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2. Let yx be any function whatever of x; if one forms the infinite series

y0 + y1t+ y2t
2 + y3t

3 + · · ·+ yxt
x + yx+1t

x+1 + · · ·+ y∞t
∞,

one can always imagine a function of t which, expanded according to the powers of t,
gives this series: this function is that which I name generating function of yx.

The generating function of any variable whatever yx is therefore generally a func-
tion of t which, expanded according to the powers of t, has this variable for coefficient
of tx; and reciprocally, the corresponding variable of a generating function is the coef-
ficient of tx in the expansion of this function according to the powers of t; so that the
exponent of the power of t indicates the rank that the variable yx occupies in the se-
ries, which one can imagine prolonged indefinitely on the left, relatively to the negative
powers of t.

It follows from these definitions that, u being the generating function of yx, that of
yx+r is u

tr ; because it is clear that the coefficient of tx in u
tr is equal to that of tx+r in

u; consequently it is equal to yx+r.
The coefficient of tx in u

(
1
t − 1

)
is therefore equal to yx+1 − yx, or to the differ-

ence in the two consecutive quantities yx+1 and yx, a difference which we will desig-
nate by 4yx, 4 being the characteristic of the finite differences. We have therefore
the generating function of the finite difference of a variable quantity, by multiplying
by 1

t − 1 the generating function of the quantity itself. The generating function of the
finite difference of4yx, a difference which we designate by42yx is thus u

(
1
t − 1

)2
;

that of the finite difference of42yx, or43yx, is u
(
1
t − 1

)3
, whence we can generally

conclude that the generating function of the finite difference4iyx is u
(
1
t − 1

)i
.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. September 25, 2010
†These selections are those chosen by Ivo Schneider for inclusion in the Entwicklung der Wahrschein-

lichkeitsrechnung von den Anfängen bis 1933. Einführung und Texte, Wissenschaftliche Buchgesellschaft
1988.
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Similarly, the coefficient of tx in the expansion of

u

(
a+

b

t
+

c

t2
+
e

t3
+ · · ·+ q

tn

)
is

ayx + byx+1 + cyx+2 + eyx+3 + · · ·+ qyx+n;

by naming therefore∇yx this quantity, its generating function will be

u

(
a+

b

t
+

c

t2
+
e

t3
+ · · ·+ q

tn

)
.

If we name ∇2yx that which ∇yx becomes when we change yx into ∇yx; if we name
similarly ∇3yx that which ∇2yx becomes when we change ∇yx into ∇2yx and so
forth, their corresponding generating functions will be

u

(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)2

,

u

(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)3

,

· · · ,

and generally the generating function of∇iyx will be

u

(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)i
.

Whence it is easy to conclude generally that the generating function of4i∇syx+r is

u

tr

(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)s(
1

t
− 1

)i
.

We can generalize again these results, by supposing that ∇yx represents any linear
function whatever, finite or infinite, of yx, yx+1, yx+2, . . . ; that ∇2yx is that which
∇yx becomes when we change yx into ∇yx; that ∇3yx is that which ∇2yx becomes
when we change ∇yx into ∇2yx, and so forth; u being the generating function of yx,
usi will be the generating function of ∇iyx, s being that which ∇yx becomes, when
we change yx into unity, yx+1 into 1

t , yx+2 into 1
t2 , . . . This is again true when i is a

negative number or even fractional and incommensurable, by making however in this
result some appropriate modifications.

Let us represent by Σ the characteristic of the finite integrals, and name z the gen-
erating function of Σiyx, u being the generating function of yx; z

(
1
t − 1

)i
will be, by

that which precedes, the generating function of yx. But this function must, by having
regard only to the positive powers of t, be reduced to u, which contains only the posi-
tive powers of t, if we extend the multiple integral Σiyx only to the positive values of
x; we will have therefore then

z

(
1

t
− 1

)i
= u+

A

t
+
B

t2
+
C

t3
+ · · ·+ F

ti
,
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whence we draw

z =
uti +Ati−1 +Bti−2 + Cti−3 + · · ·+ F

(1− t)i
,

A, B, C, . . . , F being some arbitrary constants which correspond to the i arbitrary
constants which the i successive integrations introduce from Σiyx.

By setting aside these constants, the generating function of Σiyx is u
(
1
t − 1

)−i
; so

that we obtain this generating function by changing i into−i in the generating function
of 4iyx; 4−iyx is therefore then equal to Σiyx, that is that the negative differences
change themselves into integrals. But, if we have regard to the arbitrary constants, it
is necessary, in passing from the positive powers of 1

t − 1 to its negative powers, to
increase u of the series A

t + B
t2 + C

t3 + · · · , prolonged to where the number of its terms
is equal to the exponent of these powers. We can apply some similar considerations to
the generating function of∇iyx.

We see by that which precedes in what manner the generating functions are formed
from the law of the corresponding variables. We see now how the variables are deduced
from their generating functions; s being any function whatever of 1

t , if we expand
si according to the powers of 1

t , and if we designate by k
tn any term whatever of

this expansion, the coefficient of tx in ku
tn will be kyx+n; we will have therefore the

coefficient of tx in usi, a coefficient which we have designated previously by ∇iyx:
1 ˚ by substituting into s, yx in place of 1

t ; 2 ˚ by expanding that which becomes then
si according to the powers of yx, and by transporting to the index x the exponent of
the power of yx, that is by writing yx+1 in place of (yx)1, yx+2 in place of (yx)2, etc.,
and by multiplying the terms independent of yx, and which can be counted to have
(yx)0 for factor, by yx. When the characteristic ∇ is changed to4, s is, by that which
precedes, equal to 1

t − 1; we have therefore then

∇iyx = yx+i − iyx+i−1 +
i(i− 1)

1.2
yx+i−2 − · · ·

If, instead of expanding si according to the powers of 1
t , we expand according to

the powers of 1
t − 1, and if we designate by k

(
1
t − 1

)n
any term whatever of this

expansion, the coefficient of tx in ku
(
1
t − 1

)n
will be k∇nyx; we will have therefore

∇iyx: 1 ˚ by substituting, into s, 4yx in place of 1
t − 1, or, that which reverts to the

same, 1 +4yx in place of 1
t ; 2 ˚ by expanding that which becomes then si according

to the powers of 4yx, and by applying to the characteristic 4 the exponents of the
powers of4yx, that is by writing4yx in place of (4yx)1, 42yx in place of (4yx)2,
etc., and by multiplying by (4yx)0, or, that which is the same thing, by yx the terms
independent of4yx.

Generally, if we consider s as a function of r, r being a function of 1
t , such that

the coefficient of tx in ur is yx, we will have ∇iyx, by substituting, into s, yx, in
place of r; by expanding next si according to the powers of yx and by applying to the
characteristic the exponents of yx, that is by writing yx in place of ( yx), 2yx
in place of ( yx)2, etc., and by multiplying by yx the terms independent of yx.

The expansion of ∇iyx by a series ordered according to the successive variables
yx, 2yx, etc. is reduced therefore to the formation of the generating function of
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yx, in the expansion of this function according to the powers of a given function; fi-
nally, to return to the generating function thus expanded, to the corresponding variable
coefficients, the exponents of the powers of the expansion of the generating function
becoming those of the characteristics of these coefficients. We see thus the analogy
of the powers with the differences, or with each other combination of the consecutive
variable coefficients. The passage of these coefficients to their generating functions,
and the return of these expanded functions to the coefficients constitutes the Calcu-
lus of generating functions. The following applications make known the spirit and the
advantages of them.
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FIRST CHAPTER
Theorems on the expansion of functions and of their differences into series

pp. 37–41

10. By applying to some particular functions the general principles exposed in
No. 1, we will have an infinity of theorems on the expansion of functions into series.
We are going to present here the most remarkable.

We have generally

u

(
1

ti
− 1

)n
= u

[(
1 +

1

t
− 1

)i
− 1

]n
.

Now it is clear that the coefficient of tx in the first member of this equation is
the nth difference of yx, x varying with i; because this coefficient in u

(
1
ti − 1

)
is yx+i − yx or ′4yx, by designating by the character ′4 the finite differences,
when x varies with the quantity i; whence it is easy to conclude that this same
coefficient, in the expansion of u

(
1
ti − 1

)n
, is ′4nyx. Moreover, if we expand

u
[(

1 + 1
t − 1

)i − 1
]n

according to the powers of 1
t − 1, the coefficients of tx in the

expansions of u
(
1
ti − 1

)
, u
(
1
ti − 1

)2
,. . . are, by No. 2, 4yx, 42yx, . . .; so that this

coefficient, in u
[(

1 + 1
t − 1

)i − 1
]n

, is [(1 +4yx)i − 1]n, provided that in the ex-
pansion of this quantity we apply to the characteristic 4 the exponents of the powers
of4yx, and that thus, instead of any power whatever (4yx)r, we write4ryx; we will
have therefore with this condition

(1) ′4nyx = [(1 +4yx)i − 1]n.

If we designate by the characteristic ′Σ the finite integral, when x varies with
i, ′Σnyx will be, by No. 2, the coefficient of tx in the expansion of the function
u
(
1
ti − 1

)−n
, by setting aside some arbitrary constants that the integration introduced;

now we have

u

(
1

ti
− 1

)−n
= u

[(
1 +

1

t
− 1

)i
− 1

]−n
;

moreover, the coefficient of tx in u
(
1
ti − 1

)−r
is Σryx, by setting aside some arbitrary

constants; this coefficient in u
(
1
ti − 1

)r
is Σryx; we will have therefore

(2) ′Σnyx = [(1 +4yx)i − 1]−n,

provided that, in the expansion of the second member of this equation, we apply to the
characteristic4 the exponents of the powers of4yx, that we change the negative dif-
ferences into integrals and that we substitute yx in place of40yx, and as this expansion
contains the integral Σnyx, which can be counted to contain n arbitrary constants, the
equation (2) is again true, by having regard to the arbitrary constants.

We can observe that this equation is deduced from equation (1), by making in that
one n negative and by changing the negative differences to integrals, that is, by writing
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′Σnyx instead of ′4nyx in the first member; and generally, in the expansion of the
second member, Σryx instead of4−ryx.

Equations (1) and (2) would hold equally, if x, instead of varying from unity in
4yx, would vary from any quantity whatever $, provided that the variation of x in
′4yx be equal to i$. Indeed, it is clear that, if in yx we make x = x′

$ , x′ will vary
from $ when x will vary from unity;4yx will be changed into4yx′ , the variation of
x′ being $, and ′4yx will be changed into ′4yx′ , the variation of x′ being i$. Now
if, after having substituted these quantities into the equations (1) and (2), we suppose
$ infinitely small and equal to dx′, 4yx′ will be changed into the infinitely small
difference dyx′ . If moreover we make i infinity and idx′ = α, α being a finite quantity,
the variation of x′ in ′4yx′ will be α; we will have therefore

(q)
{ ′4nyx′= [(1 + dyx′)

i − 1]n
′Σnyx′ =

1
[(1+dyx′ )

i−1]n .

Now we have

log(1 + dyx′)
i = i log(1 + dyx′) = idyx′ = α

dyx′

dx′
,

this which gives

(1 + dyx′)
i = cα

dy
x′

dx′ ,

c being the number for which the hyperbolic logarithm is unity; we have therefore

(3) ′4nyx′ =
(
cα

dy
x′

dx′ − 1
)n

,

(4) ′Σnyx′ =
1(

cα
dy
x′

dx′ − 1
)n ,

by taking care to apply to the characteristic d the exponents of the powers of dyx′ , to
change the negative differences into integrals and the quantity d0yx′ to yx.

We can give to equation (3) this singular form which will be useful to us in the
following,

′4nyx′ =

(
c
α
2

dy
x′+nα

2
dx′ − c−α2

dy
x′+nα

2
dx′

)n
.

Indeed, it gives
′4nyx′ = c

nα
2

dy
x′

dx′
(
c
α
2

dy
x′

dx′ − c−α2
dy
x′

dx′
)n

.

We will consider any term whatever in the expansion of(
c
α
2

dy
x′

dx′ − c−α2
dy
x′

dx′
)n

,

such as k
(
dyx′
dx′

)
. By multiplying it by c

nα
2

dy
x′

dx′ , and expanding this last quantity, we
will have

k
dr

dx′r

[
rx′ +

nα

2

dyx′

dx′
+
(nα

2

)2 d2yx′

1.2.dx′2
+ · · ·

]
;
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this quantity is equal to k
dryx′+nα

2

dx′r , whence it is easy to conclude

c
nα
2

dy
x′

dx′
(
c
α
2

dy
x′

dx′ − c−α2
dy
x′

dx′
)n

=

(
c
α
2

dy
x′+nα

2
dx′ − c−α2

dy
x′+nα

2
dx′

)n
=′ 4nyx′ .

If in the equations (1) and (2) we suppose again i infinitely small and equal to dx,
we will have

′4nyx = dnyx,
′Σnyx =

1

dxn

∫ n

yxdx
n;

we will have moreover

(1 +4yx)i = cdx log(1+4yx) = 1 + dx log(1 +4yx);

the equations (1) and (2) will become thus

(5)
dnyx
dxn

= [log(1 +4yx)]n,

(6)
∫ n

yxdx
n =

1

[log(1 +4yx)]n
.

We can observe here a singular analogy between the positive powers and the differences
and between the negative powers and the integrals. The equation

(o) ′4yx = cα
dyx
dx − 1

is the translation of the theorem known to Taylor, when, in the expansion of its second
member according to the powers of dyxdx , we apply to the characteristic d the exponents
of these powers. By raising the two members of this equation to the power n, and
applying to the characteristics ′4 and d the exponents of the powers of ′4yx and of
dyx, we will have equation (3), whence results equation (4) by changing the negative
differences to integrals.

The preceding equation gives

cα
dyx
dx = 1 +′ 4yx.

By taking the logarithms of each member, we will have

(r) α
dyx
dx

= 1 +′ 4yx.

Supposing next α = 1, this which changes ′4yx into 4yx, and raising the two mem-
bers of this equation to the power n, we will have equation (5), provided that we apply
the exponents of the powers to the characteristics. We will have equation (6) by making
n negative and changing the negative powers into integrals.

If, in the preceding equation (r), one changes α into i, one will have

dyx
dx

= log(1 +′ 4yx)
1
i ,
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and if one supposes α = 1, one will have

dyx
dx

= log(1 +4yx).

The comparison of these two values of yxdx gives

log(1 +4yx) = log(1 + ′4yx)
1
i ,

whence one draws
′4yx = (1 +4yx)− 1.

By raising each member to the power n and applying the exponents of the powers to
the characteristics, one will have equation (1), whence results equation (2), by chang-
ing the negative differences into integrals. Equations (1), (2), (3), (4), (5) and (6) result
therefore from the theorem of Taylor, put under the form of equation (o), by transform-
ing this equation according to the rules of Analysis, provided that in the results one
applies to the characteristics the exponents of the powers, that one changes the nega-
tive differences into integrals and that one substitutes the variable itself yx instead of
its zero differences.

This analogy of the positive powers with the differences and of the negative powers
with the integrals becomes evident by the theory of generating functions. It holds, as
one has seen, to this that the products of the function u, generator of yx, by the powers
1
ti − 1 are the generating functions of the successive finite differences of yx, x varying
by any quantity i, while the quotients of u, divided by these same powers, are the
generating functions of the integrals of yx.

By considering, instead of the factor 1
ti−1 and of its powers, the powers of any ra-

tional and entire function of 1
t , one is able to conclude from the theorems analogous

to the preceding, on the successive derived of the functions. I name derived of a func-
tion yx each quantity which derives from it, such as ayx + byx+1 + eyx+2 + . . . By
regarding next this derived function as a new function that I designate by y′x the quan-
tity ay′x + b′x+1 + ey′x+2 + . . . will be a second derived from the function yx and thus
consecutively. When the function ayx+ byx+1 + . . . becomes−yx+yx+1, the derived
becomes a finite difference.

Now one has

(q)

{
u
(
a+ b

t + e
t2 + h

t3 + · · ·
)n

= u
[
a+ b

(
1 + 1

tdx
− 1
) 1
dx + e

(
1 + 1

tdx
− 1
) 2
dx + · · ·

]n
;

one has next generally, by no 2, by designating by ∇yx the quantity ayx + byx+1 +
eyx+2 + . . .,∇nyx for the coefficient of the generating function of the first member of
this equation; moreover one has

u

(
1 +

1

tdx
− 1

) r
dx

= u

[
1 +

r

dx

(
1

tdx
− 1

)
+

r2

1.2.dx2

(
1

tdx
− 1

)2

+ · · ·

]
.

The second member of this equation is the generating function of

yx + r
ryx
dx

+
r2

1.2

d2yx
dx2

+ · · ·
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or of cr
dyx
dx , by applying to the characteristic d the exponents of powers of dyx

dx , and

writing yx instead of
(
dyx
dx

)0
. Thence one concludes that, under the same conditions,

the second member of equation (q) is the generating function of(
a+ bc

dyx
dx + ec

2dyx
dx + hc

3dyx
dx + · · ·

)n
,

and that thus this equation gives, by passing again from the generating functions to the
coefficients,

(7) ∇nyx =
[
a+ bc

dyx
dx + ec

2dyx
dx + hc

3dyx
dx + · · ·

]n
.

One is able thus to obtain an infinity of similar results. We ourselves will be limited

to the following, which will be useful to us in the following: u
(

1√
t
−
√
t
)n

is the
generating function of

yx+n
2
− nyx+n

2−1 +
n(n− 1)

1.2
yx+n

2−2 − · · · ,

or of4nyx+n
2

. Moreover, one has

(
1√
t
−
√
t

)n
= u

[(
1 +

1

tdx
− 1

) 1
2dx

−
(

1 +
1

tdx
− 1

)− 1
2dx

]n
,

whence one draws, by passing again by the preceding analysis from the generating
functions to the coefficients

4nyx−n2 =
(
c
dyx
2dx − c−

dyx
2dx

)n
.
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BOOK II CHAPTER III
On the laws of probability which result from the indefinite multiplication of events

pp. 280–284

16. In measure as the events are multiplied, their respective probabilities are de-
veloped more and more; their mean results and the profits or the losses which depend
on them converge toward some limits which they bring together with the probabilities
always increasing. The determination of these increases and of these limits is one of
the most interesting and most delicate parts of the analysis of chances.

We will consider first the manner in which the possibilities of two simple events,
of which one alone must arrive at each trial, is developed when one multiplies the
number of trials. It is clear that the event of which the facility is greatest must probably
arrive more often in a given number of trials, and one is carried naturally to think
that by repeating the trials a great number of times, each of these events will arrive
proportionally to its facility, that one will be able thus to discover by experience. We
will demonstrate analytically this important theorem.

One has seen in no 6 that, if p and 1 − p are the respective probabilities of two
events a and b, the probability that in x + x′ trials the event a will arrive x times and
the event b, x′ times, is equal to

1.2.3 . . . (x+ x′)

1.2.3 . . . x.1.2.3 . . . x′
px(1− p)x

′
;

this is the (x′+1)st term of the binomial [p+(1−p)]x+x′ . We will consider the greatest
of these terms that we will designate by k. The anterior term will be kp

1−p
x′

x+1 , and the
following term will be k 1−p

p
x

x′+1 . In order that k be the greatest term, it is necessary
that one has

x

x′ + 1
<

p

1− p
<
x+ 1

x′
;

it is easy to conclude from it that, if one makes x+ x′ = n, one will have

(n+ 1)p− 1 < x < (n+ 1)p;

thus x is the greatest whole number contained within (n+ 1)p; by making therefore

x = (n+ 1)p− s,

this which gives

p =
x+ s

n+ 1
, 1− p =

x′ + 1− s
n+ 1

,
p

1− p
=

x+ s

x′ + 1− s
,

s will be less than unity. If x and x′ are very great numbers, one will have, very nearly,

p

1− p
=

x

x′
,

that is to say that the exponents of p and of 1 − p in the greatest term of the binomial
are quite nearly in the ratio of these quantities; so that, in all the combinations which
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are able to take place in a very great number n of trials, the most probable is that in
which each event is repeated proportionally to its probability.

The lth term, after the greatest, is

1.2.3 . . . n

1.2.3 . . . (x− l).1.2.3 . . . (x′ + l)
px−l(1− p)x

′+l.

One has, by no 33 of Book I,

1.2.3 . . . n = nn+
1
2 c−n

√
2π

(
1 +

1

12n
+ · · ·

)
,

this which gives

1

1.2.3 . . . (x− l)
= (x− l)l−x− 1

2
cx−l√

2π

[
1− 1

12(x− l)
− · · ·

]
,

1

1.2.3 . . . (x′ + l)
= (x′ + l)−x

′−l− 1
2
cx
′+l

√
2π

[
1− 1

12(x′ + l)
− · · ·

]
.

We develop the term (x− l)l−x− 1
2 . Its hyperbolic logarithm is(

l − x− 1

2

)[
log x+ log

(
1− l

x

)]
;

now one has

log

(
1− l

x

)
= − l

x
− l2

2x2
− l3

3x3
− l4

4x4
− · · · ;

we will neglect the quantities of order 1
n , and we will suppose that l2 does not surpass

at all the order n; then one will be able to neglect the terms of order l4

x3 , because x and
x′ are of order n. One will have thus(

l − x− 1

2

)[
log x+ log

(
1− l

x

)]
=

(
l − x− 1

2

)
log x+ l +

l

2x
− l2

2x
− l3

6x2
,

this which gives, by passing again from the logarithms to the numbers,

(x− l)l−x− 1
2 = cl−

l2

2xxl−x−
1
2

(
1 +

l

2x
− l3

6x2

)
;

one will have similarly

(x′ + l)−l−x
′− 1

2 = c−l−
l2

2x′ x′−l−x
′− 1

2

(
1 +

l

2x′
− l3

6x′2

)
.

One has next, by that which precedes, p = x+s
n+1 , s being less than unity; by making

therefore p = x−z
n , z will be contained within the limits x

n+1 and −n−xn+1 , and conse-
quently it will be, setting aside the sign, below unity. The value of p gives 1−p = x′+z

n ;
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one will have, by the preceding analysis,

px−l(1− p)x
′+l =

xx−lx′x
′+l

nn

(
1 +

nzl

xx′

)
;

thence one draws

1.2.3 . . . n

1.2.3 . . . (x− l).1.2.3 . . . (x′ + l)
px−l(1− p)x

′+l

=

√
nc−

nl2

2xx′

√
π
√

2xx′

[
1 +

nzl

xx′
+
l(x′ − x)

2xx′
− l3

6x2
+

l3

6x′2

]
.

One will have the term anterior to the greatest term and which is extended from it at
the distance l, by making l negative in this equation; by reuniting next these two terms,
their sum will be

2
√
n

√
π
√

2xx′
c−

nl2

2xx′ .

The finite integral ∑ 2
√
n

√
π
√

2xx′
c−

nl2

2xx′ ,

taken from l = 0 inclusively, will express therefore the sum of all the terms of the
binomial [p + (1 − p)]n, contained between the two terms, of which the one has px+l

for factor, and the other has px−l for factor, and which are thus equidistant from the
greatest term; but it is necessary to subtract from this sum the greatest term which is
evidently contained twice.

Now, in order to have this finite integral, we will observe that one has, by no 10 of
Book I, y being function of l,

∑
y =

1

c
dy
dl − 1

=

(
dy

dl

)−1
− 1

2

(
dy

dl

)0

+
1

12

dy

dl
+ · · · ,

whence one draws, by the preceding number,∑
y =

∫
y dl − 1

2
y +

1

12

dy

dl
+ · · ·+ const.;

y being here equal to 2
√
n√

π
√
2xx′

c−
nl2

2xx′ , the successive differentials of y acquire for

factor nl
2xx′ , and its powers. Thus, l not being supposed to be able to be more than

order
√
n, this factor is of order 1√

n
, and consequently its differentials, divided by the

respective powers of dl, decrease more and more; by neglecting therefore, as one has
done previously, the terms of order 1

n , one will have, by starting with l the two finite
and infinitely small integrals, and designating by Y the greatest term of the binomial,∑

y =

∫
ydl − 1

2
y +

1

2
Y.

12



The sum of all the terms of the binomial [p + (1 − p)]n contained between the two
terms equidistant from the greatest term by the number l being equal to

∑
y − 1

2Y , it
will be ∫

ydl − 1

2
y,

and if one adds there the sum of these extreme terms, one will have, for the sum of all
these terms, ∫

ydl +
1

2
y.

If one makes

t =
l
√
n√

2xx′
,

this sum becomes

(o)
2√
π

∫
dt c−t

2

+

√
n

√
π
√

2xx′
c−t

2

.

The terms that one has neglected being of the order 1
n , this expression is so much more

exact as n is greater; it is rigorous when n is infinity. It would be easy, by the preceding
analysis, to have regard to the terms of order 1

n and of the superior orders.
One has, by that which precedes, x = np+ z, z being a number smaller than unity;

one has therefore
x+ l

n
− p =

l + z

n
=
t
√

2xx′

n
√
n

+
z

n
;

thus formula (o) expresses the probability that the difference between the ratio of the
number of times that the event amust arrive to the total number of trials, and the facility
p of this event, is contained within the limits

(l) ± t
√

2xx′

n
√
n

+
z

n
.

√
2xx′ being equal to

n

√
2p(1− p) +

2z

n
(1− 2p)− 2z2

n2
,

one sees that the interval contained between the preceding limits is of order 1√
n

.
If the limit of t, that we will designate by T , is supposed invariable, the probability

determined by the function (o) remains very nearly the same; but the interval compre-
hended between the limits (l) diminishes without ceasing in measure as the trials are
repeated, and it becomes null, when their number is infinite.

This interval being supposed invariable, when the events are multiplied, T increases
without ceasing, and quite nearly as the square root of the number of trials. But, when

13



T is considerable, formula (o) becomes, by no 27 of Book I,

1− c−T
2

2T
√
π

1

1 +
q

1 +
2q

1 +
3q

1 + · · ·

+
c−T

2√
2πn

[
p(1− p) + z

n (1− 2p)− z2

n2

] ,

q being equal to 1
2T 2 . When one makes T increase, c−T

2

diminishes with an extreme
rapidity, and the preceding probability approaches rapidly to unity, to which it becomes
equal, when the number of trials is infinite.

There are here two sorts of approximations: the one of them is relative to the limits
taken on both sides of the facility of the event a; the other approximation is related to
the probability that the ratio of the arrivals of this event to the total number of trials will
be contained within these limits. The indefinite repetition of the trials increases more
and more this probability, the limits remaining the same; it narrows more and more the
interval of these limits, the probability remaining the same. Into infinity, this interval
becomes null, and the probability is changed into certitude.

The preceding analysis reunites to the advantage to demonstrate this theorem the
one to assign the probability that, in a great number n of trials, the ratio of the arrivals of
each event will be comprehended within some given limits. We suppose, for example,
that the facilities of the births of boys and of girls are in the ratio of 18 to 17, and that
there are born in one year 14000 infants; one demands the probability that the number
of boys will not surpass 7363, and will not be less than 7037.

In this case, one has

p =
18

35
, x = 7200, x′ = 6800, n = 14000, l = 163;

formula (o) gives quite nearly 0.994303 for the sought probability.
If one knows the number of times that out of n trials the event a is arrived, formula

(o) will give the probability that its facility p, supposed unknown, will be compre-
hended within the given limits. In fact, if one names i this number of times, one will
have, by that which precedes, the probability that the difference i

n − p will be com-
prehended within the limits ±T

√
2xx′

n
√
n

+ z
n ; consequently, one will have the probability

that p will be comprehended within the limits

i

n
∓ T
√

2xx′

n
√
n
− z

n
.

The function T
√
2xx′

n
√
n

being of the order 1√
n

, one is able, by neglecting the quantities of
order 1

n , to substitute there i instead of x and n − i instead of x′; the preceding limits
become thus, by neglecting the terms of order 1

n ,

i

n
∓
T
√

2i(n− i)
n
√
n

,

14



and the probability that the facility of the event a is comprehended within these limits
is equal to

(o′)
2√
π

∫
dt c−t

2

+

√
nc−T

2

√
π
√

2i(n− i)
.

One sees thus that, in measure as the events are multiplied, the interval of the limits
is narrowed more and more, and the probability that the value of p falls within these
limits approaches more and more unity or certitude. It is thus that the events, in being
developed, make known their respective probabilities.

One arrives directly to these results, by considering p as a variable which is able
to be extended from zero to unity, and by determining, after the observed events, the
probability of its diverse values, as we will see it when we will treat the probability of
causes deduced from observed events.

If one has three or a greater number of events a, b, c, . . ., of which one alone must
arrive at each trial, one will have, by that which precedes, the probability that, in a very
great number n of trials, the ratio of the number x of times that one of these events, a
for example, will arrive, to the number n, will be comprehended within the limits p±α,
α being a very small fraction, and one sees that, in the extreme case of the number n
infinite, the interval 2α of these limits is able to be supposed null, and the probability
is able to be supposed equal to certitude, so that the numbers of arrivals at each event
will be proportional to their respective facilities.

Sometimes the events, instead of making known directly the limits of the value
of p, give those of a function of this value; then one concludes from it the limits of
p, by the resolution of equations. In order to give a quite simple example of it, we
will consider two players A and B, of whom the respective skills are p and 1 − p, and
playing together on this condition, that the game is won by the one of the two players
who, out of three trials, will have vanquished twice his adversary, the third trial being
not played, as useless, when one of the players is vanquished in the first two trials.

The probability of A to win the game is the sum of the first two terms of the bino-
mial [p+ (1−p)]3; it is consequently equal to p3 + 3p2(1−p). Let P be this function;
by raising the binomial P + (1 − P ) to the power n, one will have, by the preceding
analysis, the probability that, out of the number n of games, the number of games won
by A will be comprehended within the given limits. It suffices for that to change p into
P in formula (o).

If one names i the number of games won by A, formula (o′) will give the probability
that P will be comprehended within the limits

i

n
±
T
√

2i(n− i)
n
√
n

.

Let therefore p′ be the real and positive root of the equation

p3 + 3p2(1− p) =
i

n
;

by designating by p′ ∓ δp the limits of p, the corresponding limits of P will be very
nearly 3p′2 − 2p′3 ∓ 6p′(1− p′)δp; by equating these limits to the preceding, one will

15



have

δp =
T
√

2i(n− i)
6p′(1− p′)n

√
n

;

thus formula (o′) will give the probability that pwill be comprehended within the limits

p′ ∓
T
√

2i(n− i)
6p′(1− p′)n

√
n
.

The number n of games does not determine the number of trials, since one is able to
have some games of two trials, and others of three trials. One will have the probability
that the number of games of two trials will be comprehended within the given limits, by
observing that the probability of a game with two trials is p2 + (1− p)2; we designate
this function by P ′. By elevating the binomial P ′+(1−P ′) to the power n, formula (o)
will give the probability that the number of games of two trials will be comprehended
within the limits nP ′ ± l; now the number of games of two trials being nP ′ ± l, the
number of games with three trials will be n(1 − P ′) ∓ l; the total number of trials
will be therefore 3n− nP ′ ∓ l; formula (o) will give therefore the probability that the
number of trials will be comprehended within the limits

2n(1 + p− p2)∓ T
√

2nP ′(1− P ′).
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BOOK II CHAPTER IV
On the probability of the errors of the mean results of a great number of observations

and of the most advantageous mean results
pp. 309–324

18. We consider now the mean results of a great number of observations of which
one knows the law of the facility of errors. We suppose first that, for each observation,
the errors are able to be equally

−n, −n+ 1, −n+ 2, . . . , −1, 0, 1, 2, . . . , n− 2, n− 1, n.

The probability of each error will be 1
2n+1 . If one names s the number of observations,

the coefficient of cl$
√
−1 in the development of the polynomial

(c−n$
√
−1+c−(n−1)$

√
−1+c−(n−2)$

√
−1+· · ·+c−$

√
−1+1+c$

√
−1+· · ·+cn$

√
−1)s

will be the number of combinations in which the sum of the errors is l. This coefficient
is the term independent of c$

√
−1 and of its powers in the development of the same

polynomial multiplied by c−l$
√
−1, and it is clearly equal to the term independent of

$ in the same development multiplied by cl$
√
−1+c−l$

√
−1

2 or by cos l$’; one will
have therefore, for the expression of this coefficient,

1

π

∫
d$ cos l$(1 + 2 cos$ + 2 cos 2$ + · · ·+ 2 cosn$)s,

the integral being taken from $ = 0 to $ = π.
One has seen, in no 36 of Book I, that this integral is

(2n+ 1)s
√

3√
n(n+ 1)2sπ

c−
3
2
l2

n(n+1)s ;

the total number of combinations of the errors is (2n+ 1)s; by dividing the preceding
quantity by that here, one will have

√
3√

n(n+ 1)2sπ
c−

3
2
l2

n(n+1)s ;

for the probability that the sum of the errors of the s observations will be l.
If one makes

l = 2t

√
n(n+ 1)s

6
,

the probability that the sum of the errors will be contained within the limits +2T
√

n(n+1)s
6

and −2T
√

n(n+1)s
6 will be equal to

2

π

∫
dtc−t

2

,

17



the integral being taken from t = 0 to t = T . This expression holds further in the
case of n infinite. Then, by naming 2a the interval contained between the limits of the
errors of each observation, one will have n = a, and the preceding limits would become
± 2Ta

√
s√

6
: thus the probability that the sum of the errors will be contained within the

limits ±ar
√
s is

2

√
3

2π

∫
drc−

3
2 r

2

;

it is also the probability that the mean error will be contained within the limits ± ar√
s
;

because one has the mean error by dividing by s the sum of the errors.
The probability that the sum of the inclination of the orbits of s comets will be

contained within some given limits, by supposing all the inclinations equally possible,
from zero to a right angle, is evidently the same as the preceding probability; the inter-
val 2a of the limits of the errors of each observation is, in this case, the interval π2 of the
limits of the possible inclinations: then the probability that the sum of the inclinations

must be contained within the limits ±πr
√
s

4 is 2
√

3
2π

∫
drc−

3
2 r

2

, this which accords
with that which one has found in no 13.

We suppose generally that the probability of each positive or negative error is ex-
pressed by φ

(
x
n

)
, x and n being of infinite numbers. Then, in the function

1 + 2 cos$ + 2 cos 2$ + 2 cos 3$ + · · ·+ 2 cosn$,

each term, such as 2 cosx$, must be multiplied by φ
(
x
n

)
; now one has

2φ
(x
n

)
cosx$ = 2φ

(x
n

)
− x2

n2
φ
(x
n

)
n2$2 + · · ·

By making therefore

x′ =
x

n
, dx′ =

1

n
,

the function

φ

(
0

n

)
+ 2φ

(
1

n

)
cos$ + 2φ

(
2

n

)
cos 2$ + · · ·+ 2φ

(n
n

)
cosn$

becomes
2n

∫
dx′φ(x′)− n2$2

∫
x′2dx′φ(x′) + · · ·

the integrals must be extended from x′ = 0 to x′ = 1. Let then

k = 2

∫
dx′φ(x′), k′′ =

∫
x′2dx′φ(x′), . . .

The preceding series becomes

nk

(
1− k′′

k
n2$2 + · · ·

)
.
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Now the probability that the sum of the errors of the s observations will be contained
within the limits ±l is, as it easy to be assured of it by the preceding reasonings,

2

π

∫∫
d$ dl cos l$


φ

(
0

n

)
+ 2φ

(
1

n

)
cos$+2φ

(
2

n

)
cos 2$ + · · ·

+2φ
(n
n

)
cosn$


s

,

the integral being taken from $ null to $ = π; this probability is therefore

(u) 2
(nk)S

π

∫∫
d$ dl cos l$

(
1− k′′

k
n2$2 + · · ·

)s
.

We suppose (
1− k′′

k
n2$2 + · · ·

)s
= c−t

2

;

by taking the hyperbolic logarithms, one will have, very nearly, when s is a great
number,

s
k′′

k
n2$2 = t2,

this which gives

$ =
t

n

√
k

k′′s
.

If one observes next that, nk or 2
∫
dxφ

(
x
n

)
expressing the probability that the error of

an observation is contained within the limits ±n, this quantity must be equal to unity,
the function (u) will become

2

nπ

√
k

k′′s

∫∫
dl dt c−t

2

cos

(
lt

n

√
k

k′′s

)
,

the integral relative to t must be taken from t null to t = πn
√

k′′s
k , or to t = ∞, n

being supposed infinite. Now one has, by no 25 of Book I,∫
dt cos

(
lt

n

√
k

k′′s

)
c−t

2

=

√
π

2
c−

l2

4n2
k
k′′s ,

by making therefore
l

n
= 2t′

√
k′′s

k
,

the function (u) becomes
2√
π

∫
dt′ c−t

′2

Thus, by naming, as above, 2a the interval contained between the limits of the errors
of each observation, the probability that the sum of the errors of the s observations will
be contained within the limits ±ar

√
s is√
k

k′′s

∫
dr c−

kr2

4k′′ .

19



If φ
(
x
n

)
is constant, then k

k′′ = 6, and this probability becomes

2

√
3

2π

∫
drc−

3
2 r

2

,

this which is conformed to that which we have found above.
If φ

(
x
n

)
or φ(x′) is a rational and entire function of x′, one will have, by the

method of no 15, the probability that the sum of the errors will be contained within
the limits ±ar

√
s, expressed by a sequence of powers s, 2s, . . . of quantities of the

form s − µ ± r
√
s, in which µ increases by arithmetic progression, these quantities

being continued until they become negatives. By comparing this sequence to the pre-
ceding expression of the same probability, one will obtain in a manner very near the
value of the sequence, and one will arrive thus with respect to this kind of sequence to
some theorems analogous to those that we have given in no 42 of Book I, on the finite
differences of the powers of a variable.

If the law of facility of the errors is expressed by a negative exponential which is
able to be extended to infinity, and generally if the errors are able to be extended to
infinity, then a becomes infinite, and the application of the preceding method is able to
offer some difficulties. In all these cases, one will make

x

h
= x′,

1

h
= dx′,

h being any finite quantity whatsoever, and by following exactly the preceding analysis,
one will find, for the probability that the sum of the errors of the s observations is
contained within the limits ±hr

√
s,√
k

k′′s

∫
dr c−

kr2

4k′′ .

an expression in which one must observe that φ
(
x
h

)
or φ(x′) expresses the probability

of the error ±x, and that one has

k = 2

∫
dx′φ(x′), k′′ =

∫
x′2dx′φ(x′),

the integrals being taken from x′ = 0 to x′ =∞.
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24. One has seen previously that, in all the manners to combine the equations of
condition in order to form some final linear equations, necessary to the determination
of the elements, the most advantageous is that which results from the method of least
squares of errors of the observations, at least when the observations are in great number.
If, instead of considering the minimum of the squares of the errors, one considered the
minimum of other powers of the errors, or even of each other function of the errors, the
final equations would cease to be linear, and their resolution would become impractical,
if the observations were in great number. However there is a case which merits a
particular attention, in this that it gives the system in which the greatest error, setting
aside the sign, is less than in every other system. This case is the one of the minimum
of the infinite and even powers of the errors. We consider here only the correction
of a single element, and, z expressing this correction, we represent, as previously, the
equations of condition by the following,

ε(i) = p(i)z − α(i),

i being able to vary from zero to s − 1, s being the number of observations. The
sum of the powers 2n of the errors will be S(α(i) − p(i)z)2n, the sign S extending to
all the values of i. One is able to suppose in this sum all the values of p(i) positive;
because, if one of them was negative, it would become positive by changing, as one
is able to do it, the signs of the two terms of the binomial raised to the power 2n, to
which it corresponds. We will suppose therefore the quantities α − pz, α(1) − p(1)z,
α(2) − p(2)z, . . . disposed in a manner that the quantities p, p(1), p(2), . . . are positive
and increasing. This put, if 2n is infinite, it is clear that the greatest term of the sum
S(α(i)−p(i)z)2n will be the entire sum, unless there was one or many other terms which
were equal to it, and this is that which must take place in the case of the minimum of
the sum. In fact, if there was only a single greatest quantity, setting aside the sign, such
as α(i) − p(i)z, one would be able to diminish it by making z vary conveniently, and
then the sum S(α(i) − p(i)z)2n would diminish and would not be a minimum. It is
necessary moreover that, if α(i) − p(i)z and α(i′) − p(i′)z are, setting aside the sign,
the two greatest quantities and equal between them, they are of contrary sign. In fact,
the sum

(α(i) − p(i)z)2n + (α(i′) − p(i
′)z)2n

must be then a minimum, its differential

−2ndz[p(i)(α(i) − p(i)z)2n−1 + p(i
′)(α(i′) − p(i

′)z)2n−1]

must be null, this which is able to be, when n is infinite, only in the case where α(i) −
p(i)z and α(i′) − p(i′)z are infinitely little different and of contrary sign. If there are
three greatest quantities, and equals among them, setting aside the sign, one will see in
the same manner that their signs are not able to be the same.

Now, we consider the sequence
(o){

α(s−1) − p(s−1)z, α(s−2) − p(s−2)z, α(s−3) − p(s−3)z, . . . , α− pz,
− α+ pz, . . . , −α(s−3) + p(s−3)z, −α(s−2) + p(s−2)z,−α(s−1) + p(s−1)z.
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If one supposes x = −∞, the first term of the sequence surpasses the following, and
continues to surpass them by making z increase, to the moment where it becomes
equal to one of them. The one here, by the increase of z, becomes greatest of all, and
in measure as one makes z increase, it continues always to surpass those which precede
it. In order to determine this term, one will form the sequence of quotients

α(s−1) − α(s−2)

p(s−1) − p(s−2)
,
α(s−1) − α(s−3)

p(s−1) − p(s−3)
, . . . ,

α(s−1) − α
p(s−1) − p

,
α(s−1) + α

p(s−1) + p
, . . . ,

α(s−1) + α(s−1)

p(s−1) + p(s−1)
.

We suppose that α
(s−1)−α(r)

p(s−1)−p(r) is the smallest of these quotients by having regard to the
sign, that is to say by regarding a greater negative quantity as smaller than another
lesser negative quantity. If there are many least and equal quotients, we will consider
the one which relates to the most distant term of the first in the sequence (o); this term
will be the greatest of all, to the moment where, by the increase of z, it becomes equal
to one of the following, which begins then to be the greatest. In order to determine this
new term, one will form a new sequence of quotients

α(r) − α(r−1)

p(r) − p(r−1)
,
α(r) − α(r−2)

p(r) − p(r−2)
, . . . ,

α(r) − α
p(r) − p

,
p(r) + α

p(r) + p
, . . . ,

the term of the sequence (o) to which the least of these quotients correspond will be
the new term. One will continue thus to that which one of the two terms which become
equal and the greatest is in the first half of the sequence (o), and the other in the second
half. Let α(i)− p(i)z and −α(i′) + p(i

′)z be these two terms; then the value of z which
corresponds to the system of the minimum of the greatest of the errors, setting aside
the sign, is

α(i) + α(i′)

p(i) − p(i′)
.

If there are many elements to correct, the equations of condition which determine
their corrections contain many unknowns, and the investigation of the system of cor-
rection, in which the greatest error is, setting aside the sign, smaller than in every other
system, becomes more complicated. I have considered this case in a general manner in
Book III of the Mécanique céleste. I will observe only here that then the sum of the 2n
powers of the errors of the observations is, as in the case of a single unknown, a min-
imum when 2n is infinite; whence it is easy to conclude that, in the system of which
there is concern, it must have as many errors, plus one, equal, and greatest, setting aside
the sign, as there are elements to correct. One imagines that the results corresponding
to 2n equal to a great number must differ little from those which 2n infinite gives. It
is not necessarily the same for this if the 2n power is quite elevated, and I have recog-
nized through many examples that, in the same case where this power does not surpass
the square, the results differ little from those that the system of the minimum of the
greatest squares gives, this which is a new advantage of the method of least squares of
the errors of observations.

For a long time, geometers take an arithmetic mean among their observations, and,
in order to determine the elements that they wish to know, they choose the most favor-
able circumstances for this object, namely, those in which the errors of the observations
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alter the least that it is possible the value of these elements. But Cotes is, if I do not
deceive myself, the first who has given a general rule in order to make many obser-
vations agree in the determination of an element, proportionally to their influence. By
considering each observation as a function of the element and regarding the error of the
observation as an infinitely small differential, it will be equal to the differential of the
function, taken with respect to that element. The more the coefficient of the differential
of the element will be considerable, the less it will be necessary to make the element
vary, in order that the product of its variation by this coefficient is equal to the error of
the observation; this coefficient will express therefore the influence of the observation
on the value of the element. This put, Cotes represents all the values of the element,
given by each observation, by the parts of an indefinite straight line, all these parts
having a common origin. He imagines next, at their other extremities, some weights
proportional to the influences respective of the observations. The distance from the
common origin of the parts to the common center of gravity of all these weights is the
value that he chose for the element.

We take the equation of condition of no 20,

ε(i) = p(i)z − α(i),

ε(i) being the error of the (i + 1)st observation, and z being the correction of the el-
ement already known quite nearly; p(i), that one is able always to suppose positive,
will express the influence of the corresponding observation. α(i)

p(i)
being the value of z

resulting from the observation, the rule of Cotes reverts to multiplying this value by
p(i), to make a sum of all the products relative to the diverse values, and to divide it by
the sum of all the p(i), this which gives

z =
Sα(i)

Sp(i)
.

This was in fact the correction adopted by the observers, having the usage of the method
of least squares of the errors of the observations.

However, one does not see that, since this excellent geometer, one has employed his
rule, to Euler, who in his first piece on Jupiter and Saturn, appears to me to be served
himself the first of the equations of the condition in order to determine the elements of
the elliptic movement of these two planets. Near the same time, Tobie Mayer made use
of it in this good researches on the libration of the Moon, and next in order to form his
lunar Tables. Since, the best astronomers have followed this method, and the success
of the Tables which they have constructed by his means has verified the advantage of
it.

When one has only one element to determine, this method leaves no embarrass-
ment; but, when one must correct at the same time many elements, it is necessary to
have as many final equations formed by the reunion of many equations of condition,
and by means of which one determines by elimination the corrections of the elements.
But what is the most advantageous manner to combine the equations of condition, in
order to form the final equations? It is here that the observers abandoned themselves to
some arbitrary gropings, which must have led them to some different results, although
deduced from the same observations. In order to avoid these gropings, Mr. Legendre
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had the simple idea to consider the sum of the squares of the errors of the observations,
and to render it a minimum, this which furnishes directly as many final equations, as
there are elements to correct. This scholarly geometer is the first who has published
this method; but one owes to Mr. Gauss the justice to observe that he had had, many
years before this publication, the same idea of which he made a habitual usage, and
that he had communicated to many astronomers. Mr. Gauss, in his Theory of elliptic
movement, has sought to connect this method to the Theory of Probabilities, by show-
ing that the same law of errors of the observations, which give generally the rule of the
arithmetic mean among many observations, admitted by the observers, gives similarly
the rule of the least squares of the errors of the observations, and it is this which one
has seen in no 23. But, as nothing proves that the first of these rules gives the most
advantageous result, the same uncertainty exists with respect to the second. The re-
search on the most advantageous manner to form the final equations is without doubt
one of the most useful of the Theory of Probabilities: its importance in Physics and
Astronomy carries me to occupy myself with it. For this, I will consider that all the
ways to combine the equations of condition, in order to form a final linear equation,
returns to multiply them respectively by some factors which were null relatively to the
equations that one employed not at all, and to make a sum of all these products, this
which gives a first final equation. A second system of factors give a second final equa-
tion, and thus consecutively, to this that one has as many final equations as elements to
correct. Now it is clear that it is necessary to choose the system of factors, such that the
mean error to fear to plus or to less respecting each element is a minimum; the mean
error being the sum of the products of each error by its probability. When the obser-
vations are in small number, the choice of these systems depends on the law of errors
of each observation. But, if one considers a great number of observations, this which
holds most often in the astronomical researches, this choice becomes independent of
this law, and one has seen, in that which precedes, that Analysis leads then directly to
the results of the method of least squares of the errors of the observations. Thus this
method which offered first only the advantage to furnish, without groping, the final
equations necessary to the correction of the elements, gives at the same time the most
precise corrections, at least when one wishes to employ only final equations which are
linear, an indispensable condition, when one considers at the same time a great number
of observations; otherwise, the elimination of the unknowns and their determination
would be impractical.
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