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We determine the length of a great arc, on the surface of the Earth, by a chain [531]
of triangles which are supported on a base measured with exactitude. But, whatever
precision that we bring into the measure of the angles, their inevitable errors can, by ac-
cumulating, deviate sensibly from the truth the value of the arc that we have concluded
from a great number of triangles. We know therefore only imperfectly this value, if we
are not able to assign the probability that its error is comprehended within some given
limits. The desire to extend the application of the Calculus of Probabilities to natural
Philosophy has made me seek the formulas proper to this object.

This application consists in deducing from the observations the most probable re-
sults and to determine the probability of the errors of which they are always suscep-
tible. When, these results being known very nearly, we wish to correct them from a
great number of observations, the problem is reduced to determine the probability of
one or many linear functions of the partial errors of the observations, the law of prob-
ability of these errors being supposed known. I have given, in Book II of my Théorie
analytique des Probabilités, a method and some general formulas for this object, and I
have applied them, in the first Supplement, to some interesting points of the System of
the world. In questions of Astronomy, each observation furnishes, in order to correct
the elements, an equation of condition: when these equations are very manifold, my
formulas give, at the same time, the most advantageous corrections and the probability [532]
that the errors, after these corrections, will be contained within some assigned limits,
whatever be moreover the law of probability of the errors of each observation. It is so
much the more necessary to be rendered independent of this law, as the simplest laws
are always infinitely less probable, seeing the infinite number of those which are able
to exist in nature. But the unknown law which the observations of which we make use
follow introduces into the formulas an indeterminate which would permit not at all to
reduce them in numbers, if we did not succeed to eliminate it. This is that which I have
done, by means of the sum of the squares of the remainders, when we have substituted,
into each equation of condition, the most probable corrections. The geodesic questions
offering not at all similar equations, it was necessary to seek another means to eliminate
from the formulas of probability the indeterminate dependent on the law of probability
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of the errors of each partial observation. The quantity by which the sum of the angles
of each observed triangle surpasses two right angles plus the spherical excess has fur-
nished me this means, and I have replaced by the sum of the squares of these quantities
the sum of the squares of the remainders of the equations of condition. Thence, we are
able to determine numerically the probability that the final result of a long sequence
of geodesic operations does not exceed a given quantity. By applying these formulas
to the measure of a perpendicular to the meridian, they will make estimate the errors,
not only of the total arc, but also of the difference in longitude of its extreme points,
concluded from the chain of triangles which unite them and from the azimuths of the
first and of the last side of this chain. If we diminish, as much as it is possible, the
number of triangles and if we give a great precision to the measure of their angles, two
advantages that the use of the repetitive circle and of the reflectors procure, this way to
have the difference in longitude of the extreme points of the perpendicular will be one
of the better of which we are able to make use.

In order to be assured of the exactitude of a great arc which is supported on a base
measured toward one of its extremities, we measure a second base toward the other
extremity, and we conclude from one of these bases the length of the other. If the length [533]
thus calculated deviates very little from observation, there is everywhere to believe that
the chain of triangles is quite nearly exact, just as the value of the great arc which results
from it. We correct next this value, by modifying the angles of the triangles, in a manner
that the bases calculated accord themselves with the measured bases, that which is able
to be made in an infinity of ways. Those that we have until the present employed are
based on some vague and uncertain considerations. The methods exposed in Book II
lead to some very simple formulas, in order to have directly the correction of the total
arc which results from the measures of many bases. These measures have not only the
advantage to correct the arc, but further to increase that which I have named the weight
of a result, that is to render the probability of its errors more rapidly decreasing, so that
the same errors become less probable with the multiplicity of the bases. I expose here
the laws of probability of the errors that the addition of new bases give birth to. The
measure of a second base serves similarly to correct the difference in longitude from
the extreme points of a perpendicular to the meridian and to increase the weight of the
value of this difference.

After we brought, in the observations and in the calculations, the exactitude that
we require now, we considered the sides of the geodesic triangles as rectilinear, and we
supposed the sum of their angles equal to two right angles. Legendre has remarked first
that the two errors that we commit thus compensate themselves mutually, that is that by
subtracting from each angle of a triangle the third of the spherical excess, we are able
to neglect the curvature of its sides and to regard them as rectilinear. But the excess
of the three observed angles over two right angles is composed of the spherical excess
and the sum of the errors of the measure of each of the angles. The analysis of the
probabilities shows that we must yet subtract from each angle the third of this sum, in
order to have the law of probability of the errors of the results most rapidly decreasing.
Thus, by the equal apportionment of the error of the sum observed of the three angles of [534]
the triangle considered as rectilinear, we correct at the same time the spherical excess
and the errors of the observations. The weight of the angles thus corrected increases,
so that the same errors become, by this correction, less probable. There is therefore
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advantage to observe the three angles of each triangle, and to correct them as we have
just said. Simple good sense makes to have a presentiment of this advantage; but the
Calculus of probabilities is able alone to estimate and to show that, by this correction,
it becomes the greatest that it is possible.

The formulas of which I just spoke are related to some future observations: thus,
when we apply them to some past observations, we set aside all the data that the com-
parison of these observations are able to furnish out of the errors, data of which we
are able to make use when we know the law of probability of the errors of the partial
observations. If this law is expressed by a constant less than unity, of which the expo-
nent is the square of the error, then my formulas agree to the past observations as to
the future observations, and they satisfy to all the data of these observations, as I have
shown in § 25 of Book II. In the case where the angles are measured by means of a
repeating circle, each simple angle is the mean result of a great number of measures of
the same angle contained in the total arc observed; the error of the angle is therefore
the mean of the errors of all these measures; and, by § 18 of Book II, the probability of
this error is expressed by a constant, of which the exponent is equal to the square of the
error. The employment of the repeating circle unites therefore to the benefit of giving
a precise measure of the angles the one to establish a law of probability of the errors
which satisfies all the data of the observations.

In order to apply with success the formulas of probability to the geodesic obser-
vations, it is necessary to return faithfully all those that we would admit if they were
isolated, and to reject none of them by the sole consideration that it extended a little
from the others. Each angle must be uniquely determined by its measures, without
regard to the two other angles of the triangle in which it belongs; otherwise, the error [535]
of the sum of the three angles would not be the simple result of the observations, as
the formulas of probability supposes it. This remark seems to me important, in order
to disentangle the truth in the middle from the slight uncertainties that the observations
present.

§ 1. Let us conceive, on a sphere, an arc of great circle A, A′, A′′, . . . and sup-
pose that we have formed about the chain of triangles ACC ′, CC ′C ′′, C ′C ′′C ′′′,
C ′′C ′′′Civ , . . . , of which the sides CC ′, C ′C ′′, C ′′C ′′′, . . . cut this arc at A′, A′′,
A′′′, . . . I do not give at all the figure, because it is easy to trace it according to these in-
dications. LetA be the angleCAA′,A(1) the angleC ′A′A′′,A(2) the angleC ′′A′′A′′′,
. . . Let further C be the angle ACC ′, C(1) the angle CC ′C ′′, C(2) the angle C ′C ′′C ′′′,
. . . We will have

A+A(1) + C − α = π + t,

α being the error of the observed angle C, t being the excess of the angles of the spher-
ical triangle ACA′ over π which expresses two right angles or the semi-circumference
of which the radius is unity. We will have similarly

A(1) +A(2) + C(1) − α(1) = π + t(1),

α(1) being the error of the observed angle CC ′C ′′, and t(1) being the excess of the
angles of the spherical triangle A′C ′A′′ over two right angles. We will form similarly
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the equations
A(2) +A(3) + C(2) − α(2) = π + t(2),

A(3) +A(4) + C(3) − α(3) = π + t(3),

· · · · · · · · · · · · · · · · · · · · · · · · ;

whence we deduce easily

A(2i) = A+C −C(1) +C(2)−C(3) + · · · +C(2i−2)−C(2i−1)

−α +α(1) −α(2) +α(3) − · · · −α(2i−2) +α(2i−1)

−t +t(1) −t(2) +t(3) − · · · −t(2i−2) +t(2i−1),
A(2i−1) = π−A−C +C(1)−C(2) +C(3)− · · · −C(2i−2)

+α −α(1) +α(2) −α(3) + · · · +α(2i−2)

+t −t(1) +t(2) −t(3) + · · · +t(2i−2);

by supposing therefore A well known, the error of the angle A(n) is [536]

α(n−1) − α(n−2) + α(n−3) − · · · ± α

the superior sign having place if n is odd, and the inferior sign having place if n is even.
The values of t, t(1), . . . are quite small and are able to be determined with precision.

The concern is now to have the probability that this error will be comprehended
within given limits. For this, I will suppose first that the probability of any error α is
proportional to c−hα

2

, c being the number of which the hyperbolic logarithm is unity.
This supposition, the most natural and the most simple of all, results from the use of the
repeating circle in the measure of the angles of the triangles. In fact, let us name φ(q)
the probability of an error q in the measure of a simple angle, this probability being
supposed the same for the positive and for the negative errors. Let us suppose further
that s is the number of simple angles contained in all the series that we have made in
order to determine this angle. The probability that the error of the mean result or of the
angle concluded from these series will be ± r√

s
, by § 18 of Book II, proportional to

c−
kr2

2k′′

k being equal to
∫
dq φ(q), the integral being taken from q null to q equal to its greatest

value, that we are always able to suppose infinite; by making φ(q) discontinuous and
null beyond the limit of q, k′′ is equal to

∫
q2dq φ(q). By supposing therefore

r = α
√
s, h =

ks

2k′′
,

c−hα
2

will be the probability of the error α. We will see, at the end of this article, that
the following results always hold, whatever be the probability of α.

Let β and γ be the errors of the two angles AC ′C and CAC ′ of the first triangle
ACC ′; the probability of the three errors α, β and γ will be proportional to [537]

c−hα
2−hβ2−hγ2

;
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but the observation of these angles give the sum α+ β + γ of the three errors; because
the sum of the three angles must be equal to two right angles plus the surface of the
triangle ACC ′, if we name T the excess of the three angles observed on this quantity,
we will have

α+ β + γ = T ;

the preceding exponential becomes thus

c−2h(β+ 1
2α−

1
2T )2− 3h

2 (α− 1
3T )2−h3 T

2

,

β being susceptible to all the values from −∞ to ∞; it is necessary to multiply this
exponential by dβ and take the integral within these limits, that which gives an integral
which has for factor

c−
3h
2 (α− 1

3T )2−h3 T
2

;

the probability of α is therefore proportional to this factor. The value of α most prob-
able is evidently that which renders null the quantity α− 1

3T ; it is necessary therefore
to correct the three angles of each triangle by the third of the excess T of their sum
observed over two right angles plus the spherical excess. This is that which we do
commonly.

Let us name ᾱ and β̄ the quantities α − 1
3T and β − 1

3T ; the probability of ᾱ will
be proportional therefore to

c−
3
2hα

2

.

If we diminish the angle C by 1
3T , that is if we employ the corrected angles of each

triangle, by naming C̄, C̄(1), . . . that which the angles C, C(1), . . . become, by these
corrections, we will have

A(2i) =A+ C̄ − C̄(1) + C̄(2) − · · · − ᾱ+ ᾱ(1) − ᾱ(2) + · · · − t+ t(1) − · · ·
A(2i−1) =π −A− C̄ + C̄(1) − · · ·+ ᾱ− ᾱ(1) + · · ·+ t− t(1) + · · ·

The probability that the quantity [538]

ᾱ(n−1) − ᾱ(n−2) − · · · ± ᾱ

or the error of the angle A(n) will be comprehended within the limits ±r
√
n, will be,

by § 18 cited,

2
√

3
2h√
π

∫
dr c−

3
2hr

2

.

We are able to observe here the advantage that the observation of the three angles of
each triangle produces, by the correction of these angles. Without this correction, the
error of the angle A(n) would be

α(n−1) − α(n−2) − · · · ± α,

and the probability that this error is comprehended within the limits ±r
√
n would be

2
√
h√
π

∫
dr c−hr

2

.
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a probability less than the preceding in which the weight of the result is 3
2h, instead as

it is here h.
Let us determine now the value of h. Among the data of the observations, the

quantities by which the sums of the angles of each triangle surpass two right angles
plus the spherical excess appear to be the most proper to make known this value. By
that which precedes, the probability of the simultaneous existence of ᾱ and of T is
proportional to

c−
h
3 T

2− 3h
2 ᾱ

2

.

By multiplying this exponential by dᾱ, and taking the integral from ᾱ = −∞ to ᾱ =

∞, the integral will have for factor c−
h
3 T

2

, and this factor will be proportional to the
probability of T ; this probability will be therefore

dTc−
h
3 T

2∫
dT c−

h
3 T

2
,

the integral of the denominator being taken from T = −∞ to T = ∞. It will be thus [539]
proportional to √

1
3h√
π
c−

h
3 T

2

.

Here the observed event is that the sum of the angles of the first triangle, of the second,
of the third, etc. surpass two right angles plus the spherical excess, respectively, by the
quantities T, T (1), . . . , T (n−1), n being the number of triangles; the probability of this
event will be therefore proportional to( 1

3h

π

)n
2

c−
h
3 θ

2

,

by making
θ2 = T 2 + T (1)2 + · · ·+ T (n−1)2.

Now, if we consider the diverse values of h as causes of the observed event, the proba-
bility of hwill be, by the principle of the probability of the causes drawn from observed
events, equal to

h
n
2 dh c−

h
3 θ

2∫
h
n
2 dh c−

h
3 θ

2
,

the integral of the denominator being taken for all the values of h, that is from h = 0
to h = ∞. The value of h that it is necessary to choose is evidently the integral of the
products of the values of h multiplied by their probabilities; this value is therefore∫

h
n+2
2 dh c−

h
3 θ

2∫
h
n
2 dh c−

h
3 θ

2
,

the integrals being taken from h = 0 to h =∞. The integral of the numerator is equal
to

3(n+ 2)

2θ2

∫
h
n
2 dh c−

h
3 θ

2

.
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The preceding fraction becomes thus 3(n+2)
2θ2 ; this is therefore the value of h that it is

necessary to adopt. If we suppose n a great number, this value become very nearly [540]
3n
2θ2 . This quantity is the value of h which renders the observed event most probable,
the probability of this event, a priori, being proportional to h

n
2 c−

h
3 θ

2

. By taking for h
the quantity 3n

2θ2 , the probability that the error of the angle A(n) will be comprehended
within the limits ±r

√
n is

3
√
n

θ
√
π

∫
dr c−

9
4
nr2

θ2 ;

the probability that it will be comprehended within the limits ± 2
3θr
′ is therefore

2
∫
dr′ c−r

2

√
π

,

the integral being taken from r′ null.

§ 2. Let us suppose the arcAA′A′′ . . . perpendicular to the meridian of the pointA.
Let φ be the angle formed by this meridian and by the one of the extreme point A(n),
and V the smallest of the angles that this last meridian makes with the arc AA′ . . .; we
will have

sinφ =
cosV

sin l
,

l being the latitude of point A. By designating therefore by δφ and δV the errors of the
angles φ and V , we will have

δφ = − δV sinV

sin l cosφ
.

If we have measured with a great exactitude the angle that the last side of the chain of
triangles forms at A(n) with the meridian of this point, it is easy to see that

δV = ±δA(n),

δA(n) being the error of A(n); the preceding integral in r′ is therefore the probability
that the error δφ of the longitude φ concluded from the azimuths observed at A and [541]
A(n) will be comprehended within the limits ± 2

3θr
′ sinV
sin l cosφ .

There results from the analysis exposed in Chapter V of Book III of the Mécanique
céleste that, if there exists an eccentricity in the terrestrial parallels, it has no sensible
influence on the value of φ concluded in this manner, provided that the measured arc
is not very considerable. In measuring therefore, with a great precision, the angles
of the diverse triangles and the amplitudes of the extreme points, we will have quite
exactly the difference in longitude of these points, and we will be able, by the preceding
formula, to estimate the probability of the small errors to fear respecting this difference.

Let us determine presently the probability that the error of the measure of the line
AA′A′′ . . . will be comprehended within some given limits. For this, let us suppose
that in the triangles CAC ′, C ′CC ′′, . . . we had corrected the angles as one does or-
dinarily, that is by subtracting from each the third of the quantity bywhich the sum of
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the three observed angles surpasses two right angles plus the spherical excess. If we
lower the vertices C, C ′, C ′′. . . . of the perpendiculars CI, C ′I ′, C ′′I ′′, . . . onto the
line AA′A′′ . . .; we will have, very nearly,

AI = AC cos IAC.

We will have next, quite nearly,

II ′ = CC ′ cosA(1)

and, generally,
I(i)I(i+1) = C(i)C(i+1) cosA(i+1).

By supposing therefore that δ is the characteristic of the errors, we will have

δ.I(i)I(i+1)

I(i)I(i+1)
=
δ.C(i)C(i+1)

C(i)C(i+1)
− δA(i+1) tanA(i+1).

We have, by that which precedes,

δA(i+1) = ᾱ(i) − ᾱ(i−1) + ᾱ(i−2) − · · · ± ᾱ;

next, we have, in the (i+ 1)st triangle, [542]

C(i)C(i+1) =
C(i)C(i−1) sinC(i+1)C(i−1)C(i)

sinC(i−1)C(i+1)C(i)
,

that which gives

δ.C(i)C(i+1)

C(i)C(i+1)
=
δ.C(i)C(i−1)

C(i)C(i−1)
+δC(i+1)C(i−1)C(i) cotC(i+1)C(i−1)C(i)

−δC(i−1)C(i+1)C(i) cotC(i−1)C(i+1)C(i);

but ᾱ(i) is, by that which precedes, the error of the angle C(i) or C(i−1)C(i)C(i+1),
corrected by subtracting from it the third of the excess of the sum of the three ob-
served angles of the triangle over two right angles. Let β̄(i) be the error of the angle
C(i−1)C(i+1)C(i), thus corrected; −(ᾱ(i) + β̄(i)) will be the error of the third angle
C(i+1)C(i−1)C(i). We will have therefore

δ.C(i)C(i+1)

C(i)C(i+1)
=
δ.C(i)C(i−1)

C(i)C(i−1)
+(ᾱ(i) + β̄(i)) cotC(i+1)C(i−1)C(i)

−β̄(i) cotC(i−1)C(i+1)C(i);

that which gives, by observing that, in the first triangle, the side C(i−1)C is AC that I
supposed measured very exactly.

δ.C(i)C(i+1)

C(i)C(i+1)
= −S[(ᾱ(i)+β̄(i)) cotC(i+1)C(i−1)C(i)+β̄(i) cotC(i−1)C(i+1)C(i)],
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the sign S serving to express the sum of all the quantities that it contains from i = 0
to i inclusively. We will have therefore thus the value of δ.I(i)I(i+1). By reuniting all
these values, we will have, for the entire error of their sum or of the measured line, an
expression of this form

(o) pᾱ+ qβ̄ + p(1)ᾱ(1) + q(1)β̄(1) + · · ·

The probability of the simultaneous values of ᾱ and of β̄ is, by that which precedes,
proportional to

c−2h(β̄+ 1
2 ᾱ)

2− 3
2hα

2

.

By making

β̄ +
1

2
ᾱ =

1

2
α
√

3,

the preceding exponential becomes [543]

c−
3
2hα

2− 3
2hᾱ

2

;

thus the laws of probability of the values of α and of ᾱ are the same. The function (o)
takes then this form

(o′) rα+ r(1)ᾱ+ r(2)α(1) + r(3)ᾱ(1) + · · ·

The probability that the error of this function, and consequently of the function (o), is
comprehended within the limits ±s, by § 20 of Book II,

2
∫
dt c−t

2

√
π

,

the integral being taken from t null to t equal to

s

√
3
2h

r2 + r(1)2 + r(2)2 + · · ·
We have evidently

pᾱ+ qβ̄ =

(
p− 1

2
q

)
ᾱ+

1

2
qα
√

3;

that which gives, by equating it to rα+ r(1)ᾱ,

r =
1

2
q
√

3, r(1) = p− 1

2
q;

the value of t will be therefore, by substituting for h its value 3n
2θ2 ,
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3s

2θ

√
n

p2 − pq + q2 + p(1)2 − p(1)q(1) + q(1)2 + · · ·
.

The length of the measured arc makes known that of the osculating radius of the
surface at the point A of departure. Let 1 + u be the radius drawn from the center
of gravity of the Earth to its surface, u being a function of the longitude and of the
latitude, the semi-axis of the Earth being taken for unity; if we name R the osculating
radius of this point, in the sense AA′, we will have, by the Chapter cited from Book III [544]
of the Mécanique céleste,

R = 1 + u−
(
du

dl

)
tan l +

(
d du
dφ2

)
cos2 l

;

and if the name ε the length of the measured arc AA(1), we will have, quite nearly,

R =
ε

φ cos l
(1− 1

3ε
2 tan2 l);

that which gives, quite nearly,

δR =
δε

φ cos l
− ε δφ

φ2 cos l
;

but we have, by that which precedes,

δε =pᾱ+ qβ̄ + · · · ,

δφ =
∓δA(n)

sin l
=
±(ᾱ− ᾱ(1) + ᾱ(2) − · · · )

sin l
,

the inferior sign having place if n is even, and the superior sign if n is odd. By making
therefore

p̄ =
p

φ cos l
∓ ε

φ2 sin l cos l
, q̄ =

q

φ cos l
,

p̄(1) =
p(1)

φ cos l
∓ ε

φ2 sin l cos l
, q̄(1) =

q(1)

φ cos l
,

· · · · · · · · · · · · · · · · · · · · · , · · · · · · ,

the probability that the error δR will be comprehended within the limits ±s will be

2
∫
dt c−t

2

√
π

,

the integral being taken from t null to

t =
3s

2θ

√
n

p̄2 − p̄q̄ + q̄2 + p̄(1)2 − p̄(1)q̄(1) + · · ·
.

The difference in latitude of the extreme points of the perpendicular depends, by the [545]
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Chapter cited from the Mécanique céleste, on the eccentricity of the terrestrial parallels,
which introduce into its expression the quantity

(u) −φ
[(

du

dφ

)
tan l +

(
d du

dφ dl

)]
;

the part of this expression which is independent of this eccentricity is proportional to
φ2; thus the small error of which φ is susceptible has no sensible influence at all on
the difference in latitude. By observing therefore with a great care this difference, the
eccentricity of the terrestrial parallels must be manifest, as little as it is sensible.

If the geodesic line has been traced in the sense of the meridian, the azimuth, at
the extremity of the measured arc, will make known the eccentricity of the terrestrial
parallels, and it is remarkable that this azimuth is the function (u), by changing φ into
the difference in latitude of the extreme points of the measured arc and by multiplying
it by the sine of the latitude divided by the square of the cosine of the latitude at the
origin of the arc.

The arc measured in the sense of the meridian will make known the osculating
radius of the Earth in this sense, and, by the preceding formulas, we will have the
probability of the errors of which its value is susceptible.

We will obtain more precision in all the results by fixing toward the middle of the
measured arc the origin of the angles; because then the superior powers of these angles,
that we neglect, becomes much smaller.

§ 3. Let us suppose that, in order to verify the operations, we measure, toward the
extremity A(n) of the arc AA′A′′ . . ., a second base. The expression of the error of this
base, concluded from the chain of the triangles and from the base measured at the point
A, will be, by that which precedes, of the form

(p) lᾱ+mβ̄ + l(1)ᾱ(1) +m(1)β̄(1) + · · · ;

let λ be this error which will be known by the direct measure of the second base. If in
the function (p) we make, as previously

β +
1

2
ᾱ =

1

2
α
√

3,

it takes this form [546]

fα+ f (1)ᾱ+ f (2)α(1) + f (3)ᾱ(1) + · · ·

By designating by s the value of the function (o) or of its equivalent (o′) and observing
that the probabilities of α and of ᾱ follow the same law and are proportionals to c−

3
2hα

2

and c−
3
2hᾱ

2

, the probability of the preceding function will be proportional to

c−
3
2h(α2+ ᾱ2+α(1)2+ᾱ(1)2+··· ).

By supposing the function equal to λ, this exponential becomes

11



c
− 3

2h

[
(α− fλF )

2
+

(
ᾱ− f

(1)λ
F

)2

+···+λ2

F

]
,

F expressing the sum of the squares f2 +f (1)2 +f (2)2 + · · · The most probable values
of α, ᾱ, α(1), . . . are evidently those which render the exponent of this exponential a
minimum, that which gives

α =
fλ

F
, ᾱ =

f (1)λ

F
, α(1) =

f (2)λ

F
, , . . .

If we observe next that we have, by that which precedes,

f =
1

2
m
√

3, f (1) = l − 1

2
m,

β̄ =
1

2
α
√

3− 1

2
ᾱ,

we will have

α =
(l − 1

2m)λ

F
, β̄ =

(m− 1
2 l)λ

F
,

ᾱ(1) = (l(1) − 1

2
m(1))

λ

F
, β̄(1) =

(m(1) − 1
2 l

(1))λ

F
,

· · · · · · · · · · · · · · · · · · · · · , · · · · · · · · · · · · · · · · · · · · · ,

and F will become

l2 −ml +m2 + l(1)2 −m(1)l(1) +m(1)2 + · · ·

If we substitute these values into the function (o), we will have the correction resulting
from the measure of a second base, by affecting it with a contrary sign. But we are able [547]
to arrive to this result directly, by § 21 of Book II, according to which we see that, s
being the value of the function (o), its probability is proportional to

c

−
3
2
h

(
s−λ Sr(i)f(i)

Sf(i)2

)

Sr(i)2− (Sr(i)f(i))2

Sf(i)2 ,

the sign S extending to all the values of i, from i = 0 inclusively. The most probable
value of s is that which renders null the exponent of c, that which gives

s = λ
Sr(i)f (i)

Sf (i)2
;

it is necessary therefore to subtract from the measured arc AA(1) . . . A(n) this value of
s; and, if we name u the error of the arc thus corrected, the probability of u will be
proportional to

c

−
3
2
hu2

Sr(i)2− (Sr(i)f(i))2

Sf(i)2 .

12



We see by this expression that the weight of the result is increased by virtue of the
measure of the second base; because, before this measure, the coefficient of −s2 was,
by the preceding section,

3
2h

Sr(i)2
,

and, by this measure, the coefficient of −u2 becomes

3
2h

Sr(i)2 − (Sr(i)f(i))2

Sf(i)2

.

The same error becomes therefore less probable by this measure and by the preceding
correction of this arc.

We are able to observe here that the preceding values of r, r(1), f and f (1) give

r2 + r(1) = p2 − pq + q2,

f2 + f (1)2 = l2 −ml +m2,

rf + r(1)f (1) = l(p− 1

2
q) +m(q − 1

2
p).

We will be able therefore to form easily Sr(i)2 and Sr(i)f (i) by means of the coeffi- [548]
cients of ᾱ, β̄, ᾱ(1), . . . in the functions of (o) and (p).

If we had measured some other bases, we would have, by the analysis of § 21 of
Book II, the corrections which it would be necessary to make to the measured arc, and
the law of its errors.

The measure of a new base is able to serve to correct, not only the measured arc, but
also the difference in longitude of its extreme points or the angle A(n). It will suffice
to substitute into the function (o) this one

±(ᾱ− ᾱ(1) + ᾱ(2) − · · · )

which expresses the error of A(n), the superior sign having place if n is odd, and the
inferior if n is even. Then we have

p = ±1, q = 0, p(1) = ∓1, q(1) = 0, . . . ;

thence it is easy to conclude that, in order to correct the angle A(n), it is necessary to
add to it the quantity

∓λ(l − l(1) + l(2) − · · · − 1
2m+ 1

2m
(1) − · · · )

l2 −ml +m2 + l(1)2 −m(1)l(1) +m(1)2 + · · ·
.

The probability that the error of A(n) thus corrected is within the limits ±u will be

2
∫
dt c−t

2

√
π

,

the integral being taken from t null to

13



t =
u
√

3
2h√

n− (l−l(1)+l(2)−···− 1
2m+ 1

2m
(1)−··· )2

l2−ml+m2+l(1)2−···

§ 4. We are arrived to the preceding results by starting from the law of probability
of the error α proportional to c−hα

2

, and we have proved that this law of probability
is able to be admitted in regard to the angles measured with the repeating circle. We
will show here that these results hold generally, whatever be the law of probability of
error α. Let φ(α) be this law. We will suppose it such that the same positive and [549]
negative errors are equally probable. We will suppose, moreover, that φ(α) extends
from α = −∞ to α = +∞: this supposition is always permitted; because, if the
probability becomes null beyond certain limits, the function φ(α) is then discontinued
and null beyond these limits. Let us seek now the probability of the values of the
function (o) of § 1. This function has been calculated by correcting the angles of each
triangle by a third of the observed sum of their errors. Let us suppose generally that,
in the first triangle, we correct the error α by (i + 1

3 )T , the error β by (i1 + 1
3 )T , and

consequently the third error by ( 1
3 − i− i1)T , by designating by α and β the errors α

and β thus corrected, we will have

α = α+ (i+ 1
3 )T, β = β + (i1 + 1

3 )T.

By designating similarly by α(1) and β(1) the errors α(1) and β(1) respectively cor-

rected from (i(1) + 1
3 )T (1), (i

(1)
1 + 1

3 )T (1), we will have

α(1) = α(1) + (i(1) + 1
3 )T (1), β(1) = β(1) + (i

(1)
1 + 1

3 )T (1),

and thus consecutively. The function (o) is, by § 1, equal to

pᾱ+ qβ̄ + p(1)ᾱ(1) + q(1)β̄(1) + · · · ;

next, we have

α = ᾱ+ 1
3T = α+ (i+ 1

3 )T ;

that which gives

ᾱ = α+ iT ;

we have similarly

β̄ = β + i1T, ᾱ(1) = α(1) + iT, . . .

The function (o) becomes thus

pα+ qβ + p(1)α(1) + q(1)β(1) + · · ·+ S(pi+ qi1)T,

S(pi+ qi1)T designating the sum

14



(pi+ qi1)T + (p(1)i(1) + q(1)i
(1)
1 )T (1) + · · ·

The correction of the function (o) relative to the values of i, i1, i(1), . . . is therefore [550]

−S(pi+ qi1)T,

and then this function thus corrected becomes

(ε) pα+ qβ + p(1)α(1) + q(1)β(1) + p(2)α(2) + · · · ,

In order to have the probability of the values of this last function, we will observe that
the probability of the simultaneous existence of the values of α, β and T is

dα dβ dTφ(α)φ(β)φ(T − α− β)∫∫∫
dα dβ dTφ(α)φ(β)φ(T − α− β)

,

the integrals of the denominator being taken within their positive and negative infinite
limits. Let us designate by k the integral

∫
dαφ(α), taken within these limits; it is easy

to see that this denominator will be equal to k3. The preceding fraction becomes thus

dα dβ dT

k3
φ(α)φ(β)φ(T − α− β);

the probability of the simultaneous existence of the values of α, β and T will be there-
fore

dα dβ dT

k3
φ[α+ (i+ 1

3T )]φ[β + (i1 + 1
3T )]φ[( 1

3 − i− i1)T − α− β]

T being supposed to be able to be varied from−∞ to +∞,we will have the probability
of the simultaneous values ofα and β by integrating the preceding function with respect

to T , within the infinite limits. Let us name
dα dβ

k3 ψ(α, β) this integral. We see, by § 20
of Book II, that by designating by s the value of the function (ε), the probability of s
will be proportional to

(H)
∫
dw c−sw

√
−1



∫∫
dα dβ ψ(α, β) cos(pα+ qβ)w

×
∫∫

dα(1) dβ(1) ψ(α(1), β(1)) cos(p(1)α(1) + q(1)β(1))w

× . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 ,

the integral relative to w being taken from w = −π to w = π and the integrals relative [551]
to α and β being taken within their infinite limits. Let us develop into a series, ordered
with respect to the powers of w, the function contained within the parenthesis. The
logarithm of

∫∫
dα dβ ψ(α, β) cos(pα+ qβ)w is equal to

log

∫∫
dα dβ ψ(α, β)−

w2

2

∫∫
dα dβ ψ(α, β)(pα+ qβ)2∫∫

dα dβ ψ(α, β)
− · · ·

15



Now we have∫∫
dα dβ ψ(α, β)

=

∫∫∫
dα dβ dTφ[α+ (i+ 1

3T )]φ[β + (i1 + 1
3T )]φ[( 1

3 − i− i1)T − α− β].

The integrals being taken within their infinite limits, it is easy to see, by the known
theory of multiple integrals, that the second member of this equation is equal to∫∫∫

dα dβ dT ′φ(α)φ(β)φ(T ′),

T ′ being equal to T − α− β; it is therefore equal to k3.
We have next

(u)


∫∫

dα dβ ψ(α, β)(pα+ qβ)2

=

∫∫∫
dα dβ dT ′φ(α)φ(β)φ(T ′)(pα+ qβ)2,

by substituting for α and β their values in α, β, and T ′ in the quantity (pα+qβ)2. Now
it follows from that which precedes that we have

α = ( 2
3 − i)α− (i+ 1

3 )β − (i+ 1
3 )T ′,

β = ( 2
3 − i)β − (i+ 1

3 )α− (i1 + 1
3 )T ′.

By substituting these values into the quantity (pα + qβ)2, we will be able, in its de-
velopment, to neglect the terms dependent on the products αβ, αT ′, βT ′, because the
triple integral

(u)
∫∫∫

dα dβ dT ′φ(α)φ(β)φ(T ′)(pα+ qβ)2

being taken within its infinite limits, and the function φ(α) being supposed the same [552]
for the values +α and −α, it is clear that the elements of this integral depending on
+αβ will be destroyed by the negative elements depending on −αβ. If we observe
next that by designating

∫
α2 dαφ(α) by k′′, we have∫∫∫
α2dα dβ dT ′φ(α)φ(β)φ(T ′) = k2k′′,

the function (u) will become

k2k′′[
2

3
(p2 − pq + q2) + 3(pi+ qi1)2];

the logarithm of ∫∫
dα dβ ψ(α, β) cos(pα+ qβ)w

16



being thus

log k3 − k′′

2kw
2[

2

3
(p2 − pq + q2) + 3(pi+ qi1)2]− · · ·

By passing again from logarithms to the numbers and neglecting, consistently with the
analysis of § 20 of Book II, the powers of w superior to the square, the integral (H) will
take this form

k3n

∫
dw c−sw

√
−1− k′′w2

2k [ 23 S(p2−pq+q2)+3S(pi+qi1)2],

S(p2 − pq + q2) representing the sum of the quantities

p2 − pq + q2 + p(1)2 − p(1)q(1) + · · · ;

S(pi+ qi1)2 representing the sum of the quantities

(pi+ qi1)2 + (p(1)i(1) + q(1)i(1))2 + · · · ,

and n being the number of triangles. Let us give to the preceding integral this form

k3n

∫
dw c

−Q
(
w+ s

√
−1

2Q

)2
− s2

4Q ,

Q being equal to
k′′

2k
[ 2
3 S(p2 − pq + q2) + 3S(pi+ qi1)2]

The integral must be taken from w = −π to w = π, and we have seen, in the section
cited from Book II, that it is able to be extended from w = −∞ to w = ∞; then the [553]
preceding integral, or the probability of s, becomes proportional to c−

s2

4Q or to

c
− 3ks2

4k′′[S(p2−pq+q2)+ 9
2

S(pi+qi1)2]

It is necessary now to determine the value of k
k′′ . For this we will make, as above,

use of the observed values of T, T (1), T (2), . . .When these values are in great number,
the sum of their squares divided by their number will be, quite nearly, by that which
we have established in Book II, the mean value of T 2; by making therefore

θ2 = T 2 + T (1)2 + T (2)2 + · · · ,

θ2

n will be this mean value. Now we have this value by multiplying each possible value
of T 2 by its probability and by taking the sum of all these products; the expression of
the mean value of T 2 will be therefore∫∫∫

dα dβ dT.T 2φ(α)φ(β)φ(T − α− β)∫∫∫
dα dβ dTφ(α)φ(β)φ(T − α− β)

,

the integrals being taken within their infinite limits. Let there be, as above,

T ′ = T − α− β;

17



the preceding fraction will become∫∫∫
(T ′ − α− β)2 dα dβ dT ′φ(α)φ(β)φ(T ′)∫∫∫

dα dβ dT ′φ(α)φ(β)φ(T ′)
,

all these integrals being taken again within their infinite limits. It is easy to see, by the
preceding analysis, that the numerator of this fraction is equal to 3k2k′′, and that its
denominator is equal to k3; the fraction becomes thus 3k′′

k ; by equating it to θ2

n , we
will have

k′′

k
=
θ2

3n
;

the probability of s is therefore proportional to [554]

c
− 9ns2

4θ2[S(p2−pq+q2)+ 9
2

S(pi+qi1)2]

It is clear that the values of i and of i1, which render this probability the most rapidly
decreasing are those which give pi + qi1 = 0; and then the preceding correction of
the measured arc becomes null. The case of i and i1 nulls give therefore the law of
probability of the geodesic errors, the most rapidly decreasing, a law which must be
evidently adopted.

Thence, it is easy to conclude that the probability that the value of s will be com-
prehended within the limits ±s is equal to

2
∫
dt c−t

2

√
π

,

the integral being taken from t null to

t =
3s

2θ

√
n

S(p2 − pq + q2)
,

that which is conformed to that which we have deduced in § 1 from the particular law
of probability of the errors α proportional to c−hα

2

.
Let us express, as in § 2, the error of a new base concluded from the first by the

function
lᾱ+mβ̄ + l(1)ᾱ(1) +m(1)β̄(1) + · · ·

By making, as previously,

α = ᾱ− iT, β = β̄ − i1T, α = ᾱ(1) − i(1)T (1), · · · ,

the correction of this function, relative to the values of i, i1, i(1), . . . will be −S(li +
mi1)T , and the error of the new base thus corrected will be

(λ) lα+mβ + l(1)α(1) +m(1)β(1) + · · ·

Let s′ be the value of this function; the probability of the simultaneous existence of the
values of s and s′ of the functions (ε) and (λ) will be, by § 21 of Book II, proportional [555]
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to ∫∫
dw dw′c−sw

√
−1−s′w′

√
−1−Qw2−2Q1ww

′−Q2w
′2
,

the integrals being taken from w and w′ equal to −∞ to w and w′ equal to +∞. We
see next, by the analysis of the section cited, that we have

Qw2 + 2Q1ww
′ +Q2w

′2

=
1
2 S
∫∫∫

dα dβ dT ′φ(α)φ(β)φ(T ′)[(pα+ qβ)w + (lα+mβ)w′]2∫∫∫
dα dβ dT ′φ(α)φ(β)φ(T ′)

,

the integrals relative to α, β and T ′ being taken within their infinite limits; that which
gives, by substituting for α and β their previous values,

Q =
1

3

k′′

k
[S(p2 − pq + q2) + 9

2 S(pi+ qi1)2],

Q1 =
1

3

k′′

k

{
S
[(
p− q

2

)
l +
(
q − p

2

)
m
]

+
9

2
S((pi+ qi1)(li+mi1)

}
,

Q2 =
1

3

k′′

k
[S(l2 −ml +m2) + 9

2 S(li+mi1)2];

whence we conclude, by the analysis of the section cited, that the probability of the
simultaneous existence of the values of s and of s′ is proportional to

c
− (Q2s

2−2Q1ss
′+Qs′2)

4(QQ2−Q2
1)

or

c
−
Q2 (s−s′ Q1

Q2
)2

4(QQ2−Q2
1)
− s′2

4Q2

The measure of the second base determines the value of s′; and, by naming it λ as
above, the probability of s will be proportional to

c
−
Q2 (s−λQ1

Q2
)2

4(QQ2−Q2
1) .

The most probable value of s is that which renders null the exponent of c; that which [556]
gives

s = λ
Q1

Q2
;

by making therefore

s = λ
Q1

Q2
+ u,

u will be the error of the arc measured and diminished by λQ1

Q2
; and the probability of

this error will be proportional to

c
− Q2u

2

4(QQ2−Q2
1) .
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The values of i, i1, i(1), . . . must be determined by the condition that the coefficient of
u2, in this exponential, is a maximum; let us see therefore what are the values of these
quantities of these quantities which render the fraction

Q2

QQ2 −Q2
1

a maximum. If we nameQ′ that which the expression ofQ becomes when we diminish
the finite integral S(pi+ qi1)2 by the element (pi+ qi1)2, we will have

Q′ = Q− 3

2

k′′

k
(pi+ qi1)2.

If we name similarly Q′1 that which the expression of Q1 becomes when we diminish
the finite integral S(pi+ qi1)(li+mi1) by the element (pi+ qi1)(li+mi1) , we will
have

Q′1 = Q1 −
3

2

k′′

k
(pi+ qi1)(li+mi1).

Finally, if we name Q′2 that which Q2 becomes when we diminish the finite integral
S(li+mi1)2 by the element (li+mi1)2, we will have

Q′2 = Q2 −
3

2

k′′

k
(li+mi1)2.

The fraction
Q′2

Q′Q′2 −Q′1 2

surpasses the fraction [557]
Q2

QQ2 −Q2
1

;

because, by substituting into the first, instead of Q′ , Q′1 and Q′2, their values, and
reducing to the same denominator its excess over the second, the numerator of this
excess becomes

3

2

k′′

k
[Q2(pi+ qi1)−Q1(li+mi1)]2.

Let us name further Q′′ that which Q′ becomes when we subtract 3
2
k′′

k (p(1)i(1) +

q(1)i
(1)
1 )2 from it; and, consequently, that which the expression ofQ becomes when we

diminish the integral S(pi+qi1)2 by the two elements (pi+qi1)2+(p(1)i(1)+q(1)i
(1)
1 )2.

Let us name similarly Q′′1 that which Q′1 becomes when we subtract from it

3

2

k′′

k
(p(1)i(1) + q(1)i

(1)
1 )(l(1)i(1) +m(1)i

(1)
1 );

finally, let us name Q′′2 that which Q′2 becomes when we subtract from it

3

2

k′′

k
(l(1)i(1) +m(1)i

(1)
1 )2;
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we will see, by the same process, that the fraction

Q′′2
Q′′Q′′2 −Q′′21

surpasses the fraction
Q′2

Q′Q′2 −Q′21
;

and, consequently, the fraction
Q2

QQ2 −Q2
1

.

By continuing thus, we see that this last fraction arrives to its maximum when the finite
integrals S(pi+qi1)2, S(pi+qi1)(li+mi1)2 and S(li+mi1)2 are null in the expressions
of Q, Q1 and Q2, that which reverts to supposing null the values of i, i1, i(1), . . .; this [558]
supposition gives therefore the law of probability of the most rapidly decreasing values
of Q, and then we have

Q =
θ2

9n
S(p2 − pq + q2),

Q1 =
θ2

9n
S
[(
p− q

2

)
l +
(
q − p

2

)
m
]
,

Q2 =
θ2

9n
S(l2 −ml +m2).

The weight of the error u becomes thus

− 9n
4θ2

S(p2 − pq + q2)− [S(p− q2 )l+(q− p2 )m]
2

S(l2−ml+m2)

It is easy to see that this result coincides with the analogous result of § 3.
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On the probability of the results deduced, by any processes whatsoever, from a great
number of observations.

The true march of the natural sciences consists in showing, through the path of in-
duction, from the phenomena to the laws and from the laws to the forces. We come
down next from these forces to the complete explication of the phenomena as far as
into their smallest details. The attentive inspection of a great assembly of observations
and their comparisons multiplied make a presentiment of the laws that it conceals. The
analytic expression of these laws depends on constant coefficients that we name ele-
ments. We determine, by the theory of probabilities, the most probable values of these
elements, and if, by substituting them into the analytic expressions, these expressions
satisfy all the observations, within the limits of the possible errors, we will be sure that
these laws are those of nature, or at least they are very little different from them. We
see thence how much the application of the Calculus of Probabilities is useful to natural [559]
Philosophy, and how much it is essential to have methods in order to deduce from ob-
servations the most advantageous results. These results are evidently those with which
one same error is less probable than with each other result. Thus the condition that it
is necessary to fulfill in the choice of a result is that the law of probability of its errors
is most rapidly decreasing. Before the application of the Calculus of Probabilities to
this object, each calculator subjected the results of the observations to the conditions
which to him appeared to be most natural. Now if we have certain formulas in order to
obtain the most advantageous result, he is no longer able to have uncertainty in this re-
gard, at least when we make use of the factors. We are able, not only to determine this
result, but further to assign the probability of the errors of the results obtained by some
other processes and to compare these processes to the most advantageous method. The
excessive length of the calculations that this method requires, when we employ a very
great number of observations, does not permit then to make use of it. But, by grouping
conveniently the equations of condition and by applying this method to the equations
which result from each of these groups, we are able at the same time to simplify con-
siderably the calculations and to conserve a part of the advantages which are attached
to them, as we will see it in the following. Whatever be the process of which we make
use, it is very useful to have a means to determine the probability of the results to which
we arrive, especially when there is a question of the important elements. We will have
easily this probability by the following method.

§ 1. Let us consider first a quite simple case, the one of the angles measured by
means of a repeating circle. Let us suppose that at the end of each partial observa-
tion we read the corresponding division of the circle; we will have, by departing from
the point of departure, a sequence of terms of which the first will be the angle it-
self, the second will be the double of this angle, the third will be the triple of it, and
thus consecutively. Let us designate by A1, A2, . . . , An these different terms, and by [560]
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a1, a2, . . . , an the n partial angles successively measured. We will have

A1 = a1,

A2 = a2 + a1,

A3 = a3 + a2 + a1,

· · · · · · · · · · · · ;

and, if we name y the true simple angle, we will have this sequence of equations

(a)



y − a1 + x1 =0,

y − a2 + x2 =0,

y − a3 + x3 =0,

· · · · · · · · · · · · · · · ;

y − an + xn =0,

x1, x2, x3, . . . being the errors of the angles a1, a2, a3, . . . We will have, by § 20 of
Book II, the most advantageous result by multiplying by unity each of the preceding
equations and by adding them, that which gives

y =
a1 + a2 + · · ·+ an

n
+
x1 + x2 + · · ·+ xn

n
.

By supposing x1, x2, . . . null, we will have the result of the most advantageous method,
and the error of this result will be x1+x2+···+xn

n . By designating by u this error, we see,

by the section cited, that the probability of u is proportional to c−
knu2

2k′′ , k being equal
to
∫
dxφ(x) and k′′ being equal to

∫
x2 dxφ(x), φ(x) being the law of probability

of the errors x of the partial observations, this law being supposed the same for the
positive and negative errors and being able to be extended to infinity; c is always the
number of which the hyperbolic logarithm is unity.

Svangerg, in his excellent Work on the degree of Lapland, exposes, in order to
determine y, a new process founded on the following considerations. Each term of the
sequenceA1, A2, . . . is able to give its value, which is able to be equally determined by
the difference As′ −As of any two terms whatsoever of this sequence, s′ being greater
than s. This difference, divided by s′ − s, gives a value of y so much more exact as [561]
this divisor is greater. By multiplying it therefore by this divisor, we will render it
preponderant by reason of its exactitude. If we make next a sum of these products and
if we divide it by the number of simple angles that it contains, we will have a value of y
which, concluded from all the combinations of the quantities A1, A2, . . . by giving to
each of these combinations the influence that it must have, seems ought to approach to
the truth the nearest that it is possible. This would be just, in fact, if all these values of
y were independent. But their mutual dependence makes that the same simple angles
are employed many times and in a different manner for each of them, that which must
change the respective probabilities of the values of y and, consequently, the probability
of the mean value. This is a new example of the illusions to which we are exposed in
these delicate researches.
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The process of which there is question reverts to forming the sum of the differences
As′ − As, s′ being greater than s and having with this condition to be extended from
s′ = 1 to s′ = n; s must be extended from s = 0 to s = n − 1, and we must make
A0 = 0. By dividing next this sum by the number of simple angles that it contains, we
have the value of y. It is easy to see that this value is

γ =
nSAn − 2SSAn−1

n(n+1)(n+2)
1.2.3

,

SAn expressing the sum of the quantities A1, A2, . . . , An; SSAn−1 is the sum of the
quantities

A1,

A1 +A2,

A1 +A2 +A3,

· · · · · · · · · · · · ,
A1 +A2 + · · ·+An−1;

the angle a1 is contained n − i + 1 times in SAn, it is contained (n−1)(n−i+1)
1.2 times [562]

in the function SSAn−1; it is therefore contained i(n−i+1)
n(n+1)(n+2)

1.2.3

times in the preceding

expression of y. Thence it follows that this process reverts to multiplying the equations
(a) respectively by the factors

n
n(n+1)(n+2)

6

,
2(n− 1)

n(n+1)(n+2)
6

,
3(n− 2)

n(n+1)(n+2)
6

, ;

and then we find, by § 20 from Book II, that the probability of the error u in the
preceding expression of y is proportional to

c
− k
k′′

u2

SM2
i ,

Mi being here equal to i(n−i+1)
n(n+1)(n+2)

6

; the integral SM2
i must comprehend all the values

of M2
i from i = 1 to i = n inclusively. We have thus

SM2
i =

6

5

n2 + 2n+ 2

n(n+ 1)(n+ 2
.

n being supposed very great, this value of SM2
i is reduced very nearly to 6

5n ; the
probability of the error u is therefore proportional to

c−
5
6
k
k′′ nu

2

.

We have just seen that, in the most advantageous method, the probability of a sim-
ilar error of the result is proportional to

c−
knu2

2k′′ .
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Thus, in order that the same errors become equally probable, the observations must be,
in the process of Svanberg, more numerous than in the ordinary process, according to
the ratio of six to five.

We would be able to believe that, the result obtained by the process of Svanberg be- [563]
ing a new datum from the observations, its combination with the result of the ordinary
method must give a more exact result, and of which the law of probability of the errors
is more rapidly decreasing. But the analysis proves that this is not. Let us consider, in
fact, the system of equations

(b)


p1y − a1 + x1 =0,

p2y − a2 + x2 =0,

· · · · · · · · · · · · ;

pny − an + xn =0,

x1,x2, . . . being, as above, the errors of the observations. The most advantageous
method prescribes to multiply these equations, respectively, by p1, p2, . . . and to add
them, that which gives

y =
Spiai
Sp2

i

− Spixi
Sp2

i

,

the sign S comprehending, as above, all the values that it precedes, from i = 1 to i = n
inclusively. The first term of this expression will be the value of y given by the most
advantageous method, and its error will be Spixi

Sp2i
; in designating it by u, its probability

will be, by § 20 of Book II, proportional to

c−
k

2k′′ u
2Sp2i .

If we multiply the equations (b) respectively by m1, m2, m3, . . . , their sum will give

y =
Smiai
Smipi

− Smixi
Smipi

.

The first term of this expression will be the value of y relative to the system of factors
m1, m2, . . ., and Smixi

Smipi
will be the error of this value, an error that we will designate

by u′ . If we make
l = Spixi, l′ = Smixi,

the probability of the simultaneous existence of l and of l′ will be, by § 21 of Book II, [564]
proportional to

c−
k

2k′′E (l2Sm2
i−2ll′Smipi+l′2Sp2i ),

E being equal to Sm2
iSp2

i − (Smipi)
2. Now we have

l = uSp2
i , l′ = u′Smipi;

the simultaneous existence of u and of u′ is therefore proportional to

c−
k

2k′′
Sp2i
E [u2E+(u′−u)2(Smipi)2].
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Let e be the difference of the preceding values from y; we have

e =
Spiai
Sp2

i

− Smiai
Smipi

;

the equality of these values, corrected respectively of their errors u and u′ , give

e = u− u′ ;

the preceding exponential becomes thus

c
− k

2k′′ Sp2i

[
u2+e2

(Smipi)
2

E

]
.

e is a quantity given by the observations; the value of u which renders this exponential
a maximum is evidently u = 0; thus the consideration of the result given by the sys-
tem of factors m1, m2, . . . add no correction to the result of the most advantageous
method and changes not at all the law of probability of its error u, which remains
always proportional to

c−
k

2k′′ u
2Sp2i .

If the very great number of equations of condition do not permit applying this
method to them, there will be always advantage to apply it to some equations resulting
from groups of these equations. Let us suppose that we have r groups, each formed of
s equations, so that n = rs; we will have the following r equations [565]

(V)


P1y −A1 +X1 = 0,

P2y −A2 +X2 = 0,

. . . . . . . . . . . . . . . .
Pry −Ar +Xr = 0,

and we have
P1 = p1 + p2 + · · ·+ ps,

A1 = a1 + a2 + · · ·+ as,

X1 = x1 + x2 + · · ·+ xs,

P2 = ps+1 + ps+2 + · · ·+ p2s,

. . . . . . . . . . . . . . . . . . . . . . . .

By applying to the equations (V) the process of the most advantageous method, we
have

y =
SPtAt
SP 2

t

− SPtXt

SP 2
t

;

the sign S embraces all the quantities which it precedes, from t = 1 to t = r inclusively.
SPtXt

SP 2
t

is the error of the value SPtAt
SP 2
t

taken for y; by designating this error by u, its
probability will be, by § 20 of Book II, proportional to

c
− k

2k′′
u2

Sm2
i ;
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m1, m2, . . . being the coefficients of x1, x2, . . . in the expression of u; and the integral
Sm2

i being extended from i = 0 to i = n inclusively. Now it is easy to see that we
have

m1 =
P1

SP 2
t

, m2 =
P1

SP 2
t

, · · · , ms =
P1

SP 2
t

,

ms+1 =
P2

SP 2
t

, · · · · · · · · · · · · , · · · , m2s =
P2

SP 2
t

,

m2s+1 =
P3

SP 2
t

, · · · · · · · · · · · · , · · · , · · · · · · ;

thence it is easy to conclude that we have [566]

Sm2
i =

s

SP 2
t

=
n

rSP 2
t

;

the probability of u is therefore proportional to

c−
k

2k′′
r
nu

2SP 2
t .

If we reunited all the equations into a single group, the probability of u would be
proportional to

c−
k

2k′′
u2

n (Spi)2 ;

because then r would become unity, P1 would become Spi, P2, P3, . . .would be nulls.
The weight of the result or the coefficient of −u2 would be therefore, in the first case,

k

2k′′
r

n
SP 2

t ,

and, in the second case, it would be

k

2k′′n
(Spi)2

Now the first of these quantities surpasses the second; in fact,

(Spi)2 = (P1 + P2 + · · ·+ Pr)
2.

If, in the development of this last square, we substitute, instead of the product 2P1P2,
its value P 1

2 +P 2
2 − (P1−P2)2, and thus of the other products, we see that this square

is equal to rSP 2
t , less a positive quantity; there is therefore advantage to partition the

equations of condition into many groups to which we apply the most advantageous
method.

We see further that there is advantage to augment the number of groups; because,
if we suppose r even and equal to 2r′, the weight of the result relative to the number r′

of groups will be proportional to

r′[(P1 + P2)2 + (P3 + P4)2 + · · ·+ (P2r′+1 + P2r′)
2];

and the weight of the result relative to 2r′ groups will be proportional to [567]
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2r′(P 2
1 + P 2

2 + · · ·+ P 2
2r′).

This last quantity surpasses the preceding, as we see it by observing that

2(P 2
1 + P 2

2 ) > (P1 + P2)2.

If the equations of condition contain many unknown elements, y, y′, . . . there will
be always advantage to partition them into groups in order to apply to the equations
resulting from these groups the most advantageous method. The more we will multiply
these groups, the more we will augment the weight of the results.

But, from whatever manner that we have obtained these results, we will be able
always to determine, by the following theorem, the probability of their errors. If we
have, by any process whatsoever, deduced from the equations of condition the equation
y − a = 0, it is clear that we have multiplied the equations of condition, respectively,
by some factors M1, M2, M3, . . . such that the unknowns have disappeared, with the
exception of y which has unity for factor. The error u of the result y = a is evidently
M1x1 +M2x2 + · · · ; the probability of this error will be therefore, by § 20 of Book II,
proportional to

c
− k

2k′′
u2

SM2
i ,

the sign S being extended to all the values of i from i = 1 to i = n, n being the
number of observations. All is reduced therefore to determine, in the process that we
have followed, the factors M1, M2, . . .

If, for example, the equations of condition contain two unknowns y and y′ and if,
in order to form the final two equations, we add together all these equations: 1 ˚ by
changing the signs of the equations in which y has the sign −; 2 ˚ by changing the
signs of the equations in which y′ has the sign −, we will obtain, by this process of
which we have often made use, two equations that we will represent by the following: [568]

Py +Ry′ −A = 0,

P1y +R1y
′ −A1 = 0.

In multiplying the first of these equations by

R1

PR1 − P1R

and the second by
−R

PR1 − P1R
,

we will have, by adding them,

γ − AR1 −A1R

PR1 − P1R
= 0.

In the equations of condition, xi has been multiplied by ±1; the sign − having place
if, in order to form the final equations, we have changed the signs of the ith equation.
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Thence it is easy to conclude that, if we designate by s the number of equations of
condition in which the coefficients of y and of y′ have the same sign, we will have

SM2
i =

s(R1 −R)2 + (n− s)(R1 +R)2

(PR1 − P1R)2
.

We will simplify the calculation by preparing the equations of condition in a manner
that in each the coefficient of y has the sign +. We will form next a first final equation
by adding the s equations in which the coefficient of y′ has the sign +. We will form a
second final equation by adding the n − s equations in which the coefficient of y′ has
the sign −. Let

fy + gy′ − h = 0,

f1y + g1y
′ − h1 = 0

be these two equations. By multiplying the first by g1
fg1+f1g

and the second by g
fg1+f1g

, [569]
we will have

y − hg1 + h1g

fg1 + f1g
= 0,

and it is easy to see that

SM2
i =

sg2
1 + (n− s)g2

(fg1 + f1g)2
.

These values of y and of SM2
i coincide with the preceding, as it is easy to see it by

observing that we have

P = f + f1, R = g − g1, A = h+ h1,

P1 = f − f1, R1 = g + g1, A1 = h− h1.

The equations of condition being represented generally by the following

0 = xi − ai + piy + qiy
′,

if we multiply them respectively by m1, m2, . . . and if we add them, we will have the
final equation

0 = Smixi − Smiai + ySmipi + y′Smiqi;

if we multiply next the same equations, respectively by n1, n2, . . . , we will have, by
adding them, the final equation

0 = Snixi − Sniai + ySnipi + y′Sniqi.

By multiplying the first of these equations by Sniqi
I and the second by− Smiqi

I , I being
equal to

SmipiSniqi − SnipiSmiqi,

we will have

0 = y − SmiaiSniqi − SniaiSmiqi
I

+
SmixiSniqi − SnixiSmiqi

I
.
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This last term is the error of the value that we obtain for y, by supposing nulls x1, x2, . . .: [570]
we have therefore then

Mi =
miSniqi − niSmiqi

I
;

whence it is easy to conclude

c
− k

2k′′
u2

SM2
i = c−

k
2k′′ u

2 I2

H ,

by making

H = Sm2
i (Sniqi)2 − 2SminiSmiqiSniqi + Sn2

i (Smiqi)
2,

a result which coincides with the one of § 21 of Book II, in which we have proved that
the maximum of the coefficient of−u2 in this exponential takes place when we suppose
generally mi = pi, ni = qi; this supposition gives therefore the most advantageous
result or the one of which the weight is a maximum.

We will determine the value of k
2k′′ by means of the squares of the remainders

which take place when we substitute into the equations of condition the values deter-
mined for y and y′. By designating by εi this remainder in the ith equation of condition

0 = xi − ai + piy + qiy
′,

and designating by u and u′ the errors of these values, we will have

0 = xi + εi − piu− qiu′;

that which gives

Sε2i = Sx2
i − 2uSpixi − 2u′Sqixi + u2Sp2

i + 2uu′Spiqi + u′2Sq2
i .

We have, by § 19 of Book II,

Sx2
i =

k′′

k
n;

next, the values u and u′ cease to be probable, when they surpass the quantities of order
1√
n

. The values of Spixi and Sqixi cease to be probable when they surpass quantities of
order

√
n; the values of−2uSpixi and−2u′Sqixi cease therefore to be probable when [571]

they cease to be of a finite order, n being supposed infinitely great. Sp2
i , Spiqi and Sq2

i

being of order n, the values of u2Sp2
i , 2uu′Spiqi, u′2Sq2

i cease to be probable when
they cease to be finite quantities. We are able therefore to neglect all these quantities
and to suppose, whatever be the process of which we make use,

Sε2i =
k′′

k
n,

that which gives
k

2k′′
=

n

2Sε2i
.
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§ 2. The preceding methods are reduced to multiplying each equation of condition
by a factor and to adding all these products in order to form a final equation. But we
are able to employ some other considerations in order to obtain the result sought: for
example, we are able to choose that of the equations of condition which must most ap-
proach to the truth. The process that I have given in § 40 of Book III of the Mécanique
céleste is of this kind. By supposing the equations (b) of the previous section prepared
in a manner that p1, p2, p3, . . . are positive and that the values a1

p1
, a2p2 , . . . of y, given

by these equations under the supposition of x1, x2, . . . nulls, form a decreasing se-
quence, the process of which there is question consists in choosing the rth equation of
condition, such that we have

p1 + p2 + · · ·+ pr−1 < pr + pr+1 + · · ·+ pn,

p1 + p2 + · · ·+ pr > pr+1 + pr+2 + · · ·+ pn,

and in supposing
y =

ar
pr
.

This value of y renders a minimum the sum of all the deviations from the other values,
taken positively; because by naming x1, x2, . . . these deviations, x1, x2, . . . , xr−1

will be positive and xr+1, xr+2, . . . , xn will be negative. If we increase the preced-
ing value of y by the infinitely small quantity δy, the sum of the positive deviations [572]
x1, x2, . . . , xr−1 will diminish by the quantity

δy(p1 + p2 + · · ·+ pr−1);

but the sum of the negative deviations, taken with the sign +, will increase by the
quantity

δy(pr+1 + pr+2 + · · ·+ pn);

the deviation xr will become prδy. The sum of the deviations, taken all positively, will
be therefore increased by the quantity

δy(pr + pr+1 + · · ·+ pn − p1 − p2 − · · · − pr−1);

by the conditions to which the choice of the rth equation is subject, this quantity is
positive. We will see, in the same manner, that if we diminish ar

pr
by δy, the sum of the

deviations taken positively will be increased by the positive quantity

δy(p1 + p2 + · · ·+ pr − pr+1 − pr+2 − · · · − pn).

Thus, in the two cases of an increase and of a diminution of the value ar
pr

by y, the
sum of the deviations, taken positively, is increased. This consideration seems to give a
great advantage to the preceding value of y, which, when there is a question to choose a
middle among the results of an odd number of observations, become the result equidis-
tant from the extremes. But the Calculus of probabilities is able alone to estimate this
advantage: I will therefore apply it to this delicate question.

The sole data of which we will make use are that the equation of condition

0 = xr − ar + pry
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gives, setting aside the errors, a value of y smaller than the r−1 anterior equations and
greater than the n− r posterior equations; and that we have

p1 + p2 + · · ·+ pr−1 < pr + pr+1 + · · ·+ pn,

p1 + p2 + · · ·+ pr > pr+1 + pr+1 + · · ·+ pn,

We have [573]
y =

a1

p1
− x1

p1
=
ar
pr
− xr
pr

;

that which gives
x1

p1
=
a1

p1
− ar
pr

+
xr
pr
.

Thus, a1p1 surpassing ar
pr
, x1

p1
surpasses xr

pr
. It is of it the same of x2

p2
, x3

p3
, . . . to xr−1

pr−1
.

We will see in the same manner that xr+1

pr+1
, xr+2

pr+2
, . . . , xnpn are less than xr

pr
. Thus, the

sole conditions to which we will subject the errors and the equations of condition are
the following:

(c)

 s > r, s < r,
xs
ps

<
xr
pr
,

xs
ps

>
xr
pr

;

p1 + p2 + · · ·+ pr−1 < pr + pr+1 + · · ·+ pn,

p1 + p2 + · · ·+ pr > pr+1 + pr+1 + · · ·+ pn,

It is uniquely according to these data from the observations that we will determine the
probability of the error xr. We will have besides no regard to the order that the first
r − 1 equations of condition and the n− r last observe among them, nor to the values
of the quantities a1, a2, . . . , an.

Let us represent, as above, by φ(x) the law of probability of the error x of the
observations and, in order to express that this probability is the same for the positive
and negative errors, let us suppose φ(x) a function of x2.

Now, if we suppose xr positive, the probability that x1 will surpass p1
xr
pr

will be

1

2
−

1
2

∫
dxφ(x)

k
,

the integral
∫
dxφ(x) being taken from x = 0 to x = p1

xr
pr

and k being, as above, this
integral taken from x null to x infinity. The probability that the quantities x1

p1
, x2

p2
, . . ., [574]

xr−1

pr−1
will be all greater than xr

pr
is therefore proportional to the product of the r − 1

factors

1−
∫
dxφ(x)

k
, 1−

∫
dxφ(x)

k
, . . . ;

the integral of the first factor being taken from x = 0 to x = p1
xr
pr

; the integral of the
second factor being taken from x = 0 to x = p2

xr
pr

; and thus consecutively.
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Similarly, all the quantities xr+1

pr+1
, xr+2

pr+2
, . . . , xnpn being supposed smaller than xr

pr
,

we see, by the same reasoning, that the probability of this supposition is proportional
to the product of the n− r factors

1 +

∫
dxφ(x)

k
, 1 +

∫
dxφ(x)

k
, . . . ;

the integral of the first factor being taken from x = 0 to x = pr+1
xr
pr

, that of the second
factor being taken from x = 0 to x = pr+2

xr
pr

, and thus consecutively. The probability
of the error xr is φ(xr); thus the probability that the error of the rth observation will be
xr and that the value of y given by the rth equation will be smaller than the values given
by the preceding equations, and will surpass the values given by the following equa-
tions, this probability, I say, will be proportional to the product of the n− 1 preceding
factors and of φ(xr).

x being supposed very small, we have, to the quantities near of order x3,∫
dxφ(x) = xφ(0) +

1

2
x2φ′(0),

φ′(0) being that which dφ(x)
dx becomes when x is null. In the present question, φ(x)

being a function of x2, we have φ′(0) = 0, and then we have∫
dxφ(x) = xφ(0).

The preceding factors will become thus, by making xr
pr

= ζ, [575]

1− p1ζ
φ(0)

k
,

1− p2ζ
φ(0)

k
,

· · · · · · · · · · · · · · · ,

1− pr−1ζ
φ(0)

k
,

1 + pr+1ζ
φ(0)

k
,

· · · · · · · · · · · · · · · ,

1 + pnζ
φ(0)

k
.

If we designate by φ′′(0) the value of d
2φ(x)
dx2 when x is null, φ(xr) becomes

φ(0) +
1

2
p2
rζ

2φ′′(0).

The sum of the hyperbolic logarithms of all these factors is, to the quantities near of
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order ζ3, by dividing the factor φ(xr) by φ(0),

−ζ φ(0)

k
(p1 + p2 + · · ·+ pr−1 − pr+1 − pr+2 − · · · − pn)

− ζ2

2

[
φ(0)

k

]2

(p2
1 + p2

2 + · · ·+ p2
r + p2

r+1 + · · ·+ p2
n)

+
1

2
p2
rζ

2

{
φ′′(0)

k
+

[
φ(0)

k

]2
}
.

The probability of ζ is therefore proportional to the base c of the hyperbolic logarithms,
elevated to a power of which the exponent is the preceding function. We must observe
that by virtue of the conditions to which the choice of the rth equation is subject, the
quantity

p1 + p2 + · · ·+ pr−1 − pr+1 − pr+2 − · · · − pn
is, setting aside the sign, a quantity less than pr, and that thus, by supposing ζ of order [576]

1√
n

, the number n of the observations being supposed quite great, the term depending
on the first power of ζ, in the preceding function, is of order 1√

n
; we are able therefore

to neglect it, thus as the last term of this function. By designating therefore by Sp2
i the

entire sum
p2

1 + p2
2 + · · ·+ p2

n,

the probability of ζ will be proportional to

c−
ζ2

2 [φ(0)k ]
2

Sp2i ,

ζ or xrpr being the error of the value ar
pr

given for y by the rth equation. The value given
by the most advantageous method is, by the preceding section,

y =
Spiai
Sp2

i

,

and the probability of an error ζ in this result is proportional to

c−
k

2k′′ ζ
2Sp2i ,

k′′ being always the integral
∫
x2 dxφ(x), taken from x null to x infinity. The result of

the method that we just examined, and that we will name method of situation, will be
preferable to the one of the most advantageous method, if the coefficient of−ζ2, which
is relative to it, surpasses the coefficient relative to the most advantageous method,
because then the law of probability of the errors will be more rapidly decreasing there.
Thus, the method of situation must be preferred if we have[

φ(0)

k

]2

>
k

k′′
;

in the contrary case, the most advantageous method is preferable. If we have, for
example,

φ(x) = c−hx
2

,
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k becomes
√
π

2
√
h

and k′′ becomes
√
π

4h
√
h

; that which gives k
k′′ = 2h. The quantity [577][

φ(0)
k

]2
becomes 4h

π ; now we have 2h > 4h
π ; the most advantageous method must

therefore then be preferred.
By combining the results of these two methods, we are able to obtain a result of

which the law of probability of the errors is more rapidly decreasing. Let us name
always ζ the error of the result of the method of situation, and let us designate by ζ ′ the
error of the result of the most advantageous method. The first of these results is, as we
have seen, arpr , and the second is Spiai

Sp2i
. If we designate Spixi by l, l

Sp2i
will be the error

of this last result; thus we will have l = ζ ′Sp2
i . The probability of the simultaneous

existence of l and of ζ is, by § 21 of Book II, proportional to∫
dw c−lw

√
−1φ(prζ)cprζw

√
−1

∫
dxφ(x)cp1xw

√
−1

∫
dxφ(x)cp2xw

√
−1 · · · ,

the integral relative to w being taken from w = −π to w = π. The integral relative
to x, in the factor

∫
dxφ(x)cp1xw

√
−1, must be taken, by that which precedes, from

x = p1ζ to x =∞. In developing this factor according to the powers of w, it becomes∫
dxφ(x) + p1w

√
−1

∫
xdxφ(x)− p2

1

w2

2

∫
x2dxφ(x) + · · ·

By taking the integral within the preceding limits, we have, to the quantities near of
order ζ3, ∫

dxφ(x) = k − p1ζφ(0).

By neglecting similarly the quantities of the orders ζ2w, ζ3w2, . . ., we have

p1w
√
−1

∫
xdxφ(x) = k′p1w

√
−1,

−p2
1

2
w2

∫
x2dxφ(x) = −k

′′

2
p2

1w
2,

k′ being the integral
∫
xdxφ(x) taken from x = 0 to x infinity. The factor of which [578]

there is question becomes therefore, by neglecting w3, conformably to the analysis of
the section cited from Book II,

k − p1ζφ(0) + k′p1w
√
−1− k′′

2
p2

1w
2.

Its hyperbolic logarithm is

p1ζ
φ(0)

k
+
k′

k
p1w
√
−1− k′′

2k
p2

1w
2 − p2

1

2

[
ζ
φ(0)

k
− k′

k
w
√
−1

]2

+ log k.

By changing p1 successively into p2, p3, . . . , pr−1, we will have the logarithms of the
factors following, to the factor relative to pr−1.

In the factor
∫
dxφ(x)cpr+1xw

√
−1, the integral must be taken from x = −∞ to

x = pr+1ζ; then
∫
xdxφ(x) becoming −k′, the logarithm of this factor is

pr+1ζ
φ(0)

k
− k′

k
pr+1w

√
−1− k′′

2k
p2
r+1w

2

−
p2
r+1

2

[
ζ
φ(0)

k
− k′

k
w
√
−1

]2

+ log k.
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We will have the logarithms of the factors following by changing pr+1 successively
into pr+2, pr+3, . . . , pn. The factor φ(prζ)cprζw

√
−1 is equal to[

φ(0) +
p2
rζ

2

2

]
φ′′(0)cprζw

√
−1,

and its logarithm is

p2
r

2
ζ2φ

′′(0)

φ(0)
+ prζw

√
−1 + log φ(0).

Now, if we reassemble all these logarithms, if we consider next the conditions (c)
to which the rth equation is subject, finally if we pass again from the logarithms to
the numbers, we find, by neglecting that which it is permissible to neglect, that the
probability of the simultaneous existence of l and of ζ is proportional to∫

dφ c
−lw
√
−1−

{[
ζ
φ(0)
k −

k′
k w
√
−1
]2

+ k′′
k w

2

}2
Sp2i
2

By making therefore [579]

F =

(
k′′

k
− k′2

k2

)2 Sp2
i

2
,

the probability of the simultaneous existence of ζ and of ζ ′ will be proportional to

c−
ζ2

2 [φ(0)k ]
2

Sp2i−
[ζ′−ζ k

′
k
φ(0)
k ]

2

4F (Sp2i )
2

∫
dw c

−F
{
w+

[ζ′−ζ k
′
k
φ(0)
k ]
√
−1 Sp2i

2F

}
.

By the analysis of § 21 of Book II, the integral relative to w is able to be taken from
w = −∞ to w =∞, and then the preceding probability becomes proportional to

c
− ζ

2

2 Sp2i [
φ(0)
k ]

2
− [ζ′−ζ k

′
k
φ(0)
k ]

2

2( k′′k − k
′2
k2

)
Sp2i

,

an expression that we are able to set yet under this form

c
− k

2k′′ ζ
′2Sp2i− k

′′
k

[ζ φ(0)k −ζ′ k
′
k ]

2

2( k′′k − k
′2
k2

)
Sp2i
.

If we name e the excess of the value of y given by the most advantageous method over
that which the method of situation gives, we will have ζ = ζ ′ − e. Let us suppose

ζ ′ = u+
eφ(0)

k

[
φ(0)
k −

k′

k′′

]
k
k′′ −

k′2

k′′2 +
[
φ(0)
k −

k′

k′′

]2 ;

the probability of u will be proportional to

c
−u22 Sp2i

 k
k′′+

k′′
k [φ(0)k − k′

k′′ ]
2

k′′
k
− k′2
k2


;
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the result of the most advantageous method must therefore be diminished by the quan-
tity

eφ(0)
k

[
φ(0)
k −

k′

k′′

]
k
k′′ −

k′2

k′′2 +
[
φ(0)
k −

k′

k′′

]2 ;

and the probability of the error u, in this result thus corrected, will be proportional to [580]
the preceding exponential. The weight of the new result will be augmented, if φ(0)

k −
k′

k′′

is not null; there is therefore advantage to correct thus the result of the most advanta-
geous method. Ignorance where one is of the law of probability of the errors of the
observations renders this correction impractical; but it is remarkable that, in the case
where this probability is proportional to c−hx

2

, that is where we have φ(x) = c−hx
2

,
the quantity φ(0)

k −
k′

k′′ is null. Then the result of the most advantageous method receives
no correction of the result from the method of situation, and the law of probability of
errors remains the same.

(Feb. 1818)
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