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I.

The first researches that one has made on the summation of arithmetic progressions
and on geometric progressions contained the germ of the integral Calculus in finite dif-
ferences in one and two variables; here is how: an arithmetic progression is a sequence
of terms which increase equally, and it was necessary to find the sum according to this
condition; it is clear that each term of the sequence is the finite difference of the sum of
the preceding terms, to that same sum augmented by this term; one proposed therefore
to find this sum according to the nature of its finite difference; thus by whatever manner
that one is arrived there, one has truely integrated a quantity in the finite differences.
The geometers who have come next have pushed further these researches; they have
determined the sum of the squares and of the superior and entire powers of the natural
numbers; they have arrived there first by some indirect methods: they did not perceive
that that which they sought returned to finding a quantity of which the finite difference
was known; but as soon as they had made this reflection, they have resolved directly,
not only the cases already known, but many others more extended. In general, φ(x)
representing any function whatsoever of the variable x, of which the finite difference
∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-

sity, Cincinnati, OH. August 18, 2010
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is supposed constant, they have proposed to find a quantity of which the finite differ-
ence is equal to that function, and this is the object of the integral Calculus in the finite
differences in a single variable.

Similarly, the research of the general term of a geometric progression returns to
finding the xth term of a sequence1 such that each term is to the one which precedes it
in constant ratio. Let yx−1 be the (x− 1)st term and yx be the xth term: the law of the
sequence requires that one have yx = pyx−1, whatever be x, p being constant. Now it is
clear that, in whatever manner that one is arrived to find yx, one has veritably integrated
the equation in the finite differences yx = pyx−1. Next, one has generalized this research
by proposing to find the general term of the sequences such that each of their terms is
equal to many of the preceding multiplied by some constants any whatsoever; these
sequences have been named for this récurrentes. One has arrived first to find their
general term by some indirect ways, although quite ingenious; one did not perceive
that this returned to integrating a linear equation in finite differences; but, when one
had made this reflection, one tried to apply to these equations the methods known for
the linear equations in the infinitely small differences, with the modifications that the
assumption of finite differences requires, and one resolved in this manner some cases
much more extended than those which were already.

Mr. Moivre is, I believe, the first who had determined the general term of the re-
current sequences; but Mr. de Lagrange is the first who is aware that this research
depends on the integration of a linear equation in finite differences, and who had ap-
plied the good method of undetermined coefficients of Mr. d’Alembert (see Vol. I
of the Mémoires de Turin). I myself have proposed next to deepen this interesting
calculus, in a Memoir printed in Volume IV of those of Turin;2 and next, having had
occasion to reflect further there, I have made on this new researches of which I will ren-
der account shortly. I must observe here that Mr. the marquis de Condorcet has given
excellent things on this matter, in his Traité du Calcul intégral, and in the Mémoires de
l’Académie.

It was until then only a question of equations in ordinary finite differences and
of the sequences which depend on them; but the solution of many problems on the
chances has led me to a new kind of sequence which I have named récurro-récurrentes,
and of which I believe to have given first the theory and indicated the usage in the
Science of probabilities (see T. VI of Savants étranges.3) The equations on which
these sequences depend are nearly, in the finite differences, that which the equations
in the partial differences are in the infinitely small differences; that which I have given
on these equations is only a trial: in deepening them, I have seen that they were quite
important in the Theory of chances, and that they gave a method to treat them much
more generally that one had done yet: this is that which engages me to consider them
anew; but, the new researches that I have made on this object supposing those that I

1Translator’s note: The word suite is used to refer to both a sequence and a series. It is rendered according
to its usage.

2Recherches sur le calcul intégral aux differences infiniment petites, & aux différences finies. Mélanges
de philosophie et de mathématiques de la Société royale de Turin, pour les années 1766-1769 (Miscellanea
Taurensia IV), 273-345, 1771.

3Mémoire sur les suites récurro-récurrentes et sur leur usages dans la théorie des hasards, Mémoires de
l’Académie Royale des Sciences de Paris (Savants étranges) 6, 1774, p. 353-371.
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have already given, I am going to begin again here all this matter.

II.

One can imagine thus the equations in finite differences; I imagine the sequence

y1,y2,y3,y4,y5, . . . ,yx

formed following a law such as one has constantly

(A) Xx = Mxyx +Nx∆yx +Px∆
2yx + . . .+Sx∆

nyx;

the numbers 1, 2, 3, . . ., x, placed at the base of y, indicating the rank which y occupies
in the sequence, or, that which returns to the same, the index of the series; the quantities
Xx, Mx, Nx, . . . are some functions any whatsoever of the variable x, of which the differ-
ence is supposed constant and equal to unity. The characteristic ∆ serves to express the
finite difference of the quantity before which it is placed, as in the infinitesimal Analy-
sis the letter d expresses the infinitely small difference of the quantities. This put, the
preceding equation is an equation in finite differences, which can generally represent
the equations of this kind, where the variable yx and its differences are under a linear
form.

Although I have supposed the constant difference of x equal to unity, this diminishes
nothing from the generality of the preceding equation (A); because, if this difference,
instead of being 1, is equal to q, one will make x

q = x′, and yx being a function of x will
become a function of qx′; I name yx′ this last function. Now one has, by hypothesis,

∆yx = yx+q− yx = f (x+q)− f (x)

= f [q(x′+a)]− f (qx′) = yx′+1− yx′ = ∆yx′ ,

the constant difference of x′ being 1. Similarly,

∆
2yx = yx+2q−2yx+q + yx = yx′+2−2yx′+1 + yx′ = ∆

2yx′ ,

and thus of the remaining. Equation (A) will be therefore transformed into the follow-
ing

Xx′ = Mx′yx′ +Nx′∆yx′ + . . .+Sx′∆
nyx′ ,

in which the difference of x′ is equal to unity.
One can form easily other differential equations, in which yx and its differences

would enter in any manner whatsoever; but those which are contained in equation (A)
are the only ones which it is truly interesting to consider.

Before researching to integrate them, I am going to recall here a principle quite
useful in the analysis of the infinitely small differences, and which applies equally and
with the same advantage to finite differences; here is in what it consists:

Each function of x which, containing n arbitrary irreducible constants, satisfying
for yx in a differential equation of order n, between x and yx, is the complete expression
of yx.

By irreducible constants, I intend that they are such that two or many can not
be reduced to one alone; it follows thence that, if a function containing n irreducible
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arbitrary constants satisfy as yx in a differential equation of order n−1, this equation is
surely identical; because, if it was not, the most general function of x which was able
to satisfy for yx would contain only n−1 irreducible arbitrary constants.

For the convenience of the calculus, I will suppose that the quantities noted in this
manner, 1 H, 2 H, . . . , or 1 M, 2 M, . . . , express some different quantities and which can
have no relation among themselves; but these here, H1, H2, H3, . . ., Hx or M1, M2, M3,
ldots, Mx represent the different terms of a sequence formed according to one law any
whatsoever, the numbers 1, 2, 3, . . ., x designating the rank of the H or of the M in the
sequence. This put, since one has

∆yx = yx+1− yx,

∆y2yx = yx+2−2yx+1 + yx,

∆
3yx = yx+2−3yx+2 +3yx+1− yx,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

I am able to give to equation (A) this form

Xx =+yx(Mx−Nx +Px− . . .)

+yx+1(Nx−2Px + . . .)

+ · · · · · · · · · · · · · · · · · · · · · · · ·
+yx+nSx.

whence it results that each linear equation in finite differences can be generally repre-
sented by this here

(B) yx = Hxyx−1 +
1 Hxyx−2 +

2 Hxyx−3 + · · ·+ n−1 Hxyx−n +Xx;

the equation
yx = Hxyx−1 +Xx

is of the first order, this here

yx = Hxyx−1 +
1 Hxyx−2 +Xx

is of the second order, and thus in sequence.
As in the series I will have need of characteristics in order to designate the finite

difference of the quantities, their finite integrals, the product of all the terms of a se-
quence, I will serve myself for this with the following.

The characteristic ∆ placed before a quantity will designate for it, as above, the
finite difference: thus ∆Hx will express the finite difference of Hx; the characteristic
Σ placed before a quantity will designate for it the finite integral: thus Hx will signify
the finite integral of Hx; finally the characteristic ∇ will designate the product of all the
terms of a sequence: thus ∇Hx will represent the product H1H2H3 . . .Hx of all the terms
of the sequence H1, H2, H3, . . . , Hx.
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III.

PROBLEM I. — The differential equation of the first order

yx = Hxyx−1 +Xx

being given, one proposes to integrate it.
I make in this equation yx = ux∇Hx; it becomes

ux∇Hx = Hxux−1∇Hx−1 +Xx;

but one has
Hx∇Hx−1 = ∇Hx,

hence
ux = ux−1 +

Xx

∇Hx
or ∆ux−1 =

Xx

∇Hx
;

and, as this equation holds whatever be x, one will have

∆ux =
Xx+1

∇Hx+1
,

hence, by integrating,

ux = A+∑
Xx+1

∇Hx+1
,

A being an arbitrary constant. One has therefore

yx = ∇Hx

(
A+∑

Xx+1

∇Hx+1

)
.

If Hx was constant and equal to p, one would have

∇Hx = px and yx = px
(

A+∑
Xx+1

px+1

)
.

IV.

PROBLEM II. — The differentio-differential equation

(B) yx = Hxyx−1 +
1 Hxyx−2 +

2 Hxyx−3 + . . .+ n−1 Hxyx−n +Xx

being given, one proposes to integrate it.
I make

(C) yx = αxyx−1 +Tx,

αx and Tx being two new variables, and I conclude from it the following equations:

yx−1 =αx−1yx−2 +Tx−1,

yx−2 =αx−2yx−3 +Tx−2,

yx−3 =αx−3yx−4 +Tx−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

yx−n+1 =αx−n+1yx−n +Tx−n+1;
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I multiply the first of these equations by − 1
β , the second by − 2

β , the third by − 3
β ,

. . . and I add them with equation (C): this which gives me

yx =(αx +
1
β )yx−1 +(− 1

βαx−1 +
2
β )yx−2

+(− 2
βαx−2 +

3
β )yx−3 + . . .− n−1

βαx−n+1yx−n

+Tx− 1
βTx−1− 2

βTx−2− . . .− n−1
βTx−n+1.

By comparing this equation with equation (B), one will have
1 ˚

Tx =
1
βTx−1 +

2
βTx−2 + . . .+ n−1

βTx−n+1 +Xx;

2 ˚ The following equations:

1
β +αx =Hx,

2
β − 1

βαx−1 =
1 Hx,

3
β − 2

βαx−2 =
2 Hx

. . . . . . . . . . . . . . . . . . . . . ,

− n−1
βαx−n+1 =

n−1 Hx.

Thence one will conclude

1
β =Hx−αx,

2
β = 1 Hx +αx−1Hx−αxαx−1,

3
β = 2 Hx +αx−2

1 Hx +αx−1αx−2Hx−αxαx−1αx−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n−1
β = n−2 Hx +αx−n+2

n−3 Hx +αx−n+3αx−n+2
n−4 Hx + . . .

−αxαx−1 . . .αx−n+2 =−
n−1 Hx

αx−n+1
,

because of the equation
− n−1

βαx−n+1 =
n−1 Hx;

one will have therefore, in order to resolve the problem, the following two equations:

(D)


Tx =(Hx−αx)Tx−1 +( 1 Hx +αx−1Hx−αxαx−1)Tx−2 + . . .

−
n−1 Hx

αx−n+1
Tx−n+1 +Xx,

(E) 0 = t− Hx

αx
−

1 Hx

αxαx−1
−

2 Hx

αxαx−1αx−2
− . . .−

n−1 Hx

αx . . .αx−n+1
.

Equations (D) and (E) are of a degree inferior to the proposed, and equation (D)
is of the same form; now it is not necessary to integrate generally these equations in
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order to integrate equation (B) of the problem; it suffices to know for αx a quantity
which satisfies equation (E). I name δx this value; one will substitute it into equation
(D), which I name (D′) after this substitution, and one will seek the complete integral
of equation (D′); next, by means of the equation yx = δxyx−1 +Tx, one will conclude,
by integrating by problem I,

yx = ∇δx

(
A+∑

Tx+1

∇δx+1

)
,

A being an arbitrary constant.
This equation is the complete integral of equation (B), because, equation (D′) being

necessarily of order n−1, the complete expression of Tx contains n−1 irreducible ar-
bitrary constants; hence, ∇δx

(
A+∑

Tx+1
∇δx+1

)
contains n arbitrary constants. These con-

stants are moreover irreducibles, because ∇δx ∑
Tx+1

∇δx+1
contains in it n−1 irreducibles,

and none of them is reducible with the constant A.
The preceding expression of yx can serve to make known the integral of equation

(B) of the problem; because, since equation (D′) is linear, one can suppose that the
expression of Tx has this form

Tx = ∇λx

(
1 A+∑

1 Tx+1

∇λx+1

)
,

1 Tx depending on the integration of a linear equation of order n−2; one has therefore

yx = ∇δx

A+ 1 A∑
∇λx+1

∇δx+1
+∑

∑

1 Tx+1
∇λx+1

∇δx+1

 ;

by continuing to reason thus, one will see that the expression of yx is of this form

yx = A∇δx +
1 A∇

1
δx +

2 A∇
2
δx + . . .+ n−1 A∇

n−1
δx +Lx,

A, 1 A, 2 A, . . . being arbitrary.
If one supposes Xx = 0 in equation (B), it is easy to see, by the sequence of opera-

tions that I just indicated, that Lx will be null; thus, in this case

yx = A∇δx +
1 A∇

1
δx + . . .+ n−1 A∇

n−1
δx,

δx satisfying under the assumption for αx in equation (E); 1
δx, 2

δx, . . . will satisfy
similarly; because, since the equation yx = A∇

1
δx, for example, satisfies equation (B)

by supposing X = 0, one will have

∇
1
δx = Hx∇

1
δx−1 +

1 Hx∇
1
δx−2 + . . . ,

hence

0 = 1− Hx
1
δx
−

1 Hx
1
δx

1
δx−1

−·· ·
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V.

I suppose, in equations (D′) and (B), Xx = 0; I will have the following two expres-
sions of yx:

(1) yx = ∇δx

(
A+∑

Tx+1

∇δx+1

)
,

(2) yx = A∇δx +
1 A∇

1
δx +

2 A∇
2
δx + . . .+ n−1 A∇

n−1
δx.

These two expressions, different in appearance, must really coincide; I suppose there-
fore that the complete integral of equation (D′) is

Tx =
1 ARx +

2 A 1 Rx + . . .+ n−1 A n−2 Rx;

by substituting this value of Tx into equation (1), one will have

yx = ∇δx

(
A+ 1 A

Rx+1

∇δx+1
+ 2 A

1 Rx+1

∇δx+1
+ . . .+ n−1 A

n−2 Rx+1

∇δx+1

)
.

By comparing this last equation with equation (2), one will have

∇δx ∑
Rx+1

∇δx+1
= ∇

1
δx,

∇δx ∑

1 Rx+1

∇δx+1
= ∇

2
δx,

. . . . . . . . . . . . . . . . . . . . . . . . .

Therefore

Rx = ∇δx ∆
∇

1
δx−1

∇δx−1
,

1 Rx = ∇δx ∆
∇

2
δx−1

∇δx−1
,

2 Rx = ∇δx∆
∇

3
δx−1

∇δx−1
,

. . . . . . . . . . . . . . . . . . . . . . . .

Therefore, if I know how to resolve equation (B) by supposing Xx = 0, I will
know how to resolve equation (D′) by supposing similarly Xx = 0. Let therefore
ux,

1 ux,
2 ux, . . . be the particular values of yx in equation (B), so that its complete inte-

gral is
yx = Aux +

1 A 1 ux +
2 A 2 ux + . . .+ n−1 A n−1 ux,

one will have
ux = ∇δx,

1 ux = ∇
1
δx, . . . ,
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and the complete integral of equation (D′), by supposing Xx = 0 in it, will be

Tx =
1 Aux∆

1 ux−1

ux−1
+ 2 Aux∆

2 ux−1

ux−1
+ . . .+ n−1 Aux∆

n−1 ux−1

ux−1
.

Presently, if I know how to integrate equation (D′) by supposing Xx anything, I will
be able, under the same assumption, to integrate equation (B), since one has, by that
which precedes,

yx = ux

(
A+∑

Tx+1

ux+1

)
;

therefore the difficulty to integrate the equation

(B) yx = Hxyx−1 +
1 Hxyx−2 + . . .+ n−1 Hxyx−n +Xx,

when one knows how to integrate this one

(b) yx = Hxyx−1 +
1 Hxyx−2 + . . .+ n−1 Hxyx−n,

is reduced to integrate the equation

(D′) Tx = (H−δx)Tx−1 + . . .−
n−1 Hx

δx−n+1
Tx−n+1 +Xx,

which is of degree n− 1, and when one knows how to integrate by supposing Xx =
0; one will make similarly the integration of (D′) to depend on the integration of an
equation of degree n−2, and thus in sequence; whence there results that the equation

yx = Hxyx−1 +
1 Hxyx−2 + . . .+ n−1 Hxyx−n +Xx

is integrable in the same cases as this one

yx = Hxyx−1 + . . .+ n−1 Hxyx−n.

VI.

The process which I just indicated in order to restore the integral of equation (B)
to that of equation (b) can serve to demonstrate the liaison which these two integrals
have between them; but it would be quite painful to employ it to integrate equation (B).
It would be therefore very useful to have immediately the general expression of yx in
equation (B), when one has that of equation (b).

I take for this equation

yx = ux

(
A+∑

Tx+1

ux+1

)
,

Tx being supposed to be the complete expression of Tx in equation (D′). Now, this

equation (D′) being of the same form as equation (B), if one names
1
ux, 1 1

ux, 2 1
ux, . . . the
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particular integrals of Tx in equation (D′), when one supposes Xx = 0 there, one will
have, in the same manner and whatever be Xx,

Tx =
1
ux

(
1 A+∑

1 Tx+1
1
ux+1

)
,

1 Tx being the complete expression of 1 Tx in an equation of order n−2, which I name
(D′′) and which results from (D′) in the same manner as this one results from equation
(B); one will have similarly

1 Tx =
2
ux

(
2 A+∑

2 Tx+1
2
ux+1

)
,

and thus in sequence until one arrives to the equation of the first order

n−2 Tx = Sx
n−2 Tx−1 +Xx,

of which the integral is

n−2 Tx =
n−1
u x

(
n−1 A+∑

Xx+1
n−1
u x+1

)
.

If one substitutes presently into the expression of yx the value of Tx into 1 Tx, that
of 1 Tx into 2 Tx, etc., one will have

(K) yx = ux

{
A+∑

1
ux+1

ux+1

(
1 A+∑

2
ux+1
1
ux+1

[
2 A . . .+∑

n−1
u x+n−1

n−2
u x+n−1

(
n−1 A+∑

Xx+n
n−1
u x+n

)
· · ·

])}
.

It is necessary presently to determine
1
ux,

2
ux, . . .; now one has, by the previous Arti-

cle,
1
ux = Rx = ux∆

1 ux−1

ux−1
,

similarly

1 1
ux = ux∆

2 ux−1

ux−1
,

2 1
ux = ux∆

3 ux−1

ux−1
,

. . . . . . . . . . . . . . . . . . ;
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one will have likewise
2
ux =

1
ux∆

1 1
ux−1

1
ux−1

,

1 2
ux =

1
ux∆

2 1
ux−1

1
ux−1

,

2 2
ux =

1
ux∆

3 1
ux−1

1
ux−1

,

. . . . . . . . . . . . . . . . . . ;

formula (K) will become

(O) yx = ux

A+∑∆

1 ux

ux

 1 A+∑∆

1 1
ux+1

1
ux+1

 2 A . . .+∑∆

1 n−2
u x+n−2

n−2
u x+n−2

(
n−1 A+∑

Xx+n
n−1
u x+n

)
· · ·

 ;

if one knows only the number n−1 of particular integrals of yx, in the equation

yx = Hxyx−1 +
1 Hxyx−2 + . . .+ n−1 Hxyx−n,

the integration will be of difficulty no longer; I suppose that this is the integral n−1 ux

which is unknown; since one knows ux, 1 ux, . . . , n−2 ux, one will know
1
ux,

2
ux, . . . until

n−1
u x exclusively. In order to determine

n−1
u x, it is necessary to integrate the equation

n−2 Tx = Sx
n−2 Tx−1 +Xx,

by supposing Xx = 0, this which will be easy by Problem I if one knows Sx. In order to
find it, I observe that, in equation (D′), the coefficient of Tx−1 is

Hx−δx = Hx−
ux

ux−1
,

because of

δx =
ux

ux−1
.

Similarly the one of 1 Tx−1, in equation (D′′), is

Hx−
ux

ux−1
−

1
ux

1
ux−1

,

and thus in sequence; hence,

Sx = Hx−
ux

ux−1
−

1
ux

1
ux−1

− . . .−
n−2
u x

n−2
u x−1

.
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If, instead of knowing the integral of the equation

yx = Hxyx−1 + . . .+ n−1 Hxyx−n,

one knows a number n or n−1 of values for αx, in equation (E), the preceding formulas
will serve equally, because δx,

1
δx, . . . being these values, one has

ux = ∇δx,
1 ux = ∇

1
δx, . . .

VII.

Formula (O) has not at all yet the total degree of simplicity that the complete inte-
gral of yx can have, because one has seen (Art. IV) that this integral has the following
form

yx = Aux +
1 A 1 ux + . . .+ n−1 A n−1 ux +Lx;

it is necessary therefore to restore equation (O) to this form; for this, I divide equation
(O) by ux, and I conclude from it, by differentiating it,

∆
yx−1

ux−1
=∆

1 ux−1

ux−1

 1 A+∑∆

1 1
ux

1
ux

 2 A . . .+∑∆

1 n−2
u x+n−3

n−2
u x+n−3

(
n−1 A+∑

Xx+n−1
n−1
u x+n−1

)
. . .

 ,

whence one will conclude, by dividing by ∆
1 ux−1
ux−1

and differentiating,

∆

∆
yx−2
ux−2

∆
1 ux−2
ux−2

= ∆

1 1
ux−1

1
ux−1

[ 2 A+ . . .].

One will have therefore, by continuing to differentiate thus, an equation of this form

n−1 A+∑
Xx−1

n−1
u x−1

= γxyx +
1
γxyx−1 +

2
γxyx−2 + . . .+ n−1

γxyx−n+1,

γx,
1
γx, . . . being some functions of ux,

1 ux, . . . and of their finite differences. I observe

now that, in order to form the values of
1
ux,

2
ux,

3
ux, . . ., I have considered (preceding

Article) the quantities ux,
1 ux,

2 ux, . . . in this order

ux,
1 ux,

2 ux, . . . ,
n−1 ux;

but if, instead of that, I had considered them in the following order

1 ux, ux,
2 ux, . . . ,

n−1 ux,

I would arrive to the following equation

n−1 A+∑
Xx+1(

n−1
u x+1

) = (γx)yx +( 1
γx)yx−1 + . . .+( n−1

γx)yx−n+1,
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(
n−1
u x

)
, (γx), . . . being that which

n−1
u x, γx, . . . become when one changes ux into

1 ux, and 1 ux into ux. If I had supposed Xx+1 = 0, I would have arrived to the two
equations

n−1 A = γxyx +
1
γxyx−1 + . . .+ n−1

γxyx−n+1,

n−1 A = (γx)yx +( 1
γx)yx−1 + . . .+( n−1

γx)yx−n+1,

in which the constant n−1 A is clearly the same, since I have supposed, in order to form
the one and the other equation, that the complete value of yx is

yx = Aux +
1 A 1 ux + . . .+ n−1 A n−1 ux.

One will have therefore, by comparing these two equations,

γxyx +
1
γxyx−1 + . . .+ n−1

γxyx−n+1

= (γx)yx +( 1
γx)yx−1 + . . .+( n−1

γx)yx−n+1,

an equation which must be an identity; because, if it were not, this equation being
differential of order n−1 would have however for the complete integral

yx = Aux + . . .+ n−1 A n−1 ux,

an equation which contains n arbitrary constants, this which would be absurd (Art. II).
One has therefore

n−1 A+∑
Xx+1(

n−1
u x+1

) = n−1 A+∑
Xx+1

n−1
u x+1

,

hence (
n−1
u x+1

)
=

n−1
u x+1.

Thus the expression of
n−1
u x remains always the same, whether one changes ux into 1 ux,

and 1 ux into ux; one will be assured in the same manner that if in
n−1
u x one changes ux

into 2 ux, and 2 ux into ux; or 1 ux into 2 ux, and 2 ux into 1 ux, and generally k ux into i ux,

and i ux into k ux, k and i being less than n−1, the expression
n−1
u x will always remain

the same, and that thus, whatever order that one gives to the quantities ux,
1 ux,

2 ux, . . .

in order to form
n−1
u x, this expression will remain always the same, provided that n−1 ux

is considered as the last of these quantities.

I make
n−1
u x+1 = n−1 zx+1; next, instead of considering n−1 ux as the last of the

quantities ux, 1 ux, . . . I suppose actually that n−2 ux is this last; let n−2 zx+1 be that
which becomes then n−1 zx+1, that is to say when one changes n−2 ux into n−1 ux, and
n−1 ux into n−2 ux. One will have, by a process similar to the preceding,

n−2 A+∑
Xx+1

n−2 zx+1
= γ

x
yx +

1
γ

x
yx−1 + . . .+ n−1

γ
x
yx−n+1,
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γ , 1
γ

x
, . . . being that which γx, 1

γx, . . . become when one changes n−1 ux into n−2 ux

and n−2 ux into n−1 ux; one will have similarly

n−3 A+∑
Xx+1

n−3 zx+1
= γ

x
yx +

1
γ

x
yx−1 + . . .+ n−1

γ
x
yx−n+1,

n−3 zx+1, γ
x
, 1

γ
x

being that which n−1 zx+1, γx, 1
γx, . . . become when one changes

n−1 ux into n−3 ux and n−2 ux into n−1 ux. This set, by disposing in the following order
all the equations that one can form thus

(>)



n−1 A+∑
Xx+1

n−1 zx+1
= γxyx +

1
γxyx−1 +

2
γxyx−2 + . . .+ n−1

γxyx−n+1,

n−2 A+∑
Xx+1

n−2 zx+1
= γ

x
yx +

1
γ

x
yx−1 +

2
γ

x
yx−2 + . . .+ n−1

γ
x
yx−n+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

A+∑
Xx+1

zx+1
=

γx

n−1
yx +

1
γx

n−1
yx−1 +

2
γx

n−1
yx−2 + . . .+

n−1
γx

n−1
yx−n+1,

and adding them altogether, after having multiplied the first by n−1 ux, the second by
n−2 ux, etc., finally the last by ux, one will have an equation of this form

λxyx + . . .+ n−1
λxyx−n+1 =ux

(
A+∑

Xx+1

zx+1

)
+ 1 ux

(
1 A+∑

Xx+1
1 zx+1

)
+ . . . . . . . . . . . . . . . . . . . . .

+ n−1 ux

(
n−1 A+∑

Xx+1
n−1 zx+1

)
,

this which gives, by making Xx+1 = 0,

λxyx +
1
λxyx−1 + . . .+ n−1

λxyx−n+1 = Aux +
1 A 1 ux + . . .+ n−1 A n−1 ux;

but one has in this case
yx = Aux +

1 A 1 ux + . . . ,

hence
yx = λxyx +

1
λxyx−1 + . . .+ n−1

λxyx−n+1.

Now this equation must be an identity, because otherwise, although of order n−1, its
integral would contain the n arbitrary constants which the complete expression of yx
contains; one has therefore for the complete integral of equation (B) of Problem II,
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whatever be Xx,

yx =ux

(
A+∑

Xx+1

zx+1

)
+ 1 ux

(
1 A+∑

Xx+1
1 zx+1

)
+ . . . . . . . . . . . . . . . . . . . . .

+ n−1 ux

(
n−1 A+∑

Xx+1
n−1 zx+1

)
,

Thence results this quite simple rule, in order to have the complete integral of the
equation

yx = Hxyx−1 +
1 Hxyx−2 + . . .+ n−1 Hxyx−n +Xx,

when one knows how to integrate this here

yx = Hxyx−1 +
1 Hxyx−2 + . . .+ n−1 Hxyx−n.

Let
yx = Aux +

1 A 1 ux +
2 A 2 ux + . . .+ n−1 A n−1 ux

be the integral of this last, and let one make

1
ux = ux∆

1 ux−1

ux−1
,

2
ux =

1
ux∆

1 1
ux−1

1
ux−1

,
3
ux =

1
ux∆

1 2
ux−1

2
ux−1

,

1 1
ux = ux∆

2 ux−1

ux−1
, 1 2

ux =
1
ux∆

2 1
ux−1

1
ux−1

, . . . . . . . . . . . . . . . . . . ,

2 1
ux = ux∆

3 ux−1

ux−1
, 2 2

ux =
1
ux∆

3 1
ux−1

1
ux−1

,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . ,

until one arrives to form
n−1
u x, let

n−1
u x =

n−1 zx. If, in the expression of n−1 zx, one
changes n−1 ux into n−2 ux and n−2 ux into n−1 ux, one will form n−2 zx; if, in the same
expression of n−1 zx, one changes n−1 ux into n−3 ux, and reciprocally n−3 ux into n−1 ux,
one will form n−3 zx, and thus in sequence; the complete integral of equation

(B) yx = Hxyx−1 +
1 Hxyx−2 + · · ·+ n−1 Hxyx−n +Xx
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will be

(H)



yx =ux

(
A+∑

Xx+1

zx+1

)
+ 1 ux

(
1 A+∑

Xx+1
1 zx+1

)
+ . . . . . . . . . . . . . . . . . . . . .

+ n−1 ux

(
n−1 A+∑

Xx+1
n−1 zx+1

)
.

VIII.

I take now the equations (>) of the preceding Article; they give

n−1 A+∑
Xx+2

n−1 zx+2
= γx+1yx+1 + . . .+ n−1

γx+1yx−n+2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

A+∑
Xx+2

zx+2
=

γx+1

n−1
yx+1 + . . .+

n−1
γx+1

n−1
yx−n+2;

if one multiplies the first by n−1 ux, the second by n−2 ux, . . ., one will have, by adding
them together, an equation of this form

λxyx+1 +
1
λxyx+2 + . . .+ n−1

λxyx−n+2 = Aux +
1 A 1 ux + . . .+ n−1 A n−1 ux;

therefore
λxyx+1 +

1
λxyx+2 + . . .+ n−1

λxyx−n+2 = yx,

an equation which must be an identity; hence,

yx =ux

(
A+∑

Xx+2

zx+2

)
+ 1 ux

(
1 A+∑

Xx+2
1 zx+2

)
+ . . . . . . . . . . . . . . . . . . . . .

One will find similarly

yx =ux

(
A+∑

Xx+3

zx+3

)
+ 1 ux

(
1 A+∑

Xx+3
1 zx+3

)
+ . . . . . . . . . . . . . . . . . . . . .
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and thus in sequence until one arrives to this last equation inclusively,

yx =ux

(
A+∑

Xx+n

zx+n

)
+ 1 ux

(
1 A+∑

Xx+n
1 zx+n

)
+ . . . . . . . . . . . . . . . . . . . . .

All these equations being the complete integral of equation (B) are identically the same;
in comparing them together, one will form the following equations

ux

zx+1
+

1 ux
1 zx+1

+ . . .+
n−1 ux

n−1 zx+1
=0.

ux

zx+2
+

1 ux
1 zx+2

+ . . .+
n−1 ux

n−1 zx+2
=0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

ux

zx+n−1
+

1 ux
1 zx+n−1

+ . . .+
n−1 ux

n−1 zx+n−1
=0.

IX.

The integration of equation (B) of Problem II being reduced to the integration of
this same equation when Xx = 0, there is no longer a question to resolve the problem but
to integrate this here, but this appears very difficult in general; thus I will limit myself to
the particular cases. Here is one quite expanded of it, in which the integration succeeds,
and which embraces all the cases already known; it is the one in which one has

(B′) yx =Cφxyx−1 +
1Cφxφx−1yx−2 + . . .+ n−1Cφxφx−1 . . .φx−n+1yx−n.

If φx = 1, one will have the equation of the recurrent sequences.
Equation (E) of Article IV becomes in this case

(E′) 0 = 1− Cφx

αx
−

1Cφxφx−1

αxαx−1
− . . .−

n−1Cφxφx−1 . . .φx−n+1

αx . . .αx−n+1
.

Now (Art. IV), it suffices in order to integrate equation (B′) to know a number n of
values for αx in equation (E′). Let therefore αx = aφx, a being constant, and equation
(E′) will give

(h) an =Can−1 + 1Can−2 + 2Can−3 + . . .+ n−1C;

whence one will have a number n of values for a, and consequently for αx, since αx =
aφx.

Let p, 1 p, 2 p, . . . , n−1 p be the different values of a in equation (h). One will have
(Art. IV)

δx = pφx,
1
δx =

1 pφx,
2
δx =

2 pφx, . . .
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Now one has (Art. V)

ux =∇δx = φ1φ2φ3 . . .φx px,

1 ux =∇
1
δx = φ1φ2φ3 . . .φx

1 px,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The complete integral of equation (B′) is therefore

yx = φ1φ2φ3 . . .φx(Apx + 1 A 1 px + . . .+ n−1 A n−1 px).

One will determine the arbitrary constants A, 1 A, 2 A, . . . by means of n values of yx,
under as many particular assumptions for x. Let

y1 = M, y2 =
1 M, . . . , yn =

n−1 M;

and one will have

M
φ1

=Ap+ 1 A 1 p+ 2 A 2 p+ . . .+ n−1 A n−1 p,

1 M
φ1φ2

=Ap2 + 1 A 1 p2 + 2 A 2 p2 + . . .+ n−1 A n−1 p2,

2 M
φ1φ2φ3

=Ap3 + 1 A 1 p3 + 2 A 2 p3 + . . .+ n−1 A n−1 p3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

n−1 M
φ1φ2 . . .φn

=Apn + 1 A 1 pn + 2 A 2 pn + . . .+ n−1 A n−1 pn,

In order to resolve these equations, one can make use of the ordinary methods of elim-
ination: but here is one of them which appears to me simpler.

I multiply the first equation by n−1 p, and I subtract it from the second; I multiply
similarly the second by n−1 p, and I subtract it from the third, and thus in sequence, this
which produces the following equations:

1 M
φ1φ2

− M
φ1

n−1 p = Ap(p− n−1 p)+ 1 A 1 p( 1 p− n−1 p)+ . . .+ n−2 A n−2 p( n−2 p− n−1 p),

2 M
φ1φ2φ3

−
1 M

φ1φ2

n−1 p = Ap2(p− n−1 p)+ 1 A 1 p2( 1 p− n−1 p)+ . . .+ n−2 A n−2 p2( n−2 p− n−1 p),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

n−1 M
φ1 . . .φn

−
n−2 M

φ1 . . .φn−1

n−1 p = Apn−1(p− n−1 p)+ . . .+ n−2 A n−2 pn−1( n−2 p− n−1 p),

I multiply again the first of these equations by n−2 p, and I subtract it from the
second; I multiply similarly the second by n−2 p, and I subtract it from the third, this
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which gives

2 M
φ1φ2φ3

−
1 M

φ1φ2
( n−1 p− n−2 p)+

M
φ1

n−1 p n−2 p

=Ap(p− n−1 p)(p− n−2 p)

+ 1 A 1 p( 1 p− n−1 p)( 1 p− n−2 p)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ n−3 A n−3 p( n−3 p− n−1 p)( n−3 p− n−2 p),
3 M

φ1φ2φ3φ4
−

2 M
φ1φ2φ3

( n−1 p− n−2 p)+
1 M

φ1φ2

n−1 p n−3 p

=Ap2(p− n−1 p)(p− n−2 p)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ n−3 A n−3 p2( n−3 p− n−1 p)( n−3 p− n−2 p),

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

by operating on these last equations, as on the previous, one will have

3 M
φ1φ2φ3φ4

−
2 M

φ1φ2φ3
( n−1 p− n−2 p+ n−3 p)

+
1 M

φ1φ2
[( n−2 p+ n−1 p) n−3 p+ n−1 p n−2 p]− M

φ1

n−1 p n−2 p n−3 p

= Ap(p− n−1 p)(p− n−2 p)(p− n−3 p)+ . . . ,

and thus in sequence.

Thence it is easy to conclude that, if one names:
f the sum of the quantities 1 p, 2 p, 3 p, . . ., n−1 p,
h the sum of their products two by two,
i the sum of their products three by three,
q the sum of their products four by four, etc.,
1 f the sum of the quantities p, 2 p, 3 p, . . ., n−1 p,
1 h the sum of their products two by two,
1 i the sum of their products three by three, etc.,
and thus in sequence, one will have

A =
n−1 M−φn f n−2 M+φnφn−1h n−3 M−φnφn−1φn−2i n−4 M+ . . .

φ1φ2φ3 . . .φn p(p− 1 p)(p− 2 p)(p− 3 p) . . .
,

1 A =
n−1 M−φn

1 f n−2 M+φnφn−1
1 h n−3 M− . . .

φ1φ2φ3 . . .φn
1 p( 1 p− p)( 1 p− 2 p)( 1 p− 3 p) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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One can determine in a quite simple manner the quantities f , h, i, q, 1 f , 1 h, 1 i , 1 q, . . .;
I take for this the equation

(h) an−Can−1− 1Cn−2− . . .− n−1C = 0;

I divide it by a− p, and the resulting equation will be

an−1− f an−2−han−3− ian−4 +qan−5 + . . .= 0.

I multiply this result by a− p, and I will have the following equation

an− (p+ f )an−1 +(p f +h)an−2− (ph+ i)an−3 + . . .= 0;

I compare it with equation (h), and I conclude from it

f =+C− p,

h =− 1C− p f ,

i =+ 2C− ph,

. . . . . . . . . . . . . . . ,

and, consequently,
1 f =+C− 1 p,
1 h =− 1C− 1 p. 1 f ,

. . . . . . . . . . . . . . . ,

I have supposed until here that all the roots of equation (h) are unequal, but it can
happen that one or many of these roots are equal among themselves; here is in this case
the method that it is necessary to follow.

I suppose that one has p = 1 p; one will make 1 p = p+d p, and the equation

yx = φ1φ2φ3 . . .φx(Apx + 1 A 1 px + 2 A 2 px + . . .+ n−1 A n−1 px)

will give, by reducing (p+d p)x into series,

yx = φ1φ2 . . .φx

{
px
[

A+ 1 A
(

1+
xd p

p
+

x(x−1)
1.2

d p2

p2 + . . .

)]
+ 2 A 2 px + . . .

}
.

Let
A+ 1 A = B and 1 A

d p
p

= D,

B and D being some arbitrary and finite constants; 1 A will be therefore infinitely great

of order 1
d p ; 1 A d p2

p2 , 1 A d p3

p3 , . . . will be infinitely small. Hence

yx = φ1φ2 . . .φx[px(B+Dx)+ 2 A 2 px + 3 A 3 px + . . .].

If, moreover, one has p = 2 p, one will make 2 p = p+d p in this expression of yx, and
one will have

yx = φ1φ2 . . .φx

{
px
[

B+ 2 A+

(
D+ 2 A

d p
p

)
x+ 2 A

d p2

p2
x(x−1)

1.2
+ . . .

]
+ 3 A 3 px + . . .

}
.
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Let
2 A+B = 1 B, D+ 2 A

d p
p

= 1 D and 2 A
d p2

p2 = 1 E,

1 B, 1 D and 1 E being some arbitrary and finite constants; one will have

yx = φ1φ2 . . .φx

{
px
[

1 B+ 1 Dx+ 1 E
x(x−1)

1.2
+ . . .

]
+ 3 A 3 px + . . .

}
;

if moreover one had p = 3 p, one would have

yx = φ1φ2 . . .φx

{
px
[

2 B+ 2 Dx+ 2 E
x(x−1)

1.2
+ 2 F

x(x−1)(x−2)
1.2.3

]
+ 4 A 4 px + . . .

}
,

and thus in sequence; one would determine the arbitrary constants, at least of n partic-
ular values of yx.

If equation (h) has two imaginary roots p and 1 p, one will make

p = a+b
√
−1 and 1 p = a−b

√
−1.

Let
a√

aa+bb
= cosq and

b√
aa+bb

= sinq;

one will have

Apx + 1 A 1 px =(aa+bb)
x
2 [A(cosq+

√
−1sinq)x + 1 A(cosq−

√
−1sinq)x]

=(aa+bb)
x
2 [(A+ 1 A)cosqx+(A− 1 A)

√
−1sinqx)x]

because
(cosq±

√
−1sinq)x = cosqx±

√
−1sinqx.

Let
A+ 1 A = B and (A− 1 A)

√
−1 = 1 B,

B and 1 B being reals; one will have

Apx + 1 A 1 px = (aa+bb)
x
2 (Bcosqx+ 1 Bsinqx);

one will have therefore then

yx = φ1φ2 . . .φx

[
(aa+bb)

x
2 (Bcosqx+ 1 Bsinqx)+ 2 A 2 px + . . .

]
;

it will be the same process if there were a greater number of imaginaries.
If one supposes, in the preceding calculations, φx = 1, one will have the case of the

recurrent sequences. Thence results this theorem:
If one names Yx the general term of a recurrent sequence, such that one has

Yx =CYx−1 +
1CYx−2 + . . .+ n−1CYx−n,
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the general term of a sequence such that one has

yx =Cφxyx−1 +
1Cφxφx−1yx−2 + . . .+ n−1Cφx . . .φx−n+1yx−n,

and in which the arbitrary constants which arrive by integrating are the same as in the
preceding, will be

yx = φ1φ2 . . .φxYx.

This is it of which it is easy to be assured besides; because, if one substitutes this
value of yx into the equation

yx =Cφxyx−1 + . . . ,

one will have
φ1φ2 . . .φxYx =Cφ1φ2 . . .φxYx−1 + . . . ,

hence
Yx =CYx−1 +

1CYx−2 + . . . ,

an equation which holds by assumption.

X.

When one has, by the preceding article, the integral of the equation

yx =Cφxyx−1 +
1Cφxφx−1yx−2 + . . .+ n−1Cφx . . .φx−n+1yx−n +Xx,

by supposing Xx = 0, it is easy to conclude this same integral, Xx being anything. For
this, I observe that, since, Xx being null, one has

yx = φ1φ2 . . .φx(Apx + 1 A 1 px + . . . n−1 A n−1 px),

one will have, by Article V,

ux = φ1φ2φ3 . . .φx px,

1 ux = φ1φ2φ3 . . .φx
1 px,

2 ux = φ1φ2φ3 . . .φx
2 px,

. . . . . . . . . . . . . . . . . . . . . ,
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whence one will conclude, by Article VII,

1
ux =φ1φ2 . . .φx px

∆

1 px−1

px−1 = φ1φ2 . . .φx(
1 p− p) 1 px−1,

1 1
ux =φ1φ2 . . .φx(

2 p− p)2 px−1,

2 1
ux =φ1φ2 . . .φx(

3 p− p)3 px−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

2
ux =φ1φ2 . . .φx(

2 p− p)( 2 p− 1 p)2 px−2,

1 2
ux =φ1φ2 . . .φx(

3 p− p)( 3 p− 1 p)3 px−2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

3
ux =φ1φ2 . . .φx(

3 p− p)( 3 p− 1 p)( 3 p− 2 p)3 px−3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and thus in sequence, hence

n−1
u x+1 =

n−1 zx+1 = φ1φ2 . . .φx+1(
n−1 p− p)( n−1 p− 1 p)( n−1 p− 2 p) . . . n−1 px−n+2;

similarly

n−2 zx+1 = φ1φ2 . . .φx+1(
n−2 p− p)( n−2 p− 1 p) . . . n−2 px−n+2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

whence one will conclude, by substituting these values into formula (H) of article VII
and making Xx = φ1φ2 . . .φx

1 Xx for brevity,

yx =
φ1φ2 . . .φx

(p− 1 p)(p− 2 p)(p− 3 p) . . .
px+n−1

(
G+∑

1 Xx+1

px+1

)

+
φ1φ2 . . .φx

( 1 p− p)( 1 p− 2 p) . . .
1 px+n−1

(
1 G+∑

1 Xx+1
1 px+1

)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If p = 1 p, one will make 1 p = p+d p. Let K = 1
(p− 2 p)(p− 3 p)...

, and one will have

yx =φ1φ2 . . .φx px+n−1

{
B+Dx− K

p ∑

1 Xx+1

px+1 (x+1)+
[

dK
d p

+
K
p
(x+n−1)

]
∑

1 Xx+1

px+1

}

+
φ1φ2 . . .φx

( 2 p− p)2( 2 p− 3 p) . . .
2 px+n−1

(
2 G+∑

1 Xx+1
2 px+1

)
,

B and D being two arbitrary constants.
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If, moreover, one has p = 2 p, one will make, in this last expression of yx, 2 p =
p+d p, and thus in sequence.

One can therefore integrate generally all the differential equations contained in the
following formula

yx =Cφxyx−1 +
1Cφxφx−1yx−2 + . . .+Xx;

whence it results that, if one designates by θx any function whatsoever of x, the follow-
ing equation

θxyx =Cθx−1φxyx−1 +
1Cθx−2φxφx−1yx−2 + . . .+Xx

is generally integrable, since by making θxyx = tx this equation is of the same form as
the preceding.

XI.

Here is now another kind of linear differential equations, of which the order de-
pends on the variable x; let, for example,

yx =ax−1yx−1 +bx−2yx−2 + fx−3yx−3 +Xx

+ax−4yx−4 +bx−5yx−5 + fx−6yx−6

+ax−7yx−7 +bx−8yx−8 + . . .

+ . . . . . . . . . . . . . . . . . . . . . . . . . . .

+a3y3 +b2y2 + f1y1.

It is easy to bring these equations back to the form of equation (B) of problem II,
because one has

yx−3 =ax−4yx−4 +bx−5yx−5 + fx−6yx−6 +Xx−3

+ax−7yx−7 +bx−8yx−8 + . . .

+ . . . . . . . . . . . . . . . . . . . . . . . . . . .

+a3y3 +b2y2 + f1y1.

If one subtracts this last equation from the preceding, one will have

yx = ax−1yx−1 +bx−2yx−2 +( fx−3 +1)yx−3 +Xx−Xx−3,

an equation contained in equation (B).

XII.

Presently here is a quite extended use of the integral Calculus in the finite differ-
ences, in order to determine directly the general expression of the quantities subject to
a certain law which serves to form them, an expression that until here it seems to me
that one has always sought to draw by way of induction, a method not only indirect,
but which, moreover, must be often at fault.
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In order to make myself better understood, I take the following example:
Let x be the sine of an angle z and u its cosine; one has generally, as one knows,

sinnz = 2usin(n−1)z− sin(n−2)z,

whence one draws
sinz = x,

sin2z = x(2u),

sin3z = x(4u2−1),

sin4z = x(8u3−4u),

sin5z = x(16u4−12u2 +1),
. . . . . . . . . . . . . . . . . . . . . . . . . . .

It is necessary now to determine the general expression of sinnz.
One can arrive by way of induction, by continuing further these expressions and

seeking to discover the law of the different coefficients of the powers of u; but it will
happen, if it is not in this example, at least in an infinity of others, that this law will be
very complicated and very difficult to grasp: it matters consequently to have a general
and sure method in order to find it in all the possible cases.

Let, for this, the differential equation be

(∇) yx =


yn =yn−1(anu+bn)

+ yn−2(
1 anu2 + 1 bnu+ 1 cn)

+ yn−3(
2 anu3 + 2 bnu2 + 2 cnu+ 2 fn)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I suppose that one has
y1 = αu+β ,

y2 = δu2 + γu+Ω,

y3 = ϖu3 +πu2 +θu+σ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is how I conclude the general expression of yn.
I make

yn = Anun +Bnun−1 +Cnun−2 + . . . ,

hence,
yn−1 = An−1un−1 +Bn−1un−2 +Cn−1un−3 + . . . ,

yn−2 = An−2un−2 +Bn−2un−3 +Cn−2un−4 + . . . ,

and thus in sequence; if one substitutes these values of yn−1, yn−2, . . . into equation (∇),
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one will have

yn =un(anAn−1 +
1 anAn−2 +

2 anAn−3 + . . .

+un−1(anBn−1 +
1 anBn−2 +

2 anBn−3 + . . .

+bnAn−1 +
1 bnAn−2 +

2 bnAn−3 + . . .)

+un−2(anCn−1 +
1 anCn−2 +

2 anCn−3 + . . .

+bnBn−1 +
1 bnBn−2 +

2 bnBn−3 + . . .

+ 1 cnAn−2 +
2 cnAn−3 +

2 cnAn−4 + . . .)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By comparing this expression of yn with the preceding, one will have the following
equations

An =anAn−1 +
1 anAn−2 +

2 anAn−3 + . . . ,

Bn =anBn−1 +
1 anBn−2 +

2 anBn−3 + . . .

+bnAn−1 +
1 bnAn−2 +

2 bnAn−3 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

by means of which one will determine, by the preceding methods, An, Bn, . . ., and one
will have thus the general expression of yn.

I suppose that one wishes to have the general expression of sinnz; it is easy to see,
by that which precedes, that it will have this form

sinnz = x(Anun−1 +Bnun−3 +Cnun−5 +Dnun−7 + . . .);

therefore
sin(n−1)z = x(An−1un−2 +Bn−1un−4 +Cn−1un−6 + . . .)

sin(n−2)z = x(An−2un−3 +Bn−2un−5 +Cn−2un−7 + . . .).

If one substitutes these values of sin(n−1)z and sin(n−2)z into the equation

sinnz = 2usin(n−1)z− sin(n−2)z,

one will have

sinnz = x(2An−1un−1 +2Bn−1un−3 +2Cn−1un−5 + . . .−An−2un−3−Bn−2un−5− . . .)

and, if one compares this expression with the preceding, one will have

(Λ)


An = 2An−1,

Bn = 2Bn−1−An−2,

Cn = 2Cn−1−Bn−2,

. . . . . . . . . . . . . . . . . . . . .

By means of these equations one will determine An, Bn,Cn, . . . , but one must make
here an observation in which it is necessary to pay attention to all the researches which
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depend on the integral Calculus in the finite differences; that which renders its use very
delicate. This observation consists in this that the preceding equations (Λ) begin to exist
not at all immediately, that is to say when n has one same value in these equations. In
order to demonstrate, I observe that the fundamental equation

sinnz = 2usin(n−1)z− sin(n−2)z,

by means of which I have concluded sin2z,sin3z,sin4z, . . ., suppose known the first
two sines sin0z and sin1z; it can therefore begin to take place only when n = 2; hence
also, equations (Λ) can begin to exist only when n = 2. The first of these equations
begin to exist when n = 2, in which case one has A2 = 2A1; thus, the smallest index
of An, that is to say the least value that n can have in this expression, is unity; the
second equation can therefore begin to take place only when n = 3, in which case one
has B3 = 2B2−A1; hence, the least index of Bn is 2; the third equation can therefore
begin to take place only when n = 4, in which case one has C4 = 2C3−B2; hence, the
smallest index of Cn is 3, and thus in sequence. This put:

If one integrates the first equation, one will have

An = 2nH,

H being arbitrary; now, putting n = 1, An = 1, whence H = 1
2 , one has An = 2n−1,

hence An−2 = 2n−3. If one substitutes this value of An−2 into the second equation and
if next one integrates it; one will have

Bn =−2n−3(n+H);

since the differential equation in Bn commences to exist when n = 3, the arbitrary
constant H must be determined by the value of Bn, when n = 2; now, u not being able
to have a negative exponent in the expression of sinnz, it follows that B2 = 0, hence
H =−2; therefore

Bn =−2n−3(n−2) and Bn−2 =−2n−5(n−4).

If one substitutes this value of Bn−2 into the third equation, and if next one integrates
it, one will have

Cn = 2n−5
(

n2−7n
2

+H
)

now, putting n = 3, Cn = 0, whence H = 6, one has Cn = 2n−5 (n−3)(n−4)
1.2 , and thus to

infinity. Therefore

sinnz = x
[

2n−1un−1− n−2
1

2n−3un−3 +
(n−3)(n−4)

1.2
2n−5un−5

− (n−4)(n−5)(n−6)
1.2.3

2n−7un−7 + . . .

]
.

Let next z = angle sinx; one will have, by differentiating,

dz
dx

=
1√

1− x2
,
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and I wish to have the general expression of dnz
dxn , dx being supposed constant. For this,

let u = 1√
1−x2

; one will have

du
dx

=
x

(1− x2)
3
2
,

d2u
dx2 =

2x2 +1

(1− x2)
5
2
,

d3u
dx3 =

6x3 +9x

(1− x2)
7
2
,

. . . . . . . . . . . . . . . . . .

It is easy to see, by considering the law of these expressions of du, d2u, . . . , that
the general expression of dnu

dxn has the following form

dnu
dxn =

Anxn +Bnxn−2 +Cnxn−4 +Dnxn−6 + . . .

(1− x2)n+ 1
2

;

by differentiating this expression, one has

dn+1u
dxn+1 =

(n+1)Anxn+1+(n+3)Bn xn−1+(n+5)Cn xn−3+(n+7)Dn xn−5+. . .
+nAn +(n−2)Bn +(n−4)Cn +. . .

(1− x2)n+ 3
2

but one has

dn+1u
dxn+1 =

An+1xn+1 +Bn+1xn−1 +Cn+1xn−3 +Dn+1xn−5 + . . .

(1− x2)n+ 3
2

;

by comparing these two expressions of dn+1u
dxn+1 , one will have the following equations:

An+1 = (n+1)An,

Bn+1 = (n+3)Bn +nAn,

Cn+1 = (n+5)Cn +(n−2)Bn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All these equations begin to exist immediately and when n = 1; this put, the first gives

An = 1.2.3 . . .n;

the second gives

Bn = 1.2.3 . . .n(n+1)(n+2)
[

H +∑
n

(n+1)(n+2)(n+3)

]
,

or

Bn = 1.2.3 . . .n(n+1)(n+2)
[

Q+
1
2

1
(n+1)(n+2)

− 1
n+2

]
.
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One will determine the constant Q by this condition that Bn is zero when n = 1; one
has therefore Q = 1

2.2 . Therefore

Bn = 1.2.3 . . .n
1
2

n(n−1)
1.2

.

The third equation gives, by integrating and adding the appropriate constants,

Cn = 1.2.3 . . .n
1.3
2.4

n(n−1)(n−2)(n−3)
1.2.3.4

;

one will find similarly

Dn = 1.2.3 . . .n
1.3.5
2.4.6

n(n−1)(n−2)(n−3)(n−4)(n−5)
1.2.3.4.5.6

,

and thus in sequence. Hence

dnz
dxn =

1.2.3 . . .(n−1)

(1− x2)n− 1
2

[
xn−1 +

1
2
(n−1)(n−2)

1.2
xn−3

+
1.3
2.4

(n−1)(n−2)(n−3)(n−4)
1.2.3.4

xn−5

+
1.3.5
2.4.6

(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)
1.2.3.4.5.6

xn−7

+
1.3.5.7
2.4.6.8

(n−1)(n−2) . . .(n−8)
1.2.3 . . .8

xn−9

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .] .

I have supposed, in the two preceding examples, the law of the exponents known,
because it was very easy to perceive; but, if it happened that it was complicated, this
which must be extremely rare, one will be able to determine it by the preceding method.

XIII.

Here is yet a remarkable usage of the integral Calculus in the finite differences in
order to determine the nature of the functions according to some given conditions, this
which is often useful, principally in the Calculus of partial differences.4

One proposes to find a function of x such that by making successively x = φ(x) and
x = ψ(x), one has

(σ ) f [φ(x)] = Hx f [ψ(x)]+Xx,

4I had found this method at the end of 1772, on the occasion of some problems which Mr. Monge,
skillful professor of Mathematics at the schools of the Genoese at Mézières, proposed to me; I did part of it
for him then; at the same time, I sent it to Mr. de la Grange, and I have presented it to the Academy in the
month of February 1773. Since this time, Mr. the marquis de Condorcet has had printed in the Volume of
the Academy for the year 1771 a quite beautiful Memoir on this object; but the route which I have differs
from his in this that he does not propose, as I do it, to restore the question to the differential equations of
which the difference is constant and equal to unity. Translator’s note: On 10 March and 17 March 1773, as
reported in the Procès-Verbaux of the Paris Academy, Laplace read the paper “Recherches sur l’integration
des differentielles aux différences finies et sur leur application à l’analyse des hasards.”
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φ(x), ψ(x), Hx being some given functions of x.
For this let

uz = ψ(x) and uz+1 = φ(x).

From the first of these equations, I conclude

x = Γ(uz) and φ(x) = H(uz),

Γ(uz) and H(uz) representing some known functions of uz; hence,

uz+1 = H(uz),

a differential equation of which the constant difference is equal to unity, and which one
can integrate in many cases.

The integral of this equation will give uz as function of z, and the equation x=Γ(uz)
will give x as function of z. Substituting this value of x in Hx and Xx, the quantities will
become some functions of z, which I designate by Lz and Zz. Moreover, one has

f [φ(x)] = f (uz+1) and f [ψ(x)] = f (uz);

equation (σ ) will become therefore, by supposing f (uz) = yz,

yz+1 = Lzyz +Zz,

an equation integrable by Problem I.
One must observe here, consistent with a remark due to Mr. Euler, that the constants

which come by integrating the finite differential equations of which the variable is z,
and of which the constant difference is unity, can be supposed some functions any
whatsoever of sin2πz and cos2πz, π expressing the ratio of the circumference to the
diameter.

Presently, if one puts back into the expression of yz instead of z its value in x, one
will have f [ψ(x)], and, if one changes ψ(x) into x, one will have the function of x,
which satisfies the Problem. The following examples clarify this method:

The question is to find a function of x such that by changing successively x into xq

and into mx, one has
f (xq) = f (mx)+ p,

m and p being constants.
I make uz = mx, and uz+1 = xq; hence,

uz+1 =
(uz

m

)q
.

In order to integrate this equation, I make u1 = a; therefore u2 = aq

mq , u3 = aq2

mq2+q
, . . .

Let uz =
agz

m fz ; therefore

uz+1 =
aqgz

mq fz+q =
agz+1

m fz+1
.

Therefore
gz+1 = qgz,
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this which gives
gz = Aqz.

Now, putting z = 2, gz = q, whence A = 1
q , one has gz = qz−1. Moreover, one has

fz+1 = q fz+q. Therefore fz =Aqz+ q
1−q . Now, putting z= 2, fz = q; therefore A= 1

q−1

and fz =
1

q−1 (q
z−q); therefore

uz =
aqz−1

m
1

q−1 (q
z−q)

.

This expression of uz is complete, since a is arbitrary; now the equation

f (xq) = f (mx)+ p

will become
yz+1 = yz + p.

Therefore
yz =C+ pz = f (mx).

It is necessary presently to have the value of z in x; now, since one has uz = mx, one
will have

mx =
aqz−1

m
1

q−1 (q
z−q)

,

whence one draws5

lmx = qz la
q
− 1

q−1
(qz−q) lm

or

qz
(

la
q
− lm

q−1

)
= l

mx

m
q

q−1
;

let la
q −

lm
q−1 = K, and one will find

z =
ll mx

m
q

q−1

lq
− lK

lq
,

hence

yz = A+ p
ll mx

m
q

q−1

lq
,

A being an arbitrary constant which can be any function whatsoever of sin2πz and
cos2πz. Let Γ(sin2πz,cos2πz) be this function; by substituting instead of z its value,
one will have

A = Γ

sin2π

ll mx

m
q

q−1

lq
,cos2π

ll mx

m
q

q−1

lq

 .

5Translator’s note: Laplace uses l to denote the natural logarithm. It appears as l in this document.
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Therefore

yz = f (mx) = Γ

sin2π

ll mx

m
q

q−1

lq
,cos2π

ll mx

m
q

q−1

lq

+ p
ll mx

m
q

q−1

lq
;

thus the function of x demanded is

f (x) = Γ

sin2π

ll x

m
q

q−1

lq
,cos2π

ll x

m
q

q−1

lq

+ p
ll x

m
q

q−1

lq
.

It is a question again to find f (x) such that

[ f (x)]2 = f (2x)+2.

One could first think that it is impossible to satisfy this equation, at least to suppose
f (x) equal to a constant; this is indeed that which some able geometers have believed
(see the second Volume of the Mémoires de Turin, p. 320); but one is going to see there
are an infinity of other ways to satisfy it.

Let
uz = x and uz+1 = 2x;

therefore
uz+1 = 2uz and uz = A2z = x.

Moreover, one has

f (2x) = f (uz+1), which I designate by tz+1,

and
f (x) = f (uz) = tz;

and one will have
tz+1 = t2

z −2.

In order to integrate this equation, I suppose t1 = a+ 1
a , therefore

t2 = a2 +
1
a2 , t3 = a4 +

1
a4 , . . . ,

and generally

tz = a2z−1
+

1
a2z−1 ,

a complete expression of tx, since a is arbitrary; now one has 2z−1 = x
2A , therefore

tz = a
x

2A +a−
x

2A , or tz = bx +b−x,

b being an arbitrary constant; now this constant can be supposed any function whatso-
ever of sin2πz and cos2πz, and since z = H + lx

l 2 , H being any constant whatsoever,
one will have

b = f (sin2π
lx
l 2

,cos2π
lx
l 2

),
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hence the function of x demanded is[
f (sin2π

lx
l 2

,cos2π
lx
l 2

)

]x

+

[
f (sin2π

lx
l 2

,cos2π
lx
l 2

)

]−x

It is a question again to find f (x− y
√
−1), such that one has

f (x+ y
√
−1)− f (x− y

√
−1) = 2M

√
−1.

By supposing y = g+hx, one will have

f [g
√
−1+ x(1+h

√
−1)]− f [x(1−h

√
−1)−g

√
−1] = 2M

√
−1.

Let
x(1+h

√
−1)+g

√
−1 = uz+1,

x(1−h
√
−1)−g

√
−1 = uz;

one will have therefore

x =
uz +g

√
−1

1−h
√
−1

;

therefore

uz+1 =
1+h

√
−1

1−h
√
−1

uz +
2g
√
−1

1−h
√
−1

,

an equation of which the integral is

uz = A
(

1+h
√
−1

1−h
√
−1

)2

− g
h
= x(1−h

√
−1)−g

√
−1;

hence,

zl
1+h

√
−1

1−h
√
−1

= l(g+hx)+K.

Now, if one names ϖπ the angle of which the tangent is h, and π the ratio of the
semi-circumference to the radius, one will have

l
1+h

√
−1

1−h
√
−1

= 2
√
−1ϖπ;

therefore

z =
l(g+hx)
2
√
−1ϖπ

+K′.

Now one has
f (uz+1)− f (uz) = 2M

√
−1;

and, by representing f (uz) by tz,

tz+1 = tz +2M
√
−1,
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therefore
tz = H +2Mz

√
−1;

substituting instead of z its value, one will have

tz = M
l(g+hx)

ϖπ
+L,

L being an arbitrary constant, which can be any function whatsoever of sin2πz and

cos2πz, or of sin l(g+hx)
ϖ
√
−1

and of cos l(g+hx)
ϖ
√
−1

, and consequently of e
l(g+hx)

ϖ ; now, el(g+hx) =

g+hx; therefore L can be a function of (g+hx)
1
ϖ ; hence

f (x− y
√
−1) = M

l(g+hx)
ϖπ

+Γ

[
(g+hx)

1
ϖ

]
.

XIV.
On the equations in finite differences, when one has many equations among many

variables.

I suppose that one has the following two equations among the three variables yx,
1 yx

and x

yx +Axyx−1 = Bx
1 yx +Cx

1 yx−1,(1)

yx +
1 Axyx−1 =

1 Bx
1 yx +

1Cx
1 yx−1.(2)

The simplest way to integrate them is to reduce them by elimination to two other
equations, the one between yx and x, the other between 1 yx and x; for this, I multiply
the first by 1Cx, the second by Cx, and I subtract the one from the other; this which
gives

( 1Cx−Cx)yx +( 1CxAx−Cx
1 Ax)yx−1 = ( 1CxBx−Cx

1 Bx)
1 yx,

hence

(3)

{
( 1Cx−1−Cx−1)yx−1 +( 1Cx−1Ax−1−Cx−1

1 Ax−1)yx−1

= ( 1Cx−1Bx−1−Cx−1
1 Bx−1)

1 yx−1.

I multiply equation (1) by α , equation(2) by 1
α , and I add them with equation (3),

this which gives

(α + 1
α)yx +(αAx +

1
α

1 Ax +
1Cx−1−Cx−1)yx−1 +( 1Cx−1Ax−1−Cx−1

1 Ax−1)yx−2

= (αB+ 1
α

1 B) 1 yx +(αCx +
1
α

1Cx +
1Cx−1Bx−1−Cx−1

1 Bx−1)
1 yx−1;

I make 1 yx and 1 yx−1 vanish by means of the equations

αBx +
1
α

1 Bx = 0,

αCx +
1
α

1Cx +
1Cx−1Bx−1−Cx−1

1 Bx−1 = 0,
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and I have in this manner a differential equation between yx and x alone; by an entirely
similar process, one will find one of them between 1 yx and x; and it would be the same
thing if one has a greater number of equations and of variables.

It is easy to see that, if there was in each equation some terms such as Tx, Xx, . . . , Tx, Xx
being some functions any whatsoever of x, they would be integrable in the same cases
where they are it, these terms not being there.

When one has n−1 equations among n variables, these being able to have an infin-
ity of different relations among them, the integration of these equations presents thus a
great number of curious researches; but there is a case which merits a particular atten-
tion, in this that it is encountered sometimes and principally in the analyses of chances;
it is the case in which these equations return to themselves.

XV.
On the differential equations returning to themselves.

If one has the following equations, among the n variables
1
yx,

2
yx,

3
yx, . . . ,

1
yx = A

2
yx−1,

2
yx = A

3
yx−1,

3
yx = A

4
yx−1,

. . . . . . . . . . . . ,

n
yx = A

1
yx−1.

These equations are those which I call equations returning to themselves. In general,

if one disposes on the perimeter of fig. A the n variables
1
yx,

2
yx,

3
yx, . . . , as the figure

represents them,
2
yx

3
yx

4
yx

A

1
yx

n
yx . . .

5
yx

and if then any function whatsoever of one of these variables and of its finite differences
is constantly equal to any function whatsoever of those which follow it and of their
finite differences, the equation which results is that which I name an equation returning
to itself. If, for example, each of these variables is equal to twice that which follows
it, when one supposes x diminishing by unity, plus three times that which follows this
last, when one supposes x diminishing by two units, one will have

1
yx = 2

2
yx−1 +3

3
yx−2,

2
yx = 2

3
yx−1 +3

4
yx−2,

. . . . . . . . . . . . . . . . . . . . . ,

n
yx = 2

1
yx−1 +3

2
yx−2.
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One sees thence that, although in the order of the variable
1
yx is the first, one would

have been able however equally to begin with any other of these variables, and the
equations would have been absolutely the same, this which is the particular character
of this kind of equations. This put,

XVI.

PROBLEM III. — I suppose that one has the returning equations

1
yx +A

1
yx−1 +

1 A
1
yx−2 + . . .= B

2
yx +

1 B
2
yx−1 +

2 B
2
yx−2 + . . .+Xx,

2
yx +A

2
yx−1 +

1 A
2
yx−2 + . . .= B

3
yx +

1 B
3
yx−1 +

2 B
3
yx−2 + . . .+Xx,

n
yx +A

n
yx−1 +

1 A
n
yx−2 + . . .= B

1
yx +

1 B
1
yx−1 +

2 B
1
yx−2 + . . .+Xx;

it is necessary to determine
1
yx,

2
yx, . . .

The first equation gives

1
yx +A

1
yx−1 +

1 A
1
yx−2 + . . .+A

1
yx−1 +A 2 1

yx−2 + . . .+ 1 A
1
yx−2

= B(
2
yx +A

2
yx−1 +

1 A
2
yx−2 + . . .)+ 1 B(

2
yx−1 +A

2
yx−2 +

1 A
2
yx−3 + . . .)+ . . .

+Xx +AXx−1 +
1 AXx−2 + . . .

I substitute instead of
2
yx +A

2
yx−1 + . . .,

2
yx−1 +A

2
yx−2 + . . . their values which the

second equation gives, this which gives me an equation among
1
yx,

1
yx−1, . . . and

3
yx,

3
yx−1, . . . ; by operating on this here as on the first, I will have an equation among

1
yx,

1
yx−1, . . . and

4
yx,

4
yx−1, . . . and, by continuing to operate thus until the variable

q
yx, I will

arrive to an equation of this form

1
yx +bq

1
yx−1 +

1 bq
1
yx−2 + . . .

= aq(
q
yx +A

q
yx−1 +

1 A
q
yx−2 + . . .)+ 1 aq(

q
yx−1 +A

q
yx−2 + . . .)+ . . .+

q
ux,

It is necessary to determine bq, 1 bq, . . ., aq, 1 aq, . . .,
q
ux.

For this I substitute into the preceding equation, instead of
q
yx +A

q
yx−1 + . . .

q
yx−1 +

A
q
yx−2 + . . . , their values that the qth of the returning equations gives, this which gives

1
yx +bq

1
yx−1 +

1 bq
1
yx−2 + . . .

= aq(B
q+1
y x +

1 B
q+1
y x−1 + . . .+Xx)+

1 aq(B
q+1
y x−1 +

1 B
q+1
y x−2 + . . .+Xx−1)+ . . .+

q
ux,
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whence I conclude

1
yx+bq

1
yx−1+

1 bq
1
yx−2 + . . .=aqB

(
q+1
y x +A

q+1
y x−1 +

1 A
q+1
y x−2 + . . .

+A +Abq +( 1 aqB+aq
1 B)

(
q+1
y x−1 +A

q+1
y x−2 + . . .

)
1 A +( 2 aqB+ 1 aq

1 B+aq
2 B)

(
q+1
y x−2 + . . .

)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+Xxaq

+Xx−1(
1 aq +Aaq)

+Xx−2(
2 aq +A 1 aq +

1 Aaq)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
q
ux +A

q
ux−1 +

1 A
q
ux−2 + . . . ;

but one has

1
yx +bq+1

1
yx−1 +

1 bq+1
1
yx−2 + . . .=aq+1

(
q+1
y x +A

q+1
y x−1 + . . .

)
+ 1 aq+1

(
q+1
y x−1 + . . .

)
+ . . . . . . . . . . . . . . . . . . . . .

+
q+1
u x;

whence one has, by comparing,

bq+1 = bq +A,
1 bq+1 =

1 bq +Abq +
1 A,

. . . . . . . . . . . . . . . . . . . . . . . . ;
aq+1 = aqB,
1 aq+1 =

1 aqB+aq
1 B,

. . . . . . . . . . . . . . . . . . . . . . . . ;

(Λ)


q+1
u x =

q
ux +A

q
ux−1 +

1 A
q
ux−2 + . . .

+Xxaq +Xx−1(
1 aq +Aaq)+Xx−2(

2 aq +A 1 aq +
1 Aaq)+ . . .

By means of these equations, one will determine easily aq, 1 aq, . . ., bq,
1 bq, . . .; in

order to determine
q
ux, I observe that one has

q
ux = fqXx +

1 fqXx−1 +
2 fqXx−2 + . . . ;

37



I substitute this value into equation (Λ), this which gives

q+1
u x =Xx( fq +aq)+Xx−1(

1 fq +
1 aq +Aaq +A fq)

+Xx−2(
2 fq +

2 aq +A 1 aq +
1 Aaq +

1 A fq +A 1 fq)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

but one has
q+1
u x = fq+1Xx +

1 fq+1Xx−1 +
2 fq+1Xx−2 . . . ;

therefore
fq+1 = fq +aq,

1 fq+1 =
1 fq +

1 aq +A fq,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

By means of these equations one will determine fq, 1 fq, . . ., and hence
q
ux. I suppose

now q = n, and one will have

1
yx +bq

1
yx−1 + . . .=an(

n
yx +A

n
yx−1 + . . .)

+ 1 an(
n
yx−1 +

1 A
n
yx−2 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . .

+
n
ux;

but one has
n
yx +A

n
yx−1 + . . .= B

1
yx +

1 B
1
yx−1 + . . .+Xx;

therefore

1
yx +bn

1
yx−1 + . . .=an(B

1
yx +

1 B
1
yx−1 + . . .) +anXx

+ 1 an(B
1
yx−1 + . . .) + 1 anXx−1

+ . . . . . . . . . . . . . . . . . . + . . . . . .

+
n
ux,

and, by ordering the different terms of this equation

1
yx(1−anB)+

1
yx−1(bn−an

1 B− 1 anB)+
1
yx−2(

1 bn−an
2 B+ 1 an

1 B− 2 anB)+ . . .

−n
ux−anXx− 1 anXx−1− . . .= 0

one will have an equation entirely similar for
2
yx,

3
yx, . . .
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XVII.

PROBLEM IV. — I suppose now that the returning equations contain three vari-
ables, and that one has

1
yx +A

1
yx−1 +

1 A
1
yx−2 + . . .=B

2
yx +

1 B
2
yx−1 +

2 B
2
yx−2 + . . .

+C
3
yx +

1C
3
yx−1 +

2C
3
yx−2 + . . .

+Xx,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

n
yx +A

n
yx−1 +

1 A
n
yx−2 + . . .=B

1
yx +

1 B
1
yx−1 +

2 B
1
yx−2 + . . .

+C
2
yx +

1C
2
yx−1 + . . .

+Xx,

it is necessary to determine
1
yx,

2
yx, . . . By following the process of the preceding prob-

lem, one will arrive to an equation of this form

1
yx +bq

1
yx−1 +

1 bq
1
yx−2 + . . .=aq(

q
yx +A

q
yx−1 +

1 A
q
yx−2 + . . .)

+ 1 aq(
q
yx−1 +A

q
yx−2 +

1 A
q
yx−3 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ cq(
q+1
y x +A

q+1
y x−1 +

1 A
q+1
y x−2 + . . .)

+ 1 cq(
q+1
y x−1 +A

q+1
y x−2 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
q
ux.

I substitute now into this equation, instead of

q
yx +A

q
yx−1 + . . . ,

q
yx−1 +A

q
yx−2 + . . . ,
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their values that the qth equation gives, this which produces the following

1
yx +bq

1
yx−1 +

1 bq
1
yx−2 + . . .=aq(B

q+1
y x +

1 B
q+1
y x−1 +

2 B
q+1
y x−2 + . . .)

+ 1 aq(B
q+1
y x−1 +

1 B
q+1
y x−2 +

2 B
q+1
y x−3 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+aq(C
q+2
y x +

1C
q+2
y x−1 + . . .)

+ 1 aq(C
q+2
y x−1 + . . .)

+ . . . . . . . . . . . . . . . . . .

+ cq(
q+1
y x +A

q+1
y x−1 + . . .)

+ 1 cq(
q+1
y x−1 + . . .)

+ . . . . . . . . . . . . . . . . . .

+aqXx +
1 aqXx−1 + . . .

+
q
ux;

whence one will conclude easily
1
yx+bq

1
yx−1+

1 bq
1
yx−2 + . . .

+A +Abq

+ 1 A

=(aqB+ cq)(
q+1
y x +A

q+1
y x−1 + . . .)

+( 1 aqB+aq
1 B+ 1 cq +Acq)(

q+1
y x−1 +A

q+1
y x−2 + . . .)

+( 2 aqB+ 1 aq
1 B+aq

2 B+ 2 cq +A 1 cq +
1 Acq)(

q+1
y x−2 +A

q+1
y x−3 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+aqC(
q+2
y x +A

q+2
y x−1 + . . .)

+( 1 aqC+aq
1C)(

q+2
y x−1 +A

q+2
y x−2 + . . .)

+( 2 aqC+ 1 aq
1C+aq

2C)(
q+2
y x−2 +A

q+2
y x−3 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
q
ux +A

q
ux−1 +

1 A
q
ux−2 + . . .

+Xxaq +Xx−1(
1 aq +Aaq)+ . . . ;
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now one has
1
yx +bq+1

1
yx−1 + . . .=aq+1(

q+1
y x +A

q+1
y x−1 + . . .)

+ . . . . . . . . . . . . . . . . . . . . .

+ cq+1(
q+2
y x +A

q+2
y x−1 + . . .)

+ . . . . . . . . . . . . . . . . . . . . .

+
q+1
u x;

whence one will have, by comparing,

bq+1 =bq +A,
1 bq+1 =

1 bq +Abq +
1 A,

. . . . . . . . . . . . . . . . . . . . . ;

thus one will determine bq, 1 bq, . . .; next

aq+1 = aqB+ cq and cq+1 = aqC, hence aq+1 = aqB+aq−1C;

whence one will have aq and cq. Moreover, one will have

1 aq+1 =
1 aqB+aq

1 B+ 1 cq +Acq,

1 cq+1 =
1 aqC+aq

1C.

Therefore
1 aq+1 =

1 aqB+aq
1 B+ 1 cq−1

1C+aq−1
1C+Acq;

whence one will have 1 aq and 1 cq, and thus of the rest; finally one will determine
q
ux,

as in the preceding problem.
If one supposes presently q = n, one will have

1
yx(1− cn)+

1
yx−1(1−Acn− 1 cn)+ . . .=an(

n
yx +A

n
yx−1 + . . .)

+ 1 an(
n
yx−1 +A

n
yx−2 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . .

+
n
ux.

One will form some entirely similar equations among
n−1
y x and

n
yx,

n−2
y x and

n−1
y x, . . . ,

and one will have a number n of returning equations in two variables, such as I have
considered in the preceding problem.

The same method would succeed equally if the returning equations contained four
or a greater number of variables.
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XVIII. On the integral calculus in the finite and partial differences.

I suppose that n y x represents any function whatsoever of two variables x and n;
I can in this function make n vary by regarding x as constant; I can make x vary by
regarding n as constant; finally, I can vary n and x all together, their variations being in
any ratio whatsoever; now, if there exists among n y x and these different variations any
equation whatsoever, it will be that which I name an equation in the finite and partial
differences.

n y x represents always a function of two variables x and n: n−1 y x , n−2 y x , . . . sig-
nify that n has diminished by one, by two, . . . units in this function; n y x−1 , n y x−2 , . . .
signify that x has diminished by one, by two, . . . units in this function; n−1 y x−2 , . . .
signifies that n has diminished by one unit, and x by two units, and thus in sequence.

An equation in the partial differences is therefore an equation among these different
quantities; such as this here:

n y x = a. n y x−1 +b. n−1 y x−1 .

The equations in the finite differences have been found by the consideration of the
sequences (Art. II). This is similarly the consideration of certain sequences that I have
named récurro-récurrentes (see volume VI of Savants étranges), which has led me to
the finite and partial differences; here is how: I suppose that one has the sequences

(i)



1 y 1 , 1 y 2 , 1 y 3 , 1 y 4 , 1 y 5 , . . . , 1 y x , . . . ,

2 y 1 , 2 y 2 , 2 y 3 , 2 y 4 , 2 y 5 , . . . , 2 y x , . . . ,

3 y 1 , 3 y 2 , 3 y 3 , 3 y 4 , 3 y 5 , . . . , 3 y x , . . . ,

. . . , . . . , . . . , . . . , . . . , . . . , . . . ,

n y 1 , n y 2 , n y 3 , n y 4 , n y 5 , . . . , n y x , . . . ,

If any term whatsoever n y x of these sequences is constantly equal to any num-
ber whatsoever of the preceding terms taken in many of these sequences, and each
multiplied by a function of x and of n, these sequences are those that I have called
récurro-récurrentes, and the equation which expresses the law according to which they
are formed is an equation in the finite and partial differences.

I will observe here that the sequences (i) can be considered not only in the horizon-
tal sense, but further in the vertical sense, and, instead that in the first sense x is their
index, n will be it in the second.

I will suppose in the following, as I have done it above in the equations in the
ordinary differences, that the differences of x and of n are constants and equal to unity;
if they are constants without being equal to unity, it will always be possible to render
them such, by the introduction of new variables; I will suppose moreover (this which
is yet permitted) that the smallest values that x and n can receive are unity; and each
time that I myself will depart from this assumption, the state of the question will make
it known. This put:

If one has an equation in the partial differences such that

n y x = 2. n y x−1 +2. n−1 y x−1 ,
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it begins to hold only when x and n are greater than unity, as in the ordinary differences
the equation 1 y x = a. 1 y x−1 holds only when x is greater than 1; so that 1 y 1 remains
arbitrary, and one determines by means of this equation only the values of 1 y 2 , 1 y 3 ,
. . .; likewise, in the equation

n y x = 2. n y x−1 +2. n−1 y x−1 ,

1 y x and n y 1 are arbitrary; thus the general expression of n y x contains an arbitrary
function.

In general, the number of arbitrary functions that the integral of an equation in the
partial differences contains will be determined by the degree of the difference of that
of the two quantities x and n which varies the least; thus, in the equation

n y x = n y x−1 +3. n−1 y x−1 ,

the number of arbitrary functions which the integral contains is 1, because, n being
here that of the two variables of which the difference is the least, it varies only by one
unit; indeed, it is clear that, if one knows 1 y x , one can determine 2 y x , 3 y x , 4 y x , . . .
by means of the equation

n y x = n y x−1 +3. n−1 y x−1 ;

there is therefore then only 1 y x arbitrary.

XIX.

PROBLEM V. — The equation in the finite and partial differences

n y x = n H x . n−1 y x−1 +
1
n H x . n−2 y x−2 +

2
n H x . n−1 y x−1 + . . .+ n P x

being given, one proposes to integrate it.
Since, in each term of this equation, the variable n decreases according to the same

law as the variable x, I can suppose x = n+K, K being any constant whatsoever; n y x ,

n H x , 1
n H x , . . . become then functions of x and of K; I represent in this case n y x by

ux; n H x , 1
n H x , . . . by Lx,

1 Lx, . . . , finally n P x by Xx; the proposed equation becomes
therefore

ux = Lxux−1 +
1 Lxux−2 +

2 Lxux−1 + . . .+Xx,

an equation in the ordinary differences, and of which the integral has this form by the
preceding Articles, by restoring instead of K its value x−n,

ux =C. n z x +
1C. 1

n z x +
2C. 2

n z x + . . .+ n R x ;

C, 1C, 2C, . . . are some arbitrary constants, which can be functions of K or of x− n;
one will have therefore

n y x = n z x .φ(x−n)+ 1
n z x .

1
φ(x−n)+ 2

n z x .
2
φ(x−n)+ . . .+ n R x ;
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one will determine the arbitrary functions φ(x− n), 1
φ(x− n), . . . by means of the

values of n y x , in as many particular assumptions for x as there are of these arbitrary
functions.

The proposed equation in the partial differences is therefore generally integrable,
that which comes from this that in each term n and x vary in the same manner; but, if
one excepts this case and some others quite rare, it is impossible to have an integral
entirely rid of any sign of integration. In order to show it by a quite simple example, I
suppose that one has to integrate the equation

n y x = n y x−1 + n−1 y x−1 ;

by supposing 1 y x = φ(x), one will have

2 y x − 2 y x−1 = φ(x−1) or ∆. 2 y x = φ(x),

hence 2 y x = Σφ(x); one will find similarly

3 y x = Σ
2
φ(x), 4 y x = Σ

3
φ(x),

and generally

n y x = Σ
n−1

φ(x);

such is therefore the complete value of n y x by taking care to add to each integration an
arbitrary constant.

One can simplify this value and reduce it to some quantities affected with the simple
sign of integration, in the following manner.

It is necessary to reduce the double integral Σ
2
φ(x) to some simple integrals; I

make for this
Σ

2
φ(x) = zx Σφ(x)−Σtx φ(x);

by differentiating, there comes

Σφ(x) = (zx +∆zx)[φ(x)+Σφ(x)]− zxΣφ(x)− tx φ(x)

or
Σφ(x) = (zx +∆zx− tx)φ(x)+∆zx Σφ(x).

Therefore ∆zx = 1 and tx = zx +∆zx; I can therefore suppose zx = x and tx = x+1,
this which gives

Σ
2
φ(x) = xΣφ(x)−Σ(x+1)φ(x);

one will reduce, by a similar process, Σ
3
φ(x) to some quantities affected by a single

sign of integration; but it will be impossible to rid it of it entirely.
Here is now a method to integrate equations in the partial differences, in which the

inconvenience of the quantities affected by many signs of integration is not at all to
fear.
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XX.

PROBLEM VI. — The equation in the finite and partial differences

(h)

{
n y x =+A n . n y x−1 +

1 A n . n y x−2 +
2 A n . n y x−3 + . . .+N n

+B n . n−1 y x +
1 B n . n−1 y x−1 +

2 B n . n−1 y x−2 + . . .

being given, one proposes to integrate it.
For this I seek to restore the integration to that of an equation in the ordinary differ-

ences. I suppose therefore that one has 1 y x = φ(x); equation (h) will give the following

(1) 2 y x = A 2 . 2 y x−1 +
1 A 2 . 2 y x−2 + . . .+N 2 +B 2 φ(x)+ 1 B 2 φ(x−1)+ . . . ,

next

3 y x = A 3 . 3 y x−1 +
1 A 3 . 3 y x−2 + . . .+N 3 +B 3 . 2 y x +

1 B 3 . 2 y x−1 + . . . ;

whence it is easy to conclude

3 y x−A 3 . 3 y x−1 −
1 A 3 . 3 y x−2 − . . .−A 2 ( 3 y x−1 −A 3 . 3 y x−2 − . . .)− 1 A 1 ( 2 y x−2 − . . .)

= B 3 ( 2 y x −A 2 . 2 y x−1 − . . .)+ 1 B 3 ( 2 y x−1 −A 2 . 2 y x−2 − . . .)+ . . .

+N 2 (1−A 2 −
1 A 2 − . . .).

If one substitutes, instead of

2 y x −A 2 . 2 y x−1 − . . . ,

2 y x−1 −A 2 . 2 y x−2 − . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . ,

their values drawn from equation (1), one will have an equation of this form:

3 y x −a 3 . 3 y x−1 −
1 a 3 . 3 y x−2 − . . .= 3 u x .

This equation is in the ordinary differences; in order to integrate it by the preceding
Articles, it is necessary to know 3 u x and the roots of the equation

1 =
a 3
f
+

1 a 3
f 2 +

2 a 1
f 3 + . . . ;

now this equation is the same as this here

0 = 1−
A 3
f

+
1 A 3
f 2 − . . .−

A 2
f

(
1−

A 3
f
− . . .

)
−

1 A 2
f 1

(
1−

A 3
f
− . . .

)
and, hence, it is equal to the following

0 =

(
1−

A 2
f
−

1 A 2
f 2 −

2 A 2
f 3 − . . .

)(
1−

A 3
f
−

1 A 3
f 2 − . . .

)
.
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By following the same process for 4 y x , 5 y x and generally for n y x , one will trans-
form equation (h) of the Problem in the following

(2) n y x = a n . n y x−1 +
1 a n . n y x−2 + . . .+ n u x ,

that it will be easy to integrate it when one will know n u x and the roots of the equation

1−
a n
f
+

1 a n
f 2 +

2 a n
f 3 − . . . ;

one will see easily that this equation is the same as this here

0=

(
1−

A 2
f
−

1 A 2
f 2 −

2 A 2
f 3 − . . .

)(
1−

A 3
f
−

1 A 3
f 2 − . . .

)
. . .

(
1−

A n
f
−

1 A n
f 2 − . . .

)
,

whence it is easy to conclude a n , 1 a n , . . ..
In order to determine presently the value of n u x , I observe that, from equation

(2) n y x = a n . n y x−1 +
1 a n . n y x−2 + . . .+ n u x ,

one draws

B n . n−1 y x =B n .a n−1 . n−1 y x−1 +B n .
1 a n−1 . n−1 y x−2 + . . .+B n . n−1 u x ,

1 B n . n−1 y x−1 = 1 B n .a n−1 . n−1 y x−2 +
1 B n .

1 a n−1 . n−1 y x−3 + . . .+ 1 B n . n−1 u x−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If one adds all these equations member by member, one will have

B n . n−1 y x +
1 B n . n−1 y x−1 + . . .

=a n−1 (B n . n−1 y x−1 +
1 B n . n−1 y x−2 + . . .)

+ 1 a n−1 (B n . n−1 y x−2 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . .

+B n . n−1 u x +
1 B n . n−1 u x−1 + . . .

Now, if one substitutes, instead of

B n . n−1 y x +
1 B n . n−1 y x−1 + . . . ,

B n . n−1 y x−1 +
1 B n . n−1 y x−1 + . . . ,

their values given by the equation of the problem, one will have

n y x−A n . n y x−1 − . . .−N n = a n−1 ( n y x−1 −A n . n y x−2 − . . .−N n )

+ 1 a n−1 ( n y x−2 − . . .−N n )

+ . . . . . . . . . . . . . . . . . . . . . . . . . . .

+B n . n−1 u x +
1 B n . n−1 u x−1 + . . .
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By ordering the different terms of this equation, one will have

n y x = n y x−1 (a n−1 +A n )

+ n y x−2 (
1 a n−1 −a n−1 .A n +

1 A n )

+ n y x−3 (
2 a n−1 −

1 a n−1 .A n +a n−1 .
1 A n +

2 A n )

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+B n . n−1 u x +
1 B n . n−1 u x−1 + . . .

+N n (1−a n−1 −
1 a n−1 − . . .).

If one compares now term by term this last equation with equation (2), one will
have the following:

a n =a n−1 +A n ,

1 a n = 1 a n−1 −a n−1 .A n +
1 A n ,

2 a n = 2 a n−1 −
1 a n−1 .A n −a n−1 .

1 A n +
2 A n ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One could, by integrating these equations, determine a n , 1 a n , . . ., if it was not much
more simple to conclude them by the preceding method.

Finally one will have

(3) n u x = N n (1−a n−1 −
1 a n−1 −

2 a n−1 − . . .)+B n . n−1 u x +
1 B n . n−1 u x−1 + . . .

In order to integrate this last equation, I observe that, since 1 y x = φ(x), one will
have 1 u x = φ(x); whence I conclude

2 u x = N 2 (1−a 1 − . . .)+B 2 φ(x)+ 1 B 2 φ(x−1)+ . . . ;

one would have in the same manner 3 u x , 4 u x , . . ., and one sees that by preceding thus
one will have generally

(4) n u x = b n φ(x)+ 1 b n φ(x−1)+ 2 b n φ(x−2)+ . . .+C n ;

therefore

n−1 u x =b n−1 φ(x)+ 1 b n−1 φ(x−1)+ . . .+C n−1 ,

n−1 u x−1 = b n−1 φ(x−1)+ 1 b n−1 φ(x−2)+ . . .+C n−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If one substitutes these values into equation (3), one will have

n u x =N n (1−a n−1 −
1 a n−1 − . . .)+C n−1 (B n +

1 B n + . . .)

+b n−1 B n φ(x)+φ(x−1)( 1 b n−1 B n +b n−1
1 B n + . . . ;
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whence, by comparing with equation (4), one will have

b n =B n .b n−1 ,

1 b n =B n .
1 b n−1 +

1 B n .b n−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C n =C n−1 (B n +
1 B n + . . .)+N n (1−a n−1 −

1 a n−1 − . . .).

By integrating these different equations and adding the appropriate constants, one will
have the values of b n , 1 b n , . . ., C n , and hence that of n u x . The constants must be
such, that by supposing n = 1 one has n u x = φ(x); so that one must have C 1 = 0, b 1 =

1, 1 b 1 = 0, 2 b 1 = 0, . . ..
By integrating equation (2) to which the equation of the problem is reduced, this

operation introduces in the expression of n y x some arbitrary constants, which can be
functions of n; but these functions are not arbitrary, since the integral of equation (h)
can contain no other arbitrary function than φ(x); one will determine them in this
manner.

If one names p n , 1 p n , 2 p n , . . . the roots of the equation

1 =
a n
f
+

1 a n
f 2 +

2 a n
f 3 + . . . ;

one will have, by Article X,

n y x =C n .p
x
n +

1C n .
1 p x

n +
2C n .

2 p x
n + . . .+ n L x .

If one substitutes this expression of n y x into equation (h), one will draw from it,
by comparing the terms homologous with respect to x, as many differential equations
as there are functions C n , 1C n , . . ., and, by integrating these equations, one will deter-
mine these functions.

Instead of making 1 y x = φ(x), one can imagine a differential equation any what-
soever between 1 y x and x; I suppose that this equation is that of a recurrent sequence,
so that one has

1 y x = F. 1 y x−1 +
1 F. 1 y x−2 + . . .+L,

F, 1 F, . . . and L being constants; by following the method of the problem, one will
arrive to the following equation

(5) n y x = a n . n y x−1 +
1 a n . n y x−2 +

2 a n . n y x−3 + . . .+u n ,

and one will find that the equation

1 =
a n
f
+

1 a n
f 2 +

2 a n
f 3 + . . .

is the same as this here:

0 =

(
1− F

f
−

1 F
f 2 − . . .

)(
1−

A 2
f
−

1 A 2
f 2 − . . .

)
. . .

(
1−

A n
f
−

1 A n
f 2 − . . .

)
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One will have next

u n = u n−1 (B n +
1 B n + . . .)+N n (1−a n−1 −

1 a n−1 − . . .),

whence it will be easy to conclude the value of n y x .
The case in which the equation between 1 y x and x is that of a recurrent sequence

is the one which is encountered most frequently in the application of this theory.
One can observe here that the quantities B n , 1 B n , . . . enter not at all into the forma-

tion of a n , 1 a n , . . ., but simply in that of u n ; whence it follows that, when this quantity
is null (this which must happen very often), equation (5) will remain the same thing
as the quantities B n , 1 B n , . . . are; thence there results that, in this case, these quanti-
ties influence in the solution of the problem only on the determination of the arbitrary
constants which come from the integration of equation (5).

XXI.

In order to clarify the preceding theory with some examples, I suppose that one has
the two equations

1 y x = 2. 1 y x−1 ,

n y x = 2. n y x−1 +2. n−1 y x−1 .

If in the first equation one makes 1 y 1 = 1, one will form in its way the following
sequence 1, 2, 4, 8, 16, . . . The second equation gives

2 y x = 2. 2 y x−1 +2. 1 y x−1 ,

and, if one supposes 2 y 1 = 0, one will have 2 y 2 = 2, 2 y 3 = 8, . . . ; one will form
in this manner the sequence 0, 2, 8, 24, . . . By continuing thus and supposing always

3 y 1 = 0, 4 y 1 = 0, 5 y 1 = 0, . . . one will form the récurro-récurrentes sequences:

1 2 3 4 5 6 7 8 . . . x
1 1 2 4 8 16 32 64 128 . . . .
2 0 2 8 24 64 160 384 896 . . . .
3 0 0 4 24 96 320 960 2688 . . . .
4 0 0 0 8 64 320 1280 4480 . . . .
5 0 0 0 0 16 160 960 4880 . . . .
...

...
...

...
...

...
...

...
...

...
...

n . . . . . . . . . .

It is necessary presently to determine the general term of these sequences or, this
which reverts to the same, the expression of n y x .

For this, I observe that one has, by the preceding Article,

n y x = a n . n y x−1 +
1 a n . n y x−2 + . . .+u n ,

next the equation

1 =
a n
f
+

1 a n
f 2 + . . .
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is in this case this here

0 =

(
1− 2

f

)n

,

of which all the roots are equal to 2; one has, moreover, un = 2un−1; therefore un =
H.2n. Now, putting n = 1, one has un = 0, therefore H = 0; one will have thus, by
Article IX,

n y x = 2x−1
[
Cn

(x−1)(x−2) . . .(x−n+1)
1.2.3 . . .(n−1)

+Dn
(x−1)(x−2) . . .(x−n+2)

1.2.3 . . .(n−2)

+En
(x−1) . . .(x−n+3)

1.2.3 . . .(n−3)
+ · · ·

]
.

In order to determine the arbitrary constants Cn, Dn, . . ., one will substitute this
value of n y x into the equation

n y x = 2. n y x−1 +2. n−1 y x−1 ,

by observing that

(x−1)(x−2) . . .(x−n+1)
1.2.3 . . .(n−1)

=
(x−2)(x−3) . . .(x−n)

1.2.3 . . .(n−1)
+

(x−2) . . .(x−n+1)
1.2.3 . . .(n−2)

,

(x−1)(x−2) . . .(x−n+2)
1.2.3 . . .(n−2)

=
(x−2) . . .(x−n+1)

1.2.3 . . .(n−2)
+

(x−2) . . .(x−n+2)
1.2.3 . . .(n−3)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

and one will have

Cn
(x−2)(x−3) . . .(x−n)

1.2.3 . . .(n−1)
+(Cn +Dn)

(x−2) . . .(x−n+1)
1.2.3 . . .(n−2)

+(Dn +En)
(x−2) . . .(x−n+2)

1.2.3 . . .(n−3)
+ . . .

=Cn
(x−2) . . .(x−n)
1.2.3 . . .(n−1)

+(Dn +Cn−1)
(x−2) . . .(x−n+1)

1.2.3 . . .(n−2)

+(En +Dn−1)
(x−3) . . .(x−n+3)

1.2.3 . . .(n−3)
+ . . .

By comparing term by term, one will have:
1 ˚ Cn =Cn−1; therefore Cn = A. Now, putting n = 1, the quantity

1(x−1)(x−2) . . .(x−n+1)
1.2.3 . . .(n−1)

is reduced to its first factor 1, and the quantities following

(x−1)(x−2) . . .(x−n+2)
1.2.3 . . .(n−2)

, . . .
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become nulls; therefore 1 y x = A.2x−1. Now one has 1 y 1 = 1; therefore A = 1 =Cn.
2 ˚ Dn = Dn−1, hence Dn = A and 2 y x = 2x−1

( x−1
1 +A

)
. Now putting x = 1, one

has 2 y 1 = 0 by the formation of the previous sequences; therefore A = 0 and Dn = 0.
One will find similarly En = 0, Fn = 0, . . . ; therefore

n y x = 2x−1 (x−1)(x−2) . . .(x−n+1)
1.2.3 . . .(n−1)

.

Let, for example, x = 8 and n = 5; one will have

5 y 8 = 27 7.6.5.4
1.2.3.4

= 4480.

I take further for example the two equations

1 y x = 2. 1 y x−1 ,

n y x = (n+1). n y x−1 + n−1 y x−1 .

If one supposes

1 y 1 = 1, 2 y 1 = 0, 3 y 1 = 0, 4 y 1 = 0, . . . ,

one will form the following sequences:

1 2 3 4 5 6 7 8 . . . x
1 1 2 4 8 16 32 64 . . . . .
2 0 1 5 19 65 211 665 . . . . .
3 0 0 1 9 55 285 1351 . . . . .
4 0 0 0 1 14 125 910 . . . . .
5 0 0 0 0 1 20 245 . . . . .
...

...
...

...
...

...
...

...
...

...
...

n . . . . . . . . . .

In order to find now the general term of these sequences, or the expression of n y x ,
I observe that one has, by the previous Article,

n y x = a n . n y x−1 +
1 a n . n y x−2 +

2 a n . n y x−3 + . . .+u n ,

and that the equation

1 =
a n
f
+

1 a n
f 2 +

2 a n
f 3 + . . .

is the same as this here

0 =

(
1− 2

f

)(
1− 3

f

)(
1− 4

f

)
· · ·
(

1− n+1
f

)
;

finally, that one has
un = 2un−1;
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whence, by integrating,
un = H2n.

Now, putting n = 1, one has u1 = 0; therefore

H = 0 and un = 0.

By integrating, one will have therefore

n y x =C n 2x−1 + 1C n 3x−1 + 2C n 4x−1 + . . .+ n−1C n (n+1)x−1,

an equation in which it is necessary presently to determine the arbitrary constants C n ,
1C n , . . . For this, I substitute this value of n y x into the equation

n y x = (n+1). n y x−1 + n−1 y x−1 ,

this which gives

C n 2x−1 + 1C n 3x−1 + . . .

= (n+1)C n 2x−2 +(n+1). 1C n 3x−2 + . . .+C n−1 2x−2 + 1C n−1 3x−2 + . . . ;

whence, by comparing term by term, I will have

2. C n =(n+1).C n +C n−1 ,

3. 1C n =(n+1). 1C n +
1C n−1 ,

. . . . . .

It is clear that the first equation begins to hold only when n = 2; the second, when
n = 3; the third, when n = 4, . . . By integrating the first, one will have

Cn =
C1

(1−2)(1−3)(1−4) . . .(1−n)
.

Now, since one has 1 y x = 2x−1, one will have C1 = 1; therefore

Cn =±
1

1.2.3 . . .(n−1)
,

the + sign holding if n is odd, and the − sign if it is even.
One will have similarly

1C n =
1C 2

(2−3)(2−4) . . .(2−n)
.

Now, putting n = 2, one has

2 y x =C 2 2x−1 + 1C 2 3x−1 = 1C 2 3x−1−2x−1.

Therefore, since 2 y 1 = 0, one will have 1C 2 = 1; hence

1C n =∓ 1
1.2.3 . . .(n−2)

,
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the + sign having place if n is even, and the − sign if it is odd. One will find, by a
similar calculation,

2C n =± 1
1.2

1
1.2.3 . . .(n−3)

,

3C n =∓ 1
1.2.3

1
1.2.3 . . .(n−4)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore

n y x =± 1
1.2.3 . . .(n−1)

[
2x−1− n−1

1
3x−1 +

(n−1)(n−2)
1.2

4x−1

− (n−1)(n−2)(n−3)
1.2.3

5x−1 + . . .± (n+1)x−1
]
,

the + sign having place if n is odd, and the − sign if it is even. Let n = 4 and x = 7;
one will have

4 y 7 =− 1
1.2.3

(26−3.36 +4.46−56) = 910.

XXII.

PROBLEM VII. — The differential equation

n y x +A n . n y x−1 +
1 A n . n y x−2 + . . .+N n =B n . n−1 y x +

1 B n . n−1 y x−1 + . . .

+C n . n−2 y x +
1C n . n−2 y x−1 + . . .

being given, one proposes to integrate it.
In following the analysis of the preceding Problem, I make 1 y x = φ(x) and 2 y x =

1
φ(x); the proposed equation will give therefore

3 y x +A 3 . 3 y x−1 +
1 A 3 . 3 y x−2 + . . .+N 3 =B 3 .

1
φ(x)+ 1 B 3 .

1
φ(x−1)+ . . .

+C 3 .φ(x)+
1C 3 .φ(x−1)+ . . .

and

4 y x +A 4 . 4 y x−1 +
1 A 4 . 4 y x−2 + . . .+N 4

=B 4 . 3 y x +
1 B 4 . 3 y x−1 + . . .

+C 4 .
1
φ(x)+ 1C 4 .

1
φ(x−1)+ . . .
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whence one will draw

4 y x+A 4 . 4 y x−1 +
1 A 4 . 4 y x−2 + . . .+N 4

+A 4 ( 4 y x−1 +A 4 . 4 y x−2 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= B 4 ( 3 y x +A 3 . 3 y x−1 + . . .)

+ 1 B 4 ( 3 y x−1 +A 3 . 3 y x−2 + . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+C 4 .
1
φ(x)+ 1C 3 .

1
φ(x−1)+ . . .

+A 3 .C 4 .
1
φ(x−1)+ . . .

Now, if one substitutes into this equation, instead of

3 y x +A 3 . 3 y x−1 + . . . ,

3 y x−1 +A 3 . 3 y x−2 + . . . ,

their values, one will have an equation of this form

4 y x = a 4 . 4 y x−1 +
1 a 4 . 4 y x−2 +

2 a 4 . 4 y x−3 + . . .+ 4 u x

This equation will be integrated by that which precedes, as soon as one will know 4 u x
and the roots of the equation

1 =
a 4
f
+

1 a 4
f 2 +

2 a 4
f 3 + . . .

Now it is easy to see that this equation is the same as this one here

0 =

(
1+

A 3
f

+
1 A 3
f 2 + . . .

)(
1+

A 4
f

+
1 A 4
f 2 + . . .

)
.

By following the same process for 5 y x , 6 y x , . . ., and generally for n y x , one will arrive
to an equation of this form

(A) n y x = a n . n y x−1 +
1 a n . n y x−2 +

2 a n . n y x−3 + . . .+ n u x ,

an equation which will be easily integrable when one will know n u x and the roots of
the equation

1 =
a n
f
+

1 a n
f 2 +

2 a n
f 3 + . . .

Now one will find easily that this equation is the same as this one

0 =

(
1+

A 3
f

+
1 A 3
f 2 + . . .

)(
1+

A 4
f

+
1 A 4
f 2 + . . .

)
. . .

(
1+

A n
f

+
1 A n
f 2 + . . .

)
,
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whence it is easy to conclude a n , 1 a n , . . .
In order to determine presently n u x , I observe that the equation of the Problem

gives the following:

n y x−a n . n y x−1 −
1 a n . n y x−2 − . . .+N n (1−a n −

1 a n − . . .)

+A n ( n y x−1 −
1 a n . n y x−2 − . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= B n ( n−1 y x −a n . n−1 y x−1 − . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+C n ( n−2 y x −a n . n−2 y x−1 − . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now one has, by equation (A),

n y x−a n . n y x−1 − . . .= n u x ,

n y x−1−a n . n y x−2 − . . .= n u x−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

moreover,

n−1 y x −a n . n−1 y x−1 −
1 a n . n−1 y x−2 − . . .

= n−1 y x−a n−1 . n−1 y x−1 − . . .+A n ( n−1 y x−1 −a n−1 . n−1 y x−2 − . . .)+ . . .

= n−1 u x +A n . n−1 u x−1 + . . . ;

similarly,

n−2 y x −a n−1 . n−2 y x−1 − . . .

= n−2 y x−a n−2 . n−2 y x−1 − . . .+A n−1 ( n−2 y x−1 − . . .)+ . . .

= n−2 u x +A n−1 . n−2 u x−1 + . . .

and

n−2 y x −a n . n−2 y x−1 − . . .

= n−2 y x−a n−1 . n−2 y x−1 − . . .+A n ( n−2 y x−1 − . . .)+ . . .

= n−2 u x +A n−1 . n−2 u x−1 + . . .+A n ( n−2 u x−1 +A n−1 . n−2 u x−2 + . . .)+ . . . ;

therefore

(V)



n u x +A n . n u x−1 +
1 A n . n u x−2 + . . .+N n (1−a n −

1 a n − . . .)

=B n ( n−1 u x +A n . n−1 u x−1 + . . .)+ 1 B n ( n−1 u x−1 + . . .)+ . . .

+C n [ n−2 u x +A n−1 . n−2 u x−1 + . . .+A n ( n−2 u x−1 +A n−1 . n−2 u x−2 . . .)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .]

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In order to integrate this equation, one will observe that the value of n u x must have
this form

n u x =b n φ(x)+ 1 b n φ(x−1)+ 2 b n φ(x−2)+ . . .

+ c n
1
φ(x)+ 1 c n

1
φ(x−1)+ 2 c n

1
φ(x−2)+ . . .+g n .

There is no longer now a question but to determine b n , 1 b n , . . ., c n , 1 c n , . . ., g n .
For this, one will substitute this value of n u x into equation (V), this which gives

b n φ(x)+φ(x−1)( 1 b n +A n .b n )+ . . .

+ c n
1
φ(x)+ 1

φ(x−1)( 1 c n +A n .c n )+ . . .

= φ(x)(B n b n−1 +C n b n−2 )

+φ(x−1)[B n
1 b n−1 +B n A n b n−1 +

1 B n b n−1

+C n
1 b n−2 +C n A n−1 b n−2 +C n A n b n−2 +

1C n b n−2 ]

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ 1
φ(x)(B n c n−1 +C n c n−2 )

+ 1
φ(x−1)[B n

1 c n−1 +B n A n c n−1 +
1 B n c n−1

+C n
1 c n−2 +C n A n−1 c n−2 +C n A n c n−2 +

1C n c n−2 ]

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

whence one will have

b n =B n b n−1 +C n b n−2
1 b n =B n

1 b n−1 +C 1
n b n−2 +b n−1 (B n A n +

1 B n +C n A n−1 )+b n−2 (C n A n +
1C n ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c n =B n c n−1 +C n c n−2 ,

. . . . . . . . . . . . . . . . . . . . . ;

by integrating, one will have the values of b n , 1 b n , . . ., c n , 1 c n , . . .
These equations ascend to the second differences, their integral must contain two

arbitrary constants. Now, by supposing n = 1,

n y x = φ(x).

One must therefore have then

b n = 1, 1 b n =0, 2 b n =0, . . . ,

c n = 0, 1 c n =0, 2 c n =0, . . . ,

Moreover, by supposing n = 2,

n y x = 1
φ(x).
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Therefore then
b n = 0, 1 b n =0, 2 b n =0, . . . ,

c n = 1, 1 c n =0, 2 c n =0, . . . ,

By means of these conditions, it will be easy to determine the arbitrary constants.
Knowing thus the expression of n u x , there is no longer a question but to integrate
equation (A), and the arbitrary constants that the integration introduces, which can be
functions of n, will be determined by the method that I have given (Art. XX).

If, instead of the two equations

1 y x = φ(x)

2 y x = 1
φ(x).

one had the two following

1 y x +E. 1 y x−1 +
1 E. 1 y x−2 + . . .+K = 0,

2 y x +H. 2 y x−1 +
1 H. 2 y x−2 + . . .+L = F. 1 y x +

1 F. 1 y x−1 + . . . ,

one will arrive, by the preceding method, to an equation of this form

n y x = a n . n y x−1 +
1 a n . n y x−2 + . . .+ n u x ,

and one will find that the equation

1 =
a n
f
+

1 a n
f 2 + . . .

is the same as this one here:

0 =

(
1− E

f
+

1 E
f 2 + . . .

)(
1− H

f
+

1 H
f 2 + . . .

)

×
(

1−
A 3
f

+ . . .

)
. . .

(
1−

A n
f

+ . . .

)
.

In order to determine u n , one must observe that in this case equation (V) becomes

u n (1+A n +
1 A n + . . .)+N n (1−a n −

1 a n − . . .)

= u n−1 (1+A n + . . .)(B n +
1 B n + . . .)

+u n−1 (1+A n−1 + . . .)(1+A n + . . .)(C n + . . .);

now

1−a n −
1 a n − . . .= (1−a n−1 −

1 a n−1 − . . .)(1+A n +
1 A n + . . .);

therefore

u n =N n (a n−1 +
1 a n−1 + . . .−1)

+u n−1 (B n +
1 B n + . . .)+u n−2 (1+A n−1 + . . .)(C n +

1C n + . . .).
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This equation being differential of the second order contains two arbitrary constants;
they will be determined by means of the values of u 1 and u 2 . Now one has

u 1 =−L,

u 2 =−L(1+E + 1 E + . . .)−K(F + 1 F + . . .).

XXIII.

Although, in the last two problems, the equations in the partial differences con-
sidered with respect to the variable n do not pass the second order, one sees however
that the method will succeed generally, whatever be the degree of the difference of the
variables. This method supposes in truth that 1 y x or 1 y x and 2 y x , . . . according to
the degree of the difference of n, are given as functions of x, or by some linear equa-
tions between x and these quantities; now it can happen that this is not. I suppose, for
example, that one has the following equations:

1 y x = 2 y x−1 ,

2 y x = 1 y x−1 + 3 y x−1 ,

. . . . . . . . . . . . . . . . . . . . . ,

n y x = n−1 y x−1 + n+1 y x−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

m y x = m−1 y x−1 .

The equation

n y x = n−1 y x−1 + n+1 y x−1

is in the partial differences; but it differs from the preceding equations:
1 ˚ In this that 1 y x and 2 y x are not at all given as functions of x, or by two differ-

ential equations;
2 ˚ In this that it ceases to hold when n = m.
As this kind of equations are encountered sometimes, and principally in the analysis

of hazards, I am going to give here the manner to integrate them.
I observe for this that, if one was able to reduce the equation

n y x = n−1 y x−1 + n+1 y x−1 ,

which is of the third order with respect to n, to another of the second order, the problem
would be resolved; I suppose indeed that the equation of the second order is

n y x = a n . n y x−1 +
1 a n . n y x−2 + . . .+u n +b n . n+1 y x +

1 b n . n+1 y x−1 + . . .

In the case n = m−1, one will have

m−1 y x = a m−1 .m−1 y x−1 +
1 a m−1 .m−1 y x−2 + . . .+u m−1 +b m−1 .m y x + . . . ,

whence, eliminating m−1 y x by means of the equation m y x = m−1 y x−1 , one will have
an equation in the ordinary differences between x and m y x .
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All difficulty consists therefore to lower the equation from the third order, with
respect to n,

n y x = n−1 y x−1 + n+1 y x−1

to one of the second order; this is the object of the following problem.

PROBLEM VIII. — The equation in the partial differences of the second order,
with respect to n,

(γ)


n y x =A n . n y x−1 +

1 A n . n y x−2 + . . .+N n

+B n . n+1 y x +
1 B n . n+1 y x−1 +

2 B n . n+1 y x−2 + . . .

+C n . n+1 y x +
1C n . n+1 y x−1 +

2C n . n+1 y x−2 + . . .

being given, it is necessary to lower it to another of the first order with respect to n.
It is necessary for this that, under a particular assumption for n, this equation is

reduced to one of the first order. I suppose therefore that, by making n = 1, one has
this here

(η) 1 y x = F. 1 y x−1 +
1 F. 1 y x−2 + . . .+L+H. 2 y x +

1 H. 2 y x−1 + . . .

It is easy to see, this put, that equation (γ) can always be transformed into the
following (θ ), of the second order with respect to n,

(θ )

{
n y x =a n . n y x−1 +

1 a n . n y x−2 +
2 a n . n y x−1 + . . .+u n

+b n . n+1 y x +
1 b n . n+1 y x−1 +

2 b n . n+1 y x−2 + . . . ,

from which one will determine the coefficients a n , 1 a n , . . ., b n , 1 b n , . . . in this man-
ner: the equation (θ ) gives this here

C n . n+1 y x =C n (a n−1 . n−1 y x−1 +
1 a n−1 . n−1 y x−2 +

2 a n . n−1 y x−3 + . . .+u n−1

+b n−1 . n y x +
1 b n−1 . n y x−1 +

2 b n−1 . n y x−2 + . . .),

1C n . n−1 y x−1 = 1C n (a n−1 . n−1 y x−2 +
1 a n−1 . n−1 y x−3 + . . .+u n−1

+b n−1 . n y x−1 +
1 b n−1 . n y x−2 + . . .)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If one adds these different equations member by member, and if one substitutes in their
sum, instead of

C n . n−1 y x +
1C n . n−1 y x−1 + . . . ,

C n . n−1 y x−1 +
1C n . n−1 y x−2 + . . . ,
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their values which furnish equation (γ), one will have, after having ordered,

n y x =
1

1−b n−1C n
[ n y x−1 (a n−1 +A n +b n−1

1C n +
1 b n−1C n )

+ n y x−2 (
1 a n−1 −a n−1 A n +

1 A n

+b n−1
2C n +

1 b n−1
1C n +

2 b n−1C n )

+ n y x−3 (
2 a n−1 −

1 a n−1 A n −a n−1
1 A n +

2 A n

+b n−1
3C n +

1 b n−1
2C n +

2 b n−1
1C n +

3 b n−1C n )

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ n+1 y x B n

+ n+1 y x−1 (
1 B n −a n−1 B n )

+ n+1 y x−2 (
2 B n −a n−1

1 B n −
1 a n−1 B n )

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+u n−1 (C n +
1C n +

2C n + . . .)

+N n (1−a n−1 −
1 a n−1 −

2 a n−1 − . . .)].

By comparing this equation with equation (θ ), one will have

1 ˚ b n =
B n

1−C n b n−1
.

In order to integrate this equation, I make b n =
zn−1

zn
; this which gives

0 = zn−1 +C n zn−2 +B n zn,

a linear equation in the ordinary differences.

2 ˚ 1 b n =
1 B n −a n−1 B n

1−C n b n−1
,

3 ˚ a n =
A n +a n−1 +

1 b n−1C n +b n−1
1C n

1−C n b n−1
.

From the first of these equations, one will have

1 b n−1 =
1 B n−1 −a n−2 B n−1

1−C n−1 b n−2
;

substituting this value of b n−1 into the second, one will have

a n =
A n +a n−1 +C n

1 B n−1−a n−2 B n−1
1−C n−1 b n−2

+b n−1
1C n

1−C n b n−1
,

60



whence one will have a n , hence 1 b n , and thus the rest.
Finally, one will determine u n by this equation

u n = u n−1

C n +
1C n + . . .+N n (1−a n−1 −

1 a n−1 − . . .)

1−C n b n−1
.

Equation (γ) of the second order with respect to n will be lowered to another (θ ) of
the first order; and one sees that the preceding method will succeed generally, whatever
be the order of the proposed.

XXIV.
On the equations in finite and partial differences in four variables.

Until now I have considered the equations in the partial differences among three
variables n y x , n and x; I am going presently to say a word on those which contain a
greater number of them.

I suppose that m,n y x represents a function of three variables x, m and n, of which
I regard the differences as constants and equal to unity; I am able, in this function,
to make m, n and x vary separately, or two of these quantities at once, or all three to-
gether in any relation whatsoever; now, if there exists an equation among these different
variations, it will be that which I name an equation in the partial differences in four
variables. This put,

PROBLEM IX. — I suppose that one has the equation in the partial differences in
four variables

(Ω)


m,n y x + m A n .m,n y x−1 +

1
m A n .m,n y x−2 + . . .+ m N n

+ m B n .m,n−1 y x +
1
m B n .m,n−1 y x−1 +

2
m B n .m,n−1 y x−2 + . . .

= mC n .m−1,n y x +
1
mC n .m−1,n y x−1 +

2
mC n .m−1,n y x−2 + . . . ;

one proposes to determine m,n y x .
I suppose that, in the case of n = 1, one has, or one can have the following equation

m,1 y x +D m .m,1 y x−1 +
1 D m .m,1 y x−2 + . . .+L n = 0,

and that, in the case of m = 1, one has, or one can have this here

1,n y x +E n . 1,n y x−1 +
1 E n . 1,n y x−2 + . . .+ 1 H n = 0;

one will be able, in this case, to transform equation (Ω) into the following

(ϖ) m,n y x = m a n .m,n y x−1 +
1
m a n .m,n y x−2 +

2
m a n .m,n y x−3 + . . .+ m u n ,

from which one will determine the coefficients in this manner.
This equation gives

mC n .m−1,n y x = mC n (m−1 a n .m−1,n y x−1 +
1

m−1 a n .m−1,n y x−2 + . . .+ m−1 u n ),

1
mC n .m−1,n y x−1 = 1

mC n (m−1 a n .m−1,n y x−2 +
1

m−1 a n .m−1,n y x−3 + . . .+ m−1 u n ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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If one adds all these equations member by member, and if one eliminates the quantities

mC n .m−1,n y x +
1
mC n .m−1,n y x−1 + . . .

mC n .m−1,n y x−1 +
1
mC n .m−1,n y x−2 + . . .

by means of equation (Ω), one will have

(σ )



m,n y x =m,n y x−1 (m−1 a n − m A n )

+ m,n y x−2 (
1

m−1 a n + m−1 a n .m A n −
1
m A n )

+ m,n y x−3 (
2

m−1 a n +
1

m−1 a n .m A n + m−1 a n .m A n −
2
m A n )

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− m,n−1 y x .m B n

+ m,n−1 y x−1 (−
1
m B n + m−1 a n .m B n )

+ m,n−1 y x−2 (−
2
m B n +

1
m−1 a n .m B n + m−1 a n .

1
m B n )

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ m−1 u n (mC n +
1
mC n + . . .)

− m N n (1− m−1 a n −
1

m−1 a n − . . .).

This equation is in the partial differences among three variables by considering m
as a constant, and it is contained in that of Problem IV of Article XX. Now, since
equation (σ ) can be transformed into equation (ϖ), one will have, by Article XX, the
following equations:

m a n =m a n−1 + m−1 a n − m A n ,

1
m a n = 1

m a n−1 +
1

m−1 a n + m−1 a n .m A n −
1
m A n − m a n−1 (m−1 a n − m A n ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m u n =m u n−1 (−m B n −
1
m B n + m−1 a n .m B n + . . .)

+ m−1 u n (mC n +
1
mC n + . . .)(1− m a n−1 −

1
m a n−1 − . . .)

− m N n (1− m−1 a n −
1

m−1 a n − . . .)(1− m a n−1 −
1
m a n−1 − . . .).

These equations are in the partial differences in three variables; in order to integrate
them, I observe that they are all contained in this here:

(b) n y x = n R x . n y x−1 + n T x . n−1 y x + n M x .

I suppose therefore that, in the case of n = 1, one has 1 y x = φ(x). This put, one
will be able always to transform equation (b) into the following

(l) n y x = n b x . n y x−1 +
1
n b x . n y x−2 +

2
n b x . n y x−3 + n z x ,

whence one will have this here:

n−1 y x . n T x = n T x ( n−1 b x . n y x−1 +
1

n−1 b x . n y x−2 + . . .)+ n T x . n−1 z x ]
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If one substitutes, instead of n T x . n−1 y x , n T x . n−1 y x−1 , . . ., their values drawn
from equation (b), one will have

n y x = n R x . n y x−1 + n M x

+ n−1 b x ( n y x−1 − n R x−1 . n y x−2 − n M x−1 )
n T x

n T x−1

+ 1
n−1 b x ( n y x−2 − n R x−2 . n y x−3 − n M x−2 )

n T x

n T x−2

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ n T x . n−1 z x

whence one will draw, by comparing this equation with equation (l),

n b x = n−1 b x
n T x

n T x−1
+ n R x ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

n z x = n−1 z x . n T x + n M x − n−1 b x . n M x−1
n T x

n T x−1
− . . . ,

equations which are integrated easily by Problem I by regarding n as the only variable.
One could make some analogous researches on the partial differences in five, six,

etc. variables, and one sees that the preceding method will succeed generally, whatever
be the number of these variables.

XXV.
Application of the preceding researches to the analysis of chances.

The present state of the system of Nature is evidently a sequel of that which was
in the preceding moment, and, if we imagine an intelligence who, for a given instant,
embraces all the relationships of the beings of this universe, she could determine for
any time taken in the past or in the future the respective position, the movements, and
generally the attachments of all these beings.

Physical astronomy, this of all our attainments which gives the greatest credit to
the human spirit, offers us an idea, although imperfect, of that which could be a similar
intelligence. The simplicity of the law which moves the celestial bodies, the relation-
ships of their masses and of their distances, permits the analysis to follow, up to a
certain point, their movements; and, in order to determine the state of the system of
these great bodies in the past or future centuries, it suffices to the geometer that obser-
vation gives to him their position and their velocity for any instant: man owes then this
advantage to the power of the instrument which he employs, and to the small number of
relationships which he embraces in his calculations; but the ignorance of the different
causes which compete in the production of events, and their complication, joining to
the imperfection of the analysis, prevents pronouncing with the same certitude on the
great number of phenomena; there are for him therefore some uncertain things, these
are more or less probable. In the impossibility to know them, he has sought to com-
pensate himself by determining their different degrees of possibility, so that we owe to
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the feebleness of the human mind one of the most delicate and most ingenious theories
of Mathematics, known as the science of chances or of probabilities.

Before going further, it is important to fix the sense of these words chance and
probability. We regard a thing as the effect of chance, when it offers to our eyes no
regularity, or which announces no design, and when we are ignorant moreover of the
causes which have produced it. Chance has therefore no reality in itself; it is only a
proper term to designate our ignorance of the manner in which the different parts of a
phenomenon are coordinated among themselves and with the rest of Nature.

The notion of probability depends upon our ignorance. If we are assured that, of
two events which cannot exist together, one or the other must necessarily happen, and
if we see no reason in order that one would happen rather than the other, the existence
and the nonexistence of each of them is equally probable. Similarly, if of three events
which are mutually exclusive, one must necessarily happen, and if we see no reason in
order that one would happen rather than the other, their existence is equally probable,
but the nonexistence of each of them is more probable than its existence, and this in
the ratio of 2 to 1, because on three equally probable cases there are two which are
favorable to it, and one alone which is contrary to it.

The number of possible cases remaining the same, the probability of an event in-
creases with the number of favorable cases; on the contrary, the number of favorable
cases remaining the same, it diminishes in measure as the number of possible cases in-
creases; so that it is in direct proportion to the number of favorable cases and in inverse
to the number of all the possible cases.

The probability of the existence of an event is thus only the ratio of the number of
favorable cases to that of all the possible cases, when we see moreover no reason in
order that one of these cases would happen rather than the other. It can be consequently
represented by a fraction of which the numerator is the number of favorable cases, and
the denominator that of all the possible cases.

Similarly, the probability of the nonexistence of an event is the ratio of the number
of the cases which are contrary to it to that of all the possible cases, and must be
consequently expressed by a fraction of which the numerator is the number of contrary
cases, and the denominator that of all the possible cases.

It follows thence that the probability of the existence of an event added to the prob-
ability of its nonexistence makes a sum equal to unity which represents consequently
entire certitude, because it is clear that an event must necessarily either rightly happen
or fail.

Moreover, a thing happens certainly when all the possible cases are favorable to
it, and the fraction which expresses its probability is then unity itself. Certitude can
therefore be represented by the unit, and probability by a fraction of certitude; it can
approach more and more to unity, and even differ from it less than any given quantity;
but it can never become greater. The theory of chances has for object to determine
these fractions, and one sees thence that it is the most happy supplement that one can
imagine to the uncertainty of our knowledge.

Certitude and probability, such as we just defined them, are evidently comparable
between them and can be subjected to a rigorous calculus; it is not therefore some
different states of the human mind when it sees only all the possible cases favoring
an event, or when, in this number, it realizes many of them which are contrary to it.
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These two states are absolutely incomparable, and one cannot say of the first that it
is the double, or triple of the second, because truth is indivisible. There happens here
the same thing as in all the physico-mathematical sciences; we measure the intensity
of light, the different degrees of heat of bodies, their forces, their resistances, etc.
In all these researches, the physical causes of our sensations, and not the sensations
themselves, are the object of Analysis.

The problem of events serves to determine the expectation or the fear of the persons
interested in their existence, and it is under this point of view that the science of chances
is one of the most useful of the civil life. This word expectation has different meanings:
it ordinarily expresses the state of the human mind when there must happen to it any
good under certain assumptions which are only probable. In the theory of chances,
expectation is the product of the expected sum by the probability to obtain it. In order
to distinguish the two meanings of this term, I will call the first moral expectation, and
the second, mathematical expectation.

We imagine n persons who have an equal probability to obtain the sum a, and that
this sum must certainly belong to one among them; the total probability being 1, or
equal to certitude, it is clear that the probability of each of these persons is 1

n , and
consequently their mathematical expectation a

n . This is thus the sum which ought to
return to them, if they wished, without incurring the risks of the events, sharing the
entire sum a.

If one of these persons p had a probability double of that of the others, his math-
ematical expectation and, consequently, the sum which ought to return to him in the
sharing would be similarly two times greater; because, if one imagines n+ 1 persons
who have an equal probability on the sum a, their probability to obtain it will be 1

n+1 ,
and their mathematical expectation a

n+1 . Now one can suppose that one among them
cedes his claims and his expectation to p; this one will acquire consequently a double
probability and a double expectation expressed by 2a

n+1 ; and in the sharing he must have
a sum 2a

n+1 double of that of the other persons.
We see thence that the mathematical expectation is nothing other than the partial

sum which must be returned when one does not wish to incur the risks of the event,
by supposing that the apportionment of the entire sum is made proportionally to the
probability to obtain it; it is in fact the only equitable manner to apportion it when we
set aside all strange circumstances, because with an equal degree of probability one has
an equal right to the expected sum.

Moral expectation depends, in this way as the mathematical expectation, on the
expected sum and on the probability to obtain it; but is not always proportional to
the product of these two quantities; it is ruled by a thousand variable circumstances,
that it is nearly always impossible to define, and even more to subject to Analysis;
these circumstances, it is true, serve only to increase or to diminish the advantage
that procures the expected sum, and so we can regard the moral expectation itself as
the product of this advantage by the probability to obtain it; but we must distinguish,
in the expected good, its relative value to its absolute value; this here is absolutely
independent of the need and of the other reasons which make it wished for, instead of
which the first increases with these different motives.

Now we cannot give any determinate rule to appreciate this relative value; there is
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however a most ingenious point that Mr. Daniel Bernoulli proposes in the Volume of
Petersburg for the year 1730. The relative value of a very small sum is, according to
this illustrious geometer, proportional to its absolute value divided by the total wealth
of the interested person.

This rule is however not general, but it must serve in a great number of circum-
stances, and it is all that one can desire in this matter.

Most of that which was written on chances has seemed to confuse expectation and
moral probability with expectation and mathematical probability, or to regulate at least
one by the other; they have wanted thus to give to their theories an extent to which
they are not susceptible, this has rendered them obscure and little fit to satisfy the mind
accustomed to the rigorous clarity of Geometry. Mr. d’Alembert has proposed against
them some very fine objections, which have awakened the attention of the geometers;
he has made felt the absurdity which it would have lead them, in a great number of
circumstances, after the results of the Calculus of Probabilities, and, consequently, the
necessity to establish in these matters a distinction between the mathematical and the
moral; this part of the sciences owes to him therefore the advantage to be supported
hereafter on some clear principles and to be tightened in its true bounds.

Let one permit me here the following digression on the difficulties of which the
analysis of chances has seemed susceptible: the probability of uncertain things and the
expectation which is found linked to their existence are, as I have said, the two objects
of this Analysis; the distinction established previously between moral expectation and
mathematical expectation responds, it seems to me, to all the objections that one could
make against the second of these two objects; we examine consequently those which
have relationship to the first.

In the research of the probability of events, one starts from this principle, namely
that the probability is the number of favorable cases divided by those of all the possible
cases, this is evident; there therefore can be difficulty only as much as one would as-
sume an equal possibility to two unequally possible cases; now we cannot be prevented
from agreeing that the applications that have been made hitherto of the Calculus of the
Probabilities to the objects of civil life are subject to this difficulty. I suppose, for ex-
ample, that in the game of heads and of tails the piece that one casts into the air has
greater inclination to fall back on one side than the other, but that the two players are
unaware of which side has the greatest inclination; it is clear that there are equal odds
for heads as for tails; one can therefore assume on the first toss, as one does ordinarily,
that heads and tails are equally probable; but this assumption is no longer permitted if,
for example, one of the players wagers that on two tosses he will bring about heads;
because then one must take into consideration the possible inequality of heads and of
tails, since, just as one is unaware on what side is found the greatest, however this in-
equality encourages always the one who wagers that heads will not occur in two tosses,
in such a way that its probability is greater than if heads and tails were equally possible;
the cause of the error into which one falls comes from this that one assumes equally
possible these four cases: 1 ˚ heads on the first toss, heads on the second, that which I
designate in this manner (heads, heads); 2 ˚ (heads, tails); 3 ˚ (tails, heads); 4 ˚ (tails,
tails), that which is not; because these two here (heads, heads), (tails, tails), are more
probable than the two others; in fact, I suppose that 1+ϖ

2 represents the probability of
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a side which has the greatest inclination, and 1−ϖ

2 that of the other side; this put, the

probability of (heads, heads) will be 1+2ϖ+ϖ2

4 if heads were the most probable, and
1−2ϖ+ϖ2

4 if it were the least probable; but, as there is no more reason to suppose it the
one rather than the other, it is necessary to add together these two probabilities and by
taking the mean, which gives 1+ϖ2

4 for the probability of (heads, heads), and hence
likewise for that of (tails, tails); one will find similarly the probability of (heads, tails),
or of (tails, heads), equal to 1−ϖ2

4 ; one sees therefore that these four cases are not
equally possible, and that the inequality of the probabilities of heads and of tails, pro-
vided that one is unaware of what side has the greatest, favors the player who wagers
that on two tosses heads will not occur.

This which I just said of the game of heads and of tails is able to be applied to the
game of dice, and generally to all the games in which the different events are suscepti-
ble to one physical inequality; but, having developed besides this remark with enough
extension (see in Volume VI of the Savants étranges a Memoir Sur la probabilité des
causes par les événements), I will observe only that, even if one is unaware which are
the most probable of these events, however there occurs this of the remarkable, namely,
that one can, in nearly all cases, determine to which of the players this inequality is ad-
vantageous.

The Theory of chances supposes again that if heads and tails are equally possible,
it will be likewise for all the combinations of them (heads, heads, heads, etc.), (tails,
heads, tails, etc.), etc. Many philosophers have thought that this assumption is incor-
rect, and that the combinations in which an event occurs many times in sequence are
less possible than the others; but it would be necessary to assume for this that the past
events have some influence on those which must occur, which is not admissible. I ad-
mit, the ordinary march of nature is to intermingle the events, but this comes, it seems
to me, from this that the combinations where they are mixed are much more numerous.
Here is, however, a specious difficulty, to which it is good to respond. If heads hap-
pened, for example, twenty times in sequence, one could be quite tempted to believe
that this is not the effect of chance, while if heads and tails were intermingled in any
manner, one would not seek the cause. Now, why this difference between these two
cases, if it is only because the one is physically less possible than the other? To this,
I respond generally that, there where we perceive the symmetry, we believe always to
recognize the effect of a cause acting with order, and we reason by this consistently
with probabilities, because, a symmetric effect must be necessarily the effect of chance
or the one of a regular cause, the second of these assumptions is more probable than
the first. Let 1

m be the probability of its existence in the case where it would be due to
chance, and 1

n this probability if it started from a regular cause; the probability of the
existence of this cause will be (see Volume VI of Savants étranges)

1
n

1
m + 1

n

=
1

1+ n
m

;

whence one sees that the more m will be great with respect to n, the more also the
probability that the symmetric event is the effect of a regular cause will increase. This
is not because the symmetric event is less possible than the others, but because there is
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greater odds that it is due to a cause acting with order than to pure chance, that we seek
this cause. A quite simple example will clarify this remark. I suppose that one finds on
a table some printed characters arranged in this order, INFINITÉSIMAL; the reason
which leads us to believe that this arrangement is not the effect of chance can come
only from this that, physically speaking, it is less possible than the others, because,
if the word infinitésimal were not used in any language, this arrangement would be
neither greater, nor less possible, and yet we would suspect then no particular cause.
But, as this word is in use among us, it is incomparably more probable that a person
will have thus arranged the preceding characters, than it is only that this disposition is
due to chance. I return now to my object.

The uncertainty of human knowledge carries either on the events, or on the cause
of the events. If we are assured, for example, that an urn contains only some black and
white tickets in a given ratio, and that we ask the probability that by taking at random
one of these tickets it will be white, the event is uncertain, but the cause on which
depends the probability of its existence, that is to say the ratio of the white tickets to
the black, is known.

In the following problem: An urn being supposed to contain a given number of
black and white tickets, if one draws from it a white ticket, to determine the probability
that the proportion of the white tickets to the black in the urn is that of p to q; the event
is known and the cause unknown.

We can restore to these two classes of problems all those which depend on the
Theory of chances. There exists, in truth, a very great number in which the cause
and the event seem equally unknown; such is the one: An urn being supposed able
equally to contain all the numbers of white and black tickets from 2 to n inclusively, to
determine the probability that by drawing at random two of these tickets, they will be
white. The ratio of the white tickets to the black, the total number of tickets and the
event which must result from it are unknown; but one must regard here as cause of the
event the equal possibility of all the numbers from 2 to n, and the indifference of the
tickets to be white or black; thus this problem is of the genre of those in which, the
cause being known, the event is unknown.

My design being not to give here a complete treatise on the Theory of chances, I will
be content to apply the preceding researches to the solution of many problems related
to this Theory; I will limit myself even here to those in which, the cause being known,
the question is to determine the events, having considered in one other Memoir the case
where one proposes to reascend again from the events to the causes (see Volume VI of
Savants étrangers).

XXVI.

PROBLEM X. — If in a pile of x pieces one takes a number at random, it is neces-
sary to determine the probability that this number be even or odd.

I suppose that we can take indifferently, or one alone, or many, or all these pieces
at one time.

This put, let y x be the sum of the cases in which the number can be even, and
1
y x

that of the cases in which it can be odd; it is clear that, if we increase the number x of
pieces by one unit, the sum of the even cases, represented thus by y x+1 will be equal:
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1 ˚ to the preceding number of even cases; 2 ˚ to the preceding number of odd cases,
since each of these cases, combined with the new piece, give an even case. We will
have therefore

(1) y x+1 = y x +
1
y x ;

next the number of odd cases, represented by
1
y x+1 will be equal: 1 ˚ to the preceding

number
1
y x of odd cases; 2 ˚ to the preceding number of even cases; 3 ˚ to the unit,

since the new piece can be taken alone. We will have consequently

(2)
1
y x+1 =

1
y x + y x +1.

In order to integrate these two equations, I observe that the equation (1) gives

∆y x =
1
y x hence, ∆

2y x = ∆.
1
y x .

Now equation (2) gives

∆.
1
y x = y x +1, therefore ∆

2y x = y x +1;

whence it is easy to conclude
y x+1 = 2y x +1,

By integrating this equation by Problem I, we will have

y x = A2x−1,

A being an arbitrary constant; in order to determine it, I observe that, x being 1, we
have

y x = 0, therefore A =
1
2

, hence y x = 2x−1−1.

Now, since we have
1
y x = ∆y x , we will have

1
y x = 2x−1. The sum of all the possible

cases is clearly
y x +

1
y x = 2x−1.

If therefore we call z x the probability that the number of pieces is even, and 1 z x that it
is odd, we will have

z x =
2x−1−1
2x−1

and 1 z x =
2x−1

2x−1
;

whence there results that there is always more advantage to wager for the odd numbers
than for the evens.

I suppose that one is assured that the number x cannot exceed the number n, but
that this number and all the lesser are equally possible, we will have the sum of all the
odd cases = 2x +C. Now, x being 1, we must have 2x +C = 1; therefore C =−1. We
will find similarly the sum of all the even cases = 2x− x+C; now, x being 1, we have

69



2x− x+C = 0. Therefore C = −1; hence, the sum of the odd cases is 2n−1, and the
sum of the even cases is 2n−n−1; thus, the probability for the odds is

2n−1
2n+1−n−2

,

and the probability for the evens

2n−n−1
2n+1−n−2

.

XXVII.

PROBLEM XI. — Let a be a sum which Paul constitutes to an annuity, in a way
that the interest is 1

m of that which is due to him: I suppose that, for some arbitrary
reasons, one keeps each year the fraction 1

n of this interest, so that Paul, at the end of
the first year, for example, must collect only the quantity a

m −
a

mn , this put, if one pays
to him every year the sum a

m , and, consequently, more than is due to him, and let the
surplus be used to amortize the capital, one asks what this capital will become in the
year x.

Let y x be this capital in the year x; it is clear that, at the end of the year x, there will
be due to Paul only y x

( 1
m −

1
mn

)
. Therefore, since one pays the sum a

m , the capital will
be diminished by the quantity a

m − y x
n−1
mn ; hence, we will have

y x+1 = y x −
a
m
+ y x

n−1
mn

and, integrating as in Problem I,

y x =
na

n−1
+A

(
1+

n−1
mn

)x−1

;

now, setting x = 1, y x = a; thus,

A =− a
n−1

;

hence,

y x =
a

n−1

[
n−
(

1+
n−1
mn

)x−1
]
.

If we ask the year x at which this capital will be zero, we will have(
1+

n−1
mn

)x−1

= n;

therefore
x = 1+

lnn
ln
(
1+ n−1

mn

) .
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I suppose that the interest be 5 for 100, and that one collects 1
10 on this interest, we

will have
m = 20 and n = 10;

hence,
x = 53.3.

One can resolve in the same manner the following problem:
A person owes the sum a, and wishes to release himself at the end of h years, so

that she owes nothing in the year h+1, the interest being always 1
m of the quantity due;

the question is to find what must she give for this each year.
Let p be this quantity, and y x that which she owes in year x, we will have, by the

preceding method,

y x+1 = y x

(
1+

1
m

)
− p,

whence I conclude by integrating y x =mp+A
(
1+ 1

m

)x−1
. Now, putting x= 1, y x = a;

thus
a = mp+A;

hence,

y x = mp+(a−mp)
(

1+
1
m

)x−1

;

but, by making x = h+1, we have

y x = 0,

by assumption; therefore

p =
a
(
1+ 1

m

)h

m
[(

1+ 1
m

)h−1
] .

XXVIII.

PROBLEM XII. — I imagine a solid composed of a number n of perfectly equal
faces, and which I designate by the numbers 1, 2, 3, . . . , n; I wish to have the probabil-
ity that, in a number x of casts, I will bring about these n faces in sequence in the order
1, 2, 3, 4, . . . ,n.

I call y x this probability, and u x the number of favorable cases: the number of all
the possible cases is nx; because, if we call t x this number at the cast x, it will be t x−1
at the cast x− 1. Now, the number of cases at the cast x− 1 must be combined with
all the faces of the solid, in order to form all the possible cases at the cast x; we have
therefore

t x = nt x−1 ,

this which gives
t x = Anx.
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Now, setting x = 1, t x = n; thus

A = 1 and t x = nx.

We will have therefore u x
nx = y x .

Now u x is evidently equal to the number of favorable cases at the cast x−1 multiplied
by the number of faces of the solid, plus to the number of cases in which the combina-
tion 1, 2, 3, . . . , n can happen precisely at the cast x; moreover, all the cases in which
this combination does not happen at the cast x− n each gives a case in which it will
happen precisely at the cast x. The number of these cases is nx−n−u x−n ; we will have
therefore

u x = nu x−1 +nx−n−u x−n ; hence, y x = y x−1 −
y x−n

nn +
1
nn ,

an equation which we will integrate easily by the preceding methods.
Let n = 2: we will have

y x = y x−1 −
y x−2

4
+

1
4

;

whence I conclude, by integrating,

y x = 1+
Ax+B
2x−1 ;

now, setting x = 1, y x = 0, and setting x = 2, y x = 1
4 ; thus, A = − 1

2 , and B = − 1
2 ;

hence, y x = 1− x+1
2x .

XXIX.

PROBLEM XIII. — I suppose a number n of players (1), (2), (3), . . ., (n) play in
this way: (1) plays with (2), and if he wins he wins the game; if he neither loses nor
wins, he continues to play with (2), until one of the two wins. But if (1) loses, (2) plays
with (3); if he wins it, he wins the game; if he neither loses nor wins, he continues
to play with (3); but if he loses, (3) plays with (4), and thus in sequence until one of
the players has defeated the one who follows him; that is to say (1) must be winner
over (2), or (2) over (3), or (3) over (4), . . ., or (n− 1) over (n), or (n) over (1).
Moreover, the probability of anyone of the players to win over the other equals 1

3 , and
that of neither winning nor losing equals 1

3 . This put, it is necessary to determine the
probability that one of these players will win the game at trial x.

Let
n
u x be the probability that at trial x, (n) will be the winner over (n−1): we will

have
n
u x =

1
3

n
u x−1 +

1
3

n−1
u x−1

Let now
1
z x be the probability that (n), at trial x, will win the game,

2
z x the probability

that it will be (n−1), and thus in sequence: we will have
1
z x = 1

3
n
u x−1 . Hence,

1
z x −

1
3

1
z x−1 =

1
3

2
z x−1 .
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We will have likewise
2
z x −

1
3

2
z x−1 =

1
3

3
z x−1 ,

3
z x −

1
3

3
z x−1 =

1
3

4
z x−1 ,

...

such that these equations are reentrant. This put, by following the method set forth
previously for this type of equations, we will have

1
z x −

2
3

1
z x−1 +

1
32

1
z x−2 =

1
3
(

2
z x−1 −

1
3

2
z x−1 ) =

1
32

4
z x−3 ;

hence,

1
z x −

3
3

1
z x−1 +

3
32

1
z x−2 −

1
33

1
z x−3 =

1
33 (

3
z x−2 −

1
3

3
z x−2 ) =

1
33

4
z x−3 ;

whence, by continuing to operate so, we will have

1
z x −

n
3

1
z x−1 +

n(n−1)
1.2

1
32

1
z x−2 −

n(n−1)(n−2)
1.2.3

1
33

1
z x−3 + · · ·=

1
3n

1
z x−n ;

we will have similarly

2
z x −

n
3

2
z x−1 +

n(n−1)
1.2

1
32

2
z x−2 −

n(n−1)(n−2)
1.2.3

1
33

2
z x−3 + · · ·=

1
3n

2
z x−n ,

and thus in sequence for the other variables
3
z x ,

4
z x , . . .

In order to integrate these different equations, it is necessary to solve this here
( f − 1

3 )
n = 1

3n ; or, by making f − 1
3 = q, qn− 1

3n = 0, this which is easy to do, by
the beautiful theorem of Cotes. There remains in this way no more difficulty than the
determination of the arbitrary constants which come from the integration. For this, it
is necessary to have the probability of winning of each player for a number n of trials.
Now, for that which regards player (1), his probability of winning on the first trial is 1

3 ;
on the second trial it is 1

32 ; on the third trial it is 1
33 , . . ., so that we have

1, 2, 3, 4, . . . , n,
1
3 ,

1
32 ,

1
33 ,

1
34 , . . . , 1

3n ,

by setting under each trial the probability of player (1) winning at this trial; we will
form likewise for player (2) the sequence

2, 3, 4, 5, . . . , n+1,
1
32 ,

2
33 ,

3
34 ,

4
35 , . . . , n

3n+1 ,

and for player (3) this one:

3, 4, 5, 6, . . . , n+2,
1
33 ,

3
34 ,

6
35 ,

10
36 , . . . ,

n(n+1)
1.2

3n+2 ,

and thus in sequence for the other players.
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XXX.

PROBLEM XIV. — Two players A and B, of whom the respective skills are in ratio
of p to q, play together in a way that, out of a number x of trials, there lacks n of them
to player A, and consequently x− n to player B, in order to win; the question is to
determine the respective probabilities of these two players.

Let n y x be the probability of B winning; it is clear that on the following trial it will
be, either n−1 y x−1 , if B loses, or n y x−1 , if he wins. Now, the probability that he will
win is q

p+q , and that he will lose, p
p+q . We have therefore

(g) n y x =
q

p+q n y x−1 +
p

p+q n−1 y x−1 .

This equation is in partial differences. In order to integrate I observe that, when
n = 1, we have 1 y x = q

p+q 1 y x−1 , since in this case n−1 y x = 0; we will have therefore
by Problem VI, article XX,

n y x = a n . n y x−1 +
1 a n . n y x−2 +

1 a n . n y x−3 + · · ·+un,

and we will find that the equation

0 = 1−
a n
f
−

2 a n
f
−·· ·

is the same as this one:

0 =

(
f − q

p+q

)n

.

We will have besides un = p
p+q un−1, therefore un = H

(
p

p+q

)n
. Now, setting n = 1,

un = 0; thus H = 0, and un = 0. The expression of n y x will be therefore (art. IX)

n y x =
qx−1

(p+q)x−1

[
Cn +Dn(x−1)+En

(x−1)(x−2)
1.2

+ · · ·

+Ln
(x−1)(x−2) · · ·(x−n+1)

1.2.3 · · ·(n−1)

]
.

In order to determine the arbitrary constants Cn, Dn, En, . . ., which can be functions
of n, I observe that, if one makes x = n, we will have n y n = 1; because it is clear that
A loses necessarily, when out of n trials there lacks n of them to him; if one makes
x = n−1, we will have similarly n y n−1 = 1; because equation (g) gives

n y n =
q

p+q n y n−1 +
p

p+q n−1 y n−1

or
1 =

q
p+q n y n−1 +

p
p+q

,
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hence n y n−1 = 1; similarly, if one makes x = n− 2, we will have n y n−2 = 1, and so
in sequence. If therefore one makes in the expression of n y x , x = 1, we will have

n y 1 = 1; hence, Cn = 1. If one makes x = 2, we will have

1 = (Cn +Dn)
q

p+q
;

hence, Dn =
p
q . If one makes x = 3, we will have

1 = (Cn +2Dn +En)
q2

(p+q)2 = (1+2
p
q
+En)

q2

(p+q)2 ,

therefore En =
p2

q2 , and thus in sequence; whence it is easy to conclude

n y x =
1

( p
q +1)x−1

[
1+

p
q
(x−1)+

p2

q2
(x−1)(x−2)

1.2
+

p3

q3
(x−1)(x−2)(x−3)

1.2.3
+ · · ·

+
pn−1

qn−1
(x−1)(x−2) · · ·(x−n+1)

1.2.3 · · ·(n−1)

]
.

XXXI.

PROBLEM XV. — Three players A,B,C, of whom the respective abilities are rep-
resented by the letters p, q, r, play together in a manner that, out of a number x of
trials, there lacks m to A, n to B and x−m− n to C; one proposes to determine the
respective probability of these three players for winning.

Let m,n y x be the probability of C winning; it is clear that after a new trial it will
be, either m−1,n y x−1 , or m,n−1 y x−1 , or m,n y x−1 ; now, the probability that it will be

m−1,n y x−1 is p
p+q+r ; the probability that it will be m,n−1 y x−1 is q

p+q+r ; and the proba-
bility that it will be m,n y x−1 is r

p+q+r . We will have therefore

(o) m,n y x =
p

p+q+ r m−1,n y x−1 +
q

p+q+ r m,n−1 y x−1 +
r

p+q+ r m,n y x−1 .t

This equation is in partial differences in four variables, and is integrated by Problem
IX; but, for this, it is necessary that one have two particular equations for the case of
m = 1 and of n = 1; in order to find them, I observe that, if one makes m = 1, we will
have

(p) 1,n y x =
r

p+q+ r 1,n y x−1 +
q

p+q+ r 1,n−1 y x−1 ,

because, when m = 1, we have m−1,n y x−1 = 0.
Equation (p) is in partial differences in two variables; in order to integrate it, I

observe that, if one supposes n = 1, we have

1,1 y x =
r

p+q+ r 1,1 y x−1 ;
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from this equation and from equation (p), we will conclude easily, by Problem VI,

(q)


1,n y x = n

r
p+q+ r 1,n y x−1 −

n(n−1)
1.2

r2

(p+q+ r)2 1,n y x−2

+
n(n−1)(n−2)

1.2.3
r3

(p+q+ r)3 1,n y x−3 −·· ·

We will have similarly

(q′)


m,1 y x = m

r
p+q+ r m,1 y x−1 −

m(m−1)
1.2

r2

(p+q+ r)2 m,1 y x−2

+
m(m−1)(m−2)

1.2.3
r3

(p+q+ r)3 m,1 y x−3 −·· ·

By means of these equations and of equation (o), we will determine, by Problem
IX, the general expression of m,n y x ; thus the problem proposed has no other difficulty
than the length of the calculation.

The general method of Problem IX leads to one final very elevated equation; but,
by means of particular considerations, I have arrived at the solution of the preceding
problem by a much simpler method, that I have developed. I have for brevity p+q+
r = 1, and equation (o) gives

(o′) 2,n y x = p. 1,n y x−1 +q. 2,n−1 y x−1 + r. 2,n y x−1 ,

and if one makes m = 2, equation (q′) gives

2,1 y x = 2r · 2,1 y x−1 − r2 · 2,1 y x−2 .

Let

(s) 2,n y x = a n . 2,n y x−1 +
1 a n . 2,n y x−2 + · · ·+ n X x ;

therefore

q. 2,n−1 y x−1 = a n−1 q. 2,n−1 y x−2 +
1 a n−1 q. 2,n−1 y x−3 + · · ·+q. n−1 X x−1 .

Substituting into this equation, in place of 2,n−1 y x−2 , 2,n−1 y x−3 , . . ., their values
deduced from equation (o′), we will have

2,n y x =(r+a n−1 ). 2,n y x−1 +( 1 a n −a n−1 r) 2,n y x−2

+ p. 1,n y x−1 −a n−1 p. 1,n y x−2 −·· ·+q. n−1 X x−1 ,

whence, by comparing with equation (s), we will have:
1 ˚ a n = a n−1 + r, hence, a n = (n+ 1)r +C; now, setting n = 1, a n = 2r; thus,

C = 0.
2 ˚ 1 a n =

1 a n−1−a n−1 r, hence, 1 a n =−
n(n+1)

1.2 r2+C; now, putting n= 1, 1 a n =

−r2; thus, C = 0.
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3 ˚ 2 a n = 2 a n−1 +
n(n−1)

1.2 r3; therefore, 2 a n = (n−1)n(n+1)
1.2.3 r3 +C; now, setting n =

1, 2 a n = 0; therefore, C = 0, and thus the rest. Hence,

p( 1,n y x−1 −a n−1 . 1,n y x−2 −·· ·)

= p
[

1,n y x−1 −nr. 1,n y x−2 +
n(n−1)

1.2
r2. 1,n y x−3 −·· ·

]
= 0,

by virtue of equation (q).
4 ˚ n X x = q. n−1 X x−1 . Now, we have 1 X x = 0; therefore, 2 X x = 0, and generally

n X x = 0. We have therefore

2,n y x = (n+1)r. 2,n y x−1 −
n(n+1)

1.2
r2. 2,n y x−2 +

(n−1)n(n+1)
1.2.3 2,n y x−3 −·· ·

We will have, by an entirely similar process,

3,n y x = (n+2)r. 3,n y x−1 −
(n+2)(n+1)

1.2
r2. 3,n y x−2 + · · ·

and generally

m,n y x = (m+n−1)r.m,n y x−1 −
(m+n−1)(m+n−2)

1.2
r2.m,n y x−2 + · · · ,

an equation of which the integral is

m,n y x = rx−2
[

m N n
(x−2)(x−3) · · ·(x−m−n+1)

1.2.3 . . .(m+n−2)
+ m M n

(x−2) · · ·(x−m−n+2)
1.2.3 . . .(m+n−3)

+ m L n
(x−2) · · ·(x−m−n+3)

1.2.3 . . .(m+n−4)
+ m K n

(x−2) · · ·(x−m−n+4)
1.2.3 . . .(m+n−5)

+m I n
(x−2) · · ·(x−m−n+5)

1.2.3 . . .(m+n−6)
+ · · ·+ mC n

]
.

The difficulty consists presently in determining the arbitrary constants m N n , m M n , . . .,
which are able to be functions of m and of n.

For this, I assume first m = 1, and we will have

(σ ) 1,n y x = rx−2
[

1C n + 1 D n (x−2)+ 1 E n
(x−2)(x−3)

1.2
+ · · ·+ 1 N n

(x−2) · · ·(x−n)
1.2.3 . . .(n−1)

]
Now we have 1,n y n+1 = 1, as it is clear, since then no trials lack to player C; I take
next the equation

1,n y x = r. 1,n y x−1 +q. 1,n−1 y x−1 .

If one makes x = n+1, we have

1,n y n+1 = 1 = r. 1,n y n +q,

thus

1,n y n =
1−q

r
;
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next

1,n y n =
1−q

r
= r. 1,n y n−1 +q

1−q
r

,

thus

1,n y n−1 =

(
1−q

r

)2

.

We will find similarly

1,n y n−2 =

(
1−q

r

)3

,

and thus in sequence. This put, if one makes x = 2, equation (σ ) will give
(

1−q
r

)n−1
=

1C n ; if one makes x = 3, we will have(
1−q

r

)n−2

= r

[(
1−q

r

)n−1

+ 1 D n

]
,

therefore

1 D n =

(
1−q

r

)n−2 q
r
.

By making x = 4, we will have

1 E n =

(
1−q

r

)n−3 q2

r2 ,

and thus in sequence; hence

1,n y x = rx−2
[

qn−1

rn−1
(x−2) · · ·(x−n)
1.2.3 . . .(n−1)

+
qn−2

rn−2
1−q

r
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)

+
qn−3

rn−3

(
1−q

r

)2 (x−2) · · ·(x−n+2)
1.2.3 . . .(n−3)

+ · · ·+
(

1−q
r

)n−1
]

We will have, likewise,

m,1 y x = rx−2
[

pm−1

rm−1
(x−2) · · ·(x−m)

1.2.3 . . .(m−1)
+

pm−2

rm−2
1− p

r
(x−2) · · ·(x−m+1)

1.2.3 . . .(m−2)
+ · · ·

]
.

If one substitutes now into equation (o), in place of m,n y x , its value found above,
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we will have the following equation

m N n
(x−3)(x−4) · · ·(x−m−n)

1.2.3 . . .(m+n−2)
+(m M n + m N n )

(x−3) · · ·(x−m−n+1)
1.2.3 . . .(m+n−3)

+(m L n + m M n )
(x−3) · · ·(x−m−n+2)

1.2.3 . . .(m+n−4)
+ · · ·

=+
p
r m−1 N n

(x−3) · · ·(x−m−n+1)
1.2.3 . . .(m+n−3)

+
p
r m−1 M n

(x−3) · · ·(x−m−n+2)
1.2.3 . . .(m+n−4)

+ · · ·

+
q
r m N n−1

(x−3) · · ·(x−m−n+1)
1.2.3 . . .(m+n−3)

+
q
r m M n−1

(x−3) · · ·(x−m−n+2)
1.2.3 . . .(m+n−4)

+ · · ·

+ m N n
(x−3) · · ·(x−m−n)
1.2.3 . . .(m+n−2)

+ m M n
(x−3) · · ·(x−m−n+1)

1.2.3 . . .(m+n−3)
+ · · · ,

whence we will form the following equations:

m N n =
p
r m−1 N n +

q
r m N n−1,

m M n =
p
r m−1 M n +

q
r m M n−1,

m L n =
p
r m−1 L n +

q
r m L n−1 ,

...

Now we have

1 N n =
qn−1

rn−1 ;

therefore

2 N n =
p
r

qn−1

rn−1 +
q
r 2 N n−1 ,

hence

2 N n =
qn−1

rn−1
p
r
(n+C);

now, putting n = 1, 2 N 1 = p
r ; therefore

C = 0.

Next

3 N n =
p2

r2
qn−1

rn−1 n+
q
r 3 N n−1 ;
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therefore

3 N n =
qn−1

rn−1

[
p2

r2
n(n+1)

1.2
+C
]

;

now, putting n = 1, 3 N 1 = p2

r2 ; therefore

C = 0,

and generally

m N n =
pm−1qn−1

rm+n−2
n(n+1) · · ·(n+m−2)

1.2.3 · · ·(m−1)
.

We have next

1 M n =
1−q

r
qn−2

rn−2 ;

therefore

2 M n =
q
r 2 M n−1 +

p
r

1−q
r

qn−2

rn−2 ;

hence,

2 M n =
qn−2

rn−2
p
r

1−q
r

(n−1)+C
qn−1

rn−1 ;

now, putting n = 1, 2 M n = 1−p
r ; therefore

C =
1− p

r

and

2 M n =
qn−2

rn−2
p
r

1−q
r

(n−1)+
qn−1

rn−1
1− p

r
.

We will have similarly

3 M n =
qn−2

rn−2
p2

r2
1−q

r
(n−1)n

1.2
+

qn−1

rn−1
p
r

(
1− p

r
n+C

)
;

now, putting n = 1, 3 M n = p
r

(
1−p

r

)
; therefore

C = 0.

By continuing to operate so, we will find generally

m M n =
pm−1qn−2

rm+n−3
1−q

r
(n−1)n · · ·(n+m−3)

1.2.3 · · ·(m−1)

+
qn−1 pm−2

rm+n−3
1− p

r
n(n+1) · · ·(n+m−3)

1.2.3 · · ·(m−2)
.

I will observe here, relative to these expressions for m N n and for m M n , that

n(n+1) · · ·(n+m−2)
1.2.3 · · ·(m−1)

=
m(m+1) · · ·(m+n−2)

1.2.3 · · ·(n−1)
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and that
n(n+1) · · ·(n+m−3)

1.2.3 · · ·(m−2)
=

(m−1)m · · ·(m+n−3)
1.2.3 · · ·(n−1)

;

whence there results that the quantities m N n and m M n remain the same when one
changes p to q, m to n, and reciprocally; this which must be moreover by the nature of
the problem. We must say as much of the other quantities m L n , m K n , . . ..

Presently

m L n =
p
r m−1 L n +

q
r m L n−1 ;

now, 1 L n = qn−3

rn−3
p
r

(
1−q

r

)2
; therefore we will have, by integrating,

2 L n =
qn−3

rn−3
p
r

(
1−q

r

)2

(n−2)+C
qn−2

rn−2 ;

now, putting n = 2, m = 2 and x = 4, in the expression found above for m,n y x , we have

2,2 y 4 = r2( 2 L 2 +2. 2 M 2 + 2 N 2 );

therefore, since 2,2 y 4 = 1,

2 L 2 =
1
r2 −

2p
r2 (1−q)− 2q

r2 (1− p)− 2pq
r2 ;

moreover, C equals 2 L 2 in the expression for 2 L n .
We will find similarly

3 L n =
qn−3

rn−3
p2

r2

(
1−q

r

)2 (n−2)(n−1)
1.2

+
qn−2

rn−2
p
r 2 L 2 (n−1)

+C
rn−1

qn−1 ,

C being an arbitrary constant; now, putting n = 1, 3 L n =
(

1−p
r

)2
; therefore

C =

(
1− p

r

)2

;

hence,

3 L n =
qn−3

rn−3
p2

r2

(
1−q

r

)2 (n−2)(n−1)
1.2

+
qn−2

rn−2
p
r 2 L 2 (n−1)

+

(
1− p

r

)2 qn−1

pn−1 ,
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and generally we will have

m L n =
qn−3 pm−1

rm+n−4

(
1−q

r

)2 (n−2)(n−1) · · ·(n+m−4)
1.2.3 · · ·(m−1)

+
qn−2 pm−2

rm+n−4 2 L 2
(n−1) · · ·(m+n−4)

1.2.3 · · ·(m−2)

+
qn−1 pm−3

rm+n−4

(
1− p

r

)2 n · · ·(n+m−4)
1.2.3 · · ·(m−3)

.

We have next

2 K n =
qn−4

rn−4
p
r

(
1−q

r

)3

+
q
r 2 K n−1 ;

hence,

2 K n =
qn−4

rn−4
p
r

(
1−q

r

)3

(n−3)+C
qn−3

rn−3 ;

now, putting n = 3, we have
C = 2 K 3 .

Likewise,

3 K n =
qn−4

rn−4
p2

r2

(
1−q

r

)3 (n−3)(n−2)
1.2

+
qn−3

rn−3
p
r 2 K 3 (n−2)+

qn−2

rn−2 3 K 2 ,

and generally we will have

m K n =
qn−4 pm−1

rm+n−5

(
1−q

r

)3 (n−3) · · ·(m+n−5)
1.2.3 · · ·(m−1)

+
qn−3 pm−2

rm+n−5 2 K 3
(n−2) · · ·(n+m−5)

1.2.3 · · ·(m−2)

+
qn−2 pm−3

rm+n−5 3 K 2
(n−1) · · ·(n+m−5)

1.2.3 · · ·(m−3)

+
qn−1 pm−4

rm+n−5

(
1− p

r

)3 n · · ·(n+m−5)
1.2.3 · · ·(m−4)

.

We will determine 2 K 3 and 3 K 2 by means of the following equations:

r3( 2 K 3 +3 2 L 3 +3 2 M 3 + 2 N 3 ) = 1,

r3( 3 K 2 +3 3 L 2 +3 3 M 2 + 3 N 2 ) = 1.

The law of the other coefficients m I n , m H n , . . . is clear, and it is easy, consequently,
to determine them. As for the coefficient mC n , we will determine it by this equation

1 = rm+n−2
[

mC n +(m+n−2)m D n +
(m+n−2)(m+n−3)

1.2 m E n + · · ·
]
.
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Thus we have therefore a general expression for m,n y x and, consequently, the proba-
bility of player C winning; by the same method, and by means of analogous formulas,
we would have that of the two other players A and B; in such a way that we have a
solution of the Problem of points in the case of three players; a Problem which had not
yet been solved, as I know, although the geometers who have occupied themselves in
the analysis of chances seemed to desire the solution. (See Mr. Montmort, in his work
Sur l’analyse des jeux de hasard, second edition, page 247.)

I assume in the expression m,n y x , m = 2, n = 3 and x = 9, that is to say that the
number of trials which fall to player C is 4: I assume, moreover, p = q = r = 1

3 . This
put, we will have

2,3 y x =
x−3
3x−2

(
xx+2

2

)
,

and, by supposing x = 9, we will have the probability of C, for winning, equal to

2,3 y 9 = 83
729 ; in order to have the probability of B, I observe that it is equal to 2,4 y 9 ;

now we have

2,4 y x =
1

3x−2

[
4
(x−2)(x−3)(x−4)(x−5)

1.2.3.4
+8

(x−2)(x−3)(x−4)
1.2.3

+7
(x−2)(x−3)

1.2
+5(x−2)−17

]
If we suppose x = 9, we will have

2,4 y 9 =
195
729

;

the probability of A equals 1− 83
729 −

195
729 = 451

729 .
The preceding method could take place again, if, instead of three players, one sup-

posed a greater number.

One can solve the preceding Problem by the method of combinations in an extremely simple
manner that is here:

The same things being assumed as in the preceding Problem; let, moreover, i be the number
of trials which lacks to player C, so that we have x = m+n+ i; it is evident that the game must
end at the latest in x− 2 trials; therefore the number of all the possible cases, multiplied each
by their particular probability, is (p+ q+ r)m+n+i−2. In order to have the number of all the
cases in which the player A wins, it is necessary to develop the trinomial (p+ q+ r)m+n+i−2

and to admit only the terms in which p has an exponent equal or superior to m; let therefore
H pm+µ qν rn+i−2−µ−ν be one of the terms; if the exponents of q and of r are one less than n,
and the other less than i, it is necessary to admit this term in whole; but, if the exponent of q, for
example, is equal or greater than n, it is necessary to reject from this term all the combinations in
which q happens n times before p happens m times. Let therefore ν = n+λ ; I observe, this put,
that these combinations are: 1 ˚ those in which, p having happened m−1 times, q has happened
precisely n times; 2 ˚ those in which, p having happened m−2 times, q has happened precisely
n+1 times; 3 ˚ those in which, p having happened m−3 times, q has happened precisely n+2
times, etc., and thus in sequence until the combination in which, p having happened m−λ − 1
times, q has happened n+λ times, if however λ does not exceed m− 1; because, otherwise, it
would be necessary to stop at the combination in which p does not happen at all; presently, the
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number of cases in which, out of m+n−1 trials, p will happen m−1, and q, n times, is, as one
knows,

∆(m+n−1)
∆(n)∆(m−1)

;

but, as in the term H pm+µ qn+λ ri−2−µ−λ , p happens m + µ times, and q, n + λ times, it is
necessary to multiply ∆(m+n−1)

∆(n)∆(m−1) by the number of combinations in which, p happening µ + 1
times, q happens λ times; now the number of these combinations is

∆(µ +λ +1)
∆(µ +1)∆(λ )

;

therefore we will have
∆(m+n−1)∆(µ +λ +1)

∆(n)∆(λ )∆(m−1)∆(µ +1)
for the number of combinations in which q has happened n times, when p has yet happened only
m−1 times; we will find similarly

∆(m+n−1)∆(µ +λ +1)
∆(n+1)∆(λ −1)∆(m−2)∆(µ +2)

for the number of cases in which q has happened n+1 times, when p has not yet happened m−2
times, and thus in sequence. Let therefore

Qµ+λ =

[
1+

λ (m−1)
(n−1)(µ +2)

+
λ (λ −1)(m−1)(m−2)

(n+1)(n+2)(µ +2)(µ +3)
+ · · ·

]
× ∆(m+n−1)∆(µ +λ +1)

∆(n)∆(m−1)∆(µ +1)∆(λ )
pm+µ qn+λ ri−2−µ−λ ;

let us designate as (Qµ+λ ) the sum of all the terms which one can form, by giving to µ and to λ ,
in Qµ+λ , all the possible values in whole and positive numbers from zero, in a manner however
that µ +λ never exceed i−2; let us express next by (Rµ+λ ) that which (Qµ+λ ) becomes, when
we change q to r, n to i, and reciprocally; this put, the probability of A, for winning, will be

1
(p+q+ r)m+n+i−2 =

[
pm+n+i−2 +

m+n+ i−2
1

pm+n+i−3(q+ r)+ · · ·

+
(m+n+ i−2) · · ·(m+ i−1)

1.2.3 · · ·(n−2)
pm(q+ r)n+i−2− (Qµ+λ )− (Rµ+λ )

]
.

The same method has equal place, whatever be the number of players.

XXXII.

PROBLEM XVI. — I suppose the tickets A1, A2, B1 and B2, contained in an urn,
and that two players A and B play on this condition that A choosing the tickets A1 and
A2, and B the two others, if one draws each time one alone of these tickets at random,
the one of the two players will win, who first will have attained the number i, the tickets
A1 and B1 counting for 1, and the tickets A2 and B2 counting for 2. This put, if
there lacks n units to the player A, and x−n units to player B, one asks the respective
probabilities of the two players A and B to win.
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Let n y x be the probability of B winning; if one draws from the urn the ticket A1, it
will become n−1 y x−1 ; if one draws the ticket A2, it will become n−2 y x−2 ; if the ticket
B1 comes out, it will be n y x−1 ; if it is the ticket B2, it will be n y x−2 ; we will have
therefore

(1) n y x =
1
4 n y x−1 +

1
4 n y x−2 +

1
4 n−1 y x−1 +

1
4 n−2 y x−2 .

This equation is integrated as in Problem VII; but, for this, it is necessary to have
two particular equations in the two particular suppositions for n. Now, if one supposes
n = 0, we have 0 y x = 0, and if one supposes n = 1, 1 y x =

1
2 1 y x−1 , because I suppose

that then the two players exclude the tickets A2 and B2. We have therefore, by Problem
VII,

n y x = an · n y x−1 +
1 an · n y x−2 +

2 an · n y x−3 + · · · ,

and the equation

1 =
an

f
+

1 an

f 2 +
2 an

f 3 + · · ·

is the same as this

0 =

(
1− 1

2 f

)(
1− 1

4 f
− 1

4 f f

)n−1

;

we will have thus

n y x =
An

2x + px
[

Nn
x(x−1) · · ·(x−n+3)

1.2.3 . . .(n−2)
+Mn

x(x−1) · · ·(x−n+4)
1.2.3 . . .(n−3)

+Ln
x(x−1) · · ·(x−n+5)

1.2.3 . . .(n−4)
+Kn

x(x−1) · · ·(x−n+6)
1.2.3 . . .(n−5)

+ · · ·+Cn

+ 1 px
[

1 Nn
x(x−1) · · ·(x−n+3)

1.2.3 . . .(n−2)
+ · · ·

]
,

p and 1 p being the two roots of the equation

f 2− 1
4

f =
1
4
,

that is p being 1+
√

17
8 , and 1 p being 1−

√
17

8 .
It is necessary now to determine the arbitrary constants An, Nn, . . .. Now, if one

substitutes into equation (1), in place of n y x , n y x−1 , n−1 y x−1 , . . . their values drawn
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from the expression of n y x , we will have

An

2x +px
[

Nn
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)
+(2Nn +Mn)

(x−2) · · ·(x−n+2)
1.2.3 . . .(n−3)

+(Nn +2Mn +Ln)
(x−2) · · ·(x−n+3)

1.2.3 . . .(n−4)

+(Mn +2Ln +Kn)
(x−2) . . .(x−n+4)

1.2.3 . . .(n−5)
+ · · ·Cn]

+ 1 px
[

1 Nn
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)
+ · · ·

]

=
1
4

px
{

Nn

(
1
p
+

1
p2

)
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)

+

[
Nn

p
+Mn

(
1
p
+

1
p2

)
+

Nn−1

p

]
(x−2) · · ·(x−n+2)

1.2.3 . . .(n−3)

+

[
Mn

p
+Ln

(
1
p
+

1
p2

)
+

Mn−1

p
+

Nn−1

p
+

Nn−2

p2

]
(x−2) · · ·(x−n+3)

1.2.3 . . .(n−4)

+

[
Ln

p
+Kn

(
1
p
+

1
p2

)
+

Ln−1

p
+

Mn−1

p
+

Mn−2

p2

]
(x−2) · · ·(x−n+4)

1.2.3 . . .(n−5)
+ · · ·

}
+

1
4

1 px

{
1 Nn

(
1

1 p
+

1
1 p2

)
(x−2) · · ·(x−n+1)

1.2.3 . . .(n−2)
+ · · ·

}

+
1
4

An

2x−1 +
1
4

An

2x−2 +
1
4

An−1

2x−1 +
1
4

An−2

2x−2 .

Whence, by considering that

1 =
1

4p
+

1
4pp

,

we will form the following equations:

0 =
1
2

An +
1
2

An−1 +An−2,

2Nn =
1
4

Nn

p
+

1
4

Nn−1

p
,

2Mn +Nn =
1
4

Mn

p
+

1
4

Mn−1

p
+

1
4

Nn−2

p2 +
1
4

Nn−1

p
,

2Ln +Mn =
1
4

Ln

p
+

1
4

Ln−1

p
+

1
4

Mn−2

p2 +
1
4

Mn−1

p
,

...

We will have some similar equations for 1 Nn,
1 Mn, . . . We will determine the quan-

tities Cn and 1Cn, by considering that, when n = x, n y x = 1, and that, when x = 2n,
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n y x = 1
2 ; whence we obtain the equations

1 =
An

2n + pn
[
Cn +nDn + · · ·+

n(n−1) · · ·3
1.2.3 . . .(n−2)

Nn

]
+ 1 pn

[
1Cn +n 1 Dn + · · ·

]
and

1
2
=

An

22n + p2n
[
Cn +2nDn + · · ·+Nn

2n · · ·(n+3)
1.2.3 . . .(n−2)

]
+ 1 p2n

[
1Cn +2n 1 Dn + · · ·+ 1 Nn

2n · · ·(n+3)
1.2 . . .(n−2)

]
.

It is necessary now to integrate the preceding equations. Now, if one makes − 1
2
√

2
=

cosq and
√

7
2
√

2
= sinq, which gives very nearly q = 110 ˚ 42′, we will find (article IX)

An = 2
n
2 (α cosnq+β sinnq),

α and β being two arbitrary constants. Now, if one makes n = 0, we have

A0 = 0 = α;

and if one makes n = 1, we have

An =
1
2
,

because 1 y x = 1
2x−1 ; therefore

β
√

2sinq =
1
2

and β =
1

2
√

2sinq
;

hence
An = 2

n−2
2

sinnq
sinq

.

The equation

2Nn =
1
4

Nn

p
+

1
4

Nn−1

p

gives

Nn =
Q

(8p−1)n−2 .

This value of Nn commences to take place only when n = 2; therefore

Q = N2 and Nn =
N2

(8p−1)n−2 ;

similarly

1 Nn =
1 N2

(8 1 p−1)n−2
.
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We will determine N2 and 1 N2 by these equations

1 =
A2

22 + p2 ·N2 +
1 p2 · 1 N2

1
2
=

A2

24 + p4 ·N2 +
1 p4 · 1 N2

We will determine in the same manner the other coefficients Mn, Ln, Kn, . . ..

XXXIII.

PROBLEM XVII. — Two players A and B play to this condition, that at each trial,
the one who loses will give an écu to the other; I suppose that the skill of A be to that of
B, as p is to q, and that both have a number m of écus; we ask what is the probability
that the game will end before, or at the number x of trials.

I suppose first p = q. Let

0 y x be the number of cases according to which, at trial x, the gain of the two players
is null;

1 y x be the number of cases according to which the gain of one or the other is 1;

2 y x be the number of cases following which the gain is 2, and thus in sequence. This
put, we will form the following equations:

(ψ)



0 y x = 1 y x−1 ,

1 y x = 2 · 0 y x−1 + 2 y x−1 ,

2 y x = 1 y x−1 + 3 y x−1 ,

3 y x = 2 y x−1 + 4 y x−1 ,

...
(σ ) n y x = n−1 y x−1 + n+1 y x−1 ,

...

m−1 y x = m−2 y x−1

In order to show by what process one obtains these equations, I observe that, at
each trial, there can happen two different cases, namely, that A wins, or that it is B;
now it is clear that the gain cannot be zero at the trial x, without having been 1 at the
trial x−1, and each case in which it is 1 at trial x−1 gives a case in which it is null at
trial x; whence I deduce the equation

0 y x = 1 y x−1 .

Next all the cases in which the gain is null at trial x−1 each give two cases in which
there is 1 at trial x; whence we will have

1 y x = 2 · 0 y x−1 + 2 y x−1 .
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It is likewise in the other equations. Finally, we will obtain the last by considering
that one must exclude the term m y x−1 , because this term cannot take place, as long as
the game is supposed not finite.

The number of all possible cases is 2x; because, by naming hx this number, as
there can happen at the following trial two different cases, namely, that A beats B or
that B beats A, the number hx, being able to be combined with these two cases, gives
consequently 2hx for the number of all possible cases at trial x+1; we have therefore

hx+1 = 2hx;

whence, by integrating,
hx = A2x,

A being an arbitrary constant. Now, putting x = 1, hx = 2; therefore

A = 1 and hx = 2x.

Let presently ux be the probability that the game will end precisely at the number x
of trials: we will have

ux =
m y x
2x ;

but we have clearly

m y x = m−1 y x−1 ;

therefore
ux =

m−1 y x−1

2x .

Let zx be the probability that the game will end before or at the number x of trials, we
will have

zx = zx−1 +ux;

therefore
∆zx−1 =

m−1 y x−1

2x or 2x+1
∆zx = m−1 y x .

There is therefore no more but to determine the value of m−1 y x , which can be made by
means of the preceding equations (ψ). For this, I observe that these equations are able
to correspond to Problem VIII by means of a simple preparation; now this preparation
consists to form, by means of the first two, an equation among three variables, which we
will make by substituting into the second, in place of 0 y x−1 , its value 1 y x−2 deduced
from the first, and we will have

1 y x = 2 · 1 y x−2 + 2 y x−1 .

Let now

(Ω) n y x = an · n y x−2 +
1 an · n y x−4 + · · ·+un +bn · n+1 y x−1 +

1 bn · n+1 y x−3 + · · · ,

It is not necessary to take account, in this equation, of the terms n y x−1 , n y x−3 ,
. . . , n+1 y x−2 , n+1 y x−4 , . . . , because these terms are null as soon as n y x has any value,
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seeing that, if the gain is even or odd at trial x, it is necessarily odd or even at the trials
x−1, x−3, . . .. This put, the equation (Ω) gives

n−1 y x−1 = an−1 · n−1 y x−3 +
1 an−1 · n−1 y x−5 + · · ·+un−1

+bn−1 · n y x−2 +
1 bn−1 · n y x−4 + · · ·

If one substitutes into this equation, in place of n−1 y x−1 , n−1 y x−3 , . . ., their values
that equation (σ ) gives, we will have, after having ordered,

n y x = (an−1 +bn−1) n y x−2 +( 1 an−1 +
1 bn−1) n y x−4 +( 2 an−1 +

2 bn−1) n y x−6 + · · ·

+ n+1 y x+1 −an−1 · n+1 y x−3 −
1 an−1 · n+1 y x−5 −·· ·+un−1.

By comparing this equation with equation (Ω), we will have

bn = 1,
an = an−1 +bn−1,

1 bn =−an−1,

1 an =
1 an−1 +

1 bn−1,

2 bn =− 1 an−1,

2 an =
2 an−1 +

2 bn−1,

...
un = un−1.

In order to integrate these equations, it is necessary to make the following consid-
erations:

The first equation begins to take place when n = 1.
The second begins to exist only when n = 2; thus, the arbitrary constant which

comes by integrating must be determined by means of the value of an when n = 1.
The third equation begins to exist when n = 2.
The fourth begins to exist only when n = 3; and the arbitrary constant which comes

by integrating must be determined by means of the value of 1 an, when n = 2; and thus
for the rest.

This put, if one integrates the second equation, we will have

an = n+C,

C being an arbitrary constant; now, putting n = 1, we have

an = 2, thus C = 1;

hence
1 bn =−an−1 =−n.

One must observe that this equation begins to exist only when n = 2; now, n being 1,
we have

1 b1 = 0, 2 b1 = 0, . . . ,
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moreover, by making n = 2, we have

2 b2 =− 1 a1 = 0;

likewise,
3 b2 = 0, 4 b2 = 0, . . . , 1 a2 =

1 a1 +
1 b1 = 0;

similarly,
2 a2 = 0, 3 a2 = 0, . . . ,

If one integrates the fourth equation, we will have

1 an =−
(n+1)(n−2)

1.2
+C;

in order to determine the constant C, one avails oneself of the value of 1 a2; we have

1 a2 = 0, therefore C = 0;

hence
2 bn =

n(n−3)
1.2

;

this expression of 2 bn is able to begin to take place, by the remarks preceding, only
when n = 3; moreover, by making n = 3, we have

3 b3 =− 2 a2 = 0;

similarly,
4 b3 = 0, 5 b3 = 0, . . . , 2 a3 =

2 a2 +
2 b2 = 0;

similarly,
3 a3 = 0, 4 a3 = 0, . . .

The sixth equation gives, by integrating,

2 an =
(n+1)(n−3)(n−4)

1.2.3
+C.

In order to determine C, I observe that 2 a3 equals 0; therefore, C = 0. Hence

2 bn =−
n(n−4)(n−5)

1.2.3
,

an expression which is able to begin to exist only when n = 4, and thus in sequence.
Finally, un = un−1; therefore, un =C. Now, putting n = 1, un = 0; therefore, C = 0.

Thus we will have

n y x =(n+1) n y x−2 −
(n+1)(n−2)

1.2 n y x−4

+
(n+1)(n−3)(n−4)

1.2.3 n y x−6 −·· ·

+ n+1 y x−1 −n · n+1 y x−3 +
n(n−3)

1.2 n+1 y x−5 −·· ·
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If one supposes now n = m−1, then it is not necessary to take account of the terms

n+1 y x−1 , n+1 y x−3 , . . . because these terms are excluded from the equations (ψ); we
will have therefore

m−1 y x = m · m−1 y x−2 −
m(m−3)

1.2 m−1 y x−4 +
m(m−4)(m−5)

1.2.3 m−1 y x−6 −·· ·

If one substitutes presently into this equation, in place of m−1 y x , its value 2x+1∆zx, we
will have, after having integrated,

zx = m
1
22 zx−2−

m(m−3)
1.2

1
24 zx−4 +

m(m−4)(m−5)
1.2.3

1
26 zx−6 + · · ·+C.

I suppose now the skills of two players unequal in the ratio of p to q; let p+q = 1.
This put, if one asks for the probability of the following combination

1, 2, 3, 4, 5, 6, 7, . . . , x,
p, q, q, p, p, p, q, . . . , q,

which signifies A wins on the first trial, B on the second and on the third, A on the
fourth, fifth, and sixth, etc. It is clear that, in order to have this probability, one must
multiply all these quantities by one another; naming therefore r the number of times
that p is found repeated in this combination, x− r will express how many times q is
found repeated; the probability of this combination will be consequently prqx−r.

If one makes x− r = r + s, and if in some place one stops the combination, the
number of times that one of the quantities p and q is found more often repeated than
the other is always less than m, this combination will be one of those in which B will
gain s écus to player A; now, one is able to make a corresponding combination in which
A will gain s écus to B, and the probability of this combination will be qr pr+s, the ratio
of this probability to the preceding is that of ps to qs; whence there results that generally
the number of cases according to which A gains s écus to B, each multiplied by their
particular probability, is to the number of cases according to which B gains s écus to
player A, multiplied by their probability, as ps : qs.

This put, let 0 y x be the number of cases according to which at trial x the gain
of the two players is null, each multiplied by their probability. Let 1 y x , 2 y x , . . . be
the number of cases according to which the gain of player A is 1, 2, . . . écus, each

multiplied by their particular probability, and if 1
1
y x , 2

1
y x , . . . express the analogous

quantities for player B; it is easy, now by some considerations entirely similar to those
according to which I have formed the equations (ψ), to obtain the following:

(ψ ′)



0 y x = q · 1 y x−1 + p · 1
1
y x−1 ,

1 y x = p · 0 y x−1 +q · 2 y x−1 ,

2 y x = p · 1 y x−1 +q · 3 y x−1 ,

...
(σ ′) n y x = p · n−1 y x−1 +q · n+1 y x−1 ,

...

m−1 y x = p · m−2 y x−1

92



Now we have, by the preceding remarks,

p · 1
1
y x−1 = q · 1 y x−1 .

The first equation becomes therefore

0 y x = 2q · 1 y x−1 ,

hence

0 y x−1 = 2q · 1 y x−2 ;

substituting this value of 0 y x−1 into the second, we will have

1 y x = 2qp · 1 y x−1 +q · 2 y x−1 ;

it is easy to see that the equations (ψ ′) correspond in this way to Problem VIII. Let
there be therefore

n y x = an · n y x−2 +
1 an · n y x−4 + · · ·+un +bn · n+1 y x−1 +

1 bn · n+1 y x−3 + · · · ,

and we will find, by operating exactly as I have done above, when p and q were equal,

n y x = (n+1)pq · n y x−2 −
(n+1)(n−2)

1.2
p2q2 · n y x−4 + · · ·

+q · n+1 y x−1 −npq2 · n+1 y x−3 + · · ·

Therefore, if one supposes n = m−1, we will have

(ϖ)

m−1 y x = mpq · m−1 y x−2 −
m(m−3)

1.2
p2q2 · m−1 y x−4 + · · · ;

by rejecting the terms m y x−1 , m y x−3 , . . . which can have no place, according to the
supposition that the game does not end before the trial x. Let now ux be the probability
that the game will end precisely at trial x, it is clear that we will have

ux = m y x + m
1
y x ;

now we have m y x : m
1
y x :: pm : qm; therefore

ux =

(
1+

qm

pm

)
m y x ;

moreover,

m y x = p · m−1 y x−1 ;

hence,

ux = p
(

1+
qm

pm

)
m−1 y x−1 .
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Let zx be the probability that the game will end before or at trial x, we will have

∆zx = ux+1 = p
(

1+
qm

pm

)
m−1 y x ;

by substituting therefore, in place of m−1 y x this value in equation

(ϖ)

, we will have,
after having integrated,

(ϖ)


z x = mpqz x−2 −

m(m−3)
1.2

p2q2z x−4

+
m(m−3)(m−5)

1.2.3
p3q3zx−6−·· ·+C.

In order to determine the arbitrary constant C, I observe that, as long as x is less
than m, zx equals 0, and that x being equal to m, zx equals pm +qm; therefore,

C = pm +qm.

Let 1− tx = zx; tx will express consequently the probability that the game will not end
before or at trial x, and we will have

t x = mpqt x−2 −
m(m−3)

1.2
p2q2t x−4 + · · ·

− pm−qm +

[
1−mpq+

m(m−3)
1.2

p2q2−·· ·
]
.

Now it is remarkable that we have, whatever be m, and by supposing p+q = 1,

0 = 1− pm−qm−mpq+
m(m−3)

1.2
p2q2−·· · ,

or, generally, by supposing any p and q,

(p+q)m = mpq(p+q)m−2− m(m−3)
1.2

p2q2(p+q)m−4 + · · ·+ pm +qm;

it is this of which would be able to be convinced by induction, by giving to m different
numerical values, but here is a general demonstration of it. We have

p+q = p+q,

(p+q)2 = 2pq(p+q)0 + p2 +q2,

(p+q)3 = 3pq(p+q)+ p3 +q3,

...

Let therefore, in general,

(τ) (p+q)m = Am(p+q)m−2 + 1 Am(p+q)m−4 + · · ·+ pm +qm,
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and we will have

(p+q)m+1 =Am(p+q)m−1 + 1 Am(p+q)m−3 + · · ·
+ pm+1 +qm+1 + pq(pm−1 +qm−1).

Now we have

pm−1 +qm−1 = (p+q)m−1−Am−1(p+q)m−3−·· · ;

therefore

(p+q)m+1 =(Am + pq)(p+q)m−1

+( 1 Am−Am−1 pq)(p+q)m−3 + · · ·+ pm+1 +qm+1.

We have moreover

(p+q)m+1 = Am+1(p+q)m−1 + 1 Am+1(p+q)m−3 + · · ·+ pm+1 +qm+1;

whence, by comparing, we will have

Am+1 = Am + pq,
1 Am+1 =

1 Am−Am−1 pq,
2 Am+1 =

2 Am− 1 Am−1 pq,
...

All these equations are not able to exist at once; the first begins to take place only
when m = 1; the second, when m = 2; the third, when m = 3; etc. Moreover, as they
assume necessarily known the expressions of p+q and (p+q)2, in order to determine
next, in their way, (p+q)3, (p+q)4, . . . , there results that the law represented by these
equations begins to take place when m+1 = 3; thus, the first equation begins to exist
when m = 2; the second, when m = 3; the third, when m = 4, etc.

This put, by integrating the first, we have

Am = mpq+C.

Now, putting m = 2, we have
A2 = 2pq;

therefore, C = 0.
Next, the second gives

1 Am =−m(m−3)
1.2

p2q2 +C;

now, putting m = 3, 1 A3 = 0, because (p+q) is not able to have negative exponent in
the formula (τ); therefore C = 0, and thus for the rest. Therefore

(p+q)m = mpq(p+q)m−2− m(m−3)
1.2

p2q2(p+q)m−4 + · · ·+ pm +qm;
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thus we will have

(δ ) t x = mpqt x−2 −
m(m−3)

1.2
p2q2t x−4 + · · ·

In order to integrate this equation, I begin by observing that it is differential of order
m
2 or m−1

2 , according as m is even or odd. Moreover, it is easy to see, by inspection
of the equations (ψ ′), that it begins to exist when x = m. Thus, the arbitrary constants
which come by the integration must be determined by the values of tx, when one makes
x = 0, x = 2, x = 4, . . . , x = m−2 or x = 1, x = 3, x = 5, . . . , x = m−2, according as
m is even or odd. Now, all these values are equal to unity, because it is certain that the
game cannot end before m trials.

Presently, if one supposes x′ equal to x
2 or x−1

2 , according as m is even or odd, we
will have

t x′ = mpqt x′−1 −
m(m−3)

1.2
p2q2t x′−2 + · · ·

The integral of this equation depends on the resolution of this algebraic equation

f
m
2 = mpq f

m
2 −1− m(m−3)

1.2
p2q2 f

m
2 −2 + · · · ,

if m is even, or of this

f
me−1

2 = mpq f
m−1

2 −1− m(m−3)
1.2

p2q2 f
m−1

2 −2 + · · · ,

if m is odd.
Now, if one makes cosφ = y, we have, as one knows,

cosmφ = 2m−1ym−m2m−3ym−2 +
m(m−3)

1.2
2m−5ym−4−·· ·

Let cosmφ = 0, and we will have

0 = ym−m
1
4

ym−2 +
m(m−3)

1.2
1
42 ym−4−·· ·

when m is even, or

0 = ym−1−m
1
4

ym−3 +
m(m−3)

1.2
1
42 ym−5−·· ·

when m is odd.
The different values of y in this equation are the cosines of the different arcs, which,

multiplied by m, have their cosines equal to zero; now the arcs which have their cosines
null are π

2 ,
3π

2 , 5π

2 , . . . , π expressing the semi-circumference of which the radius is
unity. The different values of y are, consequently, plus and minus the cosines of the
arcs π

2m ,
3π

2m ,
5π

2m , . . . to (m−1)π
2m or (m−2)π

2m inclusively, according as m is even or odd; the
cosines of the following arcs being the same, with the difference of signs excepted, the
one of π

2 being null; let therefore l, l1, l2, . . . be these different cosines, the values of y
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will be therefore±l,± l1, . . . . Now it is easy to see that f = 4y2 pq, hence, the different
values of f will be 4l2 pq, 4l2

1 pq, . . ., whence we will have

tx = A(2l
√

pq)x +A1(2l1
√

pq)x + · · · ,

A, A1, . . . being some arbitrary constants which will be determined by the method of
article IX.

XXXIV.

PROBLEM XVIII. — I have supposed, in the preceding problem, that the two play-
ers A and B had an equal number m écus; I suppose actually that player A has i écus,
and player B, m écus; the rest subsisting, as above, we ask the probability that the
game will end before, or at the number x of trials.

It is easy to see that we will have first the equations (ψ ′) of the preceding Problem.
Moreover, we will have the following:

(ψ ′′)



1
1
y x =q · 0 y x−1 + p · 2

1
y x−1 ,

2
1
y x =q · 1

1
y x−1 + p · 3

1
y x−1 ,

3
1
y x =q · 2

1
y x−1 + p · 4

1
y x−1 ,

...

n
1
y x =q · n−1

1
y x−1 + p · n+1

1
y x−1 ,

...

i−1
1
y x =q · i−2

1
y x−1 .

Let

i−1
1
y x = 1 λ x i−2

1
y x = 2 λ x i−3

1
y x = 3 λ x . . . ,

0 y x = i λ x 1 y x = i+1 λ x 2 y x = i+2 λ x . . . ,

and we will have, by reuniting the equations (ψ ′) and (ψ ′′),

1 λ x = q · 2 λ x−1 ,

2 λ x = q · 3 λ x−1 + p · 1 λ x−1 ,

...

i+m−1 λ x = p · i+m−2 λ x−1 .

Let

(Ω′′)

{
n λ x−1 = an · n λ x−2 +

1 an · n λ x−4 +
2 an · n λ x−6 + · · ·+un

+bn · n+1 λ x−1 +
1 bn · n+1 λ x−3 +

2 bn · n−1 λ x−5 + · · · ,
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and we will have

p · n−1 λ x−1 =an−1 p · n−1 λ x−3 +
1 an−1 p · n−1 λ x−5 +

2 an−1 p · n−1 λ x−7 + · · ·+un−1 p

+bn−1 p · n λ x−2 +
1 bn−1 p · n λ x−4 + · · ·

Now we have

n λ x = q · n+1 λ x−1 + p · n−1 λ x−1 ;

therefore

n λ x = (an−1 +bn−1 p) n λ x−2 +( 1 an−1 +
1 bn−1 p) n λ x−4 +( 2 an−1 +

2 bn−1 p) n λ x−6 + · · ·+un−1 p

+q · n+1 λ x−1 −an−1q · n+1 λ x−3 −
1 an−1q · n+1 λ x−5 −·· · ,

whence we will have, by comparing with equation (Ω′′),

bn = q,

an = an−1 +bn−1 p,
1 bn =−an−1q,
1 an =

1 an−1 +
1 bn−1 p,

2 bn =− 1 an−1q,
2 an =

2 an−1 +
2 bn−1 p,

...
un = un−1 p.

One must observe that the first of these equations begins to exist when n = 1; the
second and the third, when n = 2; the fourth and the fifth, when n = 3; etc.

This put, if one integrates the second, we will have

an = (n−1)pq+C;

now, putting n = 1, an = 0; thus C = 0, hence

1 bn =−an−1q =−(n−2)pq2.

If we integrate the fourth, we will have

1 an =−
(n−2)(n−3)

1.2
p2q2 +C;

in order to determine the constant C, I observe that, when n = 2, we have

1 a2 =
1 a1 +

1 b1 p = 0;

therefore C = 0, hence,
2 b2 =

(n−3)(n−4)
1.2

p2q3.
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If we integrate the sixth equation, we will have

2 an =
(n−3)(n−4)(n−5)

1.2.3
p3q3 +C;

now we have
2 a3 =

2 a2 +
1 b2 and 2 a2 =

2 a1 +
1 b1 = 0;

therefore 2 a3 = 0, hence C = 0, and thus the rest.
Finally, we have un = un−1 p, therefore un = Cpn; now, putting n = 1, un = 0;

therefore C+0 and un = 0; therefore

n λ x =(n−1)pq · n λ x−2 −
(n−2)(n−3)

1.2
p2q2 · n λ x−4

+
(n−3)(n−4)(n−5)

1.2.3
p3q3 · n λ x−6 −·· ·

+q · n+1 λ x−1 − (n−2)pq2 · n+1 λ x−3 +
(n−3)(n−4)

1.2
p2q3 · n+1 λ x−5

−·· ·

If we make n = i+m− i, we will have

i+m−1 λ x = m−1 y x and i+m λ x = 0;

therefore

(π)

 m−1 y x =(i+m−2)pq · m−1 y x−2 −
(i+m−3)(i+m−4)

1.2
p2q2 · m−1 y x−4

+
(i+m−4)(i+m−5)(i+m−6)

1.2.3
p2q2 · m−1 y x−6 −·· ·

If therefore we name zx the probability that A will win before or at trial x, we will
have, by a process similar to that of the preceding Problem,

(π) z x = (m+ i−2)pqz x−2 −
(m+ i−3)(m+ i−4)

1.2
p2q2z x−4 + · · ·+C.

Similarly, if we name
1
z x the probability of player B winning before, or at trial x,

we will have

(π ′)
1
z x = (m+ i−2)pq

1
z x−2 −

(m+ i−3)(m+ i−4)
1.2

p2q21
z x−4 + · · ·+

1C.

In order to determine the arbitrary constants which enter into the expressions of zx and
1
z x , I observe that they are to the number of m+i

2 if m+ i is even, or m+i+1
2 if it is odd;

now here is in what manner we will have them.
I suppose m and i odd; the equation

(π)

will begin visibly to take place only when
x− i−m+2 will equal 0, this gives x = i+m−2. The equation (π) will begin to exist
therefore only when x will equal i+m+1; it is necessary, consequently, to have all the
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values of zx, from z1 to zi+m+1, in order to determine the arbitrary constants of equation
(π).

If m and i are some even numbers, the equation

(π)

will begin to take place only
when x− i−m+ 2 will equal 1; this gives x = i+m− 1. The equation (π) begins
therefore to take place only when x equals i+m+ 2; it is necessary, consequently, to
have the values of zx, from z2 to zi+m+2.

If, m being even, i is odd, equation

(π)

will begin to take place only when x− i−
m+ 1 will equal 1, this gives x = i+m. The equation (π) has therefore a place only
when x equals i+m+3; thus it is necessary to have the values of zx, from z2 to zi+m+3.

Finally, if, m being odd, i is even, equation

(π)

will begin to take place only when
x− i−m+ 1 will equal 0, this gives x = i+m− 1. Equation (π) begins therefore to
exist only when x equals i+m+ 2. It is necessary consequently to have the values of
zx, from z1 to zi+m+2.

This put, the number of all the possible cases to trial m, each multiplied by their
particular probability, will be

pm +mpm−1q+
m(m−1)

1.2
pm−2q2 + · · ·+qm.

The number of cases which make A win at trial m equals pm. In order to have the
number of cases which make him win precisely at trial m + 2, it is clear that it is
necessary to subtract pm from the preceding quantity, and to multiply the rest by p2 +
2pq+q2, this gives

(χ)


mpm+1q+

m(m−1)
1.2

pmq2 +
m(m−1)(m−2)

1.2.3
pm−1q3 + · · ·

+2mpmq2 +
2m(m−1)

1.2
pm−1q3 + · · ·+mpm−1q3 + · · ·

Now, the number of cases which make him win precisely at trial m+ 2 is clearly
mpm+1q; we have therefore

zm+2 = pm(1+mpq).

In order to have the number of cases which make A win at trial m+4, it is necessary
to subtract from the preceding quantity (χ), mpm+1q, to multiply the rest by p2+2pq+
q2, and we will have m(m+3)

1.2 pm+2q2 for the number of these cases; thus,

zm+4 = pm
[

1+mpq+
m(m+3)

1.2
p2q2

]
.

We will find, likewise,

zm+6 = pm
[

1+mpq+
m(m+3)

1.2
p2q2 +

m(m+4)(m+5)
1.2.3

p3q3
]
,

and thus in sequence; the law of these values of zx holds to zm+i−2; if we have need of
further values of zx, one could obtain them easily by this process.
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In order to integrate now the equation (π), it is necessary to have the roots of the
equation

f
m+i−1

2 = (m− i−2)pq f
m+i−3

2 − (m+ i−3)(m+ i−4)
1.2

p2q2 f
m+i−5

2 + · · · ,

if m+ i is odd, or
f

m+i
2 −1 = (m− i−2)pq f

m+i
2 −2−·· ·

if m+ i is even; now we will find these roots by considering that we have

sin(m+ i)z = x
[
2m+i−1um+i−1− (m+ i−2)2m+i−3um+i−3 + · · ·

]
,

x being the sine and u the cosine of angle z; now, putting

sin(m+ i)z = 0,

we will have
um+i−1 = (m+ i−2)

1
4

um+i−3−·· ·

Let u =
√

f
2
√

pq , and we will have

f
m+i−1

2 = (m+ i−2)pq f
m+i−3

2 −·· ·

if m+ i is odd, or
f

m+i
2 −1 = (m− i−2)pq f

m+i
2 −2−·· ·

if m+ i is even; the different values of u are the cosines of the angles z, such that
sin(m+ i)z equals 0, this gives

z =
π

m+ i
, z =

2π

m+ i
, z =

3π

m+ i
, · · ·

Let l, l1, l2, . . . be the cosines of these angles to m+i
2 if m+ i is even, or m+i−1

2 if it is odd;
the different values of f will be 4l2 pq, 4l2

1 pq, . . .. These values one time determined,

it is easy to find those of zx and
1
zx.

XXXV.

PROBLEM XIX. — I suppose two players A and B, with an equal number m of
écus, playing to this condition, that the one who loses will give an écu to the other;
let the probability of A winning a trial be p; let that of B be q; but let it be able to
happen that any of them not win, and let the probability of this be r. This put, we ask
the probability that the game will end before or at the number x of trials.

Let 0 y x be the number of cases according to which, at the trial x, the gain of the
two players is null, multiplied by their probabilities; 1 y x , 2 y x , 3 y x , . . . the number of
cases according to which the gain of player A is 1, 2, 3, . . . at trial x, multiplied by their
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probability, and let 1
1
y x , 2

1
y x , 3

1
y x , . . . express the same things for player B. This put,

we will form the following equations:

(–)



0 y x = r · 0 y x−1 +q · 1 y x−1 + p · 1
1
y x−1 ,

1 y x = r · 1 y x−1 +q · 2 y x−1 + p · 0 y x−1 ,

2 y x = r · 2 y x−1 +q · 3 y x−1 + p · 1 y x−1 ,

...

n y x = r · n y x−1 +q · n+1 y x−1 + p · n−1 y x−1 ,

...

m−1 y x = r · m−1 y x−1 + p · m−2 y x−1

Now we have
p · 1

1
y x−1 = q · 1 y x−1 ;

the first equation will become therefore

0 y x = r · 0 y x−1 +2q · 1 y x−1 ;

and, if one combines it with the second, we will have

1 y x = 2r · 1 y x−1 +(2pq− r2) 1 y x−2 +q · 2 y x−1 −qr · 2 y x−2 .

Let now

n y x = an · n y x−1 +
1 an · n y x−2 + · · ·+un +bn · n+1 y x−1 +

1 bn · n+1 y x−3 + · · · ;

therefore

p · n−1 y x−1 =an−1 p · n−1 y x−2 +
1 an−1 p · n−1 y x−2 + · · ·+ pun−1

+bn−1 p · n y x−2 +
1 bn−1 p · n y x−3 + · · ·

Substituting in place of p · n−1 y x−1 , p · n−1 y x−2 , . . . their values that equation (−)
gives, we will have

n y x =(an−1 + r) · n y x−1 +( 1 an−1−an−1r+ pbn−1) n y x−2

+( 2 an−1− 1 an−1r+ p · 1 bn−1) n y x−3 + · · ·

+q · n+1 y x−1 −an−1q · n+1 y x−3 −
1 an−1q · n+1 y x−5 −·· ·+ pun−1;

whence, by comparing, we will have

an = an−1 + r,

bn = q,
1 an =

1 an−1−an−1r+ pbn−1,

1 bn =−an−1q,
2 an =

2 an−1− 1 an−1r+ p · 1 bn−1,

...
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The first of these equations begins to exist when n equals 2; the second, when n
equals 1; the third, when n equals 2; etc. We will have therefore, by integrating and
adding the appropriate constants,

an = r(n+1),
bn = q,

1 an =−r2 · n(n+1)
1.2

+ pq(n+1),

1 bn =−an−1q =−qrn.

This last equation being true, when n equals 1, it follows that the fifth equation
begins to exist when n equals 2; this gives

2 an = r3 (n+1)n(n−1)
1.2.3

− pqr(n+1)(n−1).

Therefore
2 bn = qr2 n(n−1)

1.2
,

an equation which begins to exist when n equals 1, because 2 b1 equals 0. Therefore,
the sixth equation begins to exist when n equals 2, and we will have

3 an =− r4 (n+1)n(n−1)(n−2)
1.2.3.4

+ pqr2(n+1)(n−1)(n−2)− p2q2 (n+1)(n−2)
1.2

+C.

Now, putting n = 2, we have

3 a2 =
3 a1− 2 a1r+ p · 2 b1 = 0,

therefore C = 0, and thus in sequence; finally, un = 0. We will have therefore, by
making n = m−1 and rejecting the terms m y x−1 , m y x−2 , . . .

m−1 y x =mr · m−1 y x−1 −
[

r2 m(m−1)
1.2

− pqm
]

m−1 y x−2

+

[
r3 m(m−1)(m−2)

1.2.3
− pqrm(m−2)

]
m−1 y x−3

−
[

r4 m(m−1)(m−2)(m−3)
1.2.3.4

− pqr2 m(m−2)(m−3)
1.2

+ p2q2 m(m−3)
1.2

]
m−1 y x−4

+ · · ·

If one supposes r = 0, we will have

m−1 y x = mpq · m−1 y x−2 −
m(m−3)

1.2
p2q2 · m−1 y x−4 + · · · ,

the same equation as I have found above for that case.
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If we name zx the probability of A winning before or at trial x, we will have

zx = mrzx−1−
[

r2 m(m−1)
1.2

− pqm
]

zx−2 + · · ·+C,

C being an arbitrary constant.

Similarly, if we name
1
zx the probability of B winning before or at trial x, we will

have
1
zx = mr

1
zx−1−

[
r2 m(m−1)

1.2
− pqm

]
1
zx−2 + · · ·+

1
C.

In order to integrate these equations, it is necessary to have the roots of the equation

(Λ) f m = mr f m−1−
[

r2 m(m−1)
1.2

− pqm
]

f m−2 + · · · ;

now here is how one can determine them.
We have seen previously how one could have the roots of the equation

ym = mpqym−2− m(m−3)
1.2

p2q2ym−4 + · · · .

Let y = f − r, and we will have

f m =mr f m−1−
[

r2 m(m−1)
1.2

− pqm
]

f m−2

+

[
r3 m(m−1)(m−3)

1.2.3
− pqrm(m−2)

]
f m−3

−·· · ,

an equation which is the same as equation (Λ); the different values of f are conse-
quently equal to those of y, augmented by the quantity r; now the integration of the
differential equation in zx has nothing troublesome.
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