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XXV.
Application of the preceding researches to the analysis of chances.

The present state of the system of Nature is evidently a sequel of that which was
in the preceding moment, and, if we imagine an intelligence who, for a given instant,
embraces all the relationships of the beings of this universe, she could determine for
any time taken in the past or in the future the respective position, the movements, and
generally the attachments of all these beings.

Physical astronomy, this of all our attainments which gives the greatest credit to
the human spirit, offers us an idea, although imperfect, of that which could be a similar
intelligence. The simplicity of the law which moves the celestial bodies, the relation-
ships of their masses and of their distances, permits the analysis to follow, up to a
certain point, their movements; and, in order to determine the state of the system of
these great bodies in the past or future centuries, it suffices to the geometer that obser-
vation gives to him their position and their velocity for any instant: man owes then this
advantage to the power of the instrument which he employs, and to the small number of
relationships which he embraces in his calculations; but the ignorance of the different
∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
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causes which compete in the production of events, and their complication, joining to
the imperfection of the analysis, prevents pronouncing with the same certitude on the
great number of phenomena; there are for him therefore some uncertain things, these
are more or less probable. In the impossibility to know them, he has sought to com-
pensate himself by determining their different degrees of possibility, so that we owe to
the feebleness of the human mind one of the most delicate and most ingenious theories
of Mathematics, known as the science of chances or of probabilities.

Before going further, it is important to fix the sense of these words chance and
probability. We regard a thing as the effect of chance, when it offers to our eyes no
regularity, or which announces no design, and when we are ignorant moreover of the
causes which have produced it. Chance has therefore no reality in itself; it is only a
proper term to designate our ignorance of the manner in which the different parts of a
phenomenon are coordinated among themselves and with the rest of Nature.

The notion of probability depends upon our ignorance. If we are assured that, of
two events which cannot exist together, one or the other must necessarily happen, and
if we see no reason in order that one would happen rather than the other, the existence
and the nonexistence of each of them is equally probable. Similarly, if of three events
which are mutually exclusive, one must necessarily happen, and if we see no reason in
order that one would happen rather than the other, their existence is equally probable,
but the nonexistence of each of them is more probable than its existence, and this in
the ratio of 2 to 1, because on three equally probable cases there are two which are
favorable to it, and one alone which is contrary to it.

The number of possible cases remaining the same, the probability of an event in-
creases with the number of favorable cases; on the contrary, the number of favorable
cases remaining the same, it diminishes in measure as the number of possible cases in-
creases; so that it is in direct proportion to the number of favorable cases and in inverse
to the number of all the possible cases.

The probability of the existence of an event is thus only the ratio of the number of
favorable cases to that of all the possible cases, when we see moreover no reason in
order that one of these cases would happen rather than the other. It can be consequently
represented by a fraction of which the numerator is the number of favorable cases, and
the denominator that of all the possible cases.

Similarly, the probability of the nonexistence of an event is the ratio of the number
of the cases which are contrary to it to that of all the possible cases, and must be
consequently expressed by a fraction of which the numerator is the number of contrary
cases, and the denominator that of all the possible cases.

It follows thence that the probability of the existence of an event added to the prob-
ability of its nonexistence makes a sum equal to unity which represents consequently
entire certitude, because it is clear that an event must necessarily either rightly happen
or fail.

Moreover, a thing happens certainly when all the possible cases are favorable to
it, and the fraction which expresses its probability is then unity itself. Certitude can
therefore be represented by the unit, and probability by a fraction of certitude; it can
approach more and more to unity, and even differ from it less than any given quantity;
but it can never become greater. The theory of chances has for object to determine
these fractions, and one sees thence that it is the most happy supplement that one can
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imagine to the uncertainty of our knowledge.
Certitude and probability, such as we just defined them, are evidently comparable

between them and can be subjected to a rigorous calculus; it is not therefore some
different states of the human mind when it sees only all the possible cases favoring
an event, or when, in this number, it realizes many of them which are contrary to it.
These two states are absolutely incomparable, and one cannot say of the first that it
is the double, or triple of the second, because truth is indivisible. There happens here
the same thing as in all the physico-mathematical sciences; we measure the intensity
of light, the different degrees of heat of bodies, their forces, their resistances, etc.
In all these researches, the physical causes of our sensations, and not the sensations
themselves, are the object of Analysis.

The problem of events serves to determine the expectation or the fear of the persons
interested in their existence, and it is under this point of view that the science of chances
is one of the most useful of the civil life. This word expectation has different meanings:
it ordinarily expresses the state of the human mind when there must happen to it any
good under certain assumptions which are only probable. In the theory of chances,
expectation is the product of the expected sum by the probability to obtain it. In order
to distinguish the two meanings of this term, I will call the first moral expectation, and
the second, mathematical expectation.

We imagine n persons who have an equal probability to obtain the sum a, and that
this sum must certainly belong to one among them; the total probability being 1, or
equal to certitude, it is clear that the probability of each of these persons is 1

n , and
consequently their mathematical expectation a

n . This is thus the sum which ought to
return to them, if they wished, without incurring the risks of the events, sharing the
entire sum a.

If one of these persons p had a probability double of that of the others, his math-
ematical expectation and, consequently, the sum which ought to return to him in the
sharing would be similarly two times greater; because, if one imagines n+ 1 persons
who have an equal probability on the sum a, their probability to obtain it will be 1

n+1 ,
and their mathematical expectation a

n+1 . Now one can suppose that one among them
cedes his claims and his expectation to p; this one will acquire consequently a double
probability and a double expectation expressed by 2a

n+1 ; and in the sharing he must have
a sum 2a

n+1 double of that of the other persons.
We see thence that the mathematical expectation is nothing other than the partial

sum which must be returned when one does not wish to incur the risks of the event,
by supposing that the apportionment of the entire sum is made proportionally to the
probability to obtain it; it is in fact the only equitable manner to apportion it when we
set aside all strange circumstances, because with an equal degree of probability one has
an equal right to the expected sum.

Moral expectation depends, in this way as the mathematical expectation, on the
expected sum and on the probability to obtain it; but is not always proportional to
the product of these two quantities; it is ruled by a thousand variable circumstances,
that it is nearly always impossible to define, and even more to subject to Analysis;
these circumstances, it is true, serve only to increase or to diminish the advantage
that procures the expected sum, and so we can regard the moral expectation itself as
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the product of this advantage by the probability to obtain it; but we must distinguish,
in the expected good, its relative value to its absolute value; this here is absolutely
independent of the need and of the other reasons which make it wished for, instead of
which the first increases with these different motives.

Now we cannot give any determinate rule to appreciate this relative value; there is
however a most ingenious point that Mr. Daniel Bernoulli proposes in the Volume of
Petersburg for the year 1730. The relative value of a very small sum is, according to
this illustrious geometer, proportional to its absolute value divided by the total wealth
of the interested person.

This rule is however not general, but it must serve in a great number of circum-
stances, and it is all that one can desire in this matter.

Most of that which was written on chances has seemed to confuse expectation and
moral probability with expectation and mathematical probability, or to regulate at least
one by the other; they have wanted thus to give to their theories an extent to which
they are not susceptible, this has rendered them obscure and little fit to satisfy the mind
accustomed to the rigorous clarity of Geometry. Mr. d’Alembert has proposed against
them some very fine objections, which have awakened the attention of the geometers;
he has made felt the absurdity which it would have lead them, in a great number of
circumstances, after the results of the Calculus of Probabilities, and, consequently, the
necessity to establish in these matters a distinction between the mathematical and the
moral; this part of the sciences owes to him therefore the advantage to be supported
hereafter on some clear principles and to be tightened in its true bounds.

Let one permit me here the following digression on the difficulties of which the
analysis of chances has seemed susceptible: the probability of uncertain things and the
expectation which is found linked to their existence are, as I have said, the two objects
of this Analysis; the distinction established previously between moral expectation and
mathematical expectation responds, it seems to me, to all the objections that one could
make against the second of these two objects; we examine consequently those which
have relationship to the first.

In the research of the probability of events, one starts from this principle, namely
that the probability is the number of favorable cases divided by those of all the possible
cases, this is evident; there therefore can be difficulty only as much as one would as-
sume an equal possibility to two unequally possible cases; now we cannot be prevented
from agreeing that the applications that have been made hitherto of the Calculus of the
Probabilities to the objects of civil life are subject to this difficulty. I suppose, for ex-
ample, that in the game of heads and of tails the piece that one casts into the air has
greater inclination to fall back on one side than the other, but that the two players are
unaware of which side has the greatest inclination; it is clear that there are equal odds
for heads as for tails; one can therefore assume on the first toss, as one does ordinarily,
that heads and tails are equally probable; but this assumption is no longer permitted if,
for example, one of the players wagers that on two tosses he will bring about heads;
because then one must take into consideration the possible inequality of heads and of
tails, since, just as one is unaware on what side is found the greatest, however this in-
equality encourages always the one who wagers that heads will not occur in two tosses,
in such a way that its probability is greater than if heads and tails were equally possible;
the cause of the error into which one falls comes from this that one assumes equally
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possible these four cases: 1 ˚ heads on the first toss, heads on the second, that which I
designate in this manner (heads, heads); 2 ˚ (heads, tails); 3 ˚ (tails, heads); 4 ˚ (tails,
tails), that which is not; because these two here (heads, heads), (tails, tails), are more
probable than the two others; in fact, I suppose that 1+ϖ

2 represents the probability of
a side which has the greatest inclination, and 1−ϖ

2 that of the other side; this put, the

probability of (heads, heads) will be 1+2ϖ+ϖ2

4 if heads were the most probable, and
1−2ϖ+ϖ2

4 if it were the least probable; but, as there is no more reason to suppose it the
one rather than the other, it is necessary to add together these two probabilities and by
taking the mean, which gives 1+ϖ2

4 for the probability of (heads, heads), and hence
likewise for that of (tails, tails); one will find similarly the probability of (heads, tails),
or of (tails, heads), equal to 1−ϖ2

4 ; one sees therefore that these four cases are not
equally possible, and that the inequality of the probabilities of heads and of tails, pro-
vided that one is unaware of what side has the greatest, favors the player who wagers
that on two tosses heads will not occur.

This which I just said of the game of heads and of tails is able to be applied to the
game of dice, and generally to all the games in which the different events are suscepti-
ble to one physical inequality; but, having developed besides this remark with enough
extension (see in Volume VI of the Savants étranges a Memoir Sur la probabilité des
causes par les événements), I will observe only that, even if one is unaware which are
the most probable of these events, however there occurs this of the remarkable, namely,
that one can, in nearly all cases, determine to which of the players this inequality is ad-
vantageous.

The Theory of chances supposes again that if heads and tails are equally possible,
it will be likewise for all the combinations of them (heads, heads, heads, etc.), (tails,
heads, tails, etc.), etc. Many philosophers have thought that this assumption is incor-
rect, and that the combinations in which an event occurs many times in sequence are
less possible than the others; but it would be necessary to assume for this that the past
events have some influence on those which must occur, which is not admissible. I ad-
mit, the ordinary march of nature is to intermingle the events, but this comes, it seems
to me, from this that the combinations where they are mixed are much more numerous.
Here is, however, a specious difficulty, to which it is good to respond. If heads hap-
pened, for example, twenty times in sequence, one could be quite tempted to believe
that this is not the effect of chance, while if heads and tails were intermingled in any
manner, one would not seek the cause. Now, why this difference between these two
cases, if it is only because the one is physically less possible than the other? To this,
I respond generally that, there where we perceive the symmetry, we believe always to
recognize the effect of a cause acting with order, and we reason by this consistently
with probabilities, because, a symmetric effect must be necessarily the effect of chance
or the one of a regular cause, the second of these assumptions is more probable than
the first. Let 1

m be the probability of its existence in the case where it would be due to
chance, and 1

n this probability if it started from a regular cause; the probability of the
existence of this cause will be (see Volume VI of Savants étranges)

1
n

1
m + 1

n

=
1

1+ n
m

;
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whence one sees that the more m will be great with respect to n, the more also the
probability that the symmetric event is the effect of a regular cause will increase. This
is not because the symmetric event is less possible than the others, but because there is
greater odds that it is due to a cause acting with order than to pure chance, that we seek
this cause. A quite simple example will clarify this remark. I suppose that one finds on
a table some printed characters arranged in this order, INFINITÉSIMAL; the reason
which leads us to believe that this arrangement is not the effect of chance can come
only from this that, physically speaking, it is less possible than the others, because,
if the word infinitésimal were not used in any language, this arrangement would be
neither greater, nor less possible, and yet we would suspect then no particular cause.
But, as this word is in use among us, it is incomparably more probable that a person
will have thus arranged the preceding characters, than it is only that this disposition is
due to chance. I return now to my object.

The uncertainty of human knowledge carries either on the events, or on the cause
of the events. If we are assured, for example, that an urn contains only some black and
white tickets in a given ratio, and that we ask the probability that by taking at random
one of these tickets it will be white, the event is uncertain, but the cause on which
depends the probability of its existence, that is to say the ratio of the white tickets to
the black, is known.

In the following problem: An urn being supposed to contain a given number of
black and white tickets, if one draws from it a white ticket, to determine the probability
that the proportion of the white tickets to the black in the urn is that of p to q; the event
is known and the cause unknown.

We can restore to these two classes of problems all those which depend on the
Theory of chances. There exists, in truth, a very great number in which the cause
and the event seem equally unknown; such is the one: An urn being supposed able
equally to contain all the numbers of white and black tickets from 2 to n inclusively, to
determine the probability that by drawing at random two of these tickets, they will be
white. The ratio of the white tickets to the black, the total number of tickets and the
event which must result from it are unknown; but one must regard here as cause of the
event the equal possibility of all the numbers from 2 to n, and the indifference of the
tickets to be white or black; thus this problem is of the genre of those in which, the
cause being known, the event is unknown.

My design being not to give here a complete treatise on the Theory of chances, I will
be content to apply the preceding researches to the solution of many problems related
to this Theory; I will limit myself even here to those in which, the cause being known,
the question is to determine the events, having considered in one other Memoir the case
where one proposes to reascend again from the events to the causes (see Volume VI of
Savants étrangers).

XXVI.

PROBLEM X. — If in a pile of x pieces one takes a number at random, it is neces-
sary to determine the probability that this number be even or odd.

I suppose that we can take indifferently, or one alone, or many, or all these pieces
at one time.
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This put, let y x be the sum of the cases in which the number can be even, and
1
y x

that of the cases in which it can be odd; it is clear that, if we increase the number x of
pieces by one unit, the sum of the even cases, represented thus by y x+1 will be equal:
1 ˚ to the preceding number of even cases; 2 ˚ to the preceding number of odd cases,
since each of these cases, combined with the new piece, give an even case. We will
have therefore

(1) y x+1 = y x +
1
y x ;

next the number of odd cases, represented by
1
y x+1 will be equal: 1 ˚ to the preceding

number
1
y x of odd cases; 2 ˚ to the preceding number of even cases; 3 ˚ to the unit,

since the new piece can be taken alone. We will have consequently

(2)
1
y x+1 =

1
y x + y x +1.

In order to integrate these two equations, I observe that the equation (1) gives

∆y x =
1
y x hence, ∆

2y x = ∆.
1
y x .

Now equation (2) gives

∆.
1
y x = y x +1, therefore ∆

2y x = y x +1;

whence it is easy to conclude
y x+1 = 2y x +1,

By integrating this equation by Problem I, we will have

y x = A2x−1,

A being an arbitrary constant; in order to determine it, I observe that, x being 1, we
have

y x = 0, therefore A =
1
2

, hence y x = 2x−1−1.

Now, since we have
1
y x = ∆y x , we will have

1
y x = 2x−1. The sum of all the possible

cases is clearly
y x +

1
y x = 2x−1.

If therefore we call z x the probability that the number of pieces is even, and 1 z x that it
is odd, we will have

z x =
2x−1−1
2x−1

and 1 z x =
2x−1

2x−1
;

whence there results that there is always more advantage to wager for the odd numbers
than for the evens.

I suppose that one is assured that the number x cannot exceed the number n, but
that this number and all the lesser are equally possible, we will have the sum of all the
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odd cases = 2x +C. Now, x being 1, we must have 2x +C = 1; therefore C =−1. We
will find similarly the sum of all the even cases = 2x− x+C; now, x being 1, we have
2x− x+C = 0. Therefore C = −1; hence, the sum of the odd cases is 2n−1, and the
sum of the even cases is 2n−n−1; thus, the probability for the odds is

2n−1
2n+1−n−2

,

and the probability for the evens

2n−n−1
2n+1−n−2

.

XXVII.

PROBLEM XI. — Let a be a sum which Paul constitutes to an annuity, in a way
that the interest is 1

m of that which is due to him: I suppose that, for some arbitrary
reasons, one keeps each year the fraction 1

n of this interest, so that Paul, at the end of
the first year, for example, must collect only the quantity a

m −
a

mn , this put, if one pays
to him every year the sum a

m , and, consequently, more than is due to him, and let the
surplus be used to amortize the capital, one asks what this capital will become in the
year x.

Let y x be this capital in the year x; it is clear that, at the end of the year x, there will
be due to Paul only y x

( 1
m −

1
mn

)
. Therefore, since one pays the sum a

m , the capital will
be diminished by the quantity a

m − y x
n−1
mn ; hence, we will have

y x+1 = y x −
a
m
+ y x

n−1
mn

and, integrating as in Problem I,

y x =
na

n−1
+A

(
1+

n−1
mn

)x−1

;

now, setting x = 1, y x = a; thus,

A =− a
n−1

;

hence,

y x =
a

n−1

[
n−
(

1+
n−1
mn

)x−1
]
.

If we ask the year x at which this capital will be zero, we will have(
1+

n−1
mn

)x−1

= n;

therefore
x = 1+

lnn
ln
(
1+ n−1

mn

) .
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I suppose that the interest be 5 for 100, and that one collects 1
10 on this interest, we

will have
m = 20 and n = 10;

hence,
x = 53.3.

One can resolve in the same manner the following problem:
A person owes the sum a, and wishes to release himself at the end of h years, so

that she owes nothing in the year h+1, the interest being always 1
m of the quantity due;

the question is to find what must she give for this each year.
Let p be this quantity, and y x that which she owes in year x, we will have, by the

preceding method,

y x+1 = y x

(
1+

1
m

)
− p,

whence I conclude by integrating y x =mp+A
(
1+ 1

m

)x−1
. Now, putting x= 1, y x = a;

thus
a = mp+A;

hence,

y x = mp+(a−mp)
(

1+
1
m

)x−1

;

but, by making x = h+1, we have

y x = 0,

by assumption; therefore

p =
a
(
1+ 1

m

)h

m
[(

1+ 1
m

)h−1
] .

XXVIII.

PROBLEM XII. — I imagine a solid composed of a number n of perfectly equal
faces, and which I designate by the numbers 1, 2, 3, . . . , n; I wish to have the probabil-
ity that, in a number x of casts, I will bring about these n faces in sequence in the order
1, 2, 3, 4, . . . ,n.

I call y x this probability, and u x the number of favorable cases: the number of all
the possible cases is nx; because, if we call t x this number at the cast x, it will be t x−1
at the cast x− 1. Now, the number of cases at the cast x− 1 must be combined with
all the faces of the solid, in order to form all the possible cases at the cast x; we have
therefore

t x = nt x−1 ,

this which gives
t x = Anx.
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Now, setting x = 1, t x = n; thus

A = 1 and t x = nx.

We will have therefore u x
nx = y x .

Now u x is evidently equal to the number of favorable cases at the cast x−1 multiplied
by the number of faces of the solid, plus to the number of cases in which the combina-
tion 1, 2, 3, . . . , n can happen precisely at the cast x; moreover, all the cases in which
this combination does not happen at the cast x− n each gives a case in which it will
happen precisely at the cast x. The number of these cases is nx−n−u x−n ; we will have
therefore

u x = nu x−1 +nx−n−u x−n ; hence, y x = y x−1 −
y x−n

nn +
1
nn ,

an equation which we will integrate easily by the preceding methods.
Let n = 2: we will have

y x = y x−1 −
y x−2

4
+

1
4

;

whence I conclude, by integrating,

y x = 1+
Ax+B
2x−1 ;

now, setting x = 1, y x = 0, and setting x = 2, y x = 1
4 ; thus, A = − 1

2 , and B = − 1
2 ;

hence, y x = 1− x+1
2x .

XXIX.

PROBLEM XIII. — I suppose a number n of players (1), (2), (3), . . ., (n) play in
this way: (1) plays with (2), and if he wins he wins the game; if he neither loses nor
wins, he continues to play with (2), until one of the two wins. But if (1) loses, (2) plays
with (3); if he wins it, he wins the game; if he neither loses nor wins, he continues
to play with (3); but if he loses, (3) plays with (4), and thus in sequence until one of
the players has defeated the one who follows him; that is to say (1) must be winner
over (2), or (2) over (3), or (3) over (4), . . ., or (n− 1) over (n), or (n) over (1).
Moreover, the probability of anyone of the players to win over the other equals 1

3 , and
that of neither winning nor losing equals 1

3 . This put, it is necessary to determine the
probability that one of these players will win the game at trial x.

Let
n
u x be the probability that at trial x, (n) will be the winner over (n−1): we will

have
n
u x =

1
3

n
u x−1 +

1
3

n−1
u x−1

Let now
1
z x be the probability that (n), at trial x, will win the game,

2
z x the probability

that it will be (n−1), and thus in sequence: we will have
1
z x = 1

3
n
u x−1 . Hence,

1
z x −

1
3

1
z x−1 =

1
3

2
z x−1 .
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We will have likewise
2
z x −

1
3

2
z x−1 =

1
3

3
z x−1 ,

3
z x −

1
3

3
z x−1 =

1
3

4
z x−1 ,

...

such that these equations are reentrant. This put, by following the method set forth
previously for this type of equations, we will have

1
z x −

2
3

1
z x−1 +

1
32

1
z x−2 =

1
3
(

2
z x−1 −

1
3

2
z x−1 ) =

1
32

4
z x−3 ;

hence,

1
z x −

3
3

1
z x−1 +

3
32

1
z x−2 −

1
33

1
z x−3 =

1
33 (

3
z x−2 −

1
3

3
z x−2 ) =

1
33

4
z x−3 ;

whence, by continuing to operate so, we will have

1
z x −

n
3

1
z x−1 +

n(n−1)
1.2

1
32

1
z x−2 −

n(n−1)(n−2)
1.2.3

1
33

1
z x−3 + · · ·=

1
3n

1
z x−n ;

we will have similarly

2
z x −

n
3

2
z x−1 +

n(n−1)
1.2

1
32

2
z x−2 −

n(n−1)(n−2)
1.2.3

1
33

2
z x−3 + · · ·=

1
3n

2
z x−n ,

and thus in sequence for the other variables
3
z x ,

4
z x , . . .

In order to integrate these different equations, it is necessary to solve this here
( f − 1

3 )
n = 1

3n ; or, by making f − 1
3 = q, qn− 1

3n = 0, this which is easy to do, by
the beautiful theorem of Cotes. There remains in this way no more difficulty than the
determination of the arbitrary constants which come from the integration. For this, it
is necessary to have the probability of winning of each player for a number n of trials.
Now, for that which regards player (1), his probability of winning on the first trial is 1

3 ;
on the second trial it is 1

32 ; on the third trial it is 1
33 , . . ., so that we have

1, 2, 3, 4, . . . , n,
1
3 ,

1
32 ,

1
33 ,

1
34 , . . . , 1

3n ,

by setting under each trial the probability of player (1) winning at this trial; we will
form likewise for player (2) the sequence

2, 3, 4, 5, . . . , n+1,
1
32 ,

2
33 ,

3
34 ,

4
35 , . . . , n

3n+1 ,

and for player (3) this one:

3, 4, 5, 6, . . . , n+2,
1
33 ,

3
34 ,

6
35 ,

10
36 , . . . ,

n(n+1)
1.2

3n+2 ,

and thus in sequence for the other players.
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XXX.

PROBLEM XIV. — Two players A and B, of whom the respective skills are in ratio
of p to q, play together in a way that, out of a number x of trials, there lacks n of them
to player A, and consequently x− n to player B, in order to win; the question is to
determine the respective probabilities of these two players.

Let n y x be the probability of B winning; it is clear that on the following trial it will
be, either n−1 y x−1 , if B loses, or n y x−1 , if he wins. Now, the probability that he will
win is q

p+q , and that he will lose, p
p+q . We have therefore

(g) n y x =
q

p+q n y x−1 +
p

p+q n−1 y x−1 .

This equation is in partial differences. In order to integrate I observe that, when
n = 1, we have 1 y x = q

p+q 1 y x−1 , since in this case n−1 y x = 0; we will have therefore
by Problem VI, article XX,

n y x = a n . n y x−1 +
1 a n . n y x−2 +

1 a n . n y x−3 + · · ·+un,

and we will find that the equation

0 = 1−
a n
f
−

2 a n
f
−·· ·

is the same as this one:

0 =

(
f − q

p+q

)n

.

We will have besides un = p
p+q un−1, therefore un = H

(
p

p+q

)n
. Now, setting n = 1,

un = 0; thus H = 0, and un = 0. The expression of n y x will be therefore (art. IX)

n y x =
qx−1

(p+q)x−1

[
Cn +Dn(x−1)+En

(x−1)(x−2)
1.2

+ · · ·

+Ln
(x−1)(x−2) · · ·(x−n+1)

1.2.3 · · ·(n−1)

]
.

In order to determine the arbitrary constants Cn, Dn, En, . . ., which can be functions
of n, I observe that, if one makes x = n, we will have n y n = 1; because it is clear that
A loses necessarily, when out of n trials there lacks n of them to him; if one makes
x = n−1, we will have similarly n y n−1 = 1; because equation (g) gives

n y n =
q

p+q n y n−1 +
p

p+q n−1 y n−1

or
1 =

q
p+q n y n−1 +

p
p+q

,

12



hence n y n−1 = 1; similarly, if one makes x = n− 2, we will have n y n−2 = 1, and so
in sequence. If therefore one makes in the expression of n y x , x = 1, we will have

n y 1 = 1; hence, Cn = 1. If one makes x = 2, we will have

1 = (Cn +Dn)
q

p+q
;

hence, Dn =
p
q . If one makes x = 3, we will have

1 = (Cn +2Dn +En)
q2

(p+q)2 = (1+2
p
q
+En)

q2

(p+q)2 ,

therefore En =
p2

q2 , and thus in sequence; whence it is easy to conclude

n y x =
1

( p
q +1)x−1

[
1+

p
q
(x−1)+

p2

q2
(x−1)(x−2)

1.2
+

p3

q3
(x−1)(x−2)(x−3)

1.2.3
+ · · ·

+
pn−1

qn−1
(x−1)(x−2) · · ·(x−n+1)

1.2.3 · · ·(n−1)

]
.

XXXI.

PROBLEM XV. — Three players A,B,C, of whom the respective abilities are rep-
resented by the letters p, q, r, play together in a manner that, out of a number x of
trials, there lacks m to A, n to B and x−m− n to C; one proposes to determine the
respective probability of these three players for winning.

Let m,n y x be the probability of C winning; it is clear that after a new trial it will
be, either m−1,n y x−1 , or m,n−1 y x−1 , or m,n y x−1 ; now, the probability that it will be

m−1,n y x−1 is p
p+q+r ; the probability that it will be m,n−1 y x−1 is q

p+q+r ; and the proba-
bility that it will be m,n y x−1 is r

p+q+r . We will have therefore

(o) m,n y x =
p

p+q+ r m−1,n y x−1 +
q

p+q+ r m,n−1 y x−1 +
r

p+q+ r m,n y x−1 .t

This equation is in partial differences in four variables, and is integrated by Problem
IX; but, for this, it is necessary that one have two particular equations for the case of
m = 1 and of n = 1; in order to find them, I observe that, if one makes m = 1, we will
have

(p) 1,n y x =
r

p+q+ r 1,n y x−1 +
q

p+q+ r 1,n−1 y x−1 ,

because, when m = 1, we have m−1,n y x−1 = 0.
Equation (p) is in partial differences in two variables; in order to integrate it, I

observe that, if one supposes n = 1, we have

1,1 y x =
r

p+q+ r 1,1 y x−1 ;

13



from this equation and from equation (p), we will conclude easily, by Problem VI,

(q)


1,n y x = n

r
p+q+ r 1,n y x−1 −

n(n−1)
1.2

r2

(p+q+ r)2 1,n y x−2

+
n(n−1)(n−2)

1.2.3
r3

(p+q+ r)3 1,n y x−3 −·· ·

We will have similarly

(q′)


m,1 y x = m

r
p+q+ r m,1 y x−1 −

m(m−1)
1.2

r2

(p+q+ r)2 m,1 y x−2

+
m(m−1)(m−2)

1.2.3
r3

(p+q+ r)3 m,1 y x−3 −·· ·

By means of these equations and of equation (o), we will determine, by Problem
IX, the general expression of m,n y x ; thus the problem proposed has no other difficulty
than the length of the calculation.

The general method of Problem IX leads to one final very elevated equation; but,
by means of particular considerations, I have arrived at the solution of the preceding
problem by a much simpler method, that I have developed. I have for brevity p+q+
r = 1, and equation (o) gives

(o′) 2,n y x = p. 1,n y x−1 +q. 2,n−1 y x−1 + r. 2,n y x−1 ,

and if one makes m = 2, equation (q′) gives

2,1 y x = 2r · 2,1 y x−1 − r2 · 2,1 y x−2 .

Let

(s) 2,n y x = a n . 2,n y x−1 +
1 a n . 2,n y x−2 + · · ·+ n X x ;

therefore

q. 2,n−1 y x−1 = a n−1 q. 2,n−1 y x−2 +
1 a n−1 q. 2,n−1 y x−3 + · · ·+q. n−1 X x−1 .

Substituting into this equation, in place of 2,n−1 y x−2 , 2,n−1 y x−3 , . . ., their values
deduced from equation (o′), we will have

2,n y x =(r+a n−1 ). 2,n y x−1 +( 1 a n −a n−1 r) 2,n y x−2

+ p. 1,n y x−1 −a n−1 p. 1,n y x−2 −·· ·+q. n−1 X x−1 ,

whence, by comparing with equation (s), we will have:
1 ˚ a n = a n−1 + r, hence, a n = (n+ 1)r +C; now, setting n = 1, a n = 2r; thus,

C = 0.
2 ˚ 1 a n =

1 a n−1−a n−1 r, hence, 1 a n =−
n(n+1)

1.2 r2+C; now, putting n= 1, 1 a n =

−r2; thus, C = 0.
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3 ˚ 2 a n = 2 a n−1 +
n(n−1)

1.2 r3; therefore, 2 a n = (n−1)n(n+1)
1.2.3 r3 +C; now, setting n =

1, 2 a n = 0; therefore, C = 0, and thus the rest. Hence,

p( 1,n y x−1 −a n−1 . 1,n y x−2 −·· ·)

= p
[

1,n y x−1 −nr. 1,n y x−2 +
n(n−1)

1.2
r2. 1,n y x−3 −·· ·

]
= 0,

by virtue of equation (q).
4 ˚ n X x = q. n−1 X x−1 . Now, we have 1 X x = 0; therefore, 2 X x = 0, and generally

n X x = 0. We have therefore

2,n y x = (n+1)r. 2,n y x−1 −
n(n+1)

1.2
r2. 2,n y x−2 +

(n−1)n(n+1)
1.2.3 2,n y x−3 −·· ·

We will have, by an entirely similar process,

3,n y x = (n+2)r. 3,n y x−1 −
(n+2)(n+1)

1.2
r2. 3,n y x−2 + · · ·

and generally

m,n y x = (m+n−1)r.m,n y x−1 −
(m+n−1)(m+n−2)

1.2
r2.m,n y x−2 + · · · ,

an equation of which the integral is

m,n y x = rx−2
[

m N n
(x−2)(x−3) · · ·(x−m−n+1)

1.2.3 . . .(m+n−2)
+ m M n

(x−2) · · ·(x−m−n+2)
1.2.3 . . .(m+n−3)

+ m L n
(x−2) · · ·(x−m−n+3)

1.2.3 . . .(m+n−4)
+ m K n

(x−2) · · ·(x−m−n+4)
1.2.3 . . .(m+n−5)

+m I n
(x−2) · · ·(x−m−n+5)

1.2.3 . . .(m+n−6)
+ · · ·+ mC n

]
.

The difficulty consists presently in determining the arbitrary constants m N n , m M n , . . .,
which are able to be functions of m and of n.

For this, I assume first m = 1, and we will have

(σ ) 1,n y x = rx−2
[

1C n + 1 D n (x−2)+ 1 E n
(x−2)(x−3)

1.2
+ · · ·+ 1 N n

(x−2) · · ·(x−n)
1.2.3 . . .(n−1)

]
Now we have 1,n y n+1 = 1, as it is clear, since then no trials lack to player C; I take
next the equation

1,n y x = r. 1,n y x−1 +q. 1,n−1 y x−1 .

If one makes x = n+1, we have

1,n y n+1 = 1 = r. 1,n y n +q,

thus

1,n y n =
1−q

r
;
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next

1,n y n =
1−q

r
= r. 1,n y n−1 +q

1−q
r

,

thus

1,n y n−1 =

(
1−q

r

)2

.

We will find similarly

1,n y n−2 =

(
1−q

r

)3

,

and thus in sequence. This put, if one makes x = 2, equation (σ ) will give
(

1−q
r

)n−1
=

1C n ; if one makes x = 3, we will have(
1−q

r

)n−2

= r

[(
1−q

r

)n−1

+ 1 D n

]
,

therefore

1 D n =

(
1−q

r

)n−2 q
r
.

By making x = 4, we will have

1 E n =

(
1−q

r

)n−3 q2

r2 ,

and thus in sequence; hence

1,n y x = rx−2
[

qn−1

rn−1
(x−2) · · ·(x−n)
1.2.3 . . .(n−1)

+
qn−2

rn−2
1−q

r
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)

+
qn−3

rn−3

(
1−q

r

)2 (x−2) · · ·(x−n+2)
1.2.3 . . .(n−3)

+ · · ·+
(

1−q
r

)n−1
]

We will have, likewise,

m,1 y x = rx−2
[

pm−1

rm−1
(x−2) · · ·(x−m)

1.2.3 . . .(m−1)
+

pm−2

rm−2
1− p

r
(x−2) · · ·(x−m+1)

1.2.3 . . .(m−2)
+ · · ·

]
.

If one substitutes now into equation (o), in place of m,n y x , its value found above,
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we will have the following equation

m N n
(x−3)(x−4) · · ·(x−m−n)

1.2.3 . . .(m+n−2)
+(m M n + m N n )

(x−3) · · ·(x−m−n+1)
1.2.3 . . .(m+n−3)

+(m L n + m M n )
(x−3) · · ·(x−m−n+2)

1.2.3 . . .(m+n−4)
+ · · ·

=+
p
r m−1 N n

(x−3) · · ·(x−m−n+1)
1.2.3 . . .(m+n−3)

+
p
r m−1 M n

(x−3) · · ·(x−m−n+2)
1.2.3 . . .(m+n−4)

+ · · ·

+
q
r m N n−1

(x−3) · · ·(x−m−n+1)
1.2.3 . . .(m+n−3)

+
q
r m M n−1

(x−3) · · ·(x−m−n+2)
1.2.3 . . .(m+n−4)

+ · · ·

+ m N n
(x−3) · · ·(x−m−n)
1.2.3 . . .(m+n−2)

+ m M n
(x−3) · · ·(x−m−n+1)

1.2.3 . . .(m+n−3)
+ · · · ,

whence we will form the following equations:

m N n =
p
r m−1 N n +

q
r m N n−1,

m M n =
p
r m−1 M n +

q
r m M n−1,

m L n =
p
r m−1 L n +

q
r m L n−1 ,

...

Now we have

1 N n =
qn−1

rn−1 ;

therefore

2 N n =
p
r

qn−1

rn−1 +
q
r 2 N n−1 ,

hence

2 N n =
qn−1

rn−1
p
r
(n+C);

now, putting n = 1, 2 N 1 = p
r ; therefore

C = 0.

Next

3 N n =
p2

r2
qn−1

rn−1 n+
q
r 3 N n−1 ;
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therefore

3 N n =
qn−1

rn−1

[
p2

r2
n(n+1)

1.2
+C
]

;

now, putting n = 1, 3 N 1 = p2

r2 ; therefore

C = 0,

and generally

m N n =
pm−1qn−1

rm+n−2
n(n+1) · · ·(n+m−2)

1.2.3 · · ·(m−1)
.

We have next

1 M n =
1−q

r
qn−2

rn−2 ;

therefore

2 M n =
q
r 2 M n−1 +

p
r

1−q
r

qn−2

rn−2 ;

hence,

2 M n =
qn−2

rn−2
p
r

1−q
r

(n−1)+C
qn−1

rn−1 ;

now, putting n = 1, 2 M n = 1−p
r ; therefore

C =
1− p

r

and

2 M n =
qn−2

rn−2
p
r

1−q
r

(n−1)+
qn−1

rn−1
1− p

r
.

We will have similarly

3 M n =
qn−2

rn−2
p2

r2
1−q

r
(n−1)n

1.2
+

qn−1

rn−1
p
r

(
1− p

r
n+C

)
;

now, putting n = 1, 3 M n = p
r

(
1−p

r

)
; therefore

C = 0.

By continuing to operate so, we will find generally

m M n =
pm−1qn−2

rm+n−3
1−q

r
(n−1)n · · ·(n+m−3)

1.2.3 · · ·(m−1)

+
qn−1 pm−2

rm+n−3
1− p

r
n(n+1) · · ·(n+m−3)

1.2.3 · · ·(m−2)
.

I will observe here, relative to these expressions for m N n and for m M n , that

n(n+1) · · ·(n+m−2)
1.2.3 · · ·(m−1)

=
m(m+1) · · ·(m+n−2)

1.2.3 · · ·(n−1)
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and that
n(n+1) · · ·(n+m−3)

1.2.3 · · ·(m−2)
=

(m−1)m · · ·(m+n−3)
1.2.3 · · ·(n−1)

;

whence there results that the quantities m N n and m M n remain the same when one
changes p to q, m to n, and reciprocally; this which must be moreover by the nature of
the problem. We must say as much of the other quantities m L n , m K n , . . ..

Presently

m L n =
p
r m−1 L n +

q
r m L n−1 ;

now, 1 L n = qn−3

rn−3
p
r

(
1−q

r

)2
; therefore we will have, by integrating,

2 L n =
qn−3

rn−3
p
r

(
1−q

r

)2

(n−2)+C
qn−2

rn−2 ;

now, putting n = 2, m = 2 and x = 4, in the expression found above for m,n y x , we have

2,2 y 4 = r2( 2 L 2 +2. 2 M 2 + 2 N 2 );

therefore, since 2,2 y 4 = 1,

2 L 2 =
1
r2 −

2p
r2 (1−q)− 2q

r2 (1− p)− 2pq
r2 ;

moreover, C equals 2 L 2 in the expression for 2 L n .
We will find similarly

3 L n =
qn−3

rn−3
p2

r2

(
1−q

r

)2 (n−2)(n−1)
1.2

+
qn−2

rn−2
p
r 2 L 2 (n−1)

+C
rn−1

qn−1 ,

C being an arbitrary constant; now, putting n = 1, 3 L n =
(

1−p
r

)2
; therefore

C =

(
1− p

r

)2

;

hence,

3 L n =
qn−3

rn−3
p2

r2

(
1−q

r

)2 (n−2)(n−1)
1.2

+
qn−2

rn−2
p
r 2 L 2 (n−1)

+

(
1− p

r

)2 qn−1

pn−1 ,
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and generally we will have

m L n =
qn−3 pm−1

rm+n−4

(
1−q

r

)2 (n−2)(n−1) · · ·(n+m−4)
1.2.3 · · ·(m−1)

+
qn−2 pm−2

rm+n−4 2 L 2
(n−1) · · ·(m+n−4)

1.2.3 · · ·(m−2)

+
qn−1 pm−3

rm+n−4

(
1− p

r

)2 n · · ·(n+m−4)
1.2.3 · · ·(m−3)

.

We have next

2 K n =
qn−4

rn−4
p
r

(
1−q

r

)3

+
q
r 2 K n−1 ;

hence,

2 K n =
qn−4

rn−4
p
r

(
1−q

r

)3

(n−3)+C
qn−3

rn−3 ;

now, putting n = 3, we have
C = 2 K 3 .

Likewise,

3 K n =
qn−4

rn−4
p2

r2

(
1−q

r

)3 (n−3)(n−2)
1.2

+
qn−3

rn−3
p
r 2 K 3 (n−2)+

qn−2

rn−2 3 K 2 ,

and generally we will have

m K n =
qn−4 pm−1

rm+n−5

(
1−q

r

)3 (n−3) · · ·(m+n−5)
1.2.3 · · ·(m−1)

+
qn−3 pm−2

rm+n−5 2 K 3
(n−2) · · ·(n+m−5)

1.2.3 · · ·(m−2)

+
qn−2 pm−3

rm+n−5 3 K 2
(n−1) · · ·(n+m−5)

1.2.3 · · ·(m−3)

+
qn−1 pm−4

rm+n−5

(
1− p

r

)3 n · · ·(n+m−5)
1.2.3 · · ·(m−4)

.

We will determine 2 K 3 and 3 K 2 by means of the following equations:

r3( 2 K 3 +3 2 L 3 +3 2 M 3 + 2 N 3 ) = 1,

r3( 3 K 2 +3 3 L 2 +3 3 M 2 + 3 N 2 ) = 1.

The law of the other coefficients m I n , m H n , . . . is clear, and it is easy, consequently,
to determine them. As for the coefficient mC n , we will determine it by this equation

1 = rm+n−2
[

mC n +(m+n−2)m D n +
(m+n−2)(m+n−3)

1.2 m E n + · · ·
]
.
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Thus we have therefore a general expression for m,n y x and, consequently, the proba-
bility of player C winning; by the same method, and by means of analogous formulas,
we would have that of the two other players A and B; in such a way that we have a
solution of the Problem of points in the case of three players; a Problem which had not
yet been solved, as I know, although the geometers who have occupied themselves in
the analysis of chances seemed to desire the solution. (See Mr. Montmort, in his work
Sur l’analyse des jeux de hasard, second edition, page 247.)

I assume in the expression m,n y x , m = 2, n = 3 and x = 9, that is to say that the
number of trials which fall to player C is 4: I assume, moreover, p = q = r = 1

3 . This
put, we will have

2,3 y x =
x−3
3x−2

(
xx+2

2

)
,

and, by supposing x = 9, we will have the probability of C, for winning, equal to

2,3 y 9 = 83
729 ; in order to have the probability of B, I observe that it is equal to 2,4 y 9 ;

now we have

2,4 y x =
1

3x−2

[
4
(x−2)(x−3)(x−4)(x−5)

1.2.3.4
+8

(x−2)(x−3)(x−4)
1.2.3

+7
(x−2)(x−3)

1.2
+5(x−2)−17

]
If we suppose x = 9, we will have

2,4 y 9 =
195
729

;

the probability of A equals 1− 83
729 −

195
729 = 451

729 .
The preceding method could take place again, if, instead of three players, one sup-

posed a greater number.

One can solve the preceding Problem by the method of combinations in an extremely simple
manner that is here:

The same things being assumed as in the preceding Problem; let, moreover, i be the number
of trials which lacks to player C, so that we have x = m+n+ i; it is evident that the game must
end at the latest in x− 2 trials; therefore the number of all the possible cases, multiplied each
by their particular probability, is (p+ q+ r)m+n+i−2. In order to have the number of all the
cases in which the player A wins, it is necessary to develop the trinomial (p+ q+ r)m+n+i−2

and to admit only the terms in which p has an exponent equal or superior to m; let therefore
H pm+µ qν rn+i−2−µ−ν be one of the terms; if the exponents of q and of r are one less than n,
and the other less than i, it is necessary to admit this term in whole; but, if the exponent of q, for
example, is equal or greater than n, it is necessary to reject from this term all the combinations in
which q happens n times before p happens m times. Let therefore ν = n+λ ; I observe, this put,
that these combinations are: 1 ˚ those in which, p having happened m−1 times, q has happened
precisely n times; 2 ˚ those in which, p having happened m−2 times, q has happened precisely
n+1 times; 3 ˚ those in which, p having happened m−3 times, q has happened precisely n+2
times, etc., and thus in sequence until the combination in which, p having happened m−λ − 1
times, q has happened n+λ times, if however λ does not exceed m− 1; because, otherwise, it
would be necessary to stop at the combination in which p does not happen at all; presently, the
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number of cases in which, out of m+n−1 trials, p will happen m−1, and q, n times, is, as one
knows,

∆(m+n−1)
∆(n)∆(m−1)

;

but, as in the term H pm+µ qn+λ ri−2−µ−λ , p happens m + µ times, and q, n + λ times, it is
necessary to multiply ∆(m+n−1)

∆(n)∆(m−1) by the number of combinations in which, p happening µ + 1
times, q happens λ times; now the number of these combinations is

∆(µ +λ +1)
∆(µ +1)∆(λ )

;

therefore we will have
∆(m+n−1)∆(µ +λ +1)

∆(n)∆(λ )∆(m−1)∆(µ +1)
for the number of combinations in which q has happened n times, when p has yet happened only
m−1 times; we will find similarly

∆(m+n−1)∆(µ +λ +1)
∆(n+1)∆(λ −1)∆(m−2)∆(µ +2)

for the number of cases in which q has happened n+1 times, when p has not yet happened m−2
times, and thus in sequence. Let therefore

Qµ+λ =

[
1+

λ (m−1)
(n−1)(µ +2)

+
λ (λ −1)(m−1)(m−2)

(n+1)(n+2)(µ +2)(µ +3)
+ · · ·

]
× ∆(m+n−1)∆(µ +λ +1)

∆(n)∆(m−1)∆(µ +1)∆(λ )
pm+µ qn+λ ri−2−µ−λ ;

let us designate as (Qµ+λ ) the sum of all the terms which one can form, by giving to µ and to λ ,
in Qµ+λ , all the possible values in whole and positive numbers from zero, in a manner however
that µ +λ never exceed i−2; let us express next by (Rµ+λ ) that which (Qµ+λ ) becomes, when
we change q to r, n to i, and reciprocally; this put, the probability of A, for winning, will be

1
(p+q+ r)m+n+i−2 =

[
pm+n+i−2 +

m+n+ i−2
1

pm+n+i−3(q+ r)+ · · ·

+
(m+n+ i−2) · · ·(m+ i−1)

1.2.3 · · ·(n−2)
pm(q+ r)n+i−2− (Qµ+λ )− (Rµ+λ )

]
.

The same method has equal place, whatever be the number of players.

XXXII.

PROBLEM XVI. — I suppose the tickets A1, A2, B1 and B2, contained in an urn,
and that two players A and B play on this condition that A choosing the tickets A1 and
A2, and B the two others, if one draws each time one alone of these tickets at random,
the one of the two players will win, who first will have attained the number i, the tickets
A1 and B1 counting for 1, and the tickets A2 and B2 counting for 2. This put, if
there lacks n units to the player A, and x−n units to player B, one asks the respective
probabilities of the two players A and B to win.
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Let n y x be the probability of B winning; if one draws from the urn the ticket A1, it
will become n−1 y x−1 ; if one draws the ticket A2, it will become n−2 y x−2 ; if the ticket
B1 comes out, it will be n y x−1 ; if it is the ticket B2, it will be n y x−2 ; we will have
therefore

(1) n y x =
1
4 n y x−1 +

1
4 n y x−2 +

1
4 n−1 y x−1 +

1
4 n−2 y x−2 .

This equation is integrated as in Problem VII; but, for this, it is necessary to have
two particular equations in the two particular suppositions for n. Now, if one supposes
n = 0, we have 0 y x = 0, and if one supposes n = 1, 1 y x =

1
2 1 y x−1 , because I suppose

that then the two players exclude the tickets A2 and B2. We have therefore, by Problem
VII,

n y x = an · n y x−1 +
1 an · n y x−2 +

2 an · n y x−3 + · · · ,

and the equation

1 =
an

f
+

1 an

f 2 +
2 an

f 3 + · · ·

is the same as this

0 =

(
1− 1

2 f

)(
1− 1

4 f
− 1

4 f f

)n−1

;

we will have thus

n y x =
An

2x + px
[

Nn
x(x−1) · · ·(x−n+3)

1.2.3 . . .(n−2)
+Mn

x(x−1) · · ·(x−n+4)
1.2.3 . . .(n−3)

+Ln
x(x−1) · · ·(x−n+5)

1.2.3 . . .(n−4)
+Kn

x(x−1) · · ·(x−n+6)
1.2.3 . . .(n−5)

+ · · ·+Cn

+ 1 px
[

1 Nn
x(x−1) · · ·(x−n+3)

1.2.3 . . .(n−2)
+ · · ·

]
,

p and 1 p being the two roots of the equation

f 2− 1
4

f =
1
4
,

that is p being 1+
√

17
8 , and 1 p being 1−

√
17

8 .
It is necessary now to determine the arbitrary constants An, Nn, . . .. Now, if one

substitutes into equation (1), in place of n y x , n y x−1 , n−1 y x−1 , . . . their values drawn
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from the expression of n y x , we will have

An

2x +px
[

Nn
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)
+(2Nn +Mn)

(x−2) · · ·(x−n+2)
1.2.3 . . .(n−3)

+(Nn +2Mn +Ln)
(x−2) · · ·(x−n+3)

1.2.3 . . .(n−4)

+(Mn +2Ln +Kn)
(x−2) . . .(x−n+4)

1.2.3 . . .(n−5)
+ · · ·Cn]

+ 1 px
[

1 Nn
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)
+ · · ·

]

=
1
4

px
{

Nn

(
1
p
+

1
p2

)
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)

+

[
Nn

p
+Mn

(
1
p
+

1
p2

)
+

Nn−1

p

]
(x−2) · · ·(x−n+2)

1.2.3 . . .(n−3)

+

[
Mn

p
+Ln

(
1
p
+

1
p2

)
+

Mn−1

p
+

Nn−1

p
+

Nn−2

p2

]
(x−2) · · ·(x−n+3)

1.2.3 . . .(n−4)

+

[
Ln

p
+Kn

(
1
p
+

1
p2

)
+

Ln−1

p
+

Mn−1

p
+

Mn−2

p2

]
(x−2) · · ·(x−n+4)

1.2.3 . . .(n−5)
+ · · ·

}
+

1
4

1 px

{
1 Nn

(
1

1 p
+

1
1 p2

)
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)
+ · · ·

}

+
1
4

An

2x−1 +
1
4

An

2x−2 +
1
4

An−1

2x−1 +
1
4

An−2

2x−2 .

Whence, by considering that

1 =
1

4p
+

1
4pp

,

we will form the following equations:

0 =
1
2

An +
1
2

An−1 +An−2,

2Nn =
1
4

Nn

p
+

1
4

Nn−1

p
,

2Mn +Nn =
1
4

Mn

p
+

1
4

Mn−1

p
+

1
4

Nn−2

p2 +
1
4

Nn−1

p
,

2Ln +Mn =
1
4

Ln

p
+

1
4

Ln−1

p
+

1
4

Mn−2

p2 +
1
4

Mn−1

p
,

...

We will have some similar equations for 1 Nn,
1 Mn, . . . We will determine the quan-

tities Cn and 1Cn, by considering that, when n = x, n y x = 1, and that, when x = 2n,
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n y x = 1
2 ; whence we obtain the equations

1 =
An

2n + pn
[
Cn +nDn + · · ·+

n(n−1) · · ·3
1.2.3 . . .(n−2)

Nn

]
+ 1 pn

[
1Cn +n 1 Dn + · · ·

]
and

1
2
=

An

22n + p2n
[
Cn +2nDn + · · ·+Nn

2n · · ·(n+3)
1.2.3 . . .(n−2)

]
+ 1 p2n

[
1Cn +2n 1 Dn + · · ·+ 1 Nn

2n · · ·(n+3)
1.2 . . .(n−2)

]
.

It is necessary now to integrate the preceding equations. Now, if one makes − 1
2
√

2
=

cosq and
√

7
2
√

2
= sinq, which gives very nearly q = 110 ˚ 42′, we will find (article IX)

An = 2
n
2 (α cosnq+β sinnq),

α and β being two arbitrary constants. Now, if one makes n = 0, we have

A0 = 0 = α;

and if one makes n = 1, we have

An =
1
2
,

because 1 y x = 1
2x−1 ; therefore

β
√

2sinq =
1
2

and β =
1

2
√

2sinq
;

hence
An = 2

n−2
2

sinnq
sinq

.

The equation

2Nn =
1
4

Nn

p
+

1
4

Nn−1

p

gives

Nn =
Q

(8p−1)n−2 .

This value of Nn commences to take place only when n = 2; therefore

Q = N2 and Nn =
N2

(8p−1)n−2 ;

similarly

1 Nn =
1 N2

(8 1 p−1)n−2
.
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We will determine N2 and 1 N2 by these equations

1 =
A2

22 + p2 ·N2 +
1 p2 · 1 N2

1
2
=

A2

24 + p4 ·N2 +
1 p4 · 1 N2

We will determine in the same manner the other coefficients Mn, Ln, Kn, . . ..

XXXIII.

PROBLEM XVII. — Two players A and B play to this condition, that at each trial,
the one who loses will give an écu to the other; I suppose that the skill of A be to that of
B, as p is to q, and that both have a number m of écus; we ask what is the probability
that the game will end before, or at the number x of trials.

I suppose first p = q. Let

0 y x be the number of cases according to which, at trial x, the gain of the two players
is null;

1 y x be the number of cases according to which the gain of one or the other is 1;

2 y x be the number of cases following which the gain is 2, and thus in sequence. This
put, we will form the following equations:

(ψ)



0 y x = 1 y x−1 ,

1 y x = 2 · 0 y x−1 + 2 y x−1 ,

2 y x = 1 y x−1 + 3 y x−1 ,

3 y x = 2 y x−1 + 4 y x−1 ,

...
(σ ) n y x = n−1 y x−1 + n+1 y x−1 ,

...

m−1 y x = m−2 y x−1

In order to show by what process one obtains these equations, I observe that, at
each trial, there can happen two different cases, namely, that A wins, or that it is B;
now it is clear that the gain cannot be zero at the trial x, without having been 1 at the
trial x−1, and each case in which it is 1 at trial x−1 gives a case in which it is null at
trial x; whence I deduce the equation

0 y x = 1 y x−1 .

Next all the cases in which the gain is null at trial x−1 each give two cases in which
there is 1 at trial x; whence we will have

1 y x = 2 · 0 y x−1 + 2 y x−1 .
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It is likewise in the other equations. Finally, we will obtain the last by considering
that one must exclude the term m y x−1 , because this term cannot take place, as long as
the game is supposed not finite.

The number of all possible cases is 2x; because, by naming hx this number, as
there can happen at the following trial two different cases, namely, that A beats B or
that B beats A, the number hx, being able to be combined with these two cases, gives
consequently 2hx for the number of all possible cases at trial x+1; we have therefore

hx+1 = 2hx;

whence, by integrating,
hx = A2x,

A being an arbitrary constant. Now, putting x = 1, hx = 2; therefore

A = 1 and hx = 2x.

Let presently ux be the probability that the game will end precisely at the number x
of trials: we will have

ux =
m y x
2x ;

but we have clearly

m y x = m−1 y x−1 ;

therefore
ux =

m−1 y x−1

2x .

Let zx be the probability that the game will end before or at the number x of trials, we
will have

zx = zx−1 +ux;

therefore
∆zx−1 =

m−1 y x−1

2x or 2x+1
∆zx = m−1 y x .

There is therefore no more but to determine the value of m−1 y x , which can be made by
means of the preceding equations (ψ). For this, I observe that these equations are able
to correspond to Problem VIII by means of a simple preparation; now this preparation
consists to form, by means of the first two, an equation among three variables, which we
will make by substituting into the second, in place of 0 y x−1 , its value 1 y x−2 deduced
from the first, and we will have

1 y x = 2 · 1 y x−2 + 2 y x−1 .

Let now

(Ω) n y x = an · n y x−2 +
1 an · n y x−4 + · · ·+un +bn · n+1 y x−1 +

1 bn · n+1 y x−3 + · · · ,

It is not necessary to take account, in this equation, of the terms n y x−1 , n y x−3 ,
. . . , n+1 y x−2 , n+1 y x−4 , . . . , because these terms are null as soon as n y x has any value,
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seeing that, if the gain is even or odd at trial x, it is necessarily odd or even at the trials
x−1, x−3, . . .. This put, the equation (Ω) gives

n−1 y x−1 = an−1 · n−1 y x−3 +
1 an−1 · n−1 y x−5 + · · ·+un−1

+bn−1 · n y x−2 +
1 bn−1 · n y x−4 + · · ·

If one substitutes into this equation, in place of n−1 y x−1 , n−1 y x−3 , . . ., their values
that equation (σ ) gives, we will have, after having ordered,

n y x = (an−1 +bn−1) n y x−2 +( 1 an−1 +
1 bn−1) n y x−4 +( 2 an−1 +

2 bn−1) n y x−6 + · · ·

+ n+1 y x+1 −an−1 · n+1 y x−3 −
1 an−1 · n+1 y x−5 −·· ·+un−1.

By comparing this equation with equation (Ω), we will have

bn = 1,
an = an−1 +bn−1,

1 bn =−an−1,

1 an =
1 an−1 +

1 bn−1,

2 bn =− 1 an−1,

2 an =
2 an−1 +

2 bn−1,

...
un = un−1.

In order to integrate these equations, it is necessary to make the following consid-
erations:

The first equation begins to take place when n = 1.
The second begins to exist only when n = 2; thus, the arbitrary constant which

comes by integrating must be determined by means of the value of an when n = 1.
The third equation begins to exist when n = 2.
The fourth begins to exist only when n = 3; and the arbitrary constant which comes

by integrating must be determined by means of the value of 1 an, when n = 2; and thus
for the rest.

This put, if one integrates the second equation, we will have

an = n+C,

C being an arbitrary constant; now, putting n = 1, we have

an = 2, thus C = 1;

hence
1 bn =−an−1 =−n.

One must observe that this equation begins to exist only when n = 2; now, n being 1,
we have

1 b1 = 0, 2 b1 = 0, . . . ,
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moreover, by making n = 2, we have

2 b2 =− 1 a1 = 0;

likewise,
3 b2 = 0, 4 b2 = 0, . . . , 1 a2 =

1 a1 +
1 b1 = 0;

similarly,
2 a2 = 0, 3 a2 = 0, . . . ,

If one integrates the fourth equation, we will have

1 an =−
(n+1)(n−2)

1.2
+C;

in order to determine the constant C, one avails oneself of the value of 1 a2; we have

1 a2 = 0, therefore C = 0;

hence
2 bn =

n(n−3)
1.2

;

this expression of 2 bn is able to begin to take place, by the remarks preceding, only
when n = 3; moreover, by making n = 3, we have

3 b3 =− 2 a2 = 0;

similarly,
4 b3 = 0, 5 b3 = 0, . . . , 2 a3 =

2 a2 +
2 b2 = 0;

similarly,
3 a3 = 0, 4 a3 = 0, . . .

The sixth equation gives, by integrating,

2 an =
(n+1)(n−3)(n−4)

1.2.3
+C.

In order to determine C, I observe that 2 a3 equals 0; therefore, C = 0. Hence

2 bn =−
n(n−4)(n−5)

1.2.3
,

an expression which is able to begin to exist only when n = 4, and thus in sequence.
Finally, un = un−1; therefore, un =C. Now, putting n = 1, un = 0; therefore, C = 0.

Thus we will have

n y x =(n+1) n y x−2 −
(n+1)(n−2)

1.2 n y x−4

+
(n+1)(n−3)(n−4)

1.2.3 n y x−6 −·· ·

+ n+1 y x−1 −n · n+1 y x−3 +
n(n−3)

1.2 n+1 y x−5 −·· ·
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If one supposes now n = m−1, then it is not necessary to take account of the terms

n+1 y x−1 , n+1 y x−3 , . . . because these terms are excluded from the equations (ψ); we
will have therefore

m−1 y x = m · m−1 y x−2 −
m(m−3)

1.2 m−1 y x−4 +
m(m−4)(m−5)

1.2.3 m−1 y x−6 −·· ·

If one substitutes presently into this equation, in place of m−1 y x , its value 2x+1∆zx, we
will have, after having integrated,

zx = m
1
22 zx−2−

m(m−3)
1.2

1
24 zx−4 +

m(m−4)(m−5)
1.2.3

1
26 zx−6 + · · ·+C.

I suppose now the skills of two players unequal in the ratio of p to q; let p+q = 1.
This put, if one asks for the probability of the following combination

1, 2, 3, 4, 5, 6, 7, . . . , x,
p, q, q, p, p, p, q, . . . , q,

which signifies A wins on the first trial, B on the second and on the third, A on the
fourth, fifth, and sixth, etc. It is clear that, in order to have this probability, one must
multiply all these quantities by one another; naming therefore r the number of times
that p is found repeated in this combination, x− r will express how many times q is
found repeated; the probability of this combination will be consequently prqx−r.

If one makes x− r = r + s, and if in some place one stops the combination, the
number of times that one of the quantities p and q is found more often repeated than
the other is always less than m, this combination will be one of those in which B will
gain s écus to player A; now, one is able to make a corresponding combination in which
A will gain s écus to B, and the probability of this combination will be qr pr+s, the ratio
of this probability to the preceding is that of ps to qs; whence there results that generally
the number of cases according to which A gains s écus to B, each multiplied by their
particular probability, is to the number of cases according to which B gains s écus to
player A, multiplied by their probability, as ps : qs.

This put, let 0 y x be the number of cases according to which at trial x the gain
of the two players is null, each multiplied by their probability. Let 1 y x , 2 y x , . . . be
the number of cases according to which the gain of player A is 1, 2, . . . écus, each

multiplied by their particular probability, and if 1
1
y x , 2

1
y x , . . . express the analogous

quantities for player B; it is easy, now by some considerations entirely similar to those
according to which I have formed the equations (ψ), to obtain the following:

(ψ ′)



0 y x = q · 1 y x−1 + p · 1
1
y x−1 ,

1 y x = p · 0 y x−1 +q · 2 y x−1 ,

2 y x = p · 1 y x−1 +q · 3 y x−1 ,

...
(σ ′) n y x = p · n−1 y x−1 +q · n+1 y x−1 ,

...

m−1 y x = p · m−2 y x−1
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Now we have, by the preceding remarks,

p · 1
1
y x−1 = q · 1 y x−1 .

The first equation becomes therefore

0 y x = 2q · 1 y x−1 ,

hence

0 y x−1 = 2q · 1 y x−2 ;

substituting this value of 0 y x−1 into the second, we will have

1 y x = 2qp · 1 y x−1 +q · 2 y x−1 ;

it is easy to see that the equations (ψ ′) correspond in this way to Problem VIII. Let
there be therefore

n y x = an · n y x−2 +
1 an · n y x−4 + · · ·+un +bn · n+1 y x−1 +

1 bn · n+1 y x−3 + · · · ,

and we will find, by operating exactly as I have done above, when p and q were equal,

n y x = (n+1)pq · n y x−2 −
(n+1)(n−2)

1.2
p2q2 · n y x−4 + · · ·

+q · n+1 y x−1 −npq2 · n+1 y x−3 + · · ·

Therefore, if one supposes n = m−1, we will have

(ϖ)

m−1 y x = mpq · m−1 y x−2 −
m(m−3)

1.2
p2q2 · m−1 y x−4 + · · · ;

by rejecting the terms m y x−1 , m y x−3 , . . . which can have no place, according to the
supposition that the game does not end before the trial x. Let now ux be the probability
that the game will end precisely at trial x, it is clear that we will have

ux = m y x + m
1
y x ;

now we have m y x : m
1
y x :: pm : qm; therefore

ux =

(
1+

qm

pm

)
m y x ;

moreover,

m y x = p · m−1 y x−1 ;

hence,

ux = p
(

1+
qm

pm

)
m−1 y x−1 .
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Let zx be the probability that the game will end before or at trial x, we will have

∆zx = ux+1 = p
(

1+
qm

pm

)
m−1 y x ;

by substituting therefore, in place of m−1 y x this value in equation

(ϖ)

, we will have,
after having integrated,

(ϖ)


z x = mpqz x−2 −

m(m−3)
1.2

p2q2z x−4

+
m(m−3)(m−5)

1.2.3
p3q3zx−6−·· ·+C.

In order to determine the arbitrary constant C, I observe that, as long as x is less
than m, zx equals 0, and that x being equal to m, zx equals pm +qm; therefore,

C = pm +qm.

Let 1− tx = zx; tx will express consequently the probability that the game will not end
before or at trial x, and we will have

t x = mpqt x−2 −
m(m−3)

1.2
p2q2t x−4 + · · ·

− pm−qm +

[
1−mpq+

m(m−3)
1.2

p2q2−·· ·
]
.

Now it is remarkable that we have, whatever be m, and by supposing p+q = 1,

0 = 1− pm−qm−mpq+
m(m−3)

1.2
p2q2−·· · ,

or, generally, by supposing any p and q,

(p+q)m = mpq(p+q)m−2− m(m−3)
1.2

p2q2(p+q)m−4 + · · ·+ pm +qm;

it is this of which would be able to be convinced by induction, by giving to m different
numerical values, but here is a general demonstration of it. We have

p+q = p+q,

(p+q)2 = 2pq(p+q)0 + p2 +q2,

(p+q)3 = 3pq(p+q)+ p3 +q3,

...

Let therefore, in general,

(τ) (p+q)m = Am(p+q)m−2 + 1 Am(p+q)m−4 + · · ·+ pm +qm,
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and we will have

(p+q)m+1 =Am(p+q)m−1 + 1 Am(p+q)m−3 + · · ·
+ pm+1 +qm+1 + pq(pm−1 +qm−1).

Now we have

pm−1 +qm−1 = (p+q)m−1−Am−1(p+q)m−3−·· · ;

therefore

(p+q)m+1 =(Am + pq)(p+q)m−1

+( 1 Am−Am−1 pq)(p+q)m−3 + · · ·+ pm+1 +qm+1.

We have moreover

(p+q)m+1 = Am+1(p+q)m−1 + 1 Am+1(p+q)m−3 + · · ·+ pm+1 +qm+1;

whence, by comparing, we will have

Am+1 = Am + pq,
1 Am+1 =

1 Am−Am−1 pq,
2 Am+1 =

2 Am− 1 Am−1 pq,
...

All these equations are not able to exist at once; the first begins to take place only
when m = 1; the second, when m = 2; the third, when m = 3; etc. Moreover, as they
assume necessarily known the expressions of p+q and (p+q)2, in order to determine
next, in their way, (p+q)3, (p+q)4, . . . , there results that the law represented by these
equations begins to take place when m+1 = 3; thus, the first equation begins to exist
when m = 2; the second, when m = 3; the third, when m = 4, etc.

This put, by integrating the first, we have

Am = mpq+C.

Now, putting m = 2, we have
A2 = 2pq;

therefore, C = 0.
Next, the second gives

1 Am =−m(m−3)
1.2

p2q2 +C;

now, putting m = 3, 1 A3 = 0, because (p+q) is not able to have negative exponent in
the formula (τ); therefore C = 0, and thus for the rest. Therefore

(p+q)m = mpq(p+q)m−2− m(m−3)
1.2

p2q2(p+q)m−4 + · · ·+ pm +qm;
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thus we will have

(δ ) t x = mpqt x−2 −
m(m−3)

1.2
p2q2t x−4 + · · ·

In order to integrate this equation, I begin by observing that it is differential of order
m
2 or m−1

2 , according as m is even or odd. Moreover, it is easy to see, by inspection
of the equations (ψ ′), that it begins to exist when x = m. Thus, the arbitrary constants
which come by the integration must be determined by the values of tx, when one makes
x = 0, x = 2, x = 4, . . . , x = m−2 or x = 1, x = 3, x = 5, . . . , x = m−2, according as
m is even or odd. Now, all these values are equal to unity, because it is certain that the
game cannot end before m trials.

Presently, if one supposes x′ equal to x
2 or x−1

2 , according as m is even or odd, we
will have

t x′ = mpqt x′−1 −
m(m−3)

1.2
p2q2t x′−2 + · · ·

The integral of this equation depends on the resolution of this algebraic equation

f
m
2 = mpq f

m
2 −1− m(m−3)

1.2
p2q2 f

m
2 −2 + · · · ,

if m is even, or of this

f
me−1

2 = mpq f
m−1

2 −1− m(m−3)
1.2

p2q2 f
m−1

2 −2 + · · · ,

if m is odd.
Now, if one makes cosφ = y, we have, as one knows,

cosmφ = 2m−1ym−m2m−3ym−2 +
m(m−3)

1.2
2m−5ym−4−·· ·

Let cosmφ = 0, and we will have

0 = ym−m
1
4

ym−2 +
m(m−3)

1.2
1
42 ym−4−·· ·

when m is even, or

0 = ym−1−m
1
4

ym−3 +
m(m−3)

1.2
1
42 ym−5−·· ·

when m is odd.
The different values of y in this equation are the cosines of the different arcs, which,

multiplied by m, have their cosines equal to zero; now the arcs which have their cosines
null are π

2 ,
3π

2 , 5π

2 , . . . , π expressing the semi-circumference of which the radius is
unity. The different values of y are, consequently, plus and minus the cosines of the
arcs π

2m ,
3π

2m ,
5π

2m , . . . to (m−1)π
2m or (m−2)π

2m inclusively, according as m is even or odd; the
cosines of the following arcs being the same, with the difference of signs excepted, the
one of π

2 being null; let therefore l, l1, l2, . . . be these different cosines, the values of y
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will be therefore±l,± l1, . . . . Now it is easy to see that f = 4y2 pq, hence, the different
values of f will be 4l2 pq, 4l2

1 pq, . . ., whence we will have

tx = A(2l
√

pq)x +A1(2l1
√

pq)x + · · · ,

A, A1, . . . being some arbitrary constants which will be determined by the method of
article IX.

XXXIV.

PROBLEM XVIII. — I have supposed, in the preceding problem, that the two play-
ers A and B had an equal number m écus; I suppose actually that player A has i écus,
and player B, m écus; the rest subsisting, as above, we ask the probability that the
game will end before, or at the number x of trials.

It is easy to see that we will have first the equations (ψ ′) of the preceding Problem.
Moreover, we will have the following:

(ψ ′′)



1
1
y x =q · 0 y x−1 + p · 2

1
y x−1 ,

2
1
y x =q · 1

1
y x−1 + p · 3

1
y x−1 ,

3
1
y x =q · 2

1
y x−1 + p · 4

1
y x−1 ,

...

n
1
y x =q · n−1

1
y x−1 + p · n+1

1
y x−1 ,

...

i−1
1
y x =q · i−2

1
y x−1 .

Let

i−1
1
y x = 1 λ x i−2

1
y x = 2 λ x i−3

1
y x = 3 λ x . . . ,

0 y x = i λ x 1 y x = i+1 λ x 2 y x = i+2 λ x . . . ,

and we will have, by reuniting the equations (ψ ′) and (ψ ′′),

1 λ x = q · 2 λ x−1 ,

2 λ x = q · 3 λ x−1 + p · 1 λ x−1 ,

...

i+m−1 λ x = p · i+m−2 λ x−1 .

Let

(Ω′′)

{
n λ x−1 = an · n λ x−2 +

1 an · n λ x−4 +
2 an · n λ x−6 + · · ·+un

+bn · n+1 λ x−1 +
1 bn · n+1 λ x−3 +

2 bn · n−1 λ x−5 + · · · ,
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and we will have

p · n−1 λ x−1 =an−1 p · n−1 λ x−3 +
1 an−1 p · n−1 λ x−5 +

2 an−1 p · n−1 λ x−7 + · · ·+un−1 p

+bn−1 p · n λ x−2 +
1 bn−1 p · n λ x−4 + · · ·

Now we have

n λ x = q · n+1 λ x−1 + p · n−1 λ x−1 ;

therefore

n λ x = (an−1 +bn−1 p) n λ x−2 +( 1 an−1 +
1 bn−1 p) n λ x−4 +( 2 an−1 +

2 bn−1 p) n λ x−6 + · · ·+un−1 p

+q · n+1 λ x−1 −an−1q · n+1 λ x−3 −
1 an−1q · n+1 λ x−5 −·· · ,

whence we will have, by comparing with equation (Ω′′),

bn = q,

an = an−1 +bn−1 p,
1 bn =−an−1q,
1 an =

1 an−1 +
1 bn−1 p,

2 bn =− 1 an−1q,
2 an =

2 an−1 +
2 bn−1 p,

...
un = un−1 p.

One must observe that the first of these equations begins to exist when n = 1; the
second and the third, when n = 2; the fourth and the fifth, when n = 3; etc.

This put, if one integrates the second, we will have

an = (n−1)pq+C;

now, putting n = 1, an = 0; thus C = 0, hence

1 bn =−an−1q =−(n−2)pq2.

If we integrate the fourth, we will have

1 an =−
(n−2)(n−3)

1.2
p2q2 +C;

in order to determine the constant C, I observe that, when n = 2, we have

1 a2 =
1 a1 +

1 b1 p = 0;

therefore C = 0, hence,
2 b2 =

(n−3)(n−4)
1.2

p2q3.
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If we integrate the sixth equation, we will have

2 an =
(n−3)(n−4)(n−5)

1.2.3
p3q3 +C;

now we have
2 a3 =

2 a2 +
1 b2 and 2 a2 =

2 a1 +
1 b1 = 0;

therefore 2 a3 = 0, hence C = 0, and thus the rest.
Finally, we have un = un−1 p, therefore un = Cpn; now, putting n = 1, un = 0;

therefore C+0 and un = 0; therefore

n λ x =(n−1)pq · n λ x−2 −
(n−2)(n−3)

1.2
p2q2 · n λ x−4

+
(n−3)(n−4)(n−5)

1.2.3
p3q3 · n λ x−6 −·· ·

+q · n+1 λ x−1 − (n−2)pq2 · n+1 λ x−3 +
(n−3)(n−4)

1.2
p2q3 · n+1 λ x−5

−·· ·

If we make n = i+m− i, we will have

i+m−1 λ x = m−1 y x and i+m λ x = 0;

therefore

(π)

 m−1 y x =(i+m−2)pq · m−1 y x−2 −
(i+m−3)(i+m−4)

1.2
p2q2 · m−1 y x−4

+
(i+m−4)(i+m−5)(i+m−6)

1.2.3
p2q2 · m−1 y x−6 −·· ·

If therefore we name zx the probability that A will win before or at trial x, we will
have, by a process similar to that of the preceding Problem,

(π) z x = (m+ i−2)pqz x−2 −
(m+ i−3)(m+ i−4)

1.2
p2q2z x−4 + · · ·+C.

Similarly, if we name
1
z x the probability of player B winning before, or at trial x,

we will have

(π ′)
1
z x = (m+ i−2)pq

1
z x−2 −

(m+ i−3)(m+ i−4)
1.2

p2q21
z x−4 + · · ·+

1C.

In order to determine the arbitrary constants which enter into the expressions of zx and
1
z x , I observe that they are to the number of m+i

2 if m+ i is even, or m+i+1
2 if it is odd;

now here is in what manner we will have them.
I suppose m and i odd; the equation

(π)

will begin visibly to take place only when
x− i−m+2 will equal 0, this gives x = i+m−2. The equation (π) will begin to exist
therefore only when x will equal i+m+1; it is necessary, consequently, to have all the
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values of zx, from z1 to zi+m+1, in order to determine the arbitrary constants of equation
(π).

If m and i are some even numbers, the equation

(π)

will begin to take place only
when x− i−m+ 2 will equal 1; this gives x = i+m− 1. The equation (π) begins
therefore to take place only when x equals i+m+ 2; it is necessary, consequently, to
have the values of zx, from z2 to zi+m+2.

If, m being even, i is odd, equation

(π)

will begin to take place only when x− i−
m+ 1 will equal 1, this gives x = i+m. The equation (π) has therefore a place only
when x equals i+m+3; thus it is necessary to have the values of zx, from z2 to zi+m+3.

Finally, if, m being odd, i is even, equation

(π)

will begin to take place only when
x− i−m+ 1 will equal 0, this gives x = i+m− 1. Equation (π) begins therefore to
exist only when x equals i+m+ 2. It is necessary consequently to have the values of
zx, from z1 to zi+m+2.

This put, the number of all the possible cases to trial m, each multiplied by their
particular probability, will be

pm +mpm−1q+
m(m−1)

1.2
pm−2q2 + · · ·+qm.

The number of cases which make A win at trial m equals pm. In order to have the
number of cases which make him win precisely at trial m + 2, it is clear that it is
necessary to subtract pm from the preceding quantity, and to multiply the rest by p2 +
2pq+q2, this gives

(χ)


mpm+1q+

m(m−1)
1.2

pmq2 +
m(m−1)(m−2)

1.2.3
pm−1q3 + · · ·

+2mpmq2 +
2m(m−1)

1.2
pm−1q3 + · · ·+mpm−1q3 + · · ·

Now, the number of cases which make him win precisely at trial m+ 2 is clearly
mpm+1q; we have therefore

zm+2 = pm(1+mpq).

In order to have the number of cases which make A win at trial m+4, it is necessary
to subtract from the preceding quantity (χ), mpm+1q, to multiply the rest by p2+2pq+
q2, and we will have m(m+3)

1.2 pm+2q2 for the number of these cases; thus,

zm+4 = pm
[

1+mpq+
m(m+3)

1.2
p2q2

]
.

We will find, likewise,

zm+6 = pm
[

1+mpq+
m(m+3)

1.2
p2q2 +

m(m+4)(m+5)
1.2.3

p3q3
]
,

and thus in sequence; the law of these values of zx holds to zm+i−2; if we have need of
further values of zx, one could obtain them easily by this process.
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In order to integrate now the equation (π), it is necessary to have the roots of the
equation

f
m+i−1

2 = (m− i−2)pq f
m+i−3

2 − (m+ i−3)(m+ i−4)
1.2

p2q2 f
m+i−5

2 + · · · ,

if m+ i is odd, or
f

m+i
2 −1 = (m− i−2)pq f

m+i
2 −2−·· ·

if m+ i is even; now we will find these roots by considering that we have

sin(m+ i)z = x
[
2m+i−1um+i−1− (m+ i−2)2m+i−3um+i−3 + · · ·

]
,

x being the sine and u the cosine of angle z; now, putting

sin(m+ i)z = 0,

we will have
um+i−1 = (m+ i−2)

1
4

um+i−3−·· ·

Let u =
√

f
2
√

pq , and we will have

f
m+i−1

2 = (m+ i−2)pq f
m+i−3

2 −·· ·

if m+ i is odd, or
f

m+i
2 −1 = (m− i−2)pq f

m+i
2 −2−·· ·

if m+ i is even; the different values of u are the cosines of the angles z, such that
sin(m+ i)z equals 0, this gives

z =
π

m+ i
, z =

2π

m+ i
, z =

3π

m+ i
, · · ·

Let l, l1, l2, . . . be the cosines of these angles to m+i
2 if m+ i is even, or m+i−1

2 if it is odd;
the different values of f will be 4l2 pq, 4l2

1 pq, . . .. These values one time determined,

it is easy to find those of zx and
1
zx.

XXXV.

PROBLEM XIX. — I suppose two players A and B, with an equal number m of
écus, playing to this condition, that the one who loses will give an écu to the other;
let the probability of A winning a trial be p; let that of B be q; but let it be able to
happen that any of them not win, and let the probability of this be r. This put, we ask
the probability that the game will end before or at the number x of trials.

Let 0 y x be the number of cases according to which, at the trial x, the gain of the
two players is null, multiplied by their probabilities; 1 y x , 2 y x , 3 y x , . . . the number of
cases according to which the gain of player A is 1, 2, 3, . . . at trial x, multiplied by their
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probability, and let 1
1
y x , 2

1
y x , 3

1
y x , . . . express the same things for player B. This put,

we will form the following equations:

(–)



0 y x = r · 0 y x−1 +q · 1 y x−1 + p · 1
1
y x−1 ,

1 y x = r · 1 y x−1 +q · 2 y x−1 + p · 0 y x−1 ,

2 y x = r · 2 y x−1 +q · 3 y x−1 + p · 1 y x−1 ,

...

n y x = r · n y x−1 +q · n+1 y x−1 + p · n−1 y x−1 ,

...

m−1 y x = r · m−1 y x−1 + p · m−2 y x−1

Now we have
p · 1

1
y x−1 = q · 1 y x−1 ;

the first equation will become therefore

0 y x = r · 0 y x−1 +2q · 1 y x−1 ;

and, if one combines it with the second, we will have

1 y x = 2r · 1 y x−1 +(2pq− r2) 1 y x−2 +q · 2 y x−1 −qr · 2 y x−2 .

Let now

n y x = an · n y x−1 +
1 an · n y x−2 + · · ·+un +bn · n+1 y x−1 +

1 bn · n+1 y x−3 + · · · ;

therefore

p · n−1 y x−1 =an−1 p · n−1 y x−2 +
1 an−1 p · n−1 y x−2 + · · ·+ pun−1

+bn−1 p · n y x−2 +
1 bn−1 p · n y x−3 + · · ·

Substituting in place of p · n−1 y x−1 , p · n−1 y x−2 , . . . their values that equation (−)
gives, we will have

n y x =(an−1 + r) · n y x−1 +( 1 an−1−an−1r+ pbn−1) n y x−2

+( 2 an−1− 1 an−1r+ p · 1 bn−1) n y x−3 + · · ·

+q · n+1 y x−1 −an−1q · n+1 y x−3 −
1 an−1q · n+1 y x−5 −·· ·+ pun−1;

whence, by comparing, we will have

an = an−1 + r,

bn = q,
1 an =

1 an−1−an−1r+ pbn−1,

1 bn =−an−1q,
2 an =

2 an−1− 1 an−1r+ p · 1 bn−1,

...
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The first of these equations begins to exist when n equals 2; the second, when n
equals 1; the third, when n equals 2; etc. We will have therefore, by integrating and
adding the appropriate constants,

an = r(n+1),
bn = q,

1 an =−r2 · n(n+1)
1.2

+ pq(n+1),

1 bn =−an−1q =−qrn.

This last equation being true, when n equals 1, it follows that the fifth equation
begins to exist when n equals 2; this gives

2 an = r3 (n+1)n(n−1)
1.2.3

− pqr(n+1)(n−1).

Therefore
2 bn = qr2 n(n−1)

1.2
,

an equation which begins to exist when n equals 1, because 2 b1 equals 0. Therefore,
the sixth equation begins to exist when n equals 2, and we will have

3 an =− r4 (n+1)n(n−1)(n−2)
1.2.3.4

+ pqr2(n+1)(n−1)(n−2)− p2q2 (n+1)(n−2)
1.2

+C.

Now, putting n = 2, we have

3 a2 =
3 a1− 2 a1r+ p · 2 b1 = 0,

therefore C = 0, and thus in sequence; finally, un = 0. We will have therefore, by
making n = m−1 and rejecting the terms m y x−1 , m y x−2 , . . .

m−1 y x =mr · m−1 y x−1 −
[

r2 m(m−1)
1.2

− pqm
]

m−1 y x−2

+

[
r3 m(m−1)(m−2)

1.2.3
− pqrm(m−2)

]
m−1 y x−3

−
[

r4 m(m−1)(m−2)(m−3)
1.2.3.4

− pqr2 m(m−2)(m−3)
1.2

+ p2q2 m(m−3)
1.2

]
m−1 y x−4

+ · · ·

If one supposes r = 0, we will have

m−1 y x = mpq · m−1 y x−2 −
m(m−3)

1.2
p2q2 · m−1 y x−4 + · · · ,

the same equation as I have found above for that case.
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If we name zx the probability of A winning before or at trial x, we will have

zx = mrzx−1−
[

r2 m(m−1)
1.2

− pqm
]

zx−2 + · · ·+C,

C being an arbitrary constant.

Similarly, if we name
1
zx the probability of B winning before or at trial x, we will

have
1
zx = mr

1
zx−1−

[
r2 m(m−1)

1.2
− pqm

]
1
zx−2 + · · ·+

1
C.

In order to integrate these equations, it is necessary to have the roots of the equation

(Λ) f m = mr f m−1−
[

r2 m(m−1)
1.2

− pqm
]

f m−2 + · · · ;

now here is how one can determine them.
We have seen previously how one could have the roots of the equation

ym = mpqym−2− m(m−3)
1.2

p2q2ym−4 + · · · .

Let y = f − r, and we will have

f m =mr f m−1−
[

r2 m(m−1)
1.2

− pqm
]

f m−2

+

[
r3 m(m−1)(m−3)

1.2.3
− pqrm(m−2)

]
f m−3

−·· · ,

an equation which is the same as equation (Λ); the different values of f are conse-
quently equal to those of y, augmented by the quantity r; now the integration of the
differential equation in zx has nothing troublesome.
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