
Additions

P. S. Laplace∗

OC 7 pp. 471–493.

I One deduces from the analysis of no 34 of Book I the expression of the ratio of
the circumference to the radius, given by Wallis, in infinite product. Analysis of
the remarkable method by which this great geometer is arrived there, a method
which contains the germs of the theories of the interpolations and of the definite
integrals.

II Direct demonstration of the expression of ∆nsi, found in no 40 of Book I, by the
passages from the postive to the negative and from the real to the imaginary.

III Demonstration of the formula (p) from no 42 of Book I or of the expression of
the finite differences of the powers, when one stops this expression at the term
where the quantity raised to the power becomes negative.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. September 25, 2010
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I.

We have integrated, by a very convergent approximation, in no 34 of Book I, the
equation in the finite differences

0 = (n′ + s+ 1)ys+1 − (n+ s)ys.

It is easy to conclude from our analysis the expression of the ratio of the circumference
to the radius, in infinite products, given by Wallis. In fact, this analysis has led us, in
the section cited, to the general expression

(a)
(n+ µ)(n+ µ+ 1) · · · (n+ s+ 1)

(n+ µ+ 1)(n′ + µ+ 2) · · · (n′ + s)
=

∫
u2n

′−2n+1du(1 − u2)n+s−1∫
u2n′−2n+1du(1 − u2)n+µ−1

,

the integrals being taken from u = 0 to u = 1. By making first n′ = 0, n = 1
2 , µ = 1

and observing that
∫
du(1 − u2)

1
2 = 1

4π, π being the ratio of the semi-circumference
to the radius, one will have

4

π
=

3.5 . . . (2s− 1)

4.6 . . . 2s
∫
du(1 − u2)s−

1
2

.

By supposing therefore generally

1∫
du(1 − u2)s

= ys,

one will have

4

π
=

3.5 . . . (2s− 1)

4.6 . . . 2s
ys− 1

2
=

3.5 . . . (2s+ 1)

4.6 . . . (2s+ 2)
ys+ 1

2
= · · · ,

this which gives

ys− 1
2

=
2s+ 1

2s+ 2
ys+ 1

2

If one makes next, in formula (a), n′ = − 1
2 , n = 0 and µ = 1, it gives

3.5 . . . (2s− 1)

2.4 . . . (2s− 2)
= ys−1;

whence one draws
ys−1 =

2s

2s+ 1
yx,

an equation which coincides with the preceding between ys− 1
2

and ys+ 1
2

by changing
s into s+ 1

2 , so that this equation holds, s being entire or equal to an entire plus 1
2 .

The two expressions of ys−1 and of 4
π give

4

π
=

3.3

2.4
· 5.5

4.6
· · · (2s− 1)(2s− 1)

(2s− 2)2s

ys− 1
2

ys−1
;
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the equations in the differences in ys and ys− 1
2

give

ys− 1
2

ys−1
=

(2s+ 1)2

2s(2s+ 2)

ys+ 1
2

ys
=

(2s+ 1)2

2s(2s+ 2)

(2s+ 3)2

(2s+ 2)(2s+ 4)

ys+ 3
2

ys+1
= · · ·

The ratio
y
s− 1

2

ys−1
is greater than unity; it diminishes without ceasing, in measure as s

increases, and, in the case of s infinite, it becomes unity. In fact, this ratio is equal to∫
du(1 − u2)s−1∫
du(1 − u2)s−

1
2

.

Now the element du(1−u2)s−1 is greater than the element du(1−u2)s−
1
2 , or du(1−

u2)s−1(1 − u2)
1
2 ; the integral of the numerator of the preceding fraction surpasses

therefore that of the denominator; this fraction is therefore greater than unity. When s
is infinite, these integrals have a sensible value only when u is infinitely small; because,
u being finite, the factor (1 − u2)s−1 becomes a fraction having an infinitely great
exponent; one can therefore then suppose (1 − u2)

1
2 = 1, this which renders the ratio

s− 1
2

ys−1
equal to unity.

This ratio is equal to the product of an infinite sequence of fractions, of which the
first is (2s+1)2

2s(2s+2) , and of which the others are deduced from it, by increasing successively

s by one unit; it becomes ys
s− 1

2

, by changing s into s + 1
2 , and the fraction (2s+1)2

2s(2s+2)

becomes (2s+2)2

(2s+1)(2s+3) ; now one has, whatever be s,

(2s+ 1)2

2s(2s+ 2)
>

(2s+ 2)2

(2s+ 1)(2s+ 3)
;

one has therefore this inequality

ys− 1
2

ys−1
>

ys
ys− 1

2

.

By changing s into s− 1
2 , one will have

ys−1
ys− 3

2

>
ys− 1

2

ys−1
.

The two inequalities give

ys− 1
2

ys−1
>

√
ys
ys−1

<

√
ys− 1

2

ys− 3
2

.

Substituting instead of the ratios ys
ys−1

and
y
s− 1

2

y
s− 3

2

their values given by the equations in

the differences in ys, one will have

ys− 1
2

ys−1
>

√
1 +

1

2s
<

√
1 +

1

2s− 1
;

3



one will have

(A)


4
π >

3.3
2.4 · 5.5

4.6 · · ·
(2s−1)(2s−1)
(2s−2)(2s

√
1 + 1

2s ,

4
π <

3.3
2.4 · 5.5

4.6 · · ·
(2s−1)(2s−1)
(2s−2)(2s

√
1 + 1

2s−1 .

Wallis published in 1657, in his Arithmetica infinitorum, this beautiful theorem, one
of the most curious in Analysis, by itself and by the manner in which the inventor is
arrived there. His method containing the principles of the theory of definite integrals,
that the geometers have specially cultivated in these last times, I think that they will see
with pleasure a succinct exposition in the actual language of Analysis.

Wallis considers the series of fractions of which the general term is 1∫
dx
(
1−x

1
n

)s ,

n and s being some entire numbers, by commencing with zero. By expanding the
binomial contained under the integral sign and integrating each term of the expansion,
he obtains, for one same value of n, the numerical values of the preceding fraction,
corresponding to s = 0, s = 1, s = 2, . . . , this which gives to him a horizontal series,
of which s is the index. By supposing successively n = 0, n = 1, n = 2, . . . , he has
so many horizontal series. Thence, he forms a Table in double entry, of which s is the
horizontal index and n the vertical index.

In this Table, the horizontal and vertical series are the same, so that, by designat-
ing by yn,s the term corresponding to the indices n and s, one has this fundamental
equation

yn,s = ys,n.

Wallis observes next that the first series is unity; that the second is formed of the natural
numbers; that the third is formed of the triangular numbers, and so forth; in a manner
that the general term yn,s of the horizontal series corresponding to n is

(s+ 1)(s+ 2) · · · (s+ n)

1.2.3 . . . n
;

this fraction being equal to

(n+ 1)(n+ 2) · · · (s+ n)

1.2.3 . . . s
,

one sees clearly that yn,s is equal to ys,n.
Now, if one arrives to interpolate in the preceding Table the term corresponding

to n and s equal to 1
2 , one will have the ratio of the square of the diameter to the

surface of the circle; because the term of which there is concern is 1∫
dx(1−x2)

1
2

, or 4
π .

Wallis seeks therefore to make this interpolation. It is easy in the case where one of
the two numbers n and s is an entire number. Thus, by making successively s equal to
an entire number less 1

2 in the function (s+1)(s+2)···(s+n)
1.2.3...n , he obtains all the terms of

the horizontal series, corresponding to the values of s, − 1
2 , 3

2 , 5
2 , . . . ; and by making

n equal to an entire number less 1
2 in the function (n+1)(n+2)···(n+s)

1.2.3...s , he obtains all
the terms of the vertical series, corresponding to the values of n, − 1

2 , 3
2 , . . . But the

difficulty consists in finding the terms corresponding to n and s, both equal to some
entire numbers less 1

2 .
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Wallis observes for this that the equation

yn,s =
(s+ 1)(s+ 2) · · · (s+ n)

1.2.3 . . . n

gives

yn,s−1 =
s(s+ 1) · · · (s+ n− 1)

1.2.3 . . . n
,

and that thus one has

(a) yn,s =
s+ n

s
yn,s−1;

so that each term of a horizontal series is equal to the preceding, multiplied by the
fraction s+n

s ; whence it follows that all the terms of a horizontal series, departing from
s = − 1

2 , s increasing successively by unity, are the products of yn,− 1
2

by the fractions
2n+1

1 , 2n+3
3 , 2n+5

5 , . . . , and, departing from s = 1, these terms are the products of yn,0
by the fractions n+1

1 , n+2
2 , n+3

3 , . . . He supposes that the same laws subsist in the case
of n fractional and equal to 1

2 , so that one has all the terms, departing from s = − 1
2 ,

by multiplying y 1
2 ,−

1
2

by the series of fractions 2
1 , 4

3 , 6
5 ,. . . by designating therefore by

� the term corresponding to n = 1
2 and s = 1

2 , a term which, as one has seen, is equal
to 4

π , one has

� =
2

1
y 1

2 ,−
1
2
,

this which gives

y 1
2 ,−

1
2

=
1

2
�.

Departing from y 1
2 ,0

, or from unity, he obtains the successive terms of the series, corre-
sponding to s entire, by multiplying successively unity by the fractions 3

2 , 5
4 , 7

6 , . . . He
forms thus the horizontal series according to which correspond to n = 1

2 , and to s
successively equal to − 1

2 , 0, 1
2 , 1, 3

2 , . . . ,

(i)
1

2
�, 1, �,

3

2
,

4

3
�,

3

2
· 3

4
,

4

3
· 6

5
�, · · · ,

a series which represents this here,

1∫
dx(1 − x2)−

1
2

,
1∫

dx(1 − x2)0
,

1∫
dx(1 − x2)

1
2

, . . .

The series (i) gives generally, s being an entire number,

y 1
2 ,s−

1
2

=
4

3
· 6

5
· · · 2s

2s− 1
�,

y 1
2 ,s−1

=
3

2
· 5

4
· · · 2s− 1

2s− 2
;

whence one draws

(B) � =
3.3

2.4
· 5.5

4.6
· · · (2s− 1)(2s− 1)

(2s− 2)2s

y 1
2 ,s−

1
2

y 1
2 ,s−1

.
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Wallis considers next that, in the series (i), the ratio of each term to the one which
precedes it by one unit is greater than unity and diminished without ceasing, so that
one has

y 1
2 ,s

y 1
2 ,s−1

>
y 1

2 ,s+1

y 1
2 ,s

.

This results in fact with the equation

y 1
2 ,s

=
2s+ 1

2s
y 1

2 ,s−1
.

He supposes that this holds equally for all the consecutive terms of the series, so that
one has the two inequalities

y 1
2 ,s−

1
2

y 1
2 ,s−1

>
y 1

2 ,s

y 1
2 ,s−

1
2

<
y 1

2 ,s−1

y 1
2 ,s−

3
2

;

whence it follows, as one has done above,

y 1
2 ,s−

1
2

y 1
2 ,s−1

>

√
1 +

1

2s
<

√
1 +

1

2s− 1
;

thence, it changes formula (B) into formula (A).
This manner to proceed by way of induction must appear and appeared, in fact, ex-

traordinary to the geometers accustomed to the rigor of the ancients. Thus we see that
some great contemporary geometers of Wallis were not very satisfied with it, and Fer-
mat, in his correspondence with Digby, made some objections not very worthy of him
against this method which he had not studied sufficiently deeply. It must be, without
doubt, employed with an extreme circumspection: Wallis himself said, in responding to
Fermat, that it is thus that he is served by it, and, in order to confirm the exactitude, he
supported it on a calculation by which lord Brouncker had found, by means of formula
(A), the ratio of the circumference to the diameter, contained between the limits

3.141592653569,

3.141592653696,

limits which coincide in the first ten digits with this ratio that one has carried beyond
one hundred decimals. Notwithstanding these confirmations, it is always useful to
demonstrate in rigor that which one obtains by these means of invention. Wallis ob-
serves that the ancients had, without doubt, similar that they had not made known at all,
being content to give their results supported on synthetic demonstrations. He regrets,
with reason, that they had concealed from us their ways to arrive there, and he said to
Fermat that one must be thankful to him not to have imitated them, and to not have
destroyed the bridge after the flood having passed. It is worthy of remark that Newton,
who had profited from this method of induction of Wallis and of his results in order to
discover his theorem on the binomial, has merited the reproaches that Wallis made to
the ancients geometers, in seeking the means which had led to their discoveries.
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Let us resume formula (B) of Wallis. If one supposes

y 1
2 ,s−

1
2

y 1
2 ,s−1

= us,

this formula will give

us−1 =
(2s− 1)2

(2s− 2)2s
us

or

(l) 0 = 2s(2s− 2)(us − us−1) + us.

Let there be

us = A(0) +
A(1)

s+ 1
+

A(2)

(s+ 1)(s+ 2)
+

A(3)

(s+ 1)(s+ 2)(s+ 3)
+ · · · ,

and let us consider that which produces, in the second member of equation (l), the term

A(r)

(s+ 1) · · · (s+ r)
.

By having regard only to this term in us, one will have

us − us−1 =
−rA(r)

s(s+ 1)(s+ 2) · · · (s+ r)
;

the term 2s(2s− 2)(us − us−1) of the equation (l) becomes thus

−4rA(r)(s− 1)

(s+ 1) · · · (s+ r)
,

or
−4rA(r)

(s+ 1) · · · (s+ r − 1)
+

4r(r + 1)A(r)

(s+ 1) · · · (s+ r)
.

The term of us depending on A(r+1) will produce some similar terms, and thus of
the others. By comparing therefore in equation (l) the terms which have the same
denominator (s+ 1) · · · (s+ r), one will have

0 = 4r(r + 1)A(r) − 4(r + 1)A(r+1) + A(r),

this which gives

A(r+1) =
(2r + 1)2A(r)

4(r + 1)
.

It is clear, by that which precedes, that us is reduced to unity when s is infinite, this
which gives A(0) = 1. Thence one draws

us = 1+
12

4(s+ 1)
+

12.32

42/1/2(s+ 1)(s+ 2)
+

12.32.52

43.1.2.3(s+ 1)(s+ 2)(s+ 3)
+· · · =

ys− 1
2

ys−1
.
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The ratio of the mean term of the binomial (1 + 1)2s to the entire binomial is

(s+ 1)(s+ 2) · · · 2s
22s.1.2.3 . . . s

or
1.3.5 . . . (2s− 1)

2.4.6 . . . 2s
.

By naming therefore T this mean term, formula (B) will give

T2 =
1

sπus
.

This theorem and the preceding expression of us in series are due to Stirling, and one
sees how they are attached to the theorem and to the analysis of Wallis. This value of
T2 is able to serve to determine by approximation the ratio of the circumference to the
diameter, this which was the object of Wallis; or, this ratio being supposed known, it
gives the mean term of the binomial, this which was the object of Stirling.

II. (pp. 480–485) (omitted)

III. (pp. 485–493) (omitted)
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