if we designate by Ya,b the value of ya,b of no. 49, we will have for the
case of the present Corollary

ya,b = Ya,b − Ya,b+1.

It is in this manner that the Problem in question is resolved in the Work cited of de
Moivre, page 15; but what we have just given for it is not only simpler, but it has the
advantage of being deduced from immediate principles.
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PROBLEM II.

51. We suppose that at each trial there can happen two events of which the respec-
tive probabilities are p and q; and we demand the lot of a player who would wager to
bring forth the first of these events at least b times and the second at least c times, in a
number a of trials.

Let, in general, yx,t,u be the lot of the player when he has yet x trials to play, and
when he must yet bring forth the two events, one t times and the other u times; it is
clear that the sought lot will be ya,b,c.

Now if we suppose that we play one trial, and if we consider the different cases
which can occur, we will form easily, according to the known principles of the theory
of chances, the equation

yx,t,u = pyx−1,t−1,u + qyx−1,t,u−1 + (1− p− q)yx−1,t,u;

which is, as we see, in finite and partial differences among four variables.
Now it is clear: 1◦ that the player loses when x being null, t and u have still any

positive value; whence it follows that we must have, in general, y0,t,u = 0 when t or
u > 0; 2◦ that if we make u = 0, we have the case of the Problem preceding, so that
the value of yx,t,0 must be the same as that of yx,t of no. 49 above; 3 ˚ that if we make
t = 0, we will have also the case of the same Problem by changing only p to q and t to
u; consequently, the value of yx,0,u will be also the same as that of yx,t of no. 49, but
by changing t to u, p to q.

This put, I set the differential equation under the following form

pyx,t,u+1 + qyx,t+1,u + (1− p− q)yx,t+1,u+1 − yx+1,t+1,u+1 = 0

and comparing it to formula (L) of no. 42, I will have, by making, for brevity, n =
1− p− q,

γ =
p

q
× 1

1− n
α −

p
αβ

;

whence

γu =
qu

αu

[
1 +

u

α

(
n+

p

β

)
+
u(u+ 1)

2α2

(
n2 +

2np

β
+
p2

β2

)]
+
u(u+ 1)(u+ 2)

2.3.α3

(
n3 +

3n2p

β
+

3np2

β2
+
p3

β3

)
+ · · · ,

and from there I will have immediately, by the formula of no. 43, this general expres-
sion

yx,t,u = qu[yx−u,t,0 + u(nyx−u−1,t,0 + pyx−u−1,t−1,0)

+
u(u+ 1)

2
(n2yx−u−2,t,0 + 2npyx−u−2,t−1,0 + p2yx−u−2,t−2,0)

+
u(u+ 1)(u+ 2)

2.3
(n3yx−u−3,t,0 + 3n2pyx−u−3,t−1,0 + 3np2yx−u−3,t−2,0 + p3yx−u−3,t−3,0)

+ · · · ].
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This formula goes to infinity; but as it is necessary when x = 0 we have y0,t,u = 0,
whatever be t and u, provided that they are not null at once, it is easy to see that all
the terms of the form yr,s,0 in which r will be negative, must necessarily be null; so
that the formula will become finite, and that it should be advanced only to the terms,
inclusively, which will be affected with the coefficient

u(u+ 1)u+ 2) · · · (x− 1)

1.2.3 . . . (x− u)
.

Thus therefore we will have no more than some terms of the form yr,s,0 where r
will always be positive, but where s can become negative. In order to know the values
of yr,s,0 when s is negative, I make in the general formula above t = 0 in which case
the value of yx,0,u must be equal to that of yx,t of no. 49 by changing t to u and p to
q; and as this equality must take place whatever be x and u, I deduce easily from it, by
the comparison of the terms affected with the same coefficients u, u(u+1)

2 , . . . , these
equalities

yx−u,0,0 = 1,

nyx−u−1,0,0 + pyx−u−1,−1,0 = 1− q,
n2yx−u−2,0,0 + 2npyx−u−2,−1,0 + p2yx−u−2,−2,0 = (1− q)2,

and thus in sequence; whence we deduce successively, because n = 1− p− q,

yx−u,0,0 = 1, yx−u−1,−1,0 = 1, yx−u−2,−2,0 = 1, . . . ,

so that we will have, in general,
yr,s,0 = 1

when s will be zero or negative, r being positive or zero.
We can moreover convince ourselves a priori that yr,s,0 must be equal to 1 when

s is negative; because by supposing s positive, this quantity expresses the lot of the
player, when there remain to him still r trials to play, and when he must still bring forth
one of the events s times; now, if s becomes negative, it is clear that we will have the
lot of the player when he has already brought forth the event in question more than
s times needed; in which case, by the conditions of the game, he is counted to have
already won; consequently his lot must then be always equal to unity.

Therefore, in general, in order to have the value of the terms yr,s,0 which can enter
into the expression above of yx,t,u, we will note: 1◦ that these terms are all null for all
the negative values of r; 2◦ that these terms are all equal to unity for all the negative
or null values of s, r being zero or positive; 3◦ that r and s being positives or zero, we
will have for the preceding Problem

yr,s = pt
[
1 + s(1− p) +

s(s+ 1)

2
(1− p)2 + · · ·+ s(s+ 1) · · · (r − 1)

1.2 . . . (r − s)
(1− p)r−s

]
.

Thus the problem is resolved.
We see from this how it would be necessary to take it if the number of events were

anything; there will be difficulty only in the length of the calculation.

50



PROBLEM III.

52. The same things being supposed as in the Problem II, we demand the lot of
the player who would wager to bring forth, in an undetermined number of trials, the
second of two events b times before the first had happened a times.

I designate by yx,t the lot of the player when he must still bring forth the second
event t times before the first happens x times; it is clear that ya,b will be the sought lot.

We imagine now that we play a trial, and as the probability of the first event is p
and that of the second is q at each trial by hypothesis, we will form easily the equation

yx,t = pyx−1,t + qyx,t−1,

and we will note that the player wins when t = 0 and x any positive, and that he loses
when x = 0, and t any positive; so that we will have yx,0 = 1, x being > 0, and
y0,t = 0, t being > 0.

This put, if we set the differential equation under the form

pyx,t+1 + qyx+1,t − yx+1,t+1 = 0,

and if we compare it to formula (F) of no. 7, we will have

β = − qα

p− α
=

q

1− p
α

;

therefore

βt = qt
[
1 + t

p

α
+
t(t+ 1)

2

p2

α2
+
t(t+ 1)(t+ 2)

2.3

p3

α3
+ · · ·

]
,

and consequently (8),

yx,t = qt
[
yx,0 + tpyx−1,0 +

t(t+ 1)

2
p2yx−2,0 + · · ·

]
.

Now since y0,t = 0, it will be necessary that we have

y0,0 = 0, y0,−1 = 0, y0,−2 = 0, . . . ,

so that we will have the case of no. 9, where the series becomes finite, and as besides
we must have yx,0 = 1, there will result from it this expression

yx,t = qt
[
1 + tp+

t(t+ 1)

2
p2 +

t(t+ 1)(t+ 2)

2.3
p3 + · · ·+ t(t+ 1) · · · (t+ x− 2)

1.2 . . . (x− 1)
px−1

]
.

whence there will be no more than to change x to a and t to b.
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ANOTHER SOLUTION OF PROBLEM III.

53. We can also find another solution of the preceding Problem by means of the
formulas of no. 13, which give in all cases a finite expression for yx,t.

By applying these formulas to the present case, we will have

m = 1, n = p;

so that the quantities Y, Y ′, Y ′′, . . . will be y0,0, 1
py1,0,

1
p2 y2,0, . . . , and because the

conditions of the Problem demand that

y0,0 = 0, y1,0 = 1, y2,0 = 1, . . . ,

this series will become
0,

1

p
,

1

p2
, . . . ;

whence, by taking the successive differences, we will have

Y = 0, ∆Y =
1

p
, ∆2Y =

1

p2
− 2

p
, ∆3Y =

1

p3
− 3

p2
+

3

p
, . . . ;

therefore

f(0) = 0, f(1) = 1, f(2) = 1− 2p, f(3) = 1− 3p+ 3p2,

f(4) = 1− 4p+ 6p− 4p3, . . . ,

whence it is easy to conclude that we will have, in general,

f(x) = (1− p)x − (−p)x,

as long as x is 0 or > 0.
Next, as the conditions of the Problem require also that

y0,0 = 0, y0,1 = 0, y0,2 = 0, . . . ,

it follows that the quantities Y, ′Y,′′ Y, . . . will all be null; consequently their differ-
ences δY, δ2Y, . . . will be null, which will give

f(0) = 0, f(−1) = 0, f(−2) = 0, . . . and f(−x) = 0.

Finally, asA = 0, and as that which we just named p in the place cited is = − B
C′ =

q, we will have

V = qt, V ′ = (x+ t)qtp, V ′′ =
(x+ t)(x+ t− 1)

2
qtp2, . . .

Therefore substituting these values into the formula

yx,t = V f(x) + V ′f(x− 1) + V ′′f(x− 2) + · · · ,
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we will have

yx,t = qt
[
(1− p)x − (−p)x + (x+ t)[(1− p)x−1 − (−p)x−1]p

+
(x+ t)(x+ t− 1)

2
[(1− p)x−2 − (−p)x−2]p2 + · · ·+ (x+ t)(x+ t− 1) · · · (t+ 2)

1.2 . . . (x− 1)
px−1

]
We can again simplify this expressing by noting that

(1− p)x − (−p)x = (1− p)x−1 − (1− p)x−2p+ (1− p)x−3p2 − · · · ± px−1,
(1− p)x−1 − (−p)x−1 = (1− p)x−2 − (1− p)x−3p+ · · · ∓ px−2,

and thus in sequence; so that by substituting these values and ordering with respect to
the powers of 1− p, we will have

yx,t = qt
[
(1− p)x−1 + (x+ t− 1)(1− p)x−2p

+

(
(x+ t)(x+ t− 1)

2
− x+ t

1
− 1

)
(1− p)x−3p2 + · · ·+ px−1

]
or else by reducing

yx,t = qt
[
(1− p)x−1 + (x+ t− 1)(1− p)x−2p +

(x+ t− 1)(x+ t− 2)

2
(1− p)x−3p2 + · · ·

+
(x+ t− 1)(x+ t− 2) · · · (t+ 1)

1.2 . . . (x− 1)
px−1

]
This expression of yx,t, although under a different form from that which we have

found in the preceding number, reverts however at base to that one, as we can con-
vince ourselves easily be developing the powers of 1 − p, and ordering next the terms
according to those of p; that which can serve to confirm the exactitude of our methods.

Besides, we see that in the Problem in question the method of the first solution is
preferable to that of which we just made usage, not only because the process is easier,
but mainly because the result is much simpler.

PROBLEM IV.

54. We suppose that at each trial there can happen three different events, which I
will designate for more clarity by P, Q, R, and that the probabilities of these events are
respectively equal to p, q, r; we demand the lot of a player who would wager to bring
forth the event R c times before the event Q happens b times, and the event P happens
a times.

Let yx,t,u be the lot of the player when he has yet to bring forth the event R u times
before the event Q happens t times and the event P happens x times; we will have ya,b,c
for the sought lot. Now, by supposing that we play one trial, we will attain the equation

yx,t,u = pyx−1,t,u + qyx,t−1,u + ryx,t,u−1;

and since the player is counted to have won when u = 0 and x, t greater than zero; but
on the contrary he is counted to have lost when t = 0, and x, u greater than zero, and
when x = 0 and t, u greater than zero, it follows that we will have

yx,t,0 = 1, yx,0,u = 0, y0,t,u = 0,
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x, t, u being any whole positive numbers.
The differential equation above being set under the form

pyx,t+1,u+1 + qyx+1,t,u+1 + ryx+1,t+1,u − yx+1,t+1,u+1 = 0,

is found contained in the formula (L) of no. 42, and we will have

γ = − rαβ

qα+ pβ − αβ
=

r

1− p
α −

q
β

;

whence

γu = ru
[
1 + u

(
p

α
+
q

β

)
+
u(u+ 1)

2

(
p2

α2
+

2pq

αβ
+
q2

β2

)
+ +

u(u+ 1)(u+ 2)

2.3

(
p3

α3
+

3p2q

α2β
+

3pq2

αβ2
+
q3

β3

)
+ · · ·

]
.

And thence we can deduce immediately the value of yx,t,u by changing in the expres-
sion of γu each product such as 1

αρβσ to yx−ρ,t−σ,0, in the same way we see it by the
comparison of the general formulas of no. 42 and 43. Thus we will have

yx,t,u = ru [yx,t,0 + u(pyx−1,t,0 + qyx,t−1,0)

+
u(u+ 1)

2
(p2yx−2,t,0 + 2pqyx−1,t−1,0 + q2yx,t−2,0)

+
u(u+ 1)(u+ 2)

2.3
(p3yx−3,t,0 + 3p2qyx−2,t−1,0 + 3pq2yx−1,t−2,0 + q3yx,t−3,0)

· · · ] .

Now by the conditions of the Problem it is necessary that yx,t,u become equal to zero
when x = 0, or t = 0 whatever be u; and it is clear, by the preceding expression, that
this condition obtains the one that each quantity such as yx,t,0 is null when x = 0 or
negative, or when t = 0 or negative. Moreover, it is necessary also by the conditions of
the Problem that yx,t,0 be = 1 when x and t are greater than zero. Whence it follows
that the general expression of yx,t,u will become finite, and will be represented in the
following manner

yx,t,u = ru
[
1− u(p+ q) +

u(u+ 1)

2
(p2 + 2pq + q2)

− u(u+ 1)(u+ 2)

2.3
(p3 + 3p2q + 3pq2 + q3) + · · ·

]
by continuing this series only as long as the powers of p will be less than x, and those
of q less than t.

So that if we designate, for more simplicity, the coefficients u, u(u+1)
2 , u(u+1)(u+2)

2.3 , . . .
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by u′, u′′, u′′′, . . . , we can give to the expression in question this form

yx,t,u = ru
[
1 + u′p+ u′′p2 + · · ·+ u(x−1)px

+ u′q + 2u′′pq + 3u′′′p2q + · · ·+ xu(x)px−1q

+ u′q2 + 3u′′pq2 + 6uivp3q2 + · · ·+ x(x+ 1)

2
u(x−1)px−1q2

· · ·

+ u(t−1)qt−1 + tu(t)pqt−1 +
t(t+ 1)

2
u(t+1)p2qt−1 + · · ·+ u(x+t−2)px−1qt−1

]
,

where the coefficient of the last term u(x+t−2)px−1qt−1 will be equally

x(x+ 1)(x+ 2) · · · (x+ t− 2)

2.3 . . . (t− 1)
or

t(t+ 1)(t+ 2) · · · (t+ x− 2)

2.3 . . . (x− 1)
,

these two quantities being equal to each other, as we can convince ourselves by multi-
plying the one by the denominator of the other, and vice versa.

COROLLARY I.

55. If we supposed that at each trial there could happen four different events P, Q,
R, S of which the respective probabilities are p, q, r, s and if we sought the lot of a
player who would wager to bring forth the event S z times before the events R, Q, P
could happen respectively u, t, x times, the Problem will always be resolved by the
same method, and we will find, for the sought lot, the expression

sc
[
1 + z(p+ q + r) +

z(z + 1)

2
(p+ q + r)2 +

z(z + 1)(z + 2)

2.3
(p+ q + r)3 + · · ·

]
in which, after having developed the powers of p+ q + r, it will be necessary to retain
only the terms where pwill be raised to a power less than x, q to a power less than t, and
r to a power less than u; so that all the terms which must enter into the expression in
question will form a rectangular parallelepiped, in which the three sides which depart
from the same angle where there is the term sc will be formed by these three series

sc
[
1 + zp+

z(z + 1)

2
p2 + · · ·+ z(z + 1)(z + 2) · · · (z + x− 2)

1.2 . . . (x− 1)
px−1

]
,

sc
[
1 + zq +

z(z + 1)

2
q2 + · · ·+ z(z + 1)(z + 2) · · · (z + t− 2)

1.2 . . . (t− 1)
qt−1

]
,

sc
[
1 + zr +

z(z + 1)

2
r2 + · · ·+ z(z + 1)(z + 2) · · · (z + u− 2)

1.2 . . . (u− 1)
ru−1

]
,

and the number of all the terms will be equal to (x− 1)(t− 1)(u− 1).
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COROLLARY II.

56. In general, if the events which can happen at each trial are A, B, C, D,. . ., and
their respective probabilities a, b, c, d, . . . , and if we demand the lot of a player who
would wager to bring forth the event A α times before B happens β times, C γ times,
D δ times, . . ., we will find this expression

aα
[
1 + α(b+ c+ d+ · · · ) +

α(α+ 1)

2
(b+ c+ d+ · · · )2

+
α(α+ 1)(α+ 2)

2.3
(b+ c+ d+ · · · )3 + · · ·

]
,

in which, after having developed the powers of b + c + d + · · · , it will be necessary
to retain only the terms where the powers of b will be less than β, those of c less than
γ, those of d less than δ, etc.; so that the number of all the terms which must enter into
this expression will be

(β − 1)(γ − 1)(δ − 1) · · · ;

and it is easy to prove by the known Theorem on the form of the coefficients of the
powers of multinomials, that each of these terms will be of the following form

α(α+ 1) · · · (α+ l +m+ n+ · · · − 1)

1.2 . . . (l +m+ n+ · · · )
× (l + 1)(l + 2) · · · (l +m+ n+ · · · )

1.2.3 . . .m× 1.2.3 . . . n× 1 . . .
aαblcmdn · · ·

by giving successively to l, m, n all the integer values from zero to β − 1, γ − 1, δ −
1, . . . respectively.

REMARK.

57. The problem of which we just gave a very general and very simple solution
contains in a general manner the one that we call commonly in the Analysis of chances
the Problem of points, and which has been resolved completely only for the case of
two players. (See the Analyse of Monmort, Propositions XL and XLI, second edition:
The Doctrine of Chances of Moivre, Problem VI, second edition; the Mémoire of M. de
Laplace printed among the Memoirs presented to the Académie des Sciences in 1773,
Problems XIV and XV.)

If two players A and B playing together to several games have the respective prob-
abilities p and q to win each game in particular, and if there is lacking to player A x
games or points, and to player B t games or points to win, we will evidently have the
case of Problem III (52), and yx,t will be the lot or expectation of player B; and our two
solutions accord with those which we find in the Work cited of Monmort. Nos. 191,
192.

If there are three players A, B, C of whom the respective probabilities to win each
game are p, q, r, and if there is lacking to A x games, to B t games, to C u games,
we will have the case of Problem IV (54); and yx,t,u will be the lot or expectation of
player C, and thus in sequence.

In general, if there are as many players as we wish, A, B, C, D,. . . of whom the
respective probabilities to win each game are a, b, c, d, . . . , and if there is lacking to
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them respectively α, β, γ, δ, . . . games, we will have by Corollary II above the general
expression of the lot of player A and consequently also that of the lot of each of the
other players by changing among them the quantities a, b, c, . . . and α, β, γ, . . ..

PROBLEM V.

58. The probability to bring forth a given event at each trial being p, a player
wagers that in a trials at least he will bring forth this event a number of times which
will surpass by b the number of times where he will not bring it forth.

Let yx,t be the lot of the player when he has no more than x trials to play, and when
he must still bring forth the given event a number of times which surpasses by t the
number of times where he will not bring forth this event; it is clear that the sought lot
will be ya,b.

If we imagine now that we play one trial, it is easy to from the following equation

yx,t = pyx−1,t−1 + (1− p)yx−1, t+1;

and as the player wins when t = 0 and x whatever, and to the contrary he loses when,
x being null, t is still positive, it follows that we will have yx,0 = 1, x being whatever,
and y0,t = 0, t being > 0.

I make for greater simplicity 1 − p = q, and I put the equation above under the
following form

pyx,t + qyx,t+2 − yx+1,t+1 = 0,

which is, as we see, contained in the general formula (G) of no. 15; and there will
come from it, according to formula (H), this equation in α and β

p− αβ + αβ2 = 0;

whence it will be necessary to deduce the value of β and next that of βt in α by a
descending series. For this it is necessary to employ the method that I have given in
my Mémoire sur la résolution des équations littérales, printed in the volume of this
academy for the year 1768. In no. 26 of that Memoir we find two formulas which give
the two values of xm in the equation

a− bx+ cx2 = 0,

and which can be applied in the present case by making

x = β, m = t, a = p, b = α, c = q;

we will have thus

βt =
pt

αt
+
tpt+1q

αt+2
+
t(t+ 3)

2

pt+2q2

αt+4
+
t(t+ 4)(t+ 5)

2.3

pt+3q3

αt+6
+ · · ·

or

βt =
αt

qt
− tpαt−2

qt−1
+
t(t− 3)

2

p2αt−4

qt−2
− t(t− 4)(t− 5)

2.3

p3αt−6

αt−3
+ · · ·
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These two values of βt being compared in the general expressions of βt of no. 15, we
will have

1 ˚


µ = −1, µ′ = 2, µ′′ = 4, . . .

T = pt, T ′ = tpt+1q, T ′′ =
t(t+ 3)

2
pt+2q2, . . .

2 ˚


ν = 1, ν′ = 2, ν′′ = 4, . . .

U =
1

qt
, U ′ =

tq

qt−1
. U ′′ =

t(t− 3)

2

p2

qt−2
, . . .

Therefore we will have (section cited)

yx,t = pt
[
f(x− 1) + tpqf(x− t− 2) +

t(t+ 3)

2
p2q2f(x− t− 4)

+
t(t+ 4)(t+ 5)

2.3
p3q3f(x− t− 6) + · · ·

]
+

1

qt

[
φ(x+ t)− tpqφ(x+ t− 2) +

t(t− 3)

2
p2q2φ(x+ t− 4)

− t(t− 4)(t− 5)

2.3
p3q3φ(x+ t− 6) + · · ·

]
,

the characteristics f and φ denoting two arbitrary functions, which we will determine
in the manner following according to the conditions given in the Problem.

The first condition demands that when x = 0, we have y0,t = 0, t being any whole
positive number; it is easy to convince ourselves that we can satisfy this condition only
by supposing that the function designated by the characteristic φ is always zero, and
that the one designated by the characteristic f also becomes null when the number
of which it is a function becomes negative. In this matter the expression of yx,t will
become finite and will be of the form

yx,t = pt
[
f(x− t) + tpqf(x− t− 2) +

t(t+ 3)

2
p2q2f(x− t− 4)

+
t(t+ 4)(t+ 5)

2.3
p3q3f(x− t− 6) + · · ·

]
,

by taking only as many terms as there are units in x−t
2 + 1 or x−t−12 + 1.

The other condition of the Problem demands next that when t = 0 and x whatever,
we have yx,t = 1; but in this case we will have, by the preceding formula, yx,0 = f(x);
therefore f(x) must always be equal to 1, as long as x is not negative. Therefore the
values of f(x− t), f(x− t− 2), . . . in the expression above will always be equal to 1.
Thus we will have

yx,t = pt
[
1 + tpq +

t(t+ 3)

2
p2q2 +

t(t+ 4)(t+ 5)

2.3
p3q3 + · · ·

]
,

and taking only as many terms as there will be units in x−t
2 + 1 or in x−t−1

2 + 1.
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If we wished that t be negative, then by changing t to −t, in the general expression
of yx,t, we would only change p to q and f to φ and vice versa, and, making the same
reasoning as before, we would find

yx,−t = qt
[
1 + tpq +

t(t+ 3)

2
p2q2 + · · ·

]
.

It is this which is moreover evident in itself ; because the case of t negative is
the same as if t remaining positive, we exchanged between them the events P and Q,
which produces no other difference in the solution than to substitute q in place of p and
vice versa.

This Problem corresponds to Problem LXV of Moivre, and the preceding solution
agrees with the second solution of that Author (page 210, third edition.)

ANOTHER SOLUTION TO PROBLEM V.

59. In the preceding solution we have need to resolve an equation of second degree
in order to have the value of β in α through the equation

p− αβ + αβ2 = 0;

but if instead of determining β in α we wished on the contrary to determine α in β,
we would have then only one linear equation to resolve, and this value of α in β would
have the advantage of being finite and of giving directly an expression for yx,t in finite
terms.

Indeed, we will have
α =

p

β
+ qβ;

I raise this binomial to the power x, and I reunite, for greater simplicity, the extreme
terms and those which are equally extended from the extremes; I will have thus

αx =(pxβ−x + qxβx) + xpq(px−2β2 + qx−2βx−2)

+
x(x− 1)

2
p2q2(px−4β4−x + qx−1βx−4) + · · · ,

a formula which will need to grow only to the terms which will have for coefficient

x(x− 1)(x− 2) · · ·
(
x+1
2

)
1.2.3 . . .

if x is odd, or else
x(x− 1)(x− 2) · · ·

(
x
2 + 1

)
1.2.3 . . .

if x is even, by taking care, in this last case, to take only the half of this coefficient.
Multiplying this value of αx by βt I will have this expression for αxβt:

αxβt =(pxβt−x + qxβt+x) + xpq(px−2βt+2−x + qx−2βt−2+x)

+
x(x− 1)

2.
p2q2(px−4βt−4−x + qx−4βt−4+x) + · · ·
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whence, by the principles established in Article II above, we will deduce immediately
this general expression of yx,t namely

yx,t =[pxf(t− x) + qxf(t+ x)]

+ xpq[px−2f(t+ 2− x) + qx−2f(t− 2 + x)]

+
x(x− 1)

2
p2q2[px−4f(t+ 4− x) + qx−4f(t− 4 + x)]

· · ·

the characteristic f designating an arbitrary function, which must be determined by the
conditions of the Problem.

For this result, it is necessary to recall that when x = 0 we must have ν0,t = 0, t
being > 0, and that when t = 0 we must have yx,0 = 1, x being = or > 0; therefore:
1◦ we will have f(t) = 0, t being any positive number; 2◦ we will have

1 =[pxf(−x) + qxf(x)] + xpq[px−2f(2− x) + qx−2f(x− 2)]

+
x(x− 1)

2
p2q2[px−4f(4− x) + qx−4f(x− 4)] + · · ·

x being any number positive or zero. If we make successively x = 0, 1, 2 , 3, . . . we
will be able to deduce from this equation the values of

f(0), pf(−1) + qf(1), p2f(−2) + q2f(−2), . . . ,

and we will find, in general, by the formulas already known,

pif(−s)+qif(s) = 1−spq+s(s− 3)

2
p2q2−s(s− 4)(s− 5)

2.3
p3q3+

s(s− 5)(s− 6)(s− 7)

2.3.4
p4q4+· · · ,

by taking in this series only as many terms as there are units in s+1
2 or in s

2 + 1.
Therefore, since we must have, in general, f(s) = 0 as long as s > 0, we will have

for the Problem in question

yx,t = px
[
f(t− x) + x

p

q
f(t+ 2− x) +

x(x− 1)

2

q2

p2
f(t+ 4− x) + · · ·

]
,

by taking only as many terms as there are units in x−t+1
2 or in x−t

2 + 1; and there will
be no more than to substitute into this formula, in the place of each function such as
f(−s), the quantity

f(−s) =
1

ps
− sq

ps−1
+
s(s− 3)

2

q2

ps−2
− · · · ,

where the number of terms must be s+1
2 or s2 + 1.
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THIRD SOLUTION OF PROBLEM V.

60. As the equation which determines β in α is of the second degree, and as the
given terms of the Table of no. 6 are those which form the first horizontal rank and the
first vertical rank, we will have the simplest and most direct solution all at once by the
method of Article III (31), by converting the quantity αxβt into a finite series of the
following form

αxβt =V + V ′α+ V ′′α2 + V ′′′α3 + · · ·
+ ′V β + ′′V β

2 + ′′′V β
3 + · · · ;

because then we will have at once (33)

yx,t =V y0,0 + V ′y1,0 + V ′′y2,0 + V ′′′y3,0 + · · ·
+ ′V y0,1 + ′′V y0,2 + ′′′V y0,3 + · · ·

And as the conditions of the Problem demand that yx,0 = 1, x being = 0, 1, 2, . . . ,
and as y0,t = 0, t being = 1, 2, 3, . . . , we will have in the case of the proposed
Problem

yx,t = V + V ′ + V ′′ + V ′′′ + · · ·

Thus the difficulty is resolved by finding the sum of the coefficients V, V ′, V ′′, . . . of
the first part of the expression of αxβt.

For this I substitute in place of α its value in β in the quantity αxβt; I have, as in
no. 59,

αxβt =(pxβt−x + qxβt+x) + xpq(px−2βt−x + qx−2βt−2+x)

+
x(x− 1)

2.
p2q2(px−4βt−4−x + qx−4βt−4+x) + · · ·

When x < t, this formula will contain only some positive powers of t, and will form
consequently the second part of the sought expression of αxβt, the first becoming
then all null; which gives consequently yx,t = 0, as it must be when the number of
remaining trials is less than the number t. But, in the case where x > t, the preceding
formula contains necessarily some negative powers of β, which it will be necessary to
eliminate in the following manner.

If we raise successively to the square, the cube, etc., the equation

α =
p

β
+ qβ,

we will be able to deduce from it the values of

p

β
+ qβ,

p2

β2
+ q2β2,

p3

β3
+ q3β3, . . .

in α, and we will have, in general, by the formulas already known,

ps

βs
+ qsβs = αs−spqαs−2 +

s(s− 3)

2
p3q3αs−4 +

s(s− 4)(s− 5)

2.3
p4q4αs−4−· · · ,
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by continuing this series only as long as the powers of α will be positives.
We designate, for greater simplicity, this series in α byA(s); we will have therefore

ps

βs
+ qsβs = A(s); therefore β−s =

A(s)

ps
−
(
q

p

)s
βs.

Therefore, if by means of this formula we make vanish in the expression above of αxβt

all the negative powers of β, it will be reduced to two series, one composed of positive
powers of α, and the other composed of positive powers of β; thus it will have the form
demanded.

As for our object it suffices to know the first series, we will consider uniquely the
negative powers of β which enter into the expression of αxβt, and making, for greater
simplicity,

t = x− u,

we will have this formula

pxβ−u + xpq × px−2β2−u +
x(x− 1)

2
p2q2 × px−4q4−x + · · · ,

by taking in it only as many terms as there are units in u+1
2 or in u

2 + 1.

Next we will put in the place of each negative power β−s its value in α, A
(s)

ps , by
neglecting the positive powers of β; in this manner we will have, for the first part of
the expression demanded of αxβt, the formula

pt
[
A(s) + xpqA(s−2) +

x(x− 1)

2
p2q2A(s−4) + · · ·

]
,

in which there will be no more but to suppose α = 1 in order to have the sought value
of yx,t.

Now, since in our case q = 1 − p (58), it is clear that β = 1 gives α = 1 in the
equation

α =
p

β
+ qβ,

therefore also in the equation which is derived from it

ps

βs
+ qsβs = A(s),

by making β = 1, the quantity α contained in A(s) will become = 1; therefore we will
have, when α = 1,

A(s) = ps + qs;

therefore, making this substitution and putting back x − t in the place of u, we will
have

yx,t =pt
[
(px−t + qx−t) + xpq(px−t−2 + qx−t−2

+
x(x− 1)

2
p2q2(px−t−4 + qx−t−4) + · · ·

]

62



by continuing this series only as long as the exponent of the quantities

px−t−··· + qx−t−···

will be positive or zero, and by taking care, in this last case, to take 1 in the place of
p0 + q0, because A(0) = 1.

This solution is the same as the first solution of Moivre (page 209).

PROBLEM VI.

61. Supposing, as in the preceding Problem, that the probability of bringing forth a
given event at each trial is p; a player wagers that in a trials or less he will bring forth
this event a number of times such that this number will be either greater by b than the
number of times where he will not bring forth the same event, or else less by c than this
last number.

Let yx,t be the lot of the player when he has no more than x trials to win, and
when the difference between the number of times where the given event has already
happened and the number of times where this event has not happened is expressed by
t−c; it is clear that at the beginning where x = a we will have t−c = 0, consequently
t = c; so that the sought lot will be ya,c.

If we suppose now that we play one trial, we will find the equation

yx,t = pyx−1,t+1 + (1− p)yx−t, t−1,

which is, as we see, similar to that of the preceding Problem, with this sole difference
that p is here in the place of 1 − p; what comes from this here the number t does not
express the same thing as in the preceding Problem.

Now, according to the conditions of the Problem, it is easy to see that the player
must win when t− c = b and when t− c = −c, whatever be x, which gives t = b+ c
or = 0, and consequently yx,o = 1, yx,b+c = 1, x being positive or zero.

Next we see that the player will lose when x being null, t − c will be contained
between the limits b and −c, that is to say that t will be between the limits 0 and b+ c;
therefore we will have y0,t = 0, t being 1, 2, 3, . . . , b+ c− 1.

Thus the given terms of the Table of no. 6 are, in this case, those which form the
first horizontal rank, next those which form the first vertical rank to the (b+c+1)st term
alone, and finally those which form the (b+c+1)st horizontal rank; so that the first line
of the given terms is a straight line and horizontal; and that the second is composed of
two straight lines, one vertical and finite, the other horizontal and indefinite; which can
serve as example of what we have observed in no. 39.

Since therefore as the differential equation is of the same form as that of the pre-
ceding Problem, we will be able to use the same means to integrate it; but I note first
that the first solution leading to a general expression of yx,t composed of an infinite
number of terms, would not know how to be applied conveniently to the present case.
We will take therefore first the second solution, and we will have by changing only p
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to q and q to p (59)

yx,t =[qxf(t− x) + pxf(t+ x)]

+ xpq[qx−2f(t+ 2− x) + px−2f(t− 2 + x)]

+
x(x− 1)

2
p2q2[qx−4f(t+ 4− x) + px−4f(t− 4 + x) + · · · ,

this formula must be continued only to the terms which will have for coefficient

x(x− 1) · · ·
(
x+1
2

)
1.2 . . .

or
x(x− 1) · · ·

(
x
2 + 1

)
1.2 . . .

,

and taking care to take only the half of this coefficient in the case of x even.
The question therefore is no more than to determine properly, according to the

conditions of the Problem, the functions indicated by the characteristic f . For this
result, I will make first x = 0, which will give y0,t = f(t); therefore, since we must
have y0,t = 0 as long as t = 1, 2, 3, . . . , b + c − 1, it follows that we will have, in
general, f(s) = 0, s being = 1, 2, 3, . . . , b+ c− 1.

Next we will make t = 0, in which case we must have, as in Problem V, yx,0 = 1,
whatever be x; making therefore successively x = 0, 1, 2, . . . , I will have, in general,
as in the solution of no. 59, by changing only p into q and vice versa,

qsf(−s) + psf(s) = 1− spq +
s(s− 3)

2
p2q2 − s(s− 4)(s− 5)

2.3
p3q3 + · · · ,

by taking in this series only s+1
2 or s2 + 1 terms.

Finally I will make t = b+c = n and as we must have then also yx,n = 1, whatever
be x, I will deduce from it in the same manner the general formula

qsf(n− s) + psf(n+ s) = 1− spq +
s(s− 3)

2
p2q2 − s(s− 4)(s− 5)

2.3
p3q3 + · · · ,

or else
qsf(n− s) + psf(n+ s) = qsf(−s) + psf(s).

By means of these formulas, by making successively x = 0, 1, 2, . . . , we will
be able to find all the values of the unknown function which enters into the general
expression above of yx,t.

But we can much simplify this solution by the substitution of 1 − zx,t in place of
yx,t. Because we will have first the differential equation

zx,t = pzx−1,t+1 + (1− p)zx−1,t−1,

which is the same form as the equation in yx,t; consequently we will have likewise, in
general, by employing the characteristic φ, in order to designate an arbitrary function,

zx,t =[qxφ(t− x) + pxφ(t+ x)]− xpq[qx−2φ(t+ 2− x) + px−2φ(t− 2 + x)]

+
x(x− 1)

2
p2q2[qx−4φ(t+ 4− x) + px−4φ(t− 4 + x)] + · · ·
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Now, as in making x = 0 we must have y0,t = 0, as long as t is between the limits
of 0 and b+ c, we will have therefore z0,t = 1, t being = 1, 2, 3, . . . , b+ c−1; and as
in making t = 0 and t = b+c, we must have yx,0 = 1 and yx,b+c = 1, x being positive
or zero, it follows that we will have zx,0 = 0 and zx,b+c = 0, x being 0, 1, 2, . . .

Therefore: 1◦ we will have, by making x = 0, φ(t) = 1; therefore, in general,
φ(s) = 1 for all the values of s, namely s = 1, 2, 3, . . . , b + c − 1: 2◦ by making
t = 0, and x successively 0, 1, 2, . . ., we will find, in general,

qsφ(−s) + pφ(s) = 0,

s being likewise = 0, 1, 2, 3, . . .: 3◦ by making t = b + c, and x = 0, 1, 2, . . . , we
will find similarly

qsφ(b+ c− s) + psφ(b+ c+ s) = 0,

s being also = 0, 1, 2, 3 . . ..
Therefore finally, if for greater simplicity we put the expression for zx,t under the

form

zx,t = pxφ(x+ t) + xpx−1qφ(x+ t− 2) +
x(x− 1)

2
px−2q2φ(x+ t− 4) + · · · ,

if next we make x = a, t = c, and if we put back 1− p in place of q, we will find, for
the sought value of ya,c, that is to say for the lot of the player, the following formula

1− pxφ(a+ c)− apx−1φ(a+ c− 2)− a(a− 1)

2
px−2q2φ(a+ c− 4)− · · · ,

and we will determine the values of the arbitrary function by these conditions

φ(s) = 1, s being1, 2, 3, . . . , b+ c− 1,

and

psφ(s) + (1− p)sφ(−s) = 0

psφ(b+ c+ s) + (1− p)sφ(b+ c− s) = 0

}
s being 0, 1, 2, 3, . . . to infinity.

Let for example,
a = 7, b = 2, c = 3,

we will have the formula

1−p7φ(10)− 7p6(1− p)φ(8) + 21p5(1− p)2φ(6)− 35p5(1− p)3φ(4)

−35p3(1− p)4φ(2)− 21p2(1− p)5φ(0)− 7p(1− p)6φ(−2)− (1− p)7φ(−4);

now the condition
φ(s) = 1

gives first
φ(2) = 1, φ(4) = 1,
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next the condition
psφ(s) + (1− p)φ(−s) = 0

will give

φ(0) = 0, φ(−2) = − p3

(1− p)3
, φ(−4) = − p4

(1− p)4

finally the condition
psφ(5 + s) + (1− p)φ(5− s) = 0

will give

φ(6) =
1− p
p

, φ(8) = − (1− p)3

p3
, φ(10) = 0.

Therefore substituting these values we will have after the reductions

1− 21p3(1− p)4 − 13p4(1− p)3

for the sought lot.

ANOTHER SOLUTION OF PROBLEM VI.

62. I come now to resolve the same Problem by the method of Article III; but
instead of taking it as we have done in the third solution of the preceding Problem (60),
where we have regarded as given the terms of the first horizontal row and those of the
first vertical row of the Table no. 6, it will be more convenient here to suppose given
the terms of the first two horizontal rows; which requires only to reduce the value of βt

to an expression of the following form (25)

βt =T + T ′α+ T ′′α2 + T ′′′α3 + · · ·+ T (t)αt

+ [ ′T + ′T
′α+ ′T

′′α2 + · · ·+ ′T
(t−1)αt−1]β;

because then we will have at once (27)

yx,t =Tyx,0 + T ′yx+1,0 + T ′′yx+2,0 + T ′′′yx+3,0 + · · ·+ T (t)yx+t,0

+ ′Tyx,1 + ′T
′yx+1,1 + ′T

′′yx+2,1 + · · ·+ ′T
(t−1)yx+t−1,1.

Now as the quantity β must be determined (58, 61) by the equation

q − αβ + pβ2 = 0,

of which the two roots are

β =
α±

√
α2 − 4pq

2p

if we designate these two roots by β′ and β′′, and if we make, for brevity

A =T + T ′α+ T ′′α2 + T ′′′α3 + · · ·+ T (t)αt,

′A = ′T + ′T
′α+ ′T

′′α2 + · · ·+ ′T
(t−1)αt−1,
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we will have (28)
β′t = A+ ′Aβ

t, β′′t = A+ ′Aβ
′′,

whence we will deduce

A =
β′β′′(β′t−1 − β′′t−1)

β′′ − β′
, ′A =

β′t − β′′t

β′ − β′′
;

namely

A = −q

(
α+

√
α2 − 4pq

)t−1
−
(
α−

√
α2 − 4pq

)t−1
(2p)t−1

√
α2 − 4pq

′A =

(
α+

√
α2 − 4pq

)t
−
(
α−

√
α2 − 4pq

)t
(2p)t

√
α2 − 4pq

Thus there will be only to develop these tth and (t − 1)st powers and to order next
the terms with respect to α, we will have the values of the coefficients T, T ′, T ′′, . . . at
the same time those of ′T, ′T

′, ′T
′′, . . ., in p, q, and t; but we will not have the same

need to know these values, as we are going to see.
In fact, as the conditions of the Problem demand that yx,0 = 1, x being any positive

or zero (61), if we make yx,t = 1−ux, it is clear that the expression of yx,t will become

yx,t = A+ ′A− ′Tux − ′T
′ux+1 − ′T

′′ux+2 − · · · − ′T
(t−1)ux+t−1,

by supposing that in the quantities A and ′A we have made α = 1; now

βt = A+ ′Aβ,

and, because q = 1− p, if we make β = 1, we have α = 1 according to the equation

q − αβ + pβ2 = 0;

therefore
1 = A+ ′A

when α = 1; therefore

yx,t = 1− ′Tux − ′T
′ux+1 − ′T

′′ux+2 − · · · − ′T
(t−1)ux+t−1.

Next it is necessary also, by the conditions of the Problem, that yx,b+c = 1, x
being any positive or zero; therefore if we denote by B, B′, B′′, . . . the values of

′T, ′T
′, ′T

′′, . . ., when t = b+ c, we will have for the determination of the quantities
ux the equation

Bux +B′ux+1 +B′′ux+2 + · · ·+B(t−1)ux,b+c−1 = 0,

whence we see that these quantities form a simple recurrent series of order b + c − 1;
so that if we make the equation

B +B′α+B′′α2 +B′′′α3 + · · ·+B(b+c−1)αb+c−1 = 0, (a)
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and if we denote by α′, α′′, α′′′, . . . the different roots of this equation, we will have,
in general (Article I),

ux = Mα′x +Nα′′x + Pα′′′x + · · · ,

M, N, P being some undetermined constants.
We will make therefore this substitution into the expression above of yx,t and as

we have, in general

′A = ′T + ′T
′α+ ′T

′′α2 + · · ·

if we denote by ′A, ′A
′, ′A

′′, . . . the values of ′Awhich correspond toα = α′, α′′, α′′′, . . .,
we will have

yx,t = 1−M ′A
′α′x −N ′A

′′α′′x − P ′A
′′′α′′′x − · · · , (b)

and there will remain no more than to determine b + c − 1 constants by means of the
last condition of the Problem which is y0,t = 0, t being 1, 2, 3, . . . , b+ c− 1; so that
it will be necessary that these constants are such, that we have (x being = 0)

M ′A
′+N ′A

′′+P ′A
′′′ + · · · = 1, (c)

by supposing successively t = 1, 2, 3, . . . , b+c−1 in the quantities ′A, ′A
′, ′A

′′, . . ..
Now it is clear that equation (a) above is no other than that this one here ′A = 0

by making t = b+ c; moreover, if we make

α = 2
√
bc cos θ,

it is clear that the expression for ′A found above will become

′A =

(√
q

p

)t
sin tθ
√
pq sin θ

;

therefore, making t = b+ c, the equation in question will become

sin(b+ c)θ

sin θ
= 0,

whence we deduce
θ =

λπ

b+ c
,

π being the angle of 180 degrees and λ any number of the sequence 1, 2, 3, . . . , b+c−
1. We know thence the b+c−1 roots α, α′, α′′, . . . , in the same way the corresponding
quantities ′A, ′A

′, ′A
′′, . . .; and we will have, in general,

α(λ) = 2
√
pq cos

λπ

b+ c
, ′A

(λ) =

(√
q

p

)t sin λtπ
b+c√

pq sin λπ
b+c

.

Substituting therefore these values into formula (b) and making for greater simplic-
ity

b+ c = n
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and
M

√
pq sin π

n

= (1),
N

√
pq sin π

n

= (2), . . . ,

we will have

yx,t =1− (2
√
pq)x

(√
q

p

)t
×
[
(1)
(

cos
π

n

)x
sin

tπ

n
+ (2)

(
cos

2π

n

)x
sin

2tπ

n

+ (3)
(

cos
π

n

)x
sin

3tπ

n
+ · · ·+ (n− 1)

(
cos

(n− 1)π

n

)x
sin

(n− 1)tπ

n

]
;

and equation (c) by which it will be necessary to determine the constants (1), (2), (3),
. . .,(n− 1) will be

(1) sin
tπ

n
+ (2) sin

2tπ

n
+ · · ·+ (n− 1) sin

(n− 1)tπ

n
=

(√
q

p

)t
,

which must take place by making successively t = 1, 2, 3, . . . , n− 1.
In order to deduce thence the value of each of these constants, it will be necessary

only to multiply the whole equation by the sine which has for coefficient the constant
which we wish to determine, and to add next together the n − 1 particular equations
which correspond to t = 1, 2, 3, . . . , n− 1; in this manner all the other constants will
disappear, and the sought constant will be found multiplied by 2

n ; this is what we can
be assured by the known formulas for the summation of series formed of sines or of
cosines.

Thus in order to have, in general, the value of (µ) we will multiply the equation by
sin µtπ

n , and, operating as we just said, there will come

n

2
(µ) =

√
q

p
sin

µπ

n
+
p

q
sin

2µπ

n
+ · · ·+

(√
q

p

)n−1
sin

(n− 1)µπ

n
.

Now the second member of this equation is reduced by known formulas to√
q
p

[
1±

(√
q
p

)n]
sin µπ

n

1− 2
√

q
p cos µπn + p

q

,

the upper sign being for the case of µ odd, and the lower sign for the one of µ even.
We will have therefore, in general,

(µ) =

2
n

√
q
p

[
1±

(√
q
p

)n]
sin µπ

n

1− 2
√

q
p cos µπn + p

q

,

whence, by making successively µ = 1, 2, 3, . . . , n − 1, we will deduce the values
of the constants (1), (2), (3), . . ., which we will substitute into the expression above
for yx,t; next we will have no more than to make x = a and t = c in order to have the
value of the demanded lot.
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REMARK.

63. The preceding Problem returns to the one which concerns the duration of the
games which we play by reducing, and of which Messers de Monmort, Bernoulli and
Moivre have occupied themselves. (See the Work of Monmort, page 268, second edi-
tion; the one of Moivre, page 191, third edition.)

We propose ordinarily this Problem thus: Two players each having a certain num-
ber of tokens play together with this condition that the one who loses a game will give a
token to the other; we demand how much the odds are that the game, which can endure
to infinity, will be finite in a certain number of games at most, so that one of the two
players will have won all the tokens of the other. It is easy to understand that if we
denote by b and c the numbers of tokens of the two players, by p and 1 − p or q the
respective probabilities that these players have in order to win each game, and by a the
number of games in which we wager that the game will end, it is easy, I say, to under-
stand that we will have exactly the case of our Problem VI. Thus of the two solutions
which we just gave of this Problem, the first corresponds to the method of Problem
LXIII, and the second corresponds to that of Problem LXVIII of the Work cited of
Moivre; but our solutions have the advantage of being more direct, more general and
more analytic than those of that Author.

Problem V above can also be brought back to the duration of games; but it is neces-
sary to suppose that one of the players having first b tokens, the other having none, and
that the game ends only when the latter one will have won the b tokens of his adversary.

PROBLEM VII.

64. Let a number a of urns be arranged in sequence, and of which each contains
n tickets in part white and in part black at will; let us draw at once from each of these
urns a ticket at random and let us put next the ticket drawn from each urn into the
following urn; by observing to put in the first urn the ticket drawn from the last; we
demand what will be probably the number of black tickets in each urn after a number
b of parallel drawings.

Let yx,t be the number of black tickets that there will be probably in the xth urn
after t drawings; it is easy to see that after a new drawing this number will be probably
increased by yx−1,t

n , and diminished by yx,t
n , so that we will have the equation

yx,t+1 = yx,t +
1

n
yx−1,t −

1

n
yx,t,

which is reduced to this form

yx,t + (n− 1)yx+1,t − nyx+1,t+1 = 0.

Here the given quantities are the values of yx,t when t = 0 and when x = 1, 2, 3,
. . . , n, which indicate the numbers of black tickets that there are in each urn before the
first drawing; so that one of the conditions of the Problem is that the terms yx,0 be all
given from x = 0 to x = n inclusively: the other condition to which it is necessary to
satisfy is that the tickets drawn from the last urn return to the first; and it is clear that
for this there is only to suppose that the ath urn precedes the first, that is to say that
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that urn is also the 0th; so that the value of yx,t which corresponds to x = a is always
identified with that which corresponds to x = 0; which will give this other condition
ya,t = y0,t, whatever be t.

Now if we return to the differential equation found above in formula (F) of no. 7,
we have

A = 1, B = n− 1, B′ = 0, C ′ = −n;

which reenters into the second case of no. 11; so that, because of

p = − B
C ′

= 1− 1

n
, q =

A

B
=

1

n− 1
,

we will have immediately

yx,t =

(
1− 1

n

)t [
yx,0 +

t

n− 1
yx−1,0 +

t(t− 1)

2(n− 2)
yx−2,0 + · · ·

]
,

the number of terms being s+ 1.
Now as we must have y0,t = ya,t, whatever be t, it is clear that in order to satisfy

this condition, it will be necessary that we have

y0,0 = ya,0, y−1,0 = ya−1,0, y−2,0 = ya−2,0, . . .

and, in general,
y−s,0 = ya−s,0,

s being any positive number or zero. Thus, as the values of yx,0 are supposed known
from x = 1 to x = a inclusively, we will know all the values of yx,0 which can enter
into the preceding expression for yx,t.

COROLLARY.

65. If we do not wish that the tickets drawn from the last urn reenter into the first,
but that we always put into that one a white ticket after each extraction, there will
be then only to suppose that the 0th urn which is counted as preceding the first urn,
contains only some white tickets, which will give y0,t = 0, t being whatever; and we
will see easily that in order to satisfy this condition, it will be necessary to suppose

y0,0 = 0, y−1,o = 0, y−2,0 = 0, . . . ,

and, in general,
y−s,0 = 0,

s being any positive number or zero. Thus it will be necessary, in this case, to take only
x terms of the general expression of yx,t by neglecting all the following.

In general, if we suppose that each ticket drawn from the first urn is replaced by a
ticket drawn at random following any law which varies, as we wish, at each drawing,
in a manner that the probability that this ticket is black is any given function of t
that we will designate by (t), we will consider that, as the probability that the ticket
which enters into the xth urn at the tth drawing is black is represented by yx−1,t

n in
the preceding solution, the probability (t) which corresponds to the first urn for which
x = 1 will be y0,t

n ; so that we will have y0,t = n(t); consequently we will know the
first vertical row of the Table of no. 6; and thence we will be able, by the formulas of
no. 11, to deduce the values of y−s,0.
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