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A lottery being composed of n tickets of which r exit at each drawing, we demand the probability
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very simple and quite close expression of the probability when n and i are great numbers.
Application to the case where n = 10000 and r = 1. There is in this case, odds a little
less than one against one that all the tickets will exit in 95767 drawings, and odds a little
more than one against one that they will exit in 95768 drawings. In the case of the lottery of
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*Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier University,
Cincinnati, OH. July 26, 2021

1



To determine the probability to draw thus from the preceding urns x white balls, before bringing
forth either x′ black balls, or x′′ red balls, or, etc. Solution of the problem by the method of
combinations. Identity of this problem with the one which consists in determining the lots of
a number n of players of whom the respective skills are known, when there are lacking, in
order to win the game, x coupts to the first, x′ to the second, x′′ to the third, etc. . . . . . . No 7.

General solution of the preceding problem, by the analysis of generating functions. In the case
of two players A and B of whom the respective skills are equal, the problem is the one
that Pascal proposed to Fermat and that these two great geometers resolved. It reverts to
imagining an urn which contains two balls, one white and the other black, bearing each the
no 1, the white ball being for player A, the black ball for player B. We draw from the urn
one ball that we return next there, in order to proceed to a new drawing, and we continue thus
until the sum of the drawn values, favorable to one of the players, attains a given number.
After a certain number of drawings, there is lacking yet to player A, the number x, and to
player B the number x′. The two players agree then to be retired from the game by dividing
the stake that they have set in beginning: the concern is to know how this division must be
made. That which returns to the players must be evidently proportional to their respective
probabilities to win the game. Generalization and solution of the problem: 1◦ by supposing
in the urn one white ball favorable to A and bearing the no 1 and two black balls favorable to
B and the one bearing, the no 1, and the other, the no 2; each ball diminishing with its number
the number of points which lack to the player to whom it is favorable; 2◦ by supposing in the
urn, two white balls bearing the nos 1 and 2 and two black balls bearing the same numbers.
No 8.

Conceiving in an urn, r balls marked with the no 1, r balls marked with the no 2, and so forth until
no n; these balls being well mixed in the urn and each drawn successively, we demand the
probability that there will exit at least s balls at the rank indicated by their number. General
solution of the problem and of the one in which, having i urns each containing the number n
of balls, all of different colors and if we draw all successively from each urn, by completing
the drawing from one urn, before passing to another urn, we demand the probability that one
or many balls of the same color, will exit at the same rank in the complete drawings from the
urns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No 9.

Two players A and B of whom the respective skills are p and q and of whom the first has the
number a of tokens, and the second the number b, play with this condition, that the one who
loses gives a token to his adversary, and that the game ends only when one of the players
will have lost all his tokens; we demand the probability that one of the players will win the
game before or at the nth coup. Generating function of this probability, whence we deduce
the general expression of the probability. Expression of the probability that the game will
end before or at the nth coup. That which it becomes, when we suppose a infinite. Very close
value of the same expression, when we suppose moreover p and q equals, and when b is a
considerable number. If b = 100, there is disadvantage to wager one against one that A will
win the game in 23780 trials; but there is advantage to wager that he will win it in 23781
trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No 10.

A number n + 1 of players play together with the following conditions. Two of among them play
first, and the one who loses is retired after having set a franc into the game, in order to return
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only after all the other players have played; that which holds generally for all the players
who lose; and who thence become the last. The one of the first two players who has won,
plays with the third, and, if he beats him, he continues to play with the fourth, and so forth,
until he loses, or until he has beat successively all the players. In this last case, the game
is ended. But, if the player winning on the first coup, is vanquished by one of the other
players; the vanquisher plays with the following player and continues to play until either he
is vanquished, or until he has beaten consecutively all the players. The game continues thus
until one of the players beats consecutively all the others, that which ends the game; and
then the player who wins it, carries away all that which has been set into the game. This
premised, we demand: 1◦ the probability that the game will end before or at the number x
of coups; 2◦ the probability that any one of the players will win the game in this number
of coups; 3◦ his advantage. General solution of the problem. Generating functions of these
three quantities, whence we deduce their values. Quite simple expressions of these quantities,
when x is infinite or when the game is continued indefinitely. . . . . . . . . . . . . . . . . . . . . . No 11.

q being the probability of a simple event at each coup, we demand the probability to bring it forth i
times consecutively, in the number x of coups. Solution of the problem. Generating function
of this probability, whence we deduce the expression of the probability.

Two players A and B, of whom the respective skills are q and 1− q, play with this condition, that
the one of the two who will have vanquished first i times consecutively his adversary, will win
the game; we demand the respective probabilities of the players to win the game, before or
at the trial x. Solution of the problem by means of the generating functions. Expressions of
these probabilities in the case of x infinite. Respective lots of the players, by supposing that
at each trial that they lose, they deposit a franc into the game. . . . . . . . . . . . . . . . . . . . . . . No 12.

An urn being supposed to contain n + 1 balls, distinguished by the nos 0, 1, 2, 3, . . ., n, we draw
from it one ball that we return into the urn, after the drawing; we demand the probability that
after i drawings, the sum of the numbers drawn will be equal to s. Solution of the problem,
based on a singular artifice, which consists in the use of a characteristic proper to make known
the successive diminution that it is necessary to submut to the variable, in each term of the
final result of the successive integrations, when they are discontinuous. Application of the
solution to the problem which consists in determining the probability to bring forth a given
number, by projecting i dice, each of a number of faces n+ 1, and to the problem where we
seek the probability that the sum of the inclinations to the ecliptic of a number s of orbits will
be comprehended within some given limits, by supposing all the inclinations, from zero to
the right angle, equally possible. We show that the existence of a common cause which has
directed the movements of rotation and of revolution of the planets and of the satellites, in the
sense of the rotation of the Sun, is indicated with a probability excessively close to certitude,
and quite superior to that of the greatest number of historical facts, with respect to which
we are permitted no doubt. The same solution applied to the movement and to the orbits of
one hundred comets observed to this day, proves that nothing indicates in these stars, a first
cause which has tended to make them move in one sense rather than in another, or under one
inclination rather than under another, in the plane of the ecliptic. . . . . . . . . . . . . . . . . . . . No 13.

Solution of the problem exposed at the beginning of the preceding section, in the case where the
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number of balls which bear the same number, is not equal to unity, and varies according to
any one law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No 14.

Application of the artifice exposed in no 13 to the solution of this problem. Let there be i variable
quantities of which the sum is s, and of which the laws of possibility are known, and able to
be discontinuous; one proposes to find the sum of the products of each value that any function
of these variables is able to receive, multiplied by the probability corresponding to this value.
Application of this solution to the investigation on the probability that the error of the result
of any number of observations of which the laws of facility of the errors, are expressed by
some rational and entire functions of these errors will be comprehended within some given
limits.

Application of the same solution to the investigation of a rule proper to make known the most
probable result of the opinions uttered by the diverse members of a tribunal; this rule is not
at all applicable to the choices of the electoral assemblies. Rule relative to these choices,
when we set aside the passions of the electors and of the strange considerations in merit,
which are able to determine them. These diverse causes render this rule subject to some
grave inconveniences which have caused to abandoning it.

Investigation on the law of probability of the errors of observations, mean among all those which
satisfy the conditions that the positive errors are the same as the negative errors, and that their
probability diminishes when they increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .No 15.
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§3. If we develop [189]the product (1 + p)(1 + p′)(1 + p′′).etc. composed of n factors;
this development will contain all the possible combinations of the n letters p, p′, p′′, . . . ,
p(n−1), taken one by one, two by two, three by three, etc.1 to n; and each combination
will have for coefficient unity. Thus the combination pp′p′′ resulting from the product
(1 +p)(1 +p′)(1 +p′′), multiplied by the term 1 of the development of the other factors; its
coefficient is evidently unity. Now, in order to have the total number of combinations of n
letters taken x by x; we will observe that each of these combinations become px, when we
suppose p′, p′′, etc. equal to p. Then the product of the n preceding factors is changed into
the binomial (1 + p)n; now the coefficient of px in the development of this binomial, is

n(n− 1)(n− 2) . . . (n− x+ 1)

1.2.3 . . . x
;

this quantity expresses therefore the number of combinations of n letters taken x by x. We
will have the total number of combinations of these letters, taken one by one, two by two,
etc. to n by n, by making p = 1, in the binomial (1 + p)n, and by subtracting unity from it;
that which gives 2n − 1 for this number.

Let us suppose that in each combination, we have regard not only to the number of
letters, but further to their situation; we will determine the number of combinations, by
observing that, in the combination of two letters pp′, we are able to put p′ in the second
place, [190]and next in the first; that which gives the two combinations pp′, p′p. By introducing
next a new letter p′′ in each of these combinations, we are able to put it in the first, in the
second or in the third place; that which gives 2.3 combinations. By continuing thus, we
see that in a combination of x letters, we are able to give 1.2.3 . . . x different situations;
whence it follows that the total number of combinations of n letters, taken x by x, being by
that which precedes,

n(n− 1)(n− 2) . . . (n− x+ 1)

1.2.3 . . . x
,

the total number of combinations, when we have regard to the different situation of the
letters, will be this same function, by suppressing its denominator.2

We are able easily, by means of these formulas, to determine the benefits of lotteries.
Let us suppose that the number of tickets3 of a lottery, be n, and that there exits r of them
at each drawing; we wish to have the probability that a combination of s of these tickets,
will exit in the first drawing.

The total number of combinations of tickets, taken r by r, is by that which precedes,

n(n− 1)(n− 2) . . . (n− r + 1)

1.2.3 . . . r
,

1Translator’s note: one by one, two by two, etc. In other words, one at a time, two at a time. In modern
notation, these are the combinations

(
n
1

)
,
(
n
2

)
, etc.

2Translator’s note: That is, the number of permutations.
3Translator’s note: The word is “numéro,” or number used in the sense of a label. I have therefore chosen

to render it as ticket. Laplace later uses “billet,” in this case referring specifically to a lottery ticket.
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In order to have among these combinations, the number of those in which the s tickets are
comprehended, we will observe that if we subtract these tickets from the total of the tickets,
and if we combine r − s by r − s, there remains n− s, the number of these combinations
will be the sought number; because it is clear that by adding the s tickets to each of these
combinations, we will have the combinations r by r of the tickets in which are these s
tickets.4 This number is therefore

(n− s)(n− s− 1) . . . (n− r + 1)

1.2.3 . . . (r − s)
;

by dividing it by the total number of combinations r by r of the n tickets, we will have for
the sought probability

r(r − 1)(r − 2) . . . (r − s+ 1)

n(n− 1)(n− 2) . . . (n− s+ 1)
.

By [191]dividing this quantity by 1.2.3 . . . s, we will have by that which precedes, the probability
that the s tickets will exit in a determined order among them. We will have the probability
that the first s tickets of the drawing, will be those of the proposed combination, by ob-
serving that this probability reverts to that of bringing forth this combination, by supposing
that there exits only s tickets at each drawing, that which reverts to making r = s in the
preceding function which becomes thus

1.2.3 . . . s

n(n− 1) . . . (n− s+ 1)
.

Finally, we will have the probability that the s chosen tickets will exit first in a determined
order, by reducing the numerator of this fraction, to unity.

The quotients of the stakes divided by these probabilities, are those which the lottery
must render to the players: the excess of these quotients over that which it gives, is its
benefit. In fact, if we name p the probability of the player, m his stake, and x that which
the lottery must render to him, for equality of the game; x − m will be the stake of the
lottery; because having received the stake m, and rendering x to the player; it puts into the
game only x − m. Now for equality of the game, the mathematical hope5 of each player
must be equal to his fear: his hope is the product of the stake x −m of his adversary, by
the probability p to obtain it: his fear is the product of his stake m, by the probability 1− p
of the loss. We have therefore

p(x−m) = (1− p)m;

that is that for the equality of the game, the stakes must be reciprocal to the probabilities to
win. This equation gives

x =
m

p
;

4Translator’s note: Laplace is here expressing the quantity
(
s
s

)(
n−s
r−s

)
.

5Translator’s note: hope, the espérance or expectation.
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thus that which the lottery must render, is the quotient of the stake divided by the probability
of the player to win.

§4. A lottery being composed of n numbered tickets of which r exit at each drawing,
we require the probability that after i drawings, all the tickets will have exited.

Let us name zn,q the number of cases in which, after i drawings, the [192]totality of the
tickets 1, 2, 3, . . . q will have exited. It is clear that this number is equal to the number
zn,q−1 of cases in which the tickets 1, 2, 3, . . . q − 1 have exited, less the number of cases
in which these tickets being brought out, the ticket q is not drawn; now this last number
is evidently the same as the one of the cases in which the tickets 1, 2, 3, . . . q − 1 would
be extracted, if we remove the ticket q from the n tickets of the lottery, and this number is
zn−1,q−1; we have therefore

zn,q = zn,q−1 − zn−1,q−1. (i)

Now the number of all possible cases in a single drawing, being n(n−1)(n−2)...(n−r+1)
1.2.3...r

, the
one of all possible cases in i drawings, is(

n(n− 1)(n− 2) . . . (n− r + 1)

1.2.3 . . . r

)i
.

The number of all the cases in which the ticket 1 will not exit in these i drawings, is the
number of all possible cases, when we subtract this ticket from the n tickets in the lottery;
and this number is (

(n− 1)(n− 2) . . . (n− r)
1.2.3 . . . r

)i
;

the number of cases in which the ticket 1 will exit in i drawings, is therefore(
n(n− 1) . . . (n− r + 1)

1.2.3 . . . r

)i
−
(

(n− 1)(n− 2) . . . (n− r)
1.2.3 . . . r

)i
,

or

4
(

(n− 1)(n− 2) . . . (n− r)
1.2.3 . . . r

)i
;

this is the value of zn,1. This premised, equation (i) will give, by making successively
q = 2, q = 3, etc.,

zn,2 = 42

(
(n− 2)(n− 3) . . . (n− r − 1)

1.2.3 . . . r

)i
,

zn,3 = 43

(
(n− 3)(n− 4) . . . (n− r − 2)

1.2.3 . . . r

)i
,

etc.;

and [193]generally,

zn,q = 4q

(
(n− q)(n− q − 1) . . . (n− r − q + 1)

1.2.3 . . . r

)i
.
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Thus the probability that the tickets 1, 2, 3, . . . q will exit in i drawings, being equal to zn,q
divided by the number of all possible cases, it will be

4q[(n− q)(n− q − 1) . . . (n− r − q + 1)]i

[n(n− 1)(n− 2) . . . (n− r + 1)]i

If we make in this expression q = n, we will have, s being here the variable which must be
supposed null in the result,

4n[s(s− 1) . . . (s− r + 1)]i

[n(n− 1) . . . (n− r + 1)]i

for the expression of the probability that all the tickets of the lottery will exit in i drawings.
If n and i are very great numbers, we will have by the formulas of §40 of the first Book,

the value of this probability, by means of a highly convergent series. Let us suppose, for
example, that only one ticket exits at each drawing, the preceding probability becomes

4nsi

ni
.

Let us propose to determine the number i of drawings in which this probability is 1
k
, n and i

being very great numbers. By following the analysis of the section cited, we will determine
first a by the equation

0 =
i+ 1

a
− s− nca

ca − 1
;

that which gives

a =
i+ 1

n+ s

{
1− c−a

1− sc−a

n+s

}
.

We have next by §40 of the first Book, when c−a is a very small quantity of the order 1
i
, as

that takes place in the present question; we have, I say, to the quantities nearly of order 1
i2

,
s being supposed [194]null in the result of the calculation,

4nsi

ni
=

(
i
i+1

)i+ 1
2 cna−i(1− c−a)n−i√
1−

(
i+1
n

)
c−a

.

Now we have, to the quantities nearly of the order 1
i2
,(

i

i+ 1

)i+ 1
2

= c−1;

by supposing next c−a = z, we have

(1− c−a)n−i = c(i−n)z
[
1 +

(
i− n

2

)
z2
]

;
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moreover, the equation which determines a, gives

i+ 1− na = (i+ 1)z;

whence we deduce
cna−i−1 = c−iz(1− z);

we will have therefore, to the quantities nearly of order 1
i2
,

4nsi

ni
= c−nz

[
1 +

(
i− 2n+ 1

2n

)
z +

(
i− n

2

)
z2
]
.

In order to determine z, let us take up again the equation

a =
i+ 1

n
−
(
i+ 1

n

)
c−a;

we will have by formula (p) of §21 of the second Book of the Mécanique céleste,

z = c−a = q +

(
i+ 1

n

)
q2 +

3
(
i+1
n

)2
1.2

q3 +
42
(
i+1
n

)3
1.2.3

q4 + etc.;

q being supposed equal to c−( i+1
n ). This value of z gives

c−nz = c−nq[1− (i+ 1)q2];

consequently, [195]

4nsi

ni
= c−nq

[
1 +

(
i+ 1− 2n

2n

)
q −

(
n+ i+ 2

2

)
q2
]
.

By equating this quantity to the fraction 1
k
, we will have

q =
log k

n

[
1 +

(
i+ 1− 2n

2n2

)
−
(
n+ i+ 2

2n2

)
log k

]
;

now we have
i+ 1 = −n log q;

we will have therefore very nearly for the expression of the number i of drawings, according
to which the probability that all the tickets will have exited is 1

k
,

i = (log n− log log k)(n− 1
2

+ 1
2

log k) + 1
2

log k;

we must observe that all these logarithms are hyperbolic.
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Let us suppose the lottery composed of ten thousand tickets, or n = 10000, and k = 2,
this formula gives

i = 95767, 4

for the expression of the number of drawings, in which we can wager one against one, that
the ten thousand tickets of the lottery will exit; it is therefore odds a little less than one
against one that they will exit in 95767 drawings, and odds a little more than one against
one that they will exit in 95768 drawings.

We will determine by a similar analysis, the number of drawings in which we are able
to wager one against one, that all the tickets of the lottery of France will exit. This lottery is,
as one knows, composed of 90 tickets of which five exit at each drawing. The probability
that all the tickets will exit in i drawings, is then by that which precedes,

4n[s′(s′ − 1)(s′ − 2)(s′ − 3)(s′ − 4)]i

[n(n− 1)(n− 2)(n− 3)(n− 4)]i
,

n being here equal to 90, and s′ needing to be supposed null in the result of [196]the calculation.
If we make s = s′ − 2, this function becomes

4n[s(s2 − 1)(s2 − 4)]i

[(n− 2)(n− 2
2 − 1)(n− 2

2 − 4)]i
;

or by developing in series,

(4ns5i − 5i4ns5i−2 + etc.)
(n− 2)5i

(
1 +

5i

(n− 2)2
+ etc.

)
,

s needing to be supposed equal to −2 in the result of the calculation.
We have by §40 of the first Book, by neglecting the terms of order 1

i2
, and supposing

c−a very small of order 1
i
,

4ns5i

(n− 2)5i
=

(
5i+1
a

)5i ( 5i
5i+1

)5i
c(n−2)a−5i(1− c−a)n

(n− 2)5i
√

1 + 1
5i
− na2c−a

5i(1−c−a)2

,

a being given by the equation

a =
(5i+ 1)(1− c−a)
(n− 2)

(
1 + 2c−a

n−2

) .
We have thus, by neglecting the terms of order 1

i2
,

4ns5i

(n− 2)5i
=

(
1 + 2c−a

n−2

)5i
(1− c−a)5i

(1− c−a)nc1−(5i+1)c−a− 10ic−a

n−2

×
(

5i

5i+ 1

)5i(
1− 1

10i
+
na2c−a

10i

)
;
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now we have (
1 +

2c−a

n− 2

)5i

= c
10ic−a

n−2 ,

(1− c−a)−5i = c5ic
−a

(
1 +

5i

2
c−2a

)
,(

5i

5i+ 1

)5i

= c−1
(

1 +
1

10i

)
;

we will have therefore to the quantities nearly of order 1
i2

,

4nsi

(n− 2)5i
= (1− c−a)n

(
1− c−a +

5i

2
c−2a +

na2c−a

10i

)
.

By [197]substituting for a its value, and observing that i is very little different from n− 2, in the
present case, as we will see hereafter; we have very nearly,

na2c−a

10i
=

5i+ 12

2(n− 2)
c−a.

I keep for greater exactitude, the term 12c−a

2(n−2) , although of order 1
i2

, because of the size of
its factor 12; we will have therefore

4ns5i

(n− 2)5i
= (1− c−a)n

(
1 +

5i− 2n+ 16

2(n− 2)
c−a +

5i

2
c−2a

)
.

If we change in this equation 5i into 5i− 2, we will have that of 4
ns5i−2

(n−2)5i−2 ; but the value of
a will no longer be the same. Let a′ be this new value, we will have

a′ =
(5i− 1)(1− c−a′)

(n− 2)
(

1 + 2c−a′

n−2

) ,
that which gives, very nearly,

a′ = a− 2

n− 2
.

In that case we have

1− c−a′ = 1− c−a − 2c−a

n− 2
;

whence we deduce, by neglecting the quantities of order 1
i
,

(1− c−a′)n = (1− c−a)n;

consequently we have, by neglecting the quantities of order 1
i
,

4ns5i−2

(n− 2)5i−2
= (1− c−a)n.
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We will have therefore, to the quantities nearly of order 1
i2

,

4n[s(s2 − 1)(s2 − 4)]i

[n(n− 1)(n− 2)(n− 3)(n− 4)]i

= (1− c−a)n
[
1 +

(5i− 2n+ 16)

2(n− 2)
c−a +

5i

2
c−2a

]
.

This [198]quantity must, by the condition of the problem, be equal to 1
2
, that which gives

1− c−a =
n

√
1

2

[
1− (5i− 2n+ 16)

2n(n− 2)
c−a − 5i

2n
c−2a

]
;

whence we deduce

c−a =

(
1− n

√
1

2

)[
1 +

(5i− 2n+ 16)

2n(n− 2)
+

5i

2n
c−a
]

;

consequently we have by hyperbolic logarithms,

a = log

(
n
√

2
n
√

2− 1

)
− (5i− 2n+ 16)

2n(n− 2)
− 5i

2n
c−a;

now we have, to the quantities nearly of order 1
i2
,

a =
5i+ 1

(n− 2) n
√

2
;

we will have therefore

i =
n− 2

5
n
√

2

[
1− 1

2n
− 16

10in
− 1

2
(

n
√

2− 1)

]
log

(
n
√

2
n
√

2− 1

)
.

By substituting for n its value 90, we find

i = 85, 53;

so that there is odds a little less than one to one that all the tickets will exit in 85 drawings,
and odds a little more than one to one that they will exit in 86 drawings.

A quite simple and very close way to obtain the value of i, is to suppose 4
nsi

ni , or the
series

1− n
(
n− 1

n

)i
+
n(n− 1)

2

(
n− 2

n

)i
− etc.

equal to the development

1− n
(
n− 1

n

)i
+
n(n− 1)

1.2

(
n− 1

n

)2i

− etc.

12



of [199]the binomial
[
1−

(
n−1
n

)i]n. In reality, the two series have the first two terms equal
respectively. Their third terms are also, more of less, equal between them; for we have quite
nearly

(
n−2
n

)i equal to
(
n−1
n

)2i. In fact, their hyperbolic logarithms are, by neglecting the
terms of order i

n2 , both equal to− i
n

. We will see in the same way, that the fourth terms, the
fifth, etc., are very little different, when n and i are very great numbers; but the difference
increases without ceasing, in measure as the terms move away from the first, that which
must in the end, produce in them an evident difference between the series themselves. In
order to estimate it, let us determine the value of i concluded from the equality of the two
series. By equating to 1

k
, the binomial

[
1−

(
n−1
n

)i]n, we will have

i =
log
(

1− n

√
1
k

)
log
(
n−1
n

) ,

these logarithms being able to be, at will, hyperbolic or tabulated. Let n

√
1
k

= 1 − z. We
will have by taking the hyperbolic logarithms of each member of this equation,

1

n
log k = − log(1− z) = z +

z2

2
+ etc.,

that which gives very nearly,

z =
log k

n

(
1− log k

2n

)
;

we will have therefore in hyperbolic logarithms,

log

(
1− n

√
1

k

)
= log z = log log k − log n− log k

2n
.

We [200]have next

log
n− 1

n
= − 1

n
− 1

2n2
− etc.

The preceding expression for i becomes thus very nearly,

i = n(log n− log log k)

(
1− 1

2n

)
+ 1

2
log k;

the excess of the value found previously for i, over this one, is

log k

2
(log n− log log k);

this excess becomes infinite, when n is infinite; but a very great number is necessary in
order to render it very evident; and in the case of n = 10000 and of k = 2, it is still only
three units.

13



If we consider likewise the development

1− n
(
n− 5

n

)i
+ etc.

of the expression 4
n[s′(s′−1)(s′−2)(s′−3)(s′−4)]i
[n(n−1)(n−2)(n−3)(n−4)]i , as the one of the binomial

[
1−

(
n−5
n

)i]n, we
will have in order to determine the number i of coups in which we can wager one against
one, that all the tickets will exit, the equation[

1−
(
n− 5

n

)i]n
=

1

2
;

that which gives

i =
log
(

n√2
n√2−1

)
log
(

n
n−5

) .

These logarithms can be tabulated. By making n = 90, we find

i = 85, 204,

that [201]which differs very little from the value i = 85, 53 that we have found above.

§5. An urn being supposed to contain the number x of balls, we draw from it a part or
the totality, and we demand the probability that the number of extracted balls will be even.

The sum of the cases in which this number is unity, equals evidently x; since each of the
balls can equally be extracted. The sum of the cases in which this number equals 2, is the
sum of the combinations of x balls taken two by two, and this sum is, by §3, equal to x(x−1)

1.2
.

The sum of the cases in which the same number equals 3, is the sum of the combinations
of balls taken three by three, and this sum is x(x−1)(x−2)

1.2.3
, and so forth. Thus the successive

terms of the development of the function (1 + 1)x− 1, will represent all the cases in which
the number of extracted balls, is successively 1, 2, 3, etc. to x; whence it is easy to conclude
that the sum of all the cases relative to the odd numbers, is 1

2
(1 + 1)x− 1

2
(1− 1)x, or 2x−1;

and that the sum of all the cases relative to the even numbers, is 1
2
(1 + 1)x + 1

2
(1− 1)x− 1,

or 2x−1 − 1. The union of these two sums is the number of all the possible cases; this
number is therefore 2x − 1; thus the probability that the number of extracted balls will be
even, is 2x−1−1

2x−1 , and the probability that this number will be odd, is 2x−1

2x−1 ; there is therefore
advantage to wager with equality, on an odd number.

If the number x is unknown, and if we know only that it can not exceed n, and that this
number and all the lesser are equally possible; we will have the number of all the possible
cases relative to the odd numbers, by making the sum of all the values of 2x−1, from x = 1
to x = n, and it is easy to see that this sum is 2n − 1. We will likewise have the sum of all
the possible cases relative to the even numbers, by summing the function 2x−1 − 1, from
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x = 1 to x = n, and we find this sum equal [202]to 2n−n−1; the probability of an even number
is therefore then 2n−n−1

2n+1−n−2 , and that of an odd number is 2n−1
2n+1−n−2 .

Let us suppose now that the urn contains the number x of white balls, and the same
number of black balls; we ask the probability that by drawing any even number of balls,
we will bring forth as many white balls as black balls, all the even numbers being able to
be brought forth equally.

The number of cases in which one white ball from the urn can be combined with a black
ball, is evidently x.x. The number of cases in which two white balls can be combined with
two black balls, is x(x−1)

1.2
x(x−1)

1.2
, and so forth. The number of cases in which we will bring

forth as many white balls as black balls, is therefore the sum of the squares of the terms
of the development of the binomial (1 + 1)x, less unity. In order to have this sum, we will
observe that it is equal to a term independent of a, in the development of

(
1 + 1

a

)x
(1+a)x.

This function is equal to (1+a)2x

ax
. The term independent of a, in its development, is thus the

coefficient of the middle term of the binomial (1 + a)2x; this coefficient is 1.2.3...2x
(1.2.3...x)2

; the
number of cases in which we can draw from the urn as many white balls as black balls, is
therefore

1.2.3 . . . 2x

(1.2.3 . . . x)2
− 1.

The number of all possible cases is the sum of the odd terms in the development of the
binomial (1 + 1)2x, less the first, or unity. This sum is 1

2
(1 + 1)2x + 1

2
(1− 1)2x; the number

of possible cases is therefore 22x−1 − 1, which gives for the expression of the probability
sought

1.2.3...2x
(1.2.3...x)2

− 1

22x−1 − 1
.

In the case where x is a large number, this probability is reduced by [203]§33 of the first Book,
to 2√

xπ
, π being the semi-circumference of which 1 is the radius.

§6. Let us consider a number x + x′ of urns, of which the first contains p white balls
and q black balls; the second, p′ white balls and q′ black balls; the third, p′′ white balls and
q′′ black balls, and so forth. Let us suppose that we draw successively one ball from each
urn. It is clear that the number of all the possible cases in the first drawing, is p+ q; in the
second drawing, each of the cases of the first being able to be combined with the p′ + q′

balls of the second urn, we will have (p + q)(p′ + q′) for the number of all the possible
cases relative to the first two drawings. In the third drawing, each of these cases can be
combined with the p′′ + q′′ balls of the third urn; that which gives (p+ q)(p′ + q′)(p′′ + q′′)
for the number of all the possible cases relative to the three drawings, and thus of the rest.
This product for the totality of the urns, will be composed of x+ x′ factors; and the sum of
all the terms of its development, in which the letter p, with or without accent, is repeated
x times, and consequently the letter q, x′ times, will express the number of cases in which
we can draw from the urns, x white balls and x′ black balls.

If p′, p′′, etc. are equal to p, and if q′, q′′, etc. are equal to q; the preceding product
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becomes (p+ q)x+x
′ . The term multiplied by pxqx′ in the development of this binomial is

(x+ x′)(x+ x′ − 1) . . . (x+ 1)

1.2.3 . . . x′
pxqx

′

or
1.2.3 . . . (x+ x′)

1.2.3 . . . x.1.2.3 . . . x′
pxqx

′
.

Thus this quantity expresses the number of cases in which we can bring forth x white balls
and x′ black balls. The number of all the possible cases being (p + q)x+x

′ , the probability
to bring forth x white balls and x′ black balls is

1.2.3 . . . (x+ x′)

1.2.3 . . . x.1.2.3 . . . x′

(
p

p+ q

)x(
q

p+ q

)x′
,

where [204]we must observe that p
p+q

is the probability of drawing a white ball from one of the
urns, and that q

p+q
is the probability of drawing from it a black ball.

It is clear that it is perfectly equal to draw x white balls and x′ black balls, from x+ x′

urns which each contain pwhite balls and q black balls, or one alone of these urns, provided
that we replace into the urn the ball extracted at each drawing.

Let us consider now a number x+x′+x′′ urns of which the first contains p white balls,
q black balls, and r red balls, of which the second contains p′ white balls, q′ black balls and
r′ red balls, and so forth. Let us suppose that we draw one ball from each of these urns.
The number of all the possible cases will be the product of the x+ x′ + x′′ factors,

(p+ q + r)(p′ + q′ + r′)(p′′ + q′′ + r′′).etc.

The number of cases in which we will bring forth x white balls, x′ black balls, and x′′ red
balls, will be the sum of all the terms of the development of this product, in which the letter
pwill be repeated x times; the letter q, x′ times, and the letter r, x′′ times. If all the accented
letters p′, q′, etc., are equal to their non-accented correspondents, the preceding product is
changed into the trinomial (p + q + r)x+x

′+x′′ . The term of its development which has for
factor pxqx′rx′′ , is

1.2.3 . . . (x+ x′ + x′′)

1.2.3 . . . x.1.2.3 . . . x′.1.2.3 . . . x′′
pxqx

′
rx
′′
;

thus the number of all the possible cases being (p+ q + r)x+x
′+x′′ , the probability to bring

forth x white balls, x′ black balls, and x′′ red balls, will be

1.2.3 . . . (x+ x′ + x′′)

1.2.3 . . . x.1.2.3 . . . x′.1.2.3 . . . x′′

(
p

p+ q + r

)x(
q

p+ q + r

)x′ (
r

p+ q + r

)x′′
,

whence we must observe that p
p+q+r

, q
p+q+r

, r
p+q+r

are the respective probabilities of draw-
ing from each urn one white ball, one black ball, and one red ball.

We [205]see generally that if the urns contain each the same number of colors, p being the
number of balls of the first color; q the one of the balls of the second color; r, s, etc., those
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of the balls of the third, the fourth, etc.; x+ x′ + x′′ + x′′′ + etc. being the number of urns;
the probability to bring forth x balls of the first color, x′ balls of the second, x′′ of the third,
x′′′ of the fourth, etc., will be

1.2.3 . . . (x+ x′ + x′′ + x′′′ + etc.)
1.2.3 . . . x.1.2.3 . . . x′.1.2.3 . . . x′′.1.2.3 . . . x′′′.etc.

(
p

p+ q + r + s+ etc.

)x
×
(

q

p+ q + r + s+ etc.

)x′ (
r

p+ q + r + s+ etc.

)x′′ (
s

p+ q + r + s+ etc.

)x′′′
.etc.

§7. Let us determine now the probability of drawing from the preceding urns, x white
balls, before bringing forth either x′ black balls, or x′′ red balls, etc. It is clear that n
expressing the number of the colors, this must happen at the latest after x + x′ + x′′ +
etc. − n + 1 drawings. Because when the number of extracted white balls is equal or less
than x, the one of the extracted black balls, less than x′, the one of the extracted red balls,
less than x′′, etc.; the total number of the extracted balls, and consequently, the number of
drawings is equal or less than x + x′ + x′′ + etc. − n + 1; we can therefore consider here
only x+ x′ + x′′ + etc.− n+ 1 urns.

In order to have the number of cases in which we can bring forth x white balls at the
(x+ i)th drawing, it is necessary to determine all the cases in which x− 1 white balls will
have come forth at the drawing x + i − 1. This number is the term multiplied by px−1 in
the development of the polynomial (p+ q + r + etc.)x+i−1, and this term is

1.2.3 . . . (x+ i− 1)

1.2.3 . . . (x− 1)1.2.3 . . . i
px−1(q + r + etc.)i.

By combining it with the p white balls of the urn x + i, we will have a product which it
will be necessary further to multiply by the number of all the possible cases relative to the
x′ + x′′ + etc.− n− i+ 1 following drawings, and this number is

(p+ q + r + etc.)x
′+x′′+etc.−n−i+1;

we [206]will have therefore

1.2.3 . . . (x+ i− 1)

1.2.3 . . . (x− 1)1.2.3 . . . i
px(q + r + etc.)i(p+ q + r + etc.)x

′+x′′+etc.−n−i+1; (a)

for the number of cases in which the event can happen precisely at the drawing x + i. It is
necessary however to exclude from it the cases in which q is raised to the power x′, those in
which r is raised to the power x′′, etc.; because in all these cases, it has already happened in
the drawing x+ i− 1, either x′ black balls, or x′′ red balls, or etc. Thus in the development
of the polynomial (q+ r+ etc.)i, it is necessary to have regard only to the terms multiplied
by qfrf ′sf ′′ .etc., in which f is less than x′, f ′ is less than x′′, f ′′ is less than x′′′, etc. The
term multiplied by qfrf ′sf ′′ .etc., in this development, is

1.2.3 . . . i

1.2.3 . . . f.1.2.3 . . . f ′.1.2.3 . . . f ′′.etc.
qfrf

′
sf
′′
.etc.
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All the terms that we must consider in the function (a) are therefore represented by

1.2.3 . . . (x+ f + f ′ + etc.− 1)

1.2.3 . . . (x− 1).1.2.3 . . . f.1.2.3 . . . f ′.etc.
pxqfrf

′
.etc.

× (p+ q + r + etc.)x
′+x′′+etc.−f−f ′−etc.−n+1;

(b)

because i is equal to f + f ′ + etc. Thus by giving in this last function, to f all the integral
values from f = 0 to f = x′ − 1, to f ′ all the values from f ′ = 0 to f ′ = x′′ − 1, and
so forth, the sum of all these terms will express the number of cases in which the proposed
event can happen in x + x′ + etc. − n + 1 drawings. It is necessary to divide this sum by
the number of all the possible cases, that is by (p + q + r + etc.)x+x′+x′′+etc.−n+1. If we
designate by p′ the probability of drawing a white ball from any one of the urns; by q′ that
of drawing from it a black ball; by r′ that of drawing a red ball, etc., we will have

p′ =
p

p+ q + r + etc.
, q′ =

q

p+ q + r + etc.
, r′ =

r

p+ q + r + etc.
, etc.;

the [207]function (b) divided by (p+ q + r + etc.)x+x′+x′′+etc.−n+1; will become thus,

1.2.3 . . . (x+ f + f ′ + etc.− 1)

1.2.3 . . . x− 1.1.2.3 . . . f.1.2.3 . . . f ′.etc.
p′xq′fr′f

′
.etc.

The sum of the terms which we will obtain by giving to f all the values from f = 0 to
f = x′ − 1, to f ′ all the values from f ′ = 0 to f ′ = x′′ − 1, etc., will be the sought
probability to bring forth x white balls before x′ black balls, or x′′ red balls, or, etc.

We can, after this analysis, determine the lot of a number n of players A, B, C, etc., of
whom p′, q′, r′, etc. represent the respective skills, that is, their probabilities to win a coup,
when in order to win the game, there lack x coups to player A, x′ coups to player B, x′′

coups to player C, and so forth; because it is clear that relatively to player A, this reverts
to determining the probability to bring forth x white balls before x′ black balls, or x′′ red
balls, etc.; by drawing successively a ball from a number x + x′ + x′′ + etc.− n + 1 from
urns which contain each p white balls, q black balls, r red balls, etc., p, q, r, etc. being
respectively equal to the numerators of the fractions p′, q′, r′, etc. reduced to the same
denominator.

§8. The preceding problem can be resolved in a quite simple manner, by the analysis
of the generating functions. Let us name yx,x′,x′′, etc. the probability of player A to win the
game. At the following coup, this probability is changed into yx−1,x′,x′′, etc., if A wins this
coup, and the probability for this is p′. The same probability is changed into yx,x′−1,x′′, etc., if
the coup is won by playerB, and the probability for this is q′; it is changed into yx,x′,x′′−1, etc.

if the coup is won by player C, and the probability for this is r′, and so forth; we have
therefore the equation in the partial differences

yx,x′,x′′, etc. = p′yx−1,x′,x′′, etc. + q′yx,x′−1,x′′, etc. + r′yx,x′,x′′−1, etc. + etc.
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Let u be a function of t, t′, t′′, etc., such that yx,x′,x′′, etc. is the coefficient of txt′x′t′′x′′ .etc.
in its development; the preceding equation [208]in the partial differences will give, by passing
from the coefficients to the generating functions,

u = u(p′t+ q′t′ + r′t′′ + etc.);

whence we deduce
1 = p′t+ q′t′ + r′t′′ + etc.;

consequently,
1

t
=

p′

1− q′t′ − r′t′′ − etc.
;

that which gives

u

tx
=

up′x

(1− q′t′ − r′t′′ − etc.)x
= up′x



1 + x(q′t′ + r′t′′ + etc.)

+
x(x+ 1)

1.2
(q′t′ + r′t′′ + etc.)2

+
x(x+ 1)(x+ 2)

1.2.3
(q′t′ + r′t′′ + etc.)3

+ etc.


.

Now the coefficient of t0t′x′t′′x′′ .etc. in u
tx

is yx,x′,x′′, etc.; and the same coefficient in any term
of the last member of the preceding equation, such as ku.p′xt′l′t′′l′′ , etc., is kp′xy0,x′−l′,x′′−l′′, etc.;
the quantity y0,x′−l′,x′′−l′′, etc. is equal to unity, since then player A lacks no coup. Moreover,
it is necessary to reject all the values of y0,x′−l′,x′′−l′′, etc. in which l′ is equal or greater than
x′, l′′ is equal or greater than x′′, and so forth, because these terms are not able to be given
by the equation in the partial differences, the game being finite, when any one of the play-
ers B, C, etc. have no more coups to play; it is necessary therefore to consider in the last
member of the preceding equation, only the powers of t′ less than x′, only the powers of t′′

less than x′′, etc. The preceding expression of u
tx

will give thus, by passing again from the
generating functions to the coefficients,

yx,x′,x′′, etc. = p′x



1 + x(q′ + r′ + etc.)

+
x(x+ 1)

1.2
(q′ + r′ + etc.)2

+
x(x+ 1)(x+ 2)

1.2.3
(q′ + r′ + etc.)3

+ etc.


,

provided [209]that we reject the terms in which the power of q′ surpasses x′ − 1, those in which
the power of r′ surpasses x′′ − 1, etc. The second member of this equation is developed
into one sequence of terms comprehended in the general formula

1.2.3 . . . (x+ f + f ′ + etc.− 1)

1.2.3 . . . (x− 1).1.2.3 . . . f.1.2.3 . . . f ′.etc.
p′xq′fr′f

′
.etc.

19



The sum of these terms relative to all the values of f , from f null to f = x′ − 1, to all the
values of f ′, from f ′ null to f ′ = x′′− 1, etc., will be the probability yx,x′,x′′, etc.; that which
is conformed to that which precedes.

In the case of two players A and B, we will have for the probability of player A,

p′x
{

1 + xq′ +
x(x+ 1)

1.2
q′2 · · ·+ x(x+ 1)(x+ 2) . . . (x+ x′ − 2)

1.2.3 . . . (x′ − 1)
q′x
′−1
}
.

By changing p′ into q′, and x into x′, and reciprocally, we will have

q′x
′
{

1 + x′p′ +
x′(x′ + 1)

1.2
p′2 · · ·+ x′(x′ + 1)(x′ + 2) . . . (x+ x′ − 2)

1.2.3 . . . (x− 1)
p′x−1

}
for the probability that player B will win the game. The sum of these two expressions must
be equal to unity, that which we see evidently by giving them the following forms. The first
expression can, by §37 of the first Book, be transformed into this one

p′x+x
′−1


1 +

(x+ x′ − 1)

1
· q
′

p′
+

(x+ x′ − 1)(x+ x′ − 2)

1.2
· q
′2

p′2

. . .+
(x+ x′ − 1) . . . (x+ 1)

1.2.3 . . . (x′ − 1)
· q
′x′−1

p′x′−1

 ;

and the second can be transformed into this one,

q′x+x
′−1


1 +

(x+ x′ − 1)

1
· p
′

q′
+

(x+ x′ − 1)(x+ x′ − 2)

1.2
· p
′2

q′2

. . .+
(x+ x′ − 1) . . . (x′ + 1)

1.2.3 . . . (x− 1)
· p
′x−1

q′x−1

 .

The sum of these expressions is the development of the binomial (p′ + q′)x+x
′−1, [210]and

consequently it is equal to unity; because A or B needing to win each coup, the sum p′+ q′

of their probabilities for this, is unity.
The problem which we just resolved, is the one which we name the problem of points

in the analysis of chances. The chevalier de Meré proposed it to Pascal, with some other
problems on the game of dice. Two players of whom the skills are equal, have put into
the game the same sum; they must play until one of them has beat a given number of
given times, his adversary; but they agree to quit the game, when there lack yet x points
to the first player in order to attain this given number, and when there lack x′ points to the
second player. We demand in what way they must share the sum put into the game. Such
is the problem that Pascal resolved by means of his arithmetic triangle. He proposed it to
Fermat who gave the solution to it by way of combinations; that which occasioned between
these two great geometers a discussion, after which Pascal recognized the goodness of the
method of Fermat, for any number of players. Unhappily we have only one part of their
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correspondence, in which we see the first elements of the theory of probabilities, and their
application to one of the most curious problems of this theory.6

The problem proposed by Pascal to Fermat, reverts to determining the respective prob-
abilities of the players in order to win the game; because it is clear that the stake must be
shared between the players, proportionally to their probabilities. These probabilities are
the same as those of two players A and B, who must attain a given number of points, x
being the number of those which are lacking to player A, and x′ being the number of those
which are lacking to player B, by imagining an urn containing two balls of which one is
white and the other black, both bearing the no. 1, the white ball being for player A, and the
black ball for player B. We draw successively one of these balls, and we return it into the
urn after each drawing. By naming yx,x′ the probability that player A will attain first, the
given number of points, or, that which reverts to the same, that he will have x points before
B has x′, [211]we will have

yx,x′ =
1

2
yx−1,x′ +

1

2
yx,x′−1;

because if the ball that we extract is white, yx,x′ is changed into yx−1,x′ , and if the ball
extracted is black, yx,x′ is changed into yx,x′−1, and the probability of each of these events
is 1

2
; we have therefore the preceding equation.
The generating function of yx,x′ in this equation in the partial differences, is, by §20 of

the first Book,
M

1− 1
2
t− 1

2
t′
,

M being an arbitrary function of t′. In order to determine it, we will observe that y0,0
can not take place, since the game ceases, when one or the other of the variables x and
x′ is null; M must therefore have t′ for factor. Moreover y0,x′ is unity, whatever be x′;
the probability of player A is changing then into certitude: now the generating function of
unity, is generally t′i

1−t′ , because the coefficients of the powers of t′ in the development of
this function, are all equal to unity; in the present case, y0,x′ being able to hold when x′ is
either 1, or 2, or 3, etc., imust be equal to unity; the generating function of y0,x′ is therefore
equal to t′

1−t′ ; this is the coefficient of t0 in the development of the generating function of
yx,x′ or in

M

1− 1
2
t− 1

2
t′

;

we have therefore
M

1− 1
2
t′

=
t′

1− t′
,

that which gives

M =
t′(1− 1

2
t′)

(1− t′)
;

6For this correspondence, see F.N. David, Games, gods and gambling, [?].
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consequently the generating function of yx,x′ is

t′(1− 1
2
t′)

(1− t′)(1− 1
2
t− 1

2
t′)
.

By [212]developing it with respect to the powers of t, we have

t′

1− t′

(
1 +

1

2
· t

1− 1
2
t′

+
1

22
· t2

(1− 1
2
t′)2

+
1

23
· t3

(1− 1
2
t′)3

+ etc.
)
.

The coefficient of tx in this series, is

1

2x
· t′

(1− t′)(1− 1
2
t′)x

;

yx,x′ is therefore the coefficient of t′x′ in this last quantity: now we have

t′

(1− t′)(1− 1
2
t′)x

=
t′ + 1

2
x t′2 + 1

22
x(x+1)

2
t′3 · · ·+ 1

2x′−1

x(x+1)(x+2)...(x+x′−2)
1.2.3...(x′−1) t′x

′
+ etc.

1− t′
.

By reducing into series the denominator of this last fraction, and multiplying the numerator
by this series, we see that the coefficient of t′x′ in this product, is that which this numerator
becomes when we make t′ = 1; we have therefore

yx,x′ =
1

2x


1 + x · 1

2
+
x(x+ 1)

1.2
· 1

22
+
x(x+ 1)(x+ 2)

1.2.3
· 1

23

. . .+
x(x+ 1) . . . (x+ x′ − 2)

1.2.3 . . . (x′ − 1)
· 1

2x′−1

 ;

a result conformed to that which precedes.
Let us imagine presently that there is in the urn a white ball bearing the no. 1, and two

black balls, of which one bears the no. 1, and the other bears the no. 2, the white ball being
favorable to A, and the black balls to his adversary: each ball diminishing by its value, the
number of points which lack to the player to which it is favorable. yx,x′ being always the
probability that player A will attain first the given number, we will have the equation in the
partial differences

yx,x′ =
1

3
yx−1,x′ +

1

3
yx,x′−1 +

1

3
yx,x′−2;

because in the following drawing, if the white balls exits, yx,x′ becomes yx−1,x′; if [213]the black
ball numbered 1 exits, yx,x′ becomes yx,x′−1; and if the black ball numbered 2 exits, yx,x′
becomes yx,x′−2, and the probability of each of these events is 1

3
.
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The generating function of yx,x′ is

M

1− 1
3
t− 1

3
t′ − 1

3
t′2
,

M being an arbitrary function of t′, which must, by that which precedes, have for factor t′,
and in the present case, be equal to

t′

1− t′
·
(

1− 1

3
t′ − 1

3
t′2
)

;

so that the generating function of yx,x′ is

t′(1− 1
3
t′ − 1

3
t′2)

(1− t′)(1− 1
3
t− 1

3
t′ − 1

3
t′2)

:

The coefficient of tx in the development of this function, is

1

3x
· t′

1− t′
· 1

(1− 1
3
t′ − 1

3
t′2)x

;

and there results from this that we just said, that the coefficient of t′x′ in the development
of this last quantity, is equal to

1

3x
·


t′ +

xt′2(1 + t′)

3
+
x(x+ 1)

1.2
· t
′3(1 + t′)2

32

+
x(x+ 1)(x+ 2)

1.2.3
· t
′4(1 + t′)3

33
+ etc.

 ;

by rejecting from the development in this series, all the powers of t′ superior to t′x′ , and
supposing in this that we conserve, t′ = 1, this will be the expression of yx,x′ .

It is easy to translate this process into a formula. Thus by supposing x′ even and equal
to 2r + 2, we find

yx,x′ =
1

3x

{
1 + x · 2

3
+
x(x+ 1)

1.2

(
2

3

)2

. . .
x(x+ 1) . . . (x+ r − 1)

1.2.3 . . . r

(
2

3

)r}

+
x(x+ 1) . . . (x+ r)

1.2.3 . . . (r + 1) 3x+r+1

{
1 + (r + 1) +

(r + 1)r

1.2
· · ·+ (r + 1)r . . . 2

1.2.3 . . . r

}
+
x(x+ 1) . . . (x+ r + 1)

1.2.3 . . . (r + 2) 3x+r+2

{
1 + (r + 2) · · ·+ (r + 2)(r + 1) . . . 4

1.2.3 . . . (r − 1)

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
x(x+ 1) . . . (x+ 2r)

1.2.3 . . . (2r + 1) 3x+2r+1
.
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If [214]we suppose x′ odd and equal to 2r + 1, we will have

yx,x′ =
1

3x

{
1 + x · 2

3
+
x(x+ 1)

1.2

(
2

3

)2

· · ·+ x(x+ 1) . . . (x+ r − 1)

1.2.3 . . . r

(
2

3

)r}

+
x(x+ 1) . . . (x+ r)

1.2.3 . . . (r + 1) 3x+r+1

{
1 + (r + 1) +

(r + 1)r

1.2
· · ·+ (r + 1)r . . . 3

1.2.3 . . . (r − 1)

}
+
x(x+ 1) . . . (x+ r + 1)

1.2.3 . . . (r + 2) 3x+r+2

{
1 + (r + 2) +

(r + 2)(r + 1)

1.2
· · ·+ (r + 2)(r + 1) . . . 5

1.2.3 . . . (r − 2)

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
x(x+ 1) . . . (x+ 2r − 1)

1.2.3 . . . 2r 3x+2r
.

Thus in the case of x = 2 and x′ = 5, we have

y2,5 =
350

729
.

Let us imagine further that there are in the urn two white balls distinguished as the two
black balls, by the nos. 1 and 2; the probability of player A will be given by the equation in
the partial differences

yx,x′ =
1

4
yx−1,x′ +

1

4
yx−2,x′ +

1

4
yx,x′−1 +

1

4
yx−1,x′−2.

The generating function of yx,x′ is then, by §20 of the first Book,

M +Nt

1− 1
4
t− 1

4
t′ − 1

4
t2 − 1

4
t′2

;

M and N being two arbitrary functions of t′. In order to determine them, we will observe
that y0,x′ is always equal to unity, and that it is necessary to exclude in M the null power of
t′; we have therefore

M =
t′

1− t′

(
1− 1

4
t′ − 1

4
t′2
)
.

In order to determine N , let us seek the generating function of y1,x′ . If we observe that
y0,x′ is equal to unity, and that player A having no more need but of one point, he wins the
game, either that he brings forth the white ball numbered 1, or the white ball numbered 2;
the preceding equation in the partial differences will give

y1,x′ =
1

2
+

1

4
y1,x′−1 +

1

4
y1,x′−2.

Let [215]us suppose y1,x′ = 1− y′x′; we will have

y′x′ =
1

4
y′x′−1 +

1

4
y′x′−2.
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The generating function of this equation is

m+ nt′

1− 1
4
t′ − 1

4
t′2
,

m and n being two constants. In order to determine them, we will observe that y1,0 = 0,
and that consequently y′0 = 1, that which gives m = 1. The generating function of y′x′ is
therefore

1 + nt′

1− 1
4
t′ − 1

4
t′2
.

We have next evidently y1,1 = 1
2
, that which gives y′1 = 1

2
; y′1 is the coefficient of t′ in

the development of the preceding function, and this coefficient is n+ 1
4
; we have therefore

n+ 1
4

= 1
2
, or n = 1

4
. The generating function of unity is 1

1−t′ , because here all the powers
of t′ can be admitted; we have thus

1

1− t′
−

1 + 1
4
t′

1− 1
4
t′ − 1

4
t′2
, or

1
2
t′

(1− t′)(1− 1
4
t′ − 1

4
t′2)

,

for the generating function of y1,x′ . This same function is the coefficient of t in the de-
velopment of the generating function of yx,x′ , a function which, by that which precedes,
is

t′

1−t′ (1−
1
4
t′ − 1

4
t′2) +Nt

1− 1
4
t− 1

4
t′ − 1

4
t2 − 1

4
t′2

;

this coefficient is
1
4
t′

(1− t′)(1− 1
4
t′ − 1

4
t′2)

+
N

1− 1
4
t′ − 1

4
t′2

;

by equating it to
1
2
t′

(1− t′)(1− 1
4
t′ − 1

4
t′2)

;

we will have

N =
1
4
t′

1− t′
.

The [216]generating function of yx,x′ is thus

t′(1− 1
4
t′ − 1

4
t′2) + 1

4
tt′

(1− t′)(1− 1
4
t− 1

4
t′ − 1

4
t2 − 1

4
t′2)

.

If we develop into series the function

t′(1− 1
4
t′ − 1

4
t′2) + 1

4
tt′

1− 1
4
t− 1

4
t′ − 1

4
t2 − 1

4
t′2
− t′;
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we will have

(2 + t)tt′

4



1 +
1

4
t′(1 + t′) +

1

42
t′2(1 + t′)2 +

1

43
t′3(1 + t′)3 + etc.

+
t(1 + t)

4

[
1 +

2

4
t′(1 + t′) +

3

42
t′2(1 + t′)2 +

4

43
t′3(1 + t′)3 + etc.

]
+
t2(1 + t)2

42

[
1 +

3

4
t′(1 + t′) +

3.4

1.2.42
t′2(1 + t′)2 +

3.4.5

1.2.3.43
t′3(1 + t′)3 + etc.

]
+
t3(1 + t)3

43

[
1 +

4

4
t′(1 + t′) +

4.5

1.2.42
t′2(1 + t′)2 +

4.5.6

1.2.3.43
t′3(1 + t′)3 + etc.

]
+ etc.


.

If we reject from this series, all the powers of t other than tx, and all the powers of t′

superior to t′x′ , and if in that which remains, we make t = 1, t′ = 1, we will have the
expression of yx,x′ when x is equal or greater than unity: when x is null, we have y0,x′ = 1.
It is easy to translate this process into a formula, as we have done for the preceding case.

Let us name zx,x′ the probability of player B; the generating function of zx,x′ will be
that which the generating function of yx,x′ becomes when we change in it t into t′, and
reciprocally; that which gives for this function,

t(1− 1
4
t− 1

4
t2) + 1

4
tt′

(1− t)(1− 1
4
t− 1

4
t′ − 1

4
t2 − 1

4
t′2)

.

By adding the two generating functions, their sum is reduced to

t

1− t
+

t′

1− t′
+

tt′

(1− t)(1− t′)
,

in which the coefficient of txt′x′ is unity; thus we have

yx,x′ + zx,x′ = 1;

that [217]which is clear besides, since the game must be necessarily won by one of the players.

§9. Let us imagine in an urn, r balls marked with the no 1, r balls marked with no 2, r
balls marked with no 3, and so forth to the no n. These balls being well mixed in the urn,
we draw them successively; we require the probability that there will exit at least one of
these balls, at the rank7 indicated by its label8, or that there will exit at least two of them,
or at least three, etc.

7Translator’s note: This means that a ball marked with 1 will be drawn first, a ball marked with 2 will be
drawn second, and so on. In other words, balls will be drawn consecutively by number.

8Translator’s note: The word here is numéro, number. However, this refers to the use of a number as a
label. In order to distinguish it from nombre, number or quantity, I choose to render it as such.
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Let us seek first the probability that there will exit at least one of them. For this, we
will observe that each ball can exit at its rank, only in the first n drawings; we can therefore
here set aside the following drawings; now the total number of balls being rn, the number
of their combinations n by n, by having regard for the order that they observe among
themselves, is, by that which precedes,

rn(rn− 1)(rn− 2) . . . (rn− n+ 1);

this is therefore the number of all possible cases in the first n drawings.
Let us consider one of the balls marked with the no 1, and let us suppose that it exits at

its rank, or the first. The number of combinations of the rn− 1 other balls taken n− 1 by
n− 1, will be

(rn− 1)(rn− 2) . . . (rn− n+ 1);

this is the number of cases relative to the assumption that we just made; and as this assump-
tion can be applied to r balls marked with no 1, we will have

r(rn− 1)(rn− 2) . . . (rn− n+ 1)

for the number of cases relative to the hypothesis that one of the balls marked with the no 1
will exit at its rank. The same result holds for the hypothesis that any one of the n−1 other
kinds of balls will exit at the rank indicated by its label: by adding therefore all the results
relative to these diverse hypotheses, we will have

rn(rn− 1)(rn− 2) . . . (rn− n+ 1), (a)

for the number of cases in which one ball at least will exit at its rank, [218]provided however
that we remove from them the cases which are repeated.

In order to determine these cases, let us consider one of the balls of the no 1, exiting
first, and one of the balls of the no 2, exiting second. This case is comprehended twice in
the preceding number; for it is comprehended one time in the number of the cases relative
to the assumption that one of the balls labeled9 1, will exit at its rank, and a second time, in
the number of cases relative to the assumption that one of the balls labeled 2, will exit at its
rank; and as this extends to any two balls exiting at their rank, we see that it is necessary to
subtract from the number of the cases preceding, the number of all the cases in which two
balls exit at their rank.

The number of combinations of two balls of different labels is n(n−1)
1.2

r2; for the number
of the labels being n, their combinations two by two are in number n(n−1)

1.2
, and in each

of these combinations, we can combine the r balls marked with one of the labels, with
the r balls marked with the other label. The number of combinations of the rn − 2 balls
remaining, taken n − 2 by n − 2, by having regard for the order that they observe among
themselves, is

(rn− 2)(rn− 3) . . . (rn− n+ 1);

9Translator’s note: The word is numérotées, numbered. I have chosen to render it as labeled for the same
reason as above.
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thus the number of cases relative to the assumption that two balls exit at their rank is

n(n− 1)

1.2
r2(rn− 2)(rn− 3) . . . (rn− n+ 1);

by subtracting it from the number (a), we will have

rn(rn− 1)(rn− 2) . . . (rn− n+ 1)

−n(n− 1)

1.2
r2(rn− 2)(rn− 3) . . . (rn− n+ 1);

(a′)

for the number of all the cases in which one ball at least will exit at its rank, provided that
we subtract again from this function, the repeated cases, and that we add to them those
which are lacking.

These [219]cases are those in which three balls exit at their rank. By naming k this number,
it is repeated three times in the first term of the function (a′); for it can result, in this term,
from the three assumptions of each of the three balls exiting at its rank. The number k is
likewise comprehended three times in the second term of the function; for it can result from
each of the assumptions relative to any two of the three balls exiting at their rank; thus this
second term being affected with the − sign, the number k in not found in the function (a′);
it is necessary therefore to add it to it in order that it contain all the cases in which one ball
at least exits at its rank. The number of combinations of n labels taken three by three, is
n(n−1)(n−2)

1.2.3
, and as we can combine the r balls of one of these labels of each combination,

with the r balls of the second label, and with the r balls of the third label, we will have
the total number of combinations in which three balls exit at their rank, by multiplying
n(n−1)(n−2)

1.2.3
r3 by (rn− 3)(rn− 4) . . . (rn− n + 1), a number which expresses that of the

combinations of the rn− 3 remaining balls, taken n− 3 by n− 3, by having regard for the
order that they observe among themselves. If we add this product to the function (a′), we
will have

nr(rn− 1)(rn− 2) . . . (rn− n+ 1)

−n(n− 1)

1.2
r2(rn− 2)(rn− 3) . . . (rn− n+ 1)

+
n(n− 1)(n− 2)

1.2.3
r3(rn− 3)(rn− 4) . . . (rn− n+ 1);

(a′′)

this function expresses the number of all cases in which one ball at least exits at its rank,
provided that we subtract from it again the repeated cases. These cases are those in which
four balls exit at their rank. By applying here the preceding reasonings, we will see that it
is necessary again to subtract from the function (a′′) the term

n(n− 1)(n− 2)(n− 3)

1.2.3.4
r4(rn− 4)(rn− 5) . . . (rn− n+ 1).

By continuing thus, we will have for the expression of the cases in which one ball at least
exits at its rank
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[220]nr(rn− 1)(rn− 2) . . . (rn− n+ 1)

−n(n− 1)

1.2
r2(rn− 2)(rn− 3) . . . (rn− n+ 1)

+
n(n− 1)(n− 2)

1.2.3
r3(rn− 3)(rn− 4) . . . (rn− n+ 1)

−n(n− 1)(n− 2)(n− 3)

1.2.3.4
r4(rn− 4)(rn− 5) . . . (rn− n+ 1)

+etc.

(A)

the series being continued as far at it can be. In this function, each combination is not
repeated; thus the combination of s balls exiting at their rank, is found here only one time;
for this combination is comprehended s times in the first term of the function, since it can
result from each of the s balls exiting at its rank; it is subtracted s(s−1)

1.2
times in the second

term, since it can result from two by two combinations of the s balls exiting at their rank;
it is added s(s−1)(s−2)

1.2.3
times in the third term, since it can result from the combinations of s

letters taken three by three, and so forth; it is therefore, in the function (A), comprehended
a number of times equal to

s− s(s− 1)

1.2
+
s(s− 1)(s− 2)

1.2.3
− etc.;

and consequently equal to 1 − (1 − 1)s, or to unity. By dividing the function (A) by the
number rn(rn − 1)(rn − 2) . . . (rn − n + 1) of all possible cases, we will have for the
expression of the probability that one ball at least will exit at its rank,

1− (n− 1)r

1.2(rn− 1)
+

(n− 1)(n− 2)r2

1.2.3(rn− 1)(rn− 2)

− (n− 1)(n− 2)(n− 3)r3

1.2.3.4(rn− 1)(rn− 2)(rn− 3)
+ etc.

(B)

Let us seek now the probability that at least s balls will exit at their rank. The number
of cases in which s balls exit a their rank, is, by that which precedes,

n(n− 1)(n− 2) . . . (n− s+ 1)

1.2.3 . . . s
rs(rn− s)(rn− s− 1) . . . (rn− n+ 1), (b)

provided [221]that we subtract from this function, the cases which are repeated. These cases
are those in which s + 1 balls exit at their rank, for they can result in the function, from
s + 1 balls taken s by s; these cases are therefore repeated s + 1 times in this function;
consequently it is necessary to subtract them s times. Now the number of cases in which
s+ 1 balls exit at their rank, is

n(n− 1)(n− 2) . . . (n− s)
1.2.3 . . . (s+ 1)

rs+1(rn− s− 1)(rn− s− 2) . . . (rn− n+ 1).
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By multiplying it by s, and subtracting it from the function (b), we will have

n(n− 1)(n− 2) . . . (n− s+ 1)

1.2.3 . . . s
rs(rn− s)(rn− s− 1) . . . (rn− n+ 1)

×
{

1− s(n− s)r
(s+ 1)(rn− s)

}
.

(b′)

In this function, many cases are again repeated, namely, those in which s + 2 balls exit
at their rank; for they result in the first term, from s + 2 balls exiting at their rank, and
taken s by s; they result, in the second term, from s + 2 balls exiting at their rank, and
taken s+ 1 by s+ 1, and moreover multiplied by the factor s, by which we have multiplied
the second term. They are therefore comprehended in this function, the number of times
(s+2)(s+1)

1.2
− s(s+ 2); thus it is necessary to multiply by unity less this number of times, the

number of cases in which s+ 2 balls exit at their rank. This last number is

n(n− 1)(n− 2) . . . (n− s− 1)

1.2.3 . . . (s+ 2)
rs+2(rn− s− 2)(rn− s− 3) . . . (rn− n+ 1);

the product in question will be therefore

n(n− 1) . . . (n− s− 1)

1.2.3 . . . (s+ 2)
rs+2(rn− s− 2) . . . (rn− n+ 1)

s(s+ 1)

1.2
.

By adding it to the function (b′), we will have

n(n− 1) . . . (n− s+ 1)

1.2.3 . . . s
rs(rn− s)(rn− s− 1) . . . (rn− n+ 1)

×


1− s

s+ 1
· (n− s)r
rn− s

+
s

s+ 2
· (n− s)(n− s− 1)r2

1.2(rn− s)(rn− s− 1)

 ;
(b′′)

this [222]is the number of all possible cases in which s balls exit at their rank, provided that
we subtract from it again the cases which are repeated. By continuing to reason so, and
by dividing the final function by the number of all possible cases; we will have for the
expression of the probability that s balls at least will exit at their rank,

(n− 1)(n− 2) . . . (n− s+ 1)rs−1

1.2.3 . . . s(rn− 1)(rn− 2) . . . (rn− s+ 1)

×


1− s

s+ 1
· (n− s)r
rn− s

+
s

s+ 2
· (n− s)(n− s− 1)r2

1.2.(rn− s)(rn− s− 1)

− s

s+ 3
· (n− s)(n− s− 1)(n− s− 2)r3

1.2.3(rn− s)(rn− s− 1)(rn− s− 2)
+ etc.

 .

(C)
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We will have the probability that none of the balls will exit at its rank, by subtracting
formula (B) from unity; and we will find, for its expression,

[1.2.3 . . . rn]− nr[1.2.3 . . . (rn− 1)] + n(n−1)
1.2

r2[1.2.3 . . . (rn− 2)]− etc.
1.2.3 . . . rn

.

We have, by §33 of the first Book, whatever be i,

1.2.3 . . . i =

∫
xidxc−x,

the integral being taken from x null to x infinity. The preceding expression can therefore
be put under this form ∫

xrn−ndx(x− r)nc−x∫
xrndxc−x

. (o)

Let us suppose the number rn of balls in the urn, very great; then by applying to the
preceding integrals, the method of §24 of the first Book, we will find more or less nearly,
for the integral of the numerator,

√
2πXrn+2

(
1− r

X

)n+1
c−X√

nX2 + n(r − 1)(X − r)2
,

X being the value of x which renders a maximum, the function xrn−n(x − r)nc−x. The
equation relative to this maximum gives for X , the two values

X =
rn+ r

2
±
√
r2(n− 1)2 + 4rn

2
.

We [223]can consider here only the greatest of these values which is, to the quantities nearly,
of the order 1

rn
, equal to rn + n

n−1 ; then the integral of the numerator of the function (o)
becomes nearly √

2π(rn)rn+
1
2 c−rn

(
1− 1

n

)n+1√
r√

(r − 1)(1− 1
n
)2 + 1

.

The integral of the denominator of the same function is, by §33, quite nearly,
√

2π(rn)rn+
1
2 c−rn;

the function (o) becomes thus (
1− 1

n

)n+1√
r√

(r − 1)(1− 1
n
)2 + 1

.
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We can put it under the form (
1− 1

n

)n+1√
(1− 1

n
)2 + 2

rn
− 1

rn2

,

rn being supposed a very great number, this function is reduced quite nearly to this very
simple form (

n− 1

n

)n
.

This is therefore the quite close expression of the probability that none of the balls of the
urn will exit at its rank, when there is a great number of balls. The hyperbolic logarithm of
this expression being

−1− 1

2n
− 1

3n2
− etc.;

we see that it always increases in measure as n increases; that it is null, when n = 1, and
that it becomes 1

c
, when n is infinity, [224]c being always the number of which the hyperbolic

logarithm is unity.
Let us imagine now a number i of urns each containing the number n of balls, all of

different colors; and that we draw successively all the balls from each urn. We can, by the
preceding reasonings, determine the probability that one or more balls of the same color
will exit at the same rank in the i drawings. In fact, let us suppose that the ranks of the
colors are settled after the complete drawing of the first urn, and let us consider first the
first color: let us suppose that it exits first in the drawings of the i− 1 other urns. The total
number of combinations of the n − 1 other colors from each urn is, by having regard for
their situation among them, 1.2.3 . . . (n − 1); thus the total number of these combinations
relative to i− 1 urns, is [1.2.3 . . . (n− 1)]i−1; this is the number of cases in which the first
color is drawn the first altogether from all these urns; and as there are n colors, we will
have

n[1.2.3 . . . (n− 1)]i−1

for the number of cases in which one color at least will arrive at its rank in the drawings
from the i−1 urns. But there are in this number, some repeated cases: thus the cases where
two colors arrive at their rank in these drawings, are comprehended twice in this number; it
is necessary therefore to subtract them from it. The number of these cases is, by that which
precedes,

n(n− 1)

1.2
[1.2.3 . . . (n− 2)]i−1;

by subtracting it from the preceding number, we will have the function

n[1.2.3 . . . (n− 1)]i−1 − n(n− 1)

1.2
[1.2.3 . . . (n− 2)]i−1.

But this function contains itself repeated cases. By continuing to exclude from them, as we
have done above relatively to a single urn; by dividing next the final function, by the number
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of all possible cases, and which is here [1.2.3 . . . n]i−1; we will have, for the probability that
one of the n − 1 colors at least will exit at [225]its rank in the i − 1 drawings which follow the
first,

1

ni−2
− 1

1.2[n(n− 1)]i−2
+

1

1.2.3[n(n− 1)(n− 2)]i−2
− etc.,

an expression in which it is necessary to take as many terms as there are units in n. This
expression is therefore the probability that at least one of the colors will exit at the same
rank in the drawings from the i urns.

§10. Let us consider two players A and B, of whom the skills are p and q, and of whom
the first has a tokens, and the second, b tokens. Let us suppose that at each coup, the one
who loses gives a token to his adversary, and that the game ends only when one of the
players will have lost all his tokens; we demand the probability that one of the players, A
for example, will win the game, before or at the nth coup.

This problem can be resolved with facility by the following process which is in some
way, mechanical. Let us suppose b equal or less than a, and let us consider the development
of the binomial (p+ q)b. The first term pb of this development will be the probability of A
to win the game at coup b. We will subtract this term, from the development, and we will
subtract similarly the last term qb, if b = a; because then this term expresses the probability
of B to win the game at coup b. Next we will multiply the rest by p + q. The first term
of this product will have for factor pbq, and, as the exponent b surpasses only by b − 1 the
exponent of q, there results from it that the game cannot be won by player A, at the coup
b + 1, that which is clear besides; because if A has lost a token in the first b coups, he
must, in order to win the game win this token plus the b tokens of player B, that which
requires b+2 coups. But if a = b+1, we will subtract from the product, its last term which
expresses the probability of the player B to win the game at the coup b+ 1.

We will multiply anew this second remainder, by p + q. The first term of the product
will have for factor pb+1q, and as the exponent of p surpasses by b there the one of q, this
term will express the probability of A to win the game at the coup b + 2. We will subtract
similarly [226]from the product, the last term, if the exponent of q there surpasses by a the one
of p.

We will multiply anew this third remainder, by p + q, and we will continue these mul-
tiplications up to the number of times n− b, by subtracting at each multiplication, the first
term, if the exponent of p there surpasses by b, the one of q, and the last term, if the expo-
nent of q there surpasses by a, the one of p. This premised, the sum of the first terms thus
subtracted, will be the probability of A to win the game, before or at coup n; and the sum
of the last terms subtracted will be the similar probability relative to player B.

In order to have an analytic solution of the problem, let yx,x′ be the probability of player
A to win the game, when he has x tokens, and when he has no more than x′ coups to play in
order to attain the n coups. This probability becomes at the following coup, either yx+1,x′−1,
or yx−1,x′−1, according as player A wins or loses the coup; now the respective probabilities
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of these two events are p and q: we have therefore the equation in the partial differences,

yx,x′ = pyx+1,x′−1 + qyx−1,x′−1.

In order to integrate this equation, we will consider, as previously, a function u of t and
of t′ generator of yx,x′ , so that yx,x′ be the coefficient of txt′x′ in the development of this
function. In passing again from the coefficients, to the generating functions, the preceding
equation will give

u = u.

(
pt′

t
+ qtt′

)
;

whence we deduce

1 =
pt′

t
+ qtt′;

consequently,

1

t
=

1

2pt′
±

√
1
t′2
− 4pq

2p
;

that which gives
1

tx
=

1

(2p)x

(
1

t′
±
√

1

t′2
− 4pq

)x

;

therefore [227]

u

txt′x′
=

u

(2p)xt′x′

(
1

t′
±
√

1

t′2
− 4pq

)x

.

This equation can be put under the following form,

u

txt′x′
=

u

2(2p)xt′x′

×



(
1

t′
+

√
1

t′2
− 4pq

)x

+

(
1

t′
−
√

1

t′2
− 4pq

)x

±
√

1

t′2
− 4pq

(
1
t′

+
√

1
t′2
− 4pq

)x
−
(

1
t′
−
√

1
t′2
− 4pq

)x
√

1
t′2
− 4pq

.


The preceding expression of 1

t
gives

±
√

1

t′2
− 4pq =

2p

t
− 1

t′
;
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we have therefore

u

txt′x′
=

u

2(2p)xt′x′

[(
1

t′
+

√
1

t′2
− 4pq

)x

+

(
1

t′
−
√

1

t′2
− 4pq

)x]

+
u
(

1
t
− 1

2pt′

)
2(2p)x−1t′x′

(
1
t′

+
√

1
t′2
− 4pq

)x
−
(

1
t′
−
√

1
t′2
− 4pq

)x
√

1
t′2
− 4pq

:

under this form, the ambiguity of the ± sign disappears.
Now if we pass again from the generating functions to their coefficients, and if we

observe that y0,x′ is null, because playerA loses the game necessarily, when he has no more
tokens; the preceding equation will give, by passing again from the generating functions to
the coefficients,

yx,x′ =
1

2xpx−1

×[X(x−1)y1,x+x′−1 +X(x−3)y1,x+x′−3 · · ·+X(x−2r−1)y1,x+x′−2r−1 + etc.],

the series of the second member being arrested when x−2r−1 has a negative value. X(x−1),
X(x−3), etc., are the coefficients of 1

t′x−1 ,
1

t′x−3 , etc., [228]in the development of the function(
1
t′

+
√

1
t′2
− 4pq

)x
−
(

1
t′
−
√

1
t′2
− 4pq

)x
√

1
t′2
− 4pq

(i)

If we name u′ the coefficient of tx in the development of u, u′ will be a function of t′ and
of x, generator of yx,x′ . If we name similarly T ′ the coefficient of t in the development of
u, the product of T ′

2xpx−1 by the function (i), will be the generating function of the second
member of the preceding equation; this function is therefore equal to u′. Let us suppose
x = a + b, then yx,x′ becomes ya+b,x′ , and this quantity is equal to unity; because it is
certain that A has won the game, when he has won all the tokens of B; u′ is therefore
then the generating function of unity; now x′ is here zero or an even number, because the
number of coups in which A can win the game, is equal to b plus an even number: indeed,
A must for this win all the tokens of B, and moreover he must win again each token that he
has lost, that which requires two coups. Next n expressing a number of coups in which A
can win the game, it is equal to b plus an even number; x′ being the number of coups which
are lacking to player A in order to arrive to n, is therefore zero or an even number. Thence
it follows in the case of x = a+ b, u′ becomes 1

1−t′2 ; we have therefore

T ′

2a+bpa+b−1

(
1
t′

+
√

1
t′2
− 4pq

)a+b
−
(

1
t′
−
√

1
t′2
− 4pq

)a+b
√

1
t′2
− 4pq

=
1

1− t′2
;
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that which gives the value of T ′. By multiplying it by the function (i) divided by 2apa−1,
and in which we make x = a, we will have the generating function of ya,x′ equal to

2bpbt′b[(1 +
√

1− 4pqt′2)a − (1−
√

1− 4pqt′2)a]

(1− t′2)[(1 +
√

1− 4pqt′2)a+b − (1−
√

1− 4pqt′2)a+b]
. (o)

In [229]the case of a = b, it becomes

2apat′a

(1− t′2)[(1 +
√

1− 4pqt′2)a + (1−
√

1− 4pqt′2)a]
.

By developing the function

(1 +
√

1− 4pqt′2)a − (1−
√

1− 4pqt′2)a, (q)

according to the powers of t′2, the radical disappears, and the highest exponent of t′ in this
development, is equal to or smaller than a. But if we develop (1−

√
1− 4pqt′2)a according

to the powers of t′2, the least exponent of t′ will be 2a; the function (q) is therefore equal to
the development of (1 +

√
1− 4pqt′2)a, by rejecting the powers of t′ superior to a.

Now we have, by §3 of the first Book,

za = 1− aα +
a(a− 3)

1.2
α2 − a(a− 4)(a− 5)

1.2.3
α3 + etc.,

z being one of the roots of the equation

z = 1− α

z
,

which is reduced to unity, when α is null. This root is

1 +
√

1− 4α

2
;

by supposing therefore α = pqt′2, we will have(
1 +

√
1− 4pqt′2

)a
= 2a

{
1− apqt′2 +

a(a− 3)

1.2
p2q2t′4 − a(a− 4)(a− 5)

1.2.3
p3q3t′6 + etc.

}
;

we will have thus,

2apat′a(
1 +

√
1− 4pqt′2

)a
+
(

1−
√

1− 4pqt′2
)a

=
pat′a

1− apqt′2 + a(a−3)
1.2

p2q2t′4 − a(a−4)(a−5)
1.2.3

p3q3t′6 + etc.
,
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the [230]series of the denominator being continued exclusively until the powers of t′ superior to
a. This second member must be, by that which precedes, divided by 1−t′2, in order to have
the generating function of ya,x′; the quantity ya,x′ is therefore the sum of the coefficients
of the powers of t′, by considering in the development of this member, with respect to the
powers of t′, only the powers equal or inferior to x′. Each of these coefficients will express
the probability that A will win the game at the coup indicated by the exponent of the power
of t′.

If we name zi the coefficient corresponding to t′a+2i, we will have generally

0 = zi − apqzi−1 +
a(a− 3)

1.2
p2q2zi−2 − etc.;

whence it is easy to conclude the values of z1, z2, etc., by observing that z−1, z−2, etc.
are nulls, and that z0 = pa. The value of zi being equal to ya,a+2i − ya,a+2i−2, we will
have those of ya,a, ya,a+2, ya,a+4, etc. The equation in the partial differences to which
we are immediately led, is found thus restored to one equation in the ordinary differences
which determines, by integrating it, the value of ya,x′ . But we can obtain this value by the
following process which is applied in the general case where a and b are equal or different
between them.

Let us resume the generating function of ya,x′ found above; ya,x′ is the coefficient of
tx
′−b in the development of the function

2bpb
P

Q(1− t′2)
,

by supposing

P =

(
1 +

√
1− 4pqt′2

)a
−
(

1−
√

1− 4pqt′2
)a

√
1− 4pqt′2

Q =

(
1 +

√
1− 4pqt′2

)a+b
−
(

1−
√

1− 4pqt′2
)a+b

√
1− 4pqt′2

.

It results from §5 of the first Book, that if we consider the two terms

P

2t′2iQ
, − P

(1− t′2)t′2i+1 dQ
dt′

;

that [231]we make next successively t′ = 1 and t′ = −1 in the first term, and t′ equal succes-
sively to all the roots of the equation Q = 0 in the second term; the sum of all the terms
which we obtain in this manner, will be the coefficient of t′2i in the development of the
fraction

P

Q(1− t′2)
.
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That which the first term produces in this sum is

pa − qa

2b(pa+b − qa+b)
.

In order to have the roots of the equation Q = 0, we make

t′ =
1

2
√
pq cos$

;

that which gives

Q =
(cos$ +

√
−1 sin$)a+b − (cos$ −

√
−1 sin$)a+b√

−1 sin$ (cos$)a+b−1
,

or

Q =
2 sin(a+ b)$

sin$ (cos$)a+b−1
.

The roots of the equation Q = 0 are therefore represented by

$ =
(r + 1)π

a+ b
,

r being a positive whole number which be extended from r = 0 to r = a + b − 2. When
a+ b is an even number, 1

2
π is one of the values of $; it is necessary to exclude it, because,

cos$ becoming null then, this value of $ does not render Q null. In this case, the equation
Q = 0 has only a + b − 2 roots; but, as the term depending on the value $ = 1

2
π, is

multiplied in the expression of ya,x′ , by a positive power of cos (r+1)π
a+b

, we can conserve the
value of r which gives $ = 1

2
π, since the term which corresponds to it in the expression of

ya,x′ disappears.
Now we have

dQ

dt′
=

(
dQ

d$

)
· d$
dt′

;

whence [232]we deduce, by virtue of the equation sin(a+ b)$ = 0,

dQ

dt′
=

4(a+ b)
√
pq cos(r + 1)π

sin2 $ (cos$)a+b−3
=

4(a+ b)
√
pq (−1)r+1

sin2 $ (cos$)a+b−3
,

the term
−P

(1− t′2)t′2i+1 dQ
dt′

becomes thus, by observing that

P =
2 sin a$

sin$ (cos$)a−1
,

38



(−1)r+122i+2(pq)i+1 sin (r+1)π
a+b

sin (r+1)aπ
a+b

(
cos (r+1)π

a+b

)b+2i+1

(a+ b)
(
p2 − 2pq cos 2(r+1)π

a+b
+ q2

) ; (h)

the sum of all the terms which we obtain, by giving to r all the whole and positive values,
from r = 0 to r = a+ b− 2, will be that which produces the function

−P
(1− t′2)t′2i+1 dQ

dt′

:

we will designate this sum by the characteristic S placed before the function (h).
If we make r′ + 1 = a+ b− (r + 1), we will have

sin
(r′ + 1)π

a+ b
= sin

(r + 1)π

a+ b
,

cos
(r′ + 1)π

a+ b
= − cos

(r + 1)π

a+ b
,

cos
2(r′ + 1)π

a+ b
= cos

2(r + 1)π

a+ b
,

sin
(r′ + 1)aπ

a+ b
= (−1)a+1 sin

(r + 1)aπ

a+ b
.

Thence it is easy to conclude that in the function (h), the term relative to r + 1 is the
same as the term relative to r′ + 1; we can therefore double this term, and extend then the
characteristic S only to the values of r comprehended from r = 0 to r = a+b−2

2
, if [233]a+ b is

even, or r = a+b−1
2

, if a+ b is odd. This premised, by observing that

sin
(r + 1)aπ

a+ b
= (−1)r sin

(r + 1)bπ

a+ b
,

we will have

ya,b+2i =
pb(pa − qa)
pa+b − qa+b

− 2b+2i+2pb(pq)i+1

a+ b

×S


sin 2(r+1)π

a+b
sin (r+1)bπ

a+b

(
cos (r+1)π

a+b

)b+2i

p2 − 2pq cos 2(r+1)π
a+b

+ q2

 .

(H)

By changing a into b, p into q, and reciprocally, we will have the probability that player B
will win the game before the coup a+ 2i, or at this coup.

Let us suppose a = b; sin (r+1)aπ
a+b

will become sin 1
2
(r + 1)π. This sine is null, when

r + 1 is even; therefore it suffices then to consider in the expression of ya,a+2i, the odd
values of r + 1. By expressing them as 2s+ 1, and observing that sin (2s+1)π

2
= (−1)s, we
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will have

ya,a+2i =
pa

pa + qa
− 2a+2i+2pa(pq)i+1

a

×S


(−1)s sin (2s+1)π

a

(
cos (2s+1)π

2a

)a+2i

p2 − 2pq cos (2s+1)π
a

+ q2

 ,

2s+ 1 needing to comprehend all the odd values contained in a− 1.
If we change in this expression, p into q, and reciprocally, we will have the probability

of player B to win the game in a + 2i coups. The sum of these two probabilities will be
the probability that the game will end after this number of coups; this last probability is
therefore

1− 2a+2i+1

a
(pa + qa)(pq)i+1S


(−1)s sin (2s+1)π

a

(
cos (2s+1)π

2a

)a+2i

p2 − 2pq cos (2s+1)π
a

+ q2

 .

If [234]the skills p and q are equal, this expression becomes

1− 2

a
S


(−1)s

(
cos (2s+1)π

2a

)a+2i+1

sin (2s+1)π
2a

 .

When a+ 2i is a large number, we can conclude from it in a manner quite near, the number
of coups necessary in order that the probability that the game will end in this number of
coups, be equal to a given fraction 1

k
. We will have then

2

a
S


(−1)s

(
cos (2s+1)π

2a

)a+2i+1

sin (2s+1)π
2a

 =
k − 1

k
,

a + 2i being supposed a very great number quite superior to the number a, it suffices to
consider the term of the first member which corresponds to s null, and then we have

a+ 2i+ 1 =
log
(
a(k−1)

2k
sin π

2a

)
log(cos π

2a
)

,

these logarithms can be at will hyperbolic or tabular.
If in the preceding formulas, we suppose a infinite, b remaining a finite number; we

will have the case in which player A plays against player B who has originally the number
b of tokens, until he has won all the tokens of B, without that ever the latter is able to beat
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A, whatever be the number of tokens that he has won from him. In this case, the generating
function (o) of ya,x′ is reduced to

2bpbt′b

(1− t′2)
(

1 +
√

1− 4pqt′2
)b ;

because then
(

1−
√

1− 4pqt′2
)a

and
(

1−
√

1− 4pqt′2
)a+b

developed, contain only in-
finite powers of t′, powers which we must neglect, when we consider only a finite number
of coups. [235]We have by that which precedes(

1 +
√

1− 4pqt′2
)−b

=
1

2b


1+bpqt′2 +

b(b+ 3)

1.2
p2q2t′4 +

b(b+ 4)(b+ 5)

1.2.3
p3q3t′6

· · ·+b(b+ i+ 1)(b+ i+ 2) . . . (b+ 2i− 1)piqit′2i

1.2.3 . . . i
+ etc.

 .

By multiplying this second member by 2bpbt′b

1−t′2 , the coefficient of t′b+2i will be

pb
{

1 + bpq +
b(b+ 3)

1.2
p2q2 · · ·+ b(b+ i+ 1)(b+ i+ 2) . . . (b+ 2i− 1)piqi

1.2.3 . . . i

}
;

this is the value of ya,b+2i, or the probability that A will win the game before or at the coup
b+ 2i.

This value will be very painful to reduce into numbers, if b and 2i were large numbers;
it will be especially very difficult to obtain by its means, the number of coups in which A
can wager one against one to win the game; but we can attain it easily in this manner.

Let us resume formula (H) found above. In the case of a infinite, and p being supposed
equal or greater than q, if we suppose (r+1)

a
π = φ, and π

a
= dφ, it becomes

ya,b+2i = 1− 2b+2i+2pb(pq)i+1

π

∫
dφ sin 2φ sin bφ (cosφ)b+2i

p2 − 2pq cos 2φ + q2
,

the integral needing to be taken from φ = 0 to φ = 1
2
π. In the case of p less than q, the

same expression holds, provided that we change the first term 1, into pb

qb
.

If p = q, this expression becomes

1− 2

π

∫
dφ sin bφ (cosφ)b+2i+1

sinφ
,

the integral being taken from φ null to φ = 1
2
π. Let us suppose now that b and i are great

numbers. The maximum of the function

φ (cosφ)b+2i+1

sinφ
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corresponds [236]to φ = 0, that which gives 1 for this maximum. The function decreases next
with an extreme rapidity, and in the interval where it has a sensible value, we can suppose

log sinφ = log φ+ log(1− 1
6
φ2) = log φ− 1

6
φ2,

log(cosφ)b+2i+1 =(b+ 2i+ 1) log(1− 1
2
φ2 + 1

24
φ4)

=− (b+ 2i+ 1)

2
φ2 − (b+ 2i+ 1)

12
φ4,

that which gives, by neglecting the sixth powers of φ, and its fourth powers which are not
multiplied by b+ 2i+ 1,

log

(
(cosφ)b+2i+1

sinφ

)
= − log φ−

(b+ 2i+ 2
3
)

2
φ2 −

(b+ 2i+ 2
3
)

12
φ4;

by making therefore

a2 =
b+ 2i+ 2

3

2
;

we will have
(cosφ)b+2i+1

sinφ
=

(1− a2

6
φ4)

φ
c−a

2φ2 ;

hence, ∫
dφ sin bφ (cosφ)b+2i+1

sinφ
=

∫ dφ
(

1− a2

6
φ4
)

φ
sin bφ c−a

2φ2 .

This last integral can be taken from φ = 0 to φ infinity; because it must be taken from
φ = 0 to φ = 1

2
π; now a2 being a considerable number, c−a2φ2 becomes excessively small,

when we make φ = 1
2
π, so that we can suppose it null, seeing the extreme rapidity with

which this exponential diminishes, when φ increases. Now we have

d

db

∫ dφ
(

1− a2

6
φ4
)

φ
sin bφ c−a

2φ2 =

∫
dφ

(
1− a2

6
φ4

)
cos bφ c−a

2φ2 ;

we have besides, by §25 of the first Book,∫
dφ cos bφ c−a

2φ2 =

√
π

2a
c−

b2

4a2 , [237]∫
φ4 dφ cos bφ c−a

2φ2 =

√
π

2a

d4c−
b2

4a2

db4
,

=
3
√
π

8a5
c−

b2

4a2

(
1− b2

a2
+

b4

12.a4

)
;
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whence we deduce, by supposing

b2

4a2
= t2,∫

dφ sin bφ (cosφ)b+2i+1

sinφ
=
√
π

{∫
dt c−t

2 − tc−t
2

8a2
(
1− 2

3
t2
)}

.

Thus the probability that A will win the game in the number b+ 2i coups, is

1− 2√
π

[∫
dt c−t

2 − Tc−T
2

8a2
(
1− 2

3
T 2
)]

;

the integral being taken from t null to t = T , T 2 being equal to b2

4a2
.

If we seek the number of coups in which we can wager one against one that this will
take place, we will make this probability equal to 1

2
, that which gives∫

dt c−t
2

=

√
π

4
+
Tc−T

2

8a2
(
1− 2

3
T 2
)
.

Let us name T ′ the value of t, which corresponds to∫
dt c−t

2

=

√
π

4
;

and let us suppose
T = T ′ + q,

q being of order 1
a2

. The integral
∫
dt c−t

2 will be increased very nearly [238]by qc−T ′2; that
which gives

qc−T
′2

=
T ′c−T

′2

8a2
(
1− 2

3
T ′2
)

;

we will have therefore

T 2 = T ′2 +
T ′2

4a2
(
1− 2

3
T ′2
)
.

Having therefore T 2 to the quantities near the order 1
a4

, the equation

2a2 = b+ 2i+ 2
3

=
b2

2T 2

will give, to the quantities near the order 1
a2

,

b+ 2i =
b2

2T ′2
− 7

6
+

1

3
T ′2.
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In order to determine the value of T ′2, we will observe that here T ′ is smaller than 1
2
; thus

the transcendent and integral equation∫
dt c−t

2

=

√
π

4
,

can be transformed into the following,

T ′ − 1

3
T ′3 +

1

1.2
· 1

5
T ′5 − 1

1.2.3
· 1

7
T ′7 + etc. =

√
π

4
.

By resolving this equation, we find

T ′2 = 0.2102497.

By supposing b = 100, we will have

b+ 2i = 23780, 14.

There is therefore then disadvantage to wager one against one, that A will win the game in
23780 coups, but there is advantage to wager that he will win it in 23781 coups.

§11. A number n+1 of players play together with the following conditions. Two among
them play first, and the one who loses is retired after having put a franc into the game, in
order to return only [239]after all the other players have played; that which holds generally for
all the players who lose, and who thence become the last. The one of the first two players
who has won, plays with the third, and, if he wins it, he continues to play with the fourth,
and so forth until he loses, or until he has beat successively all the players. In this last case,
the game is ended. But if the player winning at the first coup, is vanquished by one of the
other players, the vanquisher plays with the following player, and continues to play until
he is vanquished, or until he has beat consecutively all the players; the game continues thus
until there is one player who beats consecutively all the others, that which ends the game,
and then the player who wins it, takes away all that which has been set into the game. This
premised,

Let us determine first the probability that the game will end precisely at coup x; let us
name zx this probability. In order that the game finish at coup x, if is necessary that the
player who enters into the game at coup x − n + 1, wins this coup and the n − 1 coups
following; now he is able to enter against a player who has won only a single coup: by
naming P the probability of this event, P

2n
will be the corresponding probability that the

game will end at coup x. But the probability zx−1 that the game will end at coup x − 1, is
evidently P

2n−1 . Because it is necessary for this that there is a player who has won a coup,
at coup x−n+ 1, and who playing at this coup, wins it and the following n− 2 coups; and
the probability of each of these events being P and 1

2n−1 , the probability of the composite
event will be P

2n−1 ; we will have therefore zx−1 = P
2n−1 , and consequently,

P

2n
=

1

2
zx−1;
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1
2
zx−1 is therefore the probability that the game will end at coup x, relative to this case.

If the player who enters into the game at coup x − n + 1, plays at this coup against a
player who has already won two coups; by naming P ′ the probability of this case, P

′

2n
will

be the probability relative to this case, that the game [240]will end at coup x. But we have

P ′

2n−2
= zx−2;

because in order that the game end at coup x − 2, it is necessary that at coup x − n + 1,
one of the players has already won two coups, and that he wins this coup and the n − 3
following coups. We have therefore

P ′

2n
=

1

22
zx−2;

1
22
zx−2 is therefore the probability that the game will end at coup x, relative to this case;

and so forth.
By reassembling all these partial probabilities, we will have

zx =
1

2
zx−1 +

1

22
zx−2 +

1

23
zx−3 · · ·+

1

2n−1
zx−n+1.

The generating function of zx is, by the first Book,

ψ(t)

1− 1
2
t− 1

22
t2 · · · − 1

2n−1 tn−1

or
1
2
ψ(t)(2− t)

1− t+ 1
2n
tn
.

In order to determine ψ(t), we will observe that the game can end no earlier than at coup
n, and that the probability for this is 1

2n−1 ; because it is necessary that the vanquisher at the
first coup, wins the n − 1 following coups; ψ(t) must therefore contain only the power n
of t, and 1

2n−1 must be the coefficient of this power; that which gives ψ(t) = tn

2n−1 : thus the
generating function of zx is

1
2n
tn(2− t)

1− t+ 1
2n
tn
.

The sum of the coefficients of the powers of t to infinity, in the development of this function,
is the probability that the game must [241]end after an infinity of coups; now we have this sum
by making t = 1 in the function, that which reduces it to unity; it is therefore certain that
the game must end.

We will have the probability that the game will be ended at coup x or before this coup,
by determining the coefficient of tx in the development of the preceding function, divided
by 1− t; the generating function of this probability is therefore

1
2n
tn(2− t)

(1− t)
(
1− t+ 1

2n
tn
) .
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Let us give to the generating function of zx, this form

1

2n
· t

n(2− t)
1− t

(
1− 1

2n
· tn

1− t
+

1

22n
· t2n

(1− t)2
− etc.

)
;

the coefficient of tx in trn(2−t)
2rn(1−t)r is

1

2rn
· (x− rn+ 1)(x− rn+ 2) . . . (x− rn+ r − 2)

1.2.3 . . . (r − 1)
(x− rn+ 2r − 2);

we have therefore

zx =
1

2n
−(x− 2n+ 2)

22n
+

(x− 3n+ 1)

1.2.23n
(x− 3n+ 4)

−(x− 4n+ 1)(x− 4n+ 2)

1.2.3.24n
(x− 4n+ 6) + etc.,

an expression which is relative only to x greater than n, and in which it is necessary to take
only as many terms as there are integral units in the quotient x

n
: When x = n, we have

zx = 1
2n−1 .

By developing in the same manner the generating function of the probability that the
game will end before or at coup x, we will find for the expression of this probability,

x− n+ 2

2n
− (x− 2n+ 1)

1.2.22n
(x− 2n+ 4)

+
(x− 3n+ 1)(x− 3n+ 2)

1.2.3.23n
(x− 3n+ 6)− etc.,

this expression holding even in the case x = n.
Let [242]us determine now the respective probabilities of the players in order to win the

game at coup x. Let y0,x, be that of the player who has won the first coup. Let y1,x, y2,x,
. . . yn−1,x be those of the following players, and yn,x that of the player who has lost at the
first coup, and who thence became the last. Let us designate the players by (0), (1), (2),
. . . (n − 1), (n). This premised, the probability yr,x of player (r) becomes yr−1,x−1, if at
the second coup player (0) is vanquished by player (1); because it is clear that (r) is found
then, with respect to the vanquisher (1), in the same position where (r−1) was with respect
to the vanquisher (0); only, there is one coup less to play in order to arrive at coup x, that
which changes x into x− 1. Presently the probability that player (0) will be vanquished by
(1) is 1

2
; thus 1

2
yr−1, x−1 is the probability of player (r) to win the game at coup x, relative

to the case where (0) is vanquished by (1). If (0) is vanquished only by (2), yr,x becomes
yr−2, x−2, and the probability of this event being 1

4
, we have 1

4
yr−2, x−2 for the probability of

player (r), to win the game at coup x, relative to this case. If player (0) is vanquished only
by player (r), yr,x becomes y0,x−r, and the probability of this event is 1

2r
; thus 1

2r
y0,x−r is

the probability of player (r) to win the game at coup x, relative to this case. If player (0)
is vanquished only by player (r + 1), yr,x is changed into yn−1, x−r−1; because then player
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(r) is found, with respect to the vanquisher, in the original position of player (n − 1) with
respect to player (0): only there remains only x − r − 1 coups to play in order to arrive
at coup x. Now the probability that (0) will be vanquished only by player (r + 1), is 1

2r+1 ;
1

2r+1yn−1,x−r−1 is therefore the probability of (r) to win the game at coup x, relative to this
case. By continuing thus, and reassembling all these partial probabilities, we will have
the entire probability yr,x of player (r) to win the game; that which gives the following
equation:

yr,x =
1

2
yr−1,x−1 +

1

22
yr−2, x−2 · · ·+

1

2r
y0,x−r +

1

2r+1
yn−1, x−r−1

+
1

2r+2
yn−2, x−r−2 · · ·+

1

2n−1
yr+1, x−n+1.

This [243]expression holds from r = 1 to r = n− 2. It gives

1

2
yr−1,x−1 =

1

22
yr−1,x−2 +

1

23
yr−3, x−3 · · ·+

1

2n
yr,x−n.

By subtracting this equation, from the preceding; we will have that here in the partial
differences,

yr,x − yr−1,x−1 +
1

2n
yr,x−n = 0; (1)

this equation is extended from r = 2 to r = n− 2.
We have, by the preceding reasoning, the following equation,

yn−1,x =
1

2
yn−2, x−1 +

1

22
yn−3, x−2 · · ·+

1

2n−1
y0,x−n+1.

But the preceding expression of yr,x gives

1

2
yn−2,x−1 =

1

22
yn−3,x−2 · · ·+

1

2n−1
y0, x−n+1 +

1

2n
yn−1,x−n.

By subtracting this equation from the preceding, we will have

yn−1,x − yn−2,x−1 +
1

2n
yn−1,x−n = 0 :

thus equation (1) subsists in the case of r = n− 1.
The preceding reasoning leads further to this equation

yn,x =
1

2
yn−1,x−1 +

1

22
yn−2, x−2 · · ·+

1

2n−1
y1, x−n+1,

that which gives
1

2
yn, x−1 =

1

22
yn−1, x−2 · · ·+

1

2n
y1,x−n.
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By subtracting this equation, from that here which gives the general expression of yr,x,

y1,x =
1

2
y0,x−1 +

1

22
yn−1, x−2 · · ·+

1

2n+1
y2, x−n+1;

and [244]making 1
2
(y0,x + yn,x) = ȳ0,x; we will have

y1,x − ȳ0,x−1 +
1

2n
y1,x−n = 0.

Equation (1) subsists therefore yet even in the case of r = 1, provided that we change y0,x
into ȳ0,x. We must observe that ȳ0,x is the probability to win the game at coup x, of each of
the first two players, at the moment where the game commences; because this probability
becomes, after the first coup, y0,x or yn,x, according as the player wins or loses, and the
probability of each of these events is 1

2
.

Now, the generating function of equation (1) is, by §20 of the first Book,

φ(t)

1− tt′ + 1
2n
tn

, (a)

t being relative to the variable x, and t′ being relative to the variable r, so that yr,x is the
coefficient of t′rtx in the development of this function; φ(t) is a function of t that there is
concern to determine.

For this, we will make

T =
1

1 + 1
2n
tn

;

the generating function of yr,x will be the coefficient of t′r in the development of the func-
tion (a); it will be therefore

φ(t)trT r+1;

the probability that the game will end precisely at coup x, is evidently the sum of the
probabilities of each player to win at this coup; it is therefore

2ȳ0,x + y1,x + y2,x · · ·+ yn−1,x;

consequently the generating function of this probability is

Tφ(t)(2 + tT + t2T 2 · · ·+ tn−1T n−1),

or [245]

Tφ(t)
(2− tT − tnT n)

1− tT
.

By equating it to the generating function of this probability, that we have found above, and
which is

1
2n
tn(2− t)

1− t+ 1
2n
tn

;
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we will have

φ(t) =
1
2n
tn(2− t)(1− tT )

T (2− tT − tnT n)
(
1− t+ 1

2n
tn
) ;

Thus the generating function of equation (1) in the partial differences, is

1
2n
tn(2− t)(1− tT )

T (2− tT − tnT n)
(
1− t+ 1

2n
tn
) (

1− tt′ + 1
2n
tn
) ;

the generating function of yr,x is therefore

1
2n
tn+r(2− t)(1− tT )T r

(2− tT − tnT n)
(
1− t+ 1

2n
tn
) .

The coefficient of tx in the development of this function, is the probability of player (r) to
win the game at coup x. We will thus be able to determine this probability through this
development. The sum of all these coefficients to x infinity, is the probability of player
(r) to win the game; now we have this sum, by making t = 1 in the preceding function,
that which gives T = 2n

1+2n
; let us name p this last quantity, and let us designate by yr the

probability of (r) to win the game, we will have

yr =
(1− p)pr

2− p− pn
.

This [246]expression is extended from r = 0 to r = n − 1, provided that we change y0 into ȳ0,
ȳ0 expressing the probability to win the game, of the first two players at the moment where
they enter the game.

Now, each losing player depositing a franc into the game, let us determine the advantage
of the different players. It is clear that after x coups, there were x tokens in the game; the
advantage of player (r) relative to these x tokens, is the product of these tokens by the
probability yr,x to win the game at coup x; this advantage is therefore xyr,x. The value
of xyr,x is the coefficient of tx−1dt in the differential of the generating function yr,x; by
dividing therefore this differential by dt, and by supposing next t = 1, we will have the sum
of all the values of xyr,x to x infinity; this is the advantage of player (r). But it is necessary
to subtract the tokens that he put into the game at each coup that he loses; now yr,x being
his probability to win the game at coup x, 2nyr,x−n+1 will be his probability to enter into
the game, at coup x−n+1, since this last probability, multiplied by the probability 1

2n
, that

he will win this coup, and the n − 1 following coups is his probability to win the game at
coup x. By supposing therefore that he loses as many times as he enters into the game, the
sum of all the values of 2nyr,x−n+1 to x infinity, would be the disadvantage of player (r);
and as the sum of all the values of yr,x−n+1 is equal to the sum of all the values of yr,x, or
to yr, we would have 2nyr, or 2n(1−p)pr

2−p−pn for the disadvantage of player (r). But he does not
lose each time that he enters into the game, because he is able to enter into the game and
win the game; it is necessary therefore to take off from 2nyr, the sum of all the values of yx
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or yr, and then the disadvantage of (r) is (2n−1)(1−p)pr
2−p−pn . In order to have the entire advantage

of (r), it is necessary to subtract this last quantity, from the sum of the values of xyr,x; by
designating therefore by S this sum, the advantage of player (r) will be

S − (2n − 1)(1− p)pr

2− p− pn
,

S being, as we have just seen, the differential of the generating function of yr,x, [247]divided by
dt, and in which we suppose next t = 1. Under this supposition, we have

T = p;
dT

dt
= −np(1− p).

Let us designate by Yr the advantage of (r), we will find

Yr =
np+ 1− n
2− p− pn

pr
{

(1− p)r +
pn+1 + n(1− p)pn − p

2− p− pn

}
.

This equation will serve from r = 0 to r = n − 1, provided that we change Y0 into Ȳ0, Ȳ0
being the advantage of the first two players, at the moment where they enter into the game.

If at the commencement of the game, each of the players deposits into the game a sum
a; the advantage of player (r) will be increased from it by (n + 1)a, multiplied by the
probability yr, that this player will win the game; but it is necessary to take off from it the
stake a from this player; it is necessary therefore, in order to have then his advantage, to
increase the preceding expression of Yr, by the quantity

(n+ 1)a(1− p)pr

2− p− pn
− a.

When the advantage of (r) becomes negative, it is changed into disadvantage.

§12. Let q be the probability of a simple event, at each coup; we demand the probability
to bring it forth i times consecutively, in the number x coups.

Let us name zx the probability that this composite event will take place precisely at
coup x. For this, it is necessary that the simple event not arrive at coup x − i, and that it
arrives in the i coups following, the composite event being not at all arrived previously. Let
then P be the probability that the simple event will not arrive at all at coup x− i− 1. The
corresponding probability that it will not arrive at all at coup x−i, will be (1−q)P ; and the
corresponding probability that the composed event will take place precisely at coup x, will
be (1 − q)Pqi. This will be the part of zx corresponding [248]to this case. But the probability
that the composed event will arrive at coup x− 1, is evidently Pqi; we have therefore

P =
zx−1
qi

;

thus the partial value of zx, relative to this case, is (1− q)zx−1.
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Let us consider now the cases where the simple event will arrive at coup x− i− 1. Let
us name P ′ the probability that it will not arrive at coup x − i − 2; the probability that it
will arrive in this case at coup x − i − 1, will be qP ′, and the probability that it will not
arrive at coup x− i, will be (1− q)qP ′; the partial value of zx relative to this case, will be
therefore (1− q)qP ′qi. But the probability that the composite event will arrive precisely at
coup x− 2, is P ′qi: this is the value of zx−2; that which gives

P ′ =
zx−2
qi

;

(1− q)qzx−2 is therefore the partial value of zx, relative to the case where the simple event
will arrive at coup x− i− 1, without arriving at coup x− i− 2.

We will find in the same manner that (1 − q)q2zx−3 is the partial value of zx, relative
to the case where the simple event will arrive at coups x − i − 1 and x − i − 2, without
arriving at coup x− i− 3; and so forth.

By uniting all these partial values of zx, we will have

zx = (1− q)(zx−1 + qzx−2 + q2zx−3 · · ·+ qi−1zx−i).

It is easy to conclude from it that the generating function of zx is

qi(1− qt)ti

1− t+ (1− q)qiti+1
;

because this generating function is

φ(t)

1− (1− q)(t+ qt2 · · ·+ qi−1ti)
,

or
φ(t)(1− qt)

1− t+ (1− q)qiti+1
,

The [249]function φ(t) must be determined by the condition that it must contain only the power i
of t, since the composed event is able to commence to be possible only at coup i; moreover,
the coefficient of this power is the probability qi, that this event will take place precisely at
this coup.

By dividing the preceding generating function, by 1− t, we will have

qi(1− qt)ti

(1− t)2
(

1 + (1−q)qiti+1

1−t

)
for the generating function of the probability that the composite event will take place before
or at coup x.
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By developing this function, we will have for the coefficient of tx+i, the series

qi[(1− q)x+ 1]− (1− q)q2i (x− i)
1.2

[(1− q)(x− i− 1) + 2]

+ (1− q)2q3i (x− 2i)(x− 2i− 1)

1.2.3
[(1− q)(x− 2i− 2) + 3]

− (1− q)3q4i (x− 3i)(x− 3i− 1)(x− 3i− 2)

1.2.3.4
[(1− q)(x− 3i− 3) + 4]

+ etc.,

the series being continued until we arrive to some negative factors. This is the expression
of the probability that the composed event will take place at coup x+ i or before this coup.

Let us suppose further that two players A and B, of whom the respective skills to win
a coup, are q and 1 − q, play with this condition, that the one of the two who will have
first vanquished i times consecutively his adversary, will win the game; we demand the
respective probabilities of the two players to win the game precisely at coup x.

Let yx be the probability of A, and y′x that of B. Player A is able to win the game at
coup x, only as long as he commences or recommences to beat B at coup x − i + 1, and
that he continues to beat him the following i − 1 coups. Now, before commencing coup
x − i + 1, B will have already beat A, either one time, or two times, . . . or i − 1 times. [250]In
the first case, if we name P the probability of this case, P (1− q)i−1 will be the probability
y′x−1 of B to win the game at coup x− 1, that which gives

P =
y′x−1

(1− q)i−1
.

But if B loses at coup x− i+ 1 and at the i− 1 following coups, A will win the game
at coup x, and the probability of this is Pqi; qiy′x−1

(1−q)i−1 is therefore the part of yx, relative to
the first case.

In the second case, if we name P ′ its probability, P ′(1 − q)i−2 will be the probability
y′x−2 of B to win the game at coup x− 2. The probability of A to win the game at coup x,

relative to this case, is P ′qi; we have therefore qiy′x−2

(1−q)i−2 for this probability.
By continuing thus, we will have

yx =
qi

(1− q)i
[(1− q)y′x−1 + (1− q)2y′x−2 · · ·+ (1− q)i−1y′x−i+1].

If we change q into 1− q, yx into y′x and reciprocally, we will have

y′x =
(1− q)i

qi
(qyx−1 + q2yx−2 · · ·+ qi−1yx−i+1).

Now, u being the generating function of yx, that of y′x will be, by all that which precedes,

kq.ut.(1 + qt+ qt2 · · ·+ qi−2ti−2),
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k being equal to (1−q)i
qi

. But the preceding expression of y′x commencing to hold only when
x = i + 1, because for the smaller values of x, yx−1, yx−2, etc. are nulls; it is necessary, in
order to complete the preceding expression of the generating function of y′x, to add to it a
rational and integral function of t, of order i, and of which the coefficients of the powers of
t are the values of y′x, when x is equal or smaller than i. Now y′x is null, when x is less than
i; and when it is equal to i, y′x is (1− q)i, because it expresses [251]then the probability of B to
win the game after i coups; the function to add is therefore (1 − q)iti; thus the generating
function of y′x is

kq.ut.(1 + qt+ qt2 · · ·+ qi−2ti−2) + (1− q)iti.

If we name u′ this function, the expression of yx in y′x−1, y′x−2, etc., will give for the
generating function of yx, by changing in that of y′x, k into 1

k
, q into 1− q,

1

k
(1− q).u′.t[1 + (1− q)t · · ·+ (1− q)i−2ti−2] + qiti.

This quantity is therefore equal to u; whence we deduce, by substituting in it for u its
preceding value,

u =
qiti(1− qt)[1− (1− q)iti]

1− t+ q(1− q)iti+1 + (1− q)qiti+1 − qi(1− q)it2i
.

By changing q into 1− q, we will have the generating function u′ of y′x. If we divide these
functions by 1− t, we will have the generating functions of the respective probabilities of
A and of B, to win the game before or at coup x.

If we suppose t = 1 in u, we will have the probability thatAwill win the game; because
it is clear that by developing u according to the powers of t, and by supposing next t = 1,
the sum of all the terms of this development will be that of all the values of yx. We find
thus the probability of A to win the game equal to

[1− (1− q)i]qi−1

(1− q)i−1 + qi−1 − qi−1(1− q)i−1
;

the probability of B is therefore

(1− q)i−1[1− qi]
(1− q)i−1 + qi−1 − qi−1(1− q)i−1

.

Let us suppose now that the players, at each coup that they lose, deposit a franc into the
game, and let us determine their respective lot. It is clear that the gain of player A will be
x, if he wins the game at coup x, [252]since there will be x francs deposited into the game; thus
the probability of this event being yx by that which precedes. Sxyx will be the expression
of the advantage of A, the sign S extending to all the possible values of x. The generating
function of yx being u or T ′

T
, T ′ being the numerator of the preceding expression of u, and
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T being its denominator; it is easy to see that we will have Sxyx by differentiating T ′

T
, and

by supposing next t = 1 in this differential, that which gives with this condition,

Sxyx =
dT ′

Tdt
− T ′dT

T 2dt
.

In order to have the disadvantage of A, we will observe that at each coup that he plays, the
probability that he will lose, and consequently that he will deposit a franc into the game,
is 1 − q; his loss is therefore the product of 1 − q, by the probability that the coup will be
played; now the probability that coup xwill be played, is 1−Syx−1−Sy′x−1; the generating
function of unity, is here t

1−t , and that of Syx+1 +Sy′x+1 is T ′t+T ′′t
T (1−t) ; T ′′ being that which T ′

becomes when we change q into 1− q and reciprocally; thus the generating function of the
disadvantage of A is

(1− q)t(T − T ′ − T ′′)
(1− t)T

.

The numerator and the denominator of this function are divisible by 1 − t; moreover, we
will have the sum of all the disadvantages of A, or his total disadvantage, by making t = 1
in this generating function; the total disadvantage is therefore by the known methods, and
by observing that T ′ + T ′′ = T , when t = 1,

−(1− q)(dT − dT ′ − dT ′′)
Tdt

,

t being supposed equal to unity, after the differentiations. If we subtract this expression,
from that of the total advantage of A, we will have, for the expression of the lot of this
player,

qdT ′ + (1− q)(dT − dT ′′)
Tdt

− T ′dT

T 2dt
.

The [253]lot of B will be
(1− q)dT ′′ + q(dT − dT ′)

Tdt
− T ′′dT

T 2dt
,

t being supposed unity after the differentiations; that which gives

T = q(1− q)[qi−1 + (1− q)i−1 − qi−1(1− q)i−1];
dT

dt
= (i+ 1)q(1− q)[qi−1 + (1− q)i−1]− 2iqi(1− q)i − 1;

T ′ = (1− q)qi[1− (1− q)i];
dT ′

dt
= i(1− q)qi[1− 2(1− q)i]− qqi[1− (1− q)i].

we will have T ′′ and dT ′′

dt
by changing in these last two expressions, q into 1− q.

§13. An urn being supposed to contain n + 1 balls, distinguished by the numbers 0,
1, 2, 3, . . .n, we draw from it a ball which we replace into the urn after the drawing. We
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demand the probability that after i drawings, the sum of the numbers brought forth will be
equal to s.

Let t1, t2, t3, . . . ti be the numbers brought forth at the first drawing, at the second, at
the third, etc.; we must have

t1 + t2 + t3 · · ·+ ti = s. (1)

t2, t3, . . . ti being supposed not to vary, this equation is susceptible only of one combination.
But if we make vary at the same time t1 and t2, and if we suppose that these variables can be
extended indefinitely from zero, then the number of combinations which give the preceding
equation will be

s+ 1− t3 − t4 · · · − ti;

because t1 can be extended from zero, that which gives

t2 = s− t3 − t4 · · · − ti,

to s − t3 − t4 · · · − ti, that which gives t2 = 0, the negative values of the variables t1, t2
needing to be excluded.

Now, [254]the number s + 1 − t3 − t4 · · · − ti is susceptible of many values, by virtue of
the variations of t3, t4, etc. Let us suppose first t4, t5, etc. invariables, and that t3 can be
extended indefinitely from zero; then we make

s+ 1− t3 − t4 · · · − ti = x,

by integrating this variable of which the finite difference is unity, we will have x(x−1)
1.2

for
its integral; but, in order to have the sum of all the values of x, it is necessary, as we know,
to add x to this integral; this sum is therefore x(x+1)

1.2
. It is necessary to make x equal to its

greatest value, which we obtain by making t3 null in the function s + 1 − t3 − t4 · · · − ti:
thus the total number of combinations relative to the variations of t1, t2 and t3, is

(s+ 2− t4 − t5 · · · − ti)(s+ 1− t4 − t5 · · · − ti)
1.2

.

By making next in this function

s+ 2− t4 − t5 · · · − ti = x,

it becomes x(x−1)
1.2

; by integrating it from x = 0, and by adding the function itself, to this
integral, we will have (x+1)x(x−1)

1.2.3
; the value of x null corresponds to t4 = s+2− t5 · · ·− ti,

and its greatest value corresponds to t4 null, and consequently it is equal to s+2−t5 · · ·−ti;
by substituting therefore for x, this value into the preceding integral, we will have

(s+ 3− t5 − t6 − · · · − ti)(s+ 2− t5 − t6 − · · · − ti)(s+ 1− t5 − t6 − · · · − ti)
1.2.3
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for the sum of all the combinations relative to the variations of t1, t2, t3, t4. By continuing
thus, we will find generally that the total number of the combinations which give equation
(1), under the supposition where the variables t1, t2, . . . ti can be extended indefinitely from
zero, is

(s+ i− 1)(s+ i− 2)(s+ i− 3) . . . (s+ 1)

1.2.3 . . . (i− 1)
(a)

but [255]in the present question, these variables can not be extended beyond n. In order to
express this condition, we will observe that the urn containing n + 1 balls, the probability
to extract any one of them, is 1

n+1
; thus the probability of each of the values of t1, from

zero to n, is 1
n+1

. The probability of the values of t1 equal or superior to n + 1, is null;
we can therefore represent it by 1−ln+1

n+1
, provided that we make l = 1 in the result of the

calculation; then the probability of any value of t1 can be generally expressed by 1−ln+1

n+1
,

provided that we make l to begin, only when t1 will have attained n+1, and that we suppose
it at the end, equal to unity: it is likewise of the probabilities of the other variables. Now,
the probability of equation (1) is the product of the probabilities of the values of t1, t2, t3,

etc.; this probability is therefore
(

1−ln+1

n+1

)i
; the number of combinations which give this

equation, multiplied by their respective probabilities, is thus the product of the fraction (a)

by
(

1−ln+1

n+1

)i
, or

(s+ 1)(s+ 2) . . . (s+ i− 1)

1.2.3 . . . (i− 1)

(
1− ln+1

n+ 1

)i
; (b)

but it is necessary, in the development of this function, to apply ln+1 only to the combina-
tions in which one of the variables begins to surpass n: it is necessary to apply l2n+2 only
to the combinations in which two of the variables begin to surpass n, and thus of the rest.
If in equation (1) we suppose that one of the variables, t1, for example, surpasses n; by
making t1 = n+ 1 + t′, this equation becomes

s− n− 1 = t′1 + t2 + t3 + etc.,

the variable t′1 being able to be extended indefinitely. If two of the variables such as t1 and
t2 surpass n; by making

t1 = n+ 1 + t′1, t2 = n+ 1 + t′2;

the [256]equation becomes
s− 2n− 2 = t′1 + t′2 + t3 + etc.,

and so forth. We must therefore, in the function (a) which we have derived from equation
(1), diminish s by n + 1, relatively to the system of variables t′1, t2, t3, etc. We must
diminish it by 2n + 2, relatively to the variables t′1, t

′
2, t3, etc.; and thus of the rest. It is

necessary consequently, in the development of the function (b) with respect to the powers
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of l, to diminish in each term, s from the exponent of the power of l; by making next l = 1,
this function becomes

(s+ 1)(s+ 2) . . . (s+ i− 1)

1.2.3 . . . (i− 1)(n+ 1)i
− i(s− n)(s− n+ 1) . . . (s+ i− n− 2)

1.2.3 . . . (i− 1)(n+ 1)i

+
i(i− 1)

1.2
· (s− 2n− 1)(s− 2n) . . . (s+ i− 2n− 3)

1.2.3 . . . (i− 1)(n+ 1)i
− etc.;

(c)

the series must be continued until one of the factors s − n, s − 2n − 1, s − 3n − 2, etc.
becomes null or negative.

This formula gives the probability to bring forth a given number s, by projecting i dice
with a number n + 1 faces on each, the smallest number marked on the faces being 1. It
is clear that this reverts to supposing in the preceding urn, all the numbers of the balls,
increased by unity; and then the probability to bring forth the number s + i in i drawings,
is the same as that of bringing forth the number s in the case that we just considered; now,
by making s+ i = s′, we have s = s′− i; formula (c) will give therefore for the probability
to bring forth the number s′ by projecting the i dice,

(s′ − 1)(s′ − 2) . . . (s′ − i+ 1)

1.2.3 . . . (i− 1)(n+ 1)i
− i(s′ − n− 2)(s′ − n− 3) . . . (s′ − i− n)

1.2.3 . . . (i− 1)(n+ 1)i

+
i(i− 1)

1.2
· (s′ − 2n− 3)(s′ − 2n− 4) . . . (s′ − i− 2n− 1)

1.2.3 . . . (i− 1)(n+ 1)i
− etc.

Formula (c) applied to the case where s and n are infinite numbers, is transformed into
the following

1

1.2.3 . . . (i− 1)n

{( s
n

)i−1
− i
( s
n
− 1
)i−1

+
i(i− 1)

1.2

( s
n
− 2
)i−1

− etc.
}
.

This [257]expression can serve to determine the probability that the sum of the inclinations to
the ecliptic, of a number i of orbits, will be comprehended within some given limits, by
supposing that for each orbit, all the inclinations from zero to the right angle, are equally
possible. In fact, if we imagine that the right angle 1

2
π, is divided into an infinite number n

of equal parts, and if s contains an infinite number of these parts; by naming φ the sum of
the inclinations of the orbits, we will have

s

n
=

φ
1
2
π
.

By multiplying therefore the preceding expression by ds or by ndφ
1
2
π

, and by integrating it
from φ− ε to φ+ ε, we will have

1

1.2.3 . . . i


(
φ+ ε
1
2
π

)i
− i
(
φ+ ε
1
2
π
− 1

)i
+
i(i− 1)

1.2

(
φ+ ε
1
2
π
− 2

)i
− etc.

−
(
φ− ε
1
2
π

)i
+ i

(
φ− ε
1
2
π
− 1

)i
− i(i− 1)

1.2

(
φ− ε
1
2
π
− 2

)i
+ etc.

 ; (o)
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this is the expression of the probability that the sum of the inclinations of the orbits will be
comprehended within the limits φ− ε to φ+ ε.

Let us apply this formula to the orbits of the planets. The sum of the inclinations of the
orbits of the planets to that of the Earth, was 91.4187◦ at the beginning of 1801: there are
ten orbits, without including the ecliptic; we have therefore here i = 10. We make next

φ− ε = 0,

φ+ ε = 91.4187◦.

The preceding formula becomes thus, by observing that 1
2
π, or the quarter of the circum-

ference is 100◦,10

1

1.2.3 . . . 10
(0.914187)10.

This is the expression of the probability that the sum of the inclinations of the orbits will
be comprehended within the limits zero and 91, 4187◦, if all the inclinations were equally
possible. This probability is therefore 0, 00000011235. It is already very small; but it is
necessary next to combine [258]it with the probability of a very remarkable circumstance in the
system of the world, and which consists in this that all the planets are moved in the same
sense as the Earth. If the direct and retrograde movements are supposed equally possible,
this last probability is

(
1
2

)10; it is necessary therefore to multiply 0, 00000011235 by
(
1
2

)10,
in order to have the probability that all the movements of the planets and of the Earth will
be directed in the same sense, and that the sum of their inclinations to the orbit of the earth,
will be comprehended within the limits zero and 91, 4187◦; we will have thus 1,0972

(10)10
for this

probability; that which gives 1 − 1,0972
(10)10

for the probability that this had not ought to take
place; if all the inclinations, in the same way the direct and retrograde movements, have
been equally facile. This probability approaches so to certainty, that the observed result
becomes unlikely under this hypothesis; this result indicates therefore with a very great
probability, the existence of an original cause which has determined the movements of the
planets to bring themselves together to the plane of the ecliptic, or more naturally, to the
plane of the solar equator, and to be moved in the sense of the rotation of the sun. If we
consider next that the eighteen satellites observed until now, make their revolution in the
same sense, and that the observed rotations in the number of thirteen in the planets, the
satellites and the ring of Saturn, are yet directed in the same sense; finally, if we consider
that the mean of the inclinations of the orbits of these stars, and of their equators to the solar
equator, is quite removed from reaching a half right angle; we will see that the existence
of a common cause, which has directed all these movements in the sense of the rotation of
the sun, and onto some planes slightly inclined to the one of its equator, is indicated with a
probability quite superior to the one of the greatest number of the historical facts on which
we permit no doubt.

Let us see now if this cause has influence on the movement of the comets. The number
of these which we have observed until the end of 1811, by counting for the same the diverse

10Translator’s note: These are decimal degrees. That is, π/4 = 100◦.

58



apparitions of the one of 1759, is raised to one hundred, of which fifty-three are direct, and
forty-seven [259]are retrograde. The sum of the inclinations of the orbits of the first is 2657, 993◦,
and that of the inclinations of the other orbits, is 2515, 684◦: the mean inclination of all
these orbits is therefore 51, 73677◦; consequently the sum of all the inclinations is i.π

4
+

i.1, 73677◦, i being here equal to 100. We see already that the mean inclination surpassing
the half right angle, the comets, far from participating in the tendency of the bodies of
planetary system, in order to be moved in some planes slightly inclined to the ecliptic,
appear to have a contrary tendency. But the probability of this tendency is very small. In
fact, if we suppose, in formula (o),

φ =
i.π

4
, ε = i.1, 73677◦,

it becomes

1

1.2.3 . . . i.2i



(
i+

4i.1, 73677◦

π

)i
− i
(
i+

4i.1, 73677◦

π
− 2

)i
+
i(i− 1)

1.2

(
i+

4i.1, 73677◦

π
− 4

)i
− etc.

−
(
i− 4i.1, 73677◦

π

)i
+ i

(
i− 4i.1, 73677◦

π
− 2

)i
− i(i− 1)

1.2

(
i− 4i.1, 73677◦

π
− 4

)i
etc.


; (p)

π being 200◦. This is the expression of the probability that the sum of the inclinations of the
orbits of the i comets, must be comprehended within the limits ±i.1, 73677◦. The number
of terms of this formula, and the precision with which it would be necessary to have each
of them, renders the calculation of it impractical; it is necessary to recur to the methods of
approximation developed in the second part of the first Book. We have, by §42 of the same
Book,

(i+ r
√
i)i − i(i+ r

√
i− 2)i + i(i−1)

1.2
(i+ r

√
i− 4)i − etc.

1.2.3 . . . i.2i

=
1

2
+

√
3

2π

∫
dr c−

3
2
r2 − 3

20.i

√
3

2π
r(1− r2)c−

3
2
r2 ,

the powers of the negative quantities being here excluded, as they [260]are in the preceding
formula; by making therefore

r
√
i =

4i.1, 73677◦

200◦
,

formula (p) becomes

2

√
3

2π

∫
dr c−

3
2
r2 − 3

10.i

√
3

2π
r(1− r2)c−

3
2
r2

59



the integral being taken from r null. We find thus 0, 474 for the probability that the in-
clination of the 100 orbits must fall within the limits 50◦ ± 1, 17377◦; the probability that
the mean inclination must be inferior to the observed inclination, is therefore 0, 737. This
probability is not great enough in order that the observed result makes rejection of the hy-
pothesis of an equal facility of the inclinations of the orbits, and in order to indicate the
existence of an original cause which has influence on these inclinations, a cause which we
cannot forbid to admit in the inclinations of the orbits of the planetary system.

The same thing holds with respect to the sense of the movement. The probability that
out of 100 comets, 47 moreover will be retrogrades, is the sum of the 48 first terms of the
binomial (p + q)100, by making in the result of the calculation p = q = 1

2
. But the sum

of the 50 first terms, plus the half of the 51st or the middle term, is the half of the entire
binomial, or of

(
1
2

+ 1
2

)100, that is 1
2
; the sought probability is therefore

1

2
− 100.99 . . . 51

1.2.3 . . . 50.2100

(
1

2
+

50

51
+

50.49

51.52

)
or

=
1

2
− 1.2.3 . . . 100.1594

(1.2.3 . . . 50)2.2100.663
.

By virtue of the theorem

1.2.3 . . . s = ss+
1
2 c−s

(
1 +

1

12s
+ etc.

)√
2π,

we have, very nearly,

1.2.3 . . . 100 = 100100+ 1
2 c−100

(
1 +

1

1200

)√
2π,

2100(1.2.3 . . . 50)2 = 100100+1c−100
(

1 +
1

300

)
π.

The preceding [261]probability becomes thus,

1

2
− 1√

50π

1197.1594

1200.663
= 0.3046.

This probability is much too great to indicate a cause which has favored, at the origin, the
direct movements. Thus the cause which has determined the sense of the movements of the
revolution and of the rotation of the planets and of the satellites, seems to have no influence
on the movement of the comets.

§14. The method of the preceding section has the advantage to be extended to the case
where the number of balls of the urn, which bear the same label, is not equal to unity, but
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varies according to any law whatsoever. Let us imagine, for example, that there is only one
ball bearing the no 0, only one ball bearing the no 1, and so forth until no r inclusively. Let us
suppose moreover that there are two balls bearing the no r+1, two balls bearing the no r+2,
and so forth until no n inclusively. The total number of balls in the urn will be 2n−r+1, the
probability to extract from it one of the labels inferior to r+1, will be therefore 1

2n−r+1
; and

the probability to extract from it the no r + 1 or one of the superior labels, will be 2
2n−r+1

:
we will represent it by 1+lr+1

2n−r+1
; but we will make l = 1 in the result of the calculation.

Although there are no labels beyond no n, we will be able however to consider in the
urn some labels superior to n, to infinity, provided that we will give to their extraction, a
null probability; we will be able therefore to represent this probability by 1+lr+1−2ln+1

2n−r+1
, by

making l = 1 in the result of the calculation. By this artifice, we will be able to represent
generally the probability of any label whatsoever, by the preceding expression; provided
that we will make lr+1 commence only when the labels will commence to surpass r, and
that we will make ln+1 commence only when one of the labels will commence to surpass n.
This premised, we will find, by applying here the reasonings of the previous section, that
the probability to bring forth the number s, [262]in i drawings, is equal to

(s+ i− 1)(s+ i− 2)(s+ i− 3) . . . (s+ 1)

1.2.3 . . . (i− 1)(2n− r + 1)i
(1 + lr+1 − 2ln+1)i,

provided that in the development of this function, according to the powers of l, we diminish
in each term, s from the exponent of the power of l, that we suppose next l = 1, and that
we arrest the series when we arrive to some negative factors.

§15. Let us apply now this method to the investigation of the mean result that any
number of observations of which the laws of facility of the errors are known must give. For
this, we will resolve the following problem:

Let i variable and positive quantities be t, t1, t2, . . . ti−1, of which the sum is s, and of
which the law of possibility is known; we propose to find the sum of the products of each
value that a given function ψ(t, t1, t2, etc.) of these variables is able to receive, multiplied
by the probability corresponding to this value.

Let us suppose for more generality, that the functions which express the possibilities
of the variables t, t1, etc. are discontinuous, and let us represent by φ(t) the possibility
of t, from t = 0 to t = q; by φ′(t) + φ(t), its possibility from t = q to t = q′; by
φ′′(t) + φ′(t) + φ(t), its possibility from t = q′ to t = q′′, and so forth to infinity. Let us
designate next the same quantities relative to the variables t1, t2, etc. by the same letters, by
writing respectively at the base, the numbers 1, 2, 3, etc.; so that q1, q′1, etc.; φ1(t1), φ′1(t1),
etc. correspond, relatively to t1, to that which q, q′, etc., φ(t), φ′(t), etc. are respectively
to t, and so forth. In this manner of representing the possibilities of the variables, it is
clear that the function φ(t) holds from t = 0 to t infinity; that the function φ′(t) holds
from t = q to t infinity, and so forth. In order to recognize the values of t, t1, t2, etc.
when these diverse functions begin to hold, we will multiply conformably to the method
exposed in the preceding sections, φ(t) by l0 or unity, φ′(t) by lq,φ′′(t) by lq′ , etc.; we will
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multiply similarly φ1(t1) by unity, φ′1(t1) by lq1 , and so forth: the exponents of the powers
of l will indicate then these values. [263]It will suffice next to make l = 1 in the last result of the
calculation. By means of these very simple artifices, we can easily resolve the proposed
problem.

The probability of the function ψ(t, t1, t2, etc.) is evidently equal to the product of the
probabilities of t, t1, t2, etc., so that if we substitute for t its values s − t1 − t2 − etc. that
the equation gives

t+ t1 + t2 · · ·+ ti−1 = s,

the product of the proposed function by its probability, will be

ψ(s− t1 − t2 − etc., t1, t2, etc.)
× [φ(s− t1 − t2 − etc.) + lqφ′(s− t1 − t2 − etc.)

+ lq
′
φ′′(s− t1 − t2 − etc.) + etc.]

× [φ1(t1) + lq1φ′1(t1) + lq
′
1φ′′1(t1) + etc.]

× [φ2(t2) + lq2φ′2(t2) + lq
′
2φ′′2(t2) + etc.]

× etc.

(A)

we will have therefore the sum of all these products, 1◦ by multiplying the preceding quan-
tity by dt1, and by integrating for all the values of which t1 is susceptible; 2◦ by multiplying
this integral by dt2, and by integrating for all the values of which t2 is susceptible, and so
forth to the last variable ti−1; but these successive integrations require some particular at-
tentions.

Let us consider any term whatsoever of the quantity (A), such as

lq+q1+q2+etc.ψ(s− t1 − t2 − etc., t1, t2, etc.)
× φ′(s− t1 − t2 − etc.)φ′1(t1)φ

′′
2(t2).etc.;

by multiplying it by dt1, it is necessary to integrate for all the possible values of t1; now the
function φ′(s−t1−t2−etc.) holds only when t, of which the value is s−t1−t2−etc., equals
or surpasses q; the greatest value that t1 is able to receive, is therefore s− q− t2− t3− etc.
Moreover, φ′1(t1) holding only when t1 is equal or greater than q1, this quantity is the
smallest value that t1 is able to receive; it is necessary therefore to take the integral of
which there is concern, from t1 = q1 to

t1 = s− q − q1 − t2 − t3 − etc.;

or, that which reverts to the same, from t1 − q1 = 0 to

t1 − q1 = s− q − q1 − t2 − t3 − etc.

We [264]will find in the same manner that by multiplying this new integral by dt2, it will be
necessary to integrate it from t2 − q′2 = 0 to

t2 − q′2 = s− q − q1 − q′2 − t3 − etc.
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By continuing to operate thus, we will arrive to a function of s − q − q1 − q′2 − etc., in
which there will remain none of the variables t, t1, t2, etc. This function must be rejected,
if s− q− q1− q′2− etc. is null or negative; because it is clear that in this case, the system of
functions φ′(t), φ′1(t1), φ′′2(t2), etc. can not be employed. In fact, the smallest values of t1,
t2, etc. being by the nature of these functions, equals to q1, q′2, etc.; the greatest value that t
can receive is s− q1 − q′2 − etc.; thus the greatest value of t− q is

s− q − q1 − q′2 − etc.;

now the function φ′(t) can be employed only as long as t− q is positive.
Thence results a very simple solution of the proposed problem. Let us substitute, 1◦

q + t instead of t, into φ′(t); q′ + t instead of t, into φ′′(t); q′′ + t instead of t, into φ′′′(t),
and so forth; 2◦ q1 + t1 instead of t1, into φ′1(t1); q′1 + t1 instead of t1, into φ′′1(t1); etc.; 3◦

q2+t2 instead of t2, into φ′2(t2); q′2+t2 instead of t2, into φ′′2(t2), etc.; and so forth; 4◦ finally,
k + t instead of t, k1 + t1 instead of t1, and thus of the remainder, into ψ(t, t1, t2, etc.); the
function (A) will become

ψ(k + s− t1 − t2 − t3 − etc., k1+t1, k2 + t2, etc.)
×[φ(s− t1 − t2 − t3 − etc.)+lqφ′(s+ q − t1 − t2 − etc.)

+lq
′
φ′′(s+ q′ − t2 − t3 − etc.)]

×[φ1(t1) + lq1φ′1(q1 + t1)+l
q′1φ′′1(q′1 + t1) + etc.]

×[φ2(t2) + lq2φ′2(q2 + t2)+etc.].

(A′)

by multiplying this function by dt1, we will integrate it from t1 null to t1 = s−t2−t3−etc.
We will multiply next this first integral by dt2, and we will integrate it from t2 null to
t2 = s − t3 − t4 − etc.. By continuing thus, we will arrive to a last integral which will be
a function of s, and which we will designate by Π(s); [265]and this function will be the sought
sum of all the values of ψ(t, t1, t2, etc.) multiplied by their respective probabilities. But for
this, it is necessary to take care to change in any term whatsoever, multiplied by a power
of l, such as lq+q1+q2+etc., k in the part of the exponent of the power relative to the variable
t, and which in this case is q; and if this part is lacking, it is necessary to suppose k equal
to zero. It is similarly necessary to change k1 in the part of the exponent relative to the
variable t1, and so forth; it is necessary to diminish s from the entire exponent of the power
of l, and to write thus, in the present case, s− q − q1 − q′2 − etc., instead of s, and to reject
the term, if s, thus diminished, becomes negative. Finally it is necessary to suppose l = 1.

If ψ(t, t1, t2, etc.), φ(t), φ′(t), etc.; φ1(t1), etc. are some rational and integral functions
of the variables t, t1, t2, etc.; of their exponentials, and of sines and cosines; all the succes-
sive integrations will be possible, because it is of the nature of these functions, to reproduce
themselves by the integrations. In the other cases, the integrations would not be able to be
possible; but the preceding analysis reduces then the problem to quadratures. The case of
the rational and integral functions, offer some simplifications that we will expose.
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Let us suppose that we have

φ(t) + lqφ′(q + t) + lq
′
φ′′(q′ + t) + etc. = A+Bt+ Ct2 + etc.,

φ1(t1) + lq1φ′1(q1 + t1) + lq
′
1φ′′1(q′1 + t1) + etc.= A1 +B1t1 + C1t

2
1 + etc.,

φ2(t2) + lq2φ′2(q2 + t2) + lq
′
2φ′′2(q′2 + t2) + etc.= A2 +B2t2 + C2t

2
2 + etc.,

etc.

and let us designate byH.tn.tn1
1 .t

n2
2 .etc. any term whatsoever of ψ(k+t, k1+t1, k2+t2, etc.);

it is easy to be assured that the part of Π(s) corresponding to this term, is

1.2.3 . . . n.1.2.3 . . . n1.1.2.3 . . . n2.etc..Hsi+n+n1+n2+etc.−1

× [A+ (n+ 1)Bs+ (n+ 1)(n+ 2)Cs2 + etc.]
× [A1 + (n1 + 1)B1s+ (n1 + 1)(n1 + 2)C1s

2 + etc.];
× [A2 + (n2 + 1)B2s+ (n2 + 1)(n2 + 2)C2s

2 + etc.]
× etc.,

(B)

provided that [266]in the development of this quantity, instead of any power whatsoever a of s,
we write sa

1.2.3...a
. We will have next the corresponding part of the entire sum of the values

of ψ(t, t1, t2, etc.), multiplied by their respective probabilities, by changing any term of this
development, such as Hλtµsa into Hλ(s − µ)a, and by substituting into H , instead of k,
the part of the exponent µ, which is relative to the variable t; instead of k1, the part relative
to t1, and thus of the remainder.

If in formula (B) we suppose H = 1, and n, n1, n2, etc. nulls; we will have the sum of
the values of unity, multiplied by their respective probability; now it is clear that this sum
is nothing other than the sum of all the combinations in which the equation

t+ t1 + t2 · · ·+ ti−1 = s

holds, multiplied by their probability; it expresses consequently the probability of this equa-
tion. If under the preceding hypotheses, we suppose moreover that the law of probability
is the same for the first r variables t, t1, t2,. . . , tr−1, and if for the last i− r, it is again the
same, but different than for the first; we will have

A = A1 = A2 = · · · = Ar−1,

B = B1 = B2 = · · · = Br−1,

etc.
. . . . . . . . . . . . . . . . . . . .

Ar = Ar+1 . . . · · · = Ai−1,

Br = Br−1 . . . · · · = Bi−1,

etc.,

and formula (B) will be changed into the following,

si−1(A+Bs+ 2Cs2 + etc.)r(Ar +Brs+ 2Crs
2 + etc.)i−r. (C)
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This formula will serve to determine the probability that the sum of the errors of any num-
ber of observations whatsoever of which the law of facility of errors is known, will be
comprehended within some given limits.

Let [267]us suppose, for example, that we have i−1 observations of which the errors for each
observation are able to be extended from −h to +g, and that by naming z the error of the
first of these observations, the law of facility of this error is expressed by a+bz+cz2. Let us
suppose next that this law is the same for the errors z1, z2, . . . , zi−2 of the other observations,
and let us seek the probability that the sum of these errors, will be comprehended within
the limits p and p+ e.

If we make
z = t− h, z1 = t1 − h, z2 = t2 − h, etc.;

it is clear that t, t1, t2, etc. will be positive and will be able to be extended from zero, to
h+ g; moreover, we will have

z + z1 + z2 · · ·+ zi−2 = t+ t1 + t2 · · ·+ ti−2 − (i− 1)h;

therefore the greatest value of the sum z+ z1 + z2 · · ·+ zi−2 being by assumption, equal to
p + e, and the smallest being equal to p; the greatest value of t + t1 + t2 · · · + ti−2 will be
(i− 1)h+ p+ e, and the smallest will be (i− 1)h+ p; by making thus

(i− 1)h+ p+ e = s

and
t+ t1 + t2 · · ·+ ti−2 = s− ti−1,

ti−1 will always be positive, and will be able to be extended from zero to e. This premised,
if we apply in this case, formula (C); we will have q = h+ g. Besides the law of facility of
errors z being a+ bz + cz2, we will conclude from it the law of facility of t, by changing z
into t− h; let

a′ = a− bh+ ch2, b′ = b− 2ch;

we will have a′+ b′t+ ct2 for this law; this will be therefore the function φ(t). But as from
t = h+ g to t infinity, the facility of the values of t is null by hypothesis; we will have

φ′(t) + φ(t) = 0,

that which gives
φ′(t) = −(a′ + b′t+ ct2);

therefore [268]if we make
a′′ = a′ + b′(h+ g) + c(h+ g)2,

b′′ = b′ + 2c(h+ g),

we will have

φ(t) + lqφ′(q + t) = a′ + b′t+ ct2 − lh+g(a′′ + b′′t+ ct2);
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and this equation will hold further, by changing t into t1, t2, etc.; since the law of facility
of the errors is supposed the same for all the observations.

As for the variable ti−1, we will observe that the probability of the equation

z + z1 · · ·+ zi−2 = µ

being, whatever be µ, equal to the product of the probabilities of z, z1, z2, etc.; the proba-
bility of the equation

t+ t1 + t2 · · ·+ ti−2 = s− ti−1,

will be equal to the product of the probabilities of t, t1, t2, etc.; the law of probability of
ti−1 is therefore constant and equal to unity; and, as this variable must be extended only
from ti−1 = 0 to ti−1 = e; we will have

qi−1 = e, φi−1(ti−1) = 1, φ′i−1(ti−1) + φi−1(ti−1) = 0;

and consequently
φ′i−1(ti−1) = −1

that which gives
φi−1(ti−1) + lqi−1φ′i−1(qi−1 + ti−1) = 1− le;

formula (C) will become therefore

si−1[a′ + b′s+ 2cs2 − lh+g(a′′ + b′′s+ 2cs2)]i−1(1− le). (C′)

Let

(a′ + b′s+ 2cs2)i−1 = a(1) + b(1)s+ c(1)s2 + f (1)s3 + etc.,

(a′ + b′s+ 2cs2)i−2(a′′ + b′′s+ 2cs2) = a(2) + b(2)s2 + c(2)s+ etc.,

(a′ + b′s+ 2cs2)i−3(a′′ + b′′s+ 2cs2) = a(3) + b(3)s+ c(3)s2 + etc.,
etc.

The preceding formula (C′) will give, by changing any term whatsoever [269]such as λlµsa, into

λ(s− µ)a

1.2.3 . . . a
;
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1

1.2.3 . . . (i− 1)



a(1)
[
si−1 − (s− e)i−1

]
+
b(1)

i

[
si − (s− e)i

]
+

c(1)

i(i+ 1)

[
si+1 − (s− e)i+1

]
+etc.

−(i− 1)



a(2)
[
(s− h− g)i−1 − (s− h− g − e)i−1

]
+
b(2)

i

[
(s− h− g)i − (s− h− g − e)i

]
+

c(2)

i(i+ 1)

[
(s− h− g)i+1 − (s− h− g − e)i+1

]
+etc.

+
(i− 1)(i− 2)

1.2



a(3)
[
(s− 2h− 2g)i−1 − (s− 2h− 2g − e)i−1

]
+
b(3)

i

[
(s− 2h− 2g)i − (s− 2h− 2g − e)i

]
+

c(3)

i(i+ 1)

[
(s− 2h− 2g)i+1 − (s− 2h− 2g − e)i+1

]
+etc.

−etc.

It is necessary to reject from this expression, the terms in which the quantity raised under
the sign of the powers, is negative.

Let us suppose now that z, z1, z2, etc., representing always the errors of i− 1 observa-
tions, the law of facility, so much of the error z as of the negative error −z, be β(h − z),
and that h and −h are the limits of these errors. Let us suppose moreover that this law is
the same for all the observations, and let us seek the probability that the sum of the errors
will be comprehended within the limits p and p+ e.

If we make z = t−h, z1 = t1−h, etc.; it is clear that t, t1, etc. will be always positive,
and will be able to be extended from zero to 2h; but here the law of facility is discontinuous
at two points. From t = 0 to t = h, it is expressed by βt. From t = h to t = 2h, it is
expressed by β(2h− t); finally, it is null from t = 2h [270]to t infinity. We have therefore

q = h, q′ = 2h;

we have next
φ(t) = βt,

φ′(t) + φ(t) = (2h− t)β,
φ′′(t) + φ′(t) + φ(t) = 0,

that which gives
φ′(t) = (2h− 2t)β, φ′′(t) = (t− 2h)β,
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thus we have in this case,

φ(t) + lqφ′(q + t) + lq
′
φ′′(q′ + t) = βt(1− lh)2;

an equation which holds further by changing t into t1, t2, etc. Presently we have

z + z1 + z2 · · ·+ zi−2 = t+ t1 + t2 · · ·+ ti−2 − (i− 1)h;

therefore the sum of the errors z, z1, etc. needing to be by hypothesis, contained within the
limits p and p + e, the sum of the values of t, t1, . . . ti−2 will be comprehended within the
limits (i− 1)h+ p and (i− 1)h+ p+ e; so that if we make

t+ t1 + t2 · · ·+ ti−2 = s− ti−1,

s being supposed equal to (t − 1)h + p + e; ti−1 will be able to be extended from zero to
e; and we will see, as in the preceding example, that its facility must be supposed equal to
unity in this interval, and that it must be supposed null beyond this interval; thus we have
qi−1 = e and

φi−1(ti−1) + lqi−1φ′i−1(ti−1) = 1− le.
This premised, if we observe that 2β

∫
dz(h− z) being the probability that the error of an

observation is comprehended within the limits −h and +h, that which is certain, we have
β = 1

h2
; formula (C) will give for the expression of the sought probability,

1

1.2.3 . . . (2i− 2)h2i−2



s2i−2 − (s− e)2i−2 [271]

− (2i− 2)
[
(s− h)2i−2 − (s− h− e)2i−2

]
+

(2i− 2)(2i− 3)

1.2

[
(s− 2h)2i−2 − (s− 2h− e)2i−2

]
− etc.

;

by taking care to reject all the terms in which the quantity elevated to the power 2i − 2, is
negative.

We are going to apply next this analysis to the following problem. If we imagine a
number i of points ranked in a straight line, and on these points, ordinates of which the
first is at least equal to the second, the latter at least equal to the third, and so forth; and
that the sum of these i ordinates are constantly equal to s. By supposing s partitioned into
an infinity of parts, we can satisfy the preceding conditions, in an infinity of ways. We
propose to determine the value of each of the ordinates, a mean among all the values that it
can receive.

Let z be the smallest ordinate, or the ith ordinate; let z + z1 be the (i − 1)st ordinate;
let z + z1 + z2, the (i − 2)nd ordinate, and so forth to the first ordinate which will be
z + z1 · · · + zi−1. The quantities z, z1, z2, etc. will be either nulls or positives, and their
sum iz + (i − 1)z1 + (i − 2)z2 · · · + zi−1 will be, by the conditions of the problem, equal
to s. Let

iz = t, (i− 1)z1 = t1, (i− 2)z2 = t2, . . . , zi−1 = ti−1;
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we will have
t+ t1 + t2 · · ·+ ti−1 = s;

the variables t, t1, t2, etc. will be able to be extended to s. The rth ordinate will be

t

i
+

t1
i− 1

· · ·+ ti−r
r
.

It is necessary to determine the sum of all the variations that this quantity is able to receive,
and to divide it by the total number of these variations, in order have the mean ordinate.
Formula (B) gives very easily this sum, by observing that here

ψ(t, t1, t2, etc.) =
t

i
+

t1
i− 1

· · ·+ ti−r
r

;

and [272]we find it equal to
si

1.2.3 . . . i

(
1

i
+

1

i− 1
· · ·+ 1

r

)
.

By dividing this quantity by the total number of combinations, which can be only a function
of i and of s, and which we will designate by N , we will have, for the mean value of the
rth ordinate,

si

1.2.3 . . . iN

(
1

i
+

1

i− 1
· · ·+ 1

r

)
.

In order to determine N , we will observe that all the mean values must together equal s;
that which gives

N =
si−1

1.2.3 . . . (i− 1)
;

the mean value of the rth ordinate is therefore

s

i

(
1

i
+

1

i− 1
· · ·+ 1

r

)
. (ε)

Let us suppose that an observed effect has been able to be produced only by one of the i
causesA,B, C, etc.; and that a person, after having estimated their respective probabilities,
writes on a ballot, the letters which indicate these causes, in the order of the probabilities
that he attributes to them, by writing first, the letter indicating the cause which seems to him
most probable. It is clear that we will have by the preceding formula, the mean value of the
probabilities that he is able to suppose to each of them, by observing that here the quantity
s that we must apportion on each of the causes, is certitude or unity, since the person is
assured that the effect must result from one of them. The mean value of the probability that
he attributes to the cause that he has placed on his ballot at the rth rank, is therefore

1

i

(
1

i
+

1

i− 1
· · ·+ 1

r

)
.
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Thence it follows that if a tribunal is summoned to decide on this object, and if each member
expresses his opinion by a ballot similar to the preceding; then, by writing on each ballot,
beside the letters which [273]indicate the causes, the mean values which correspond to the rank
that they have on the ballot; by making next a sum of all the values which correspond to
each cause, on the diverse ballots; the cause to which will correspond the greatest sum, will
be that which the tribunal will judge most probable.

This rule is not at all applicable to the choice of the electoral assemblies, because the
electors are not at all obliged, as the judges, to apportion one same sum taken for unity,
on the diverse parts among which they must be determined: they can suppose to each
candidate, all the nuances of merit comprehended between the null merit and the maximum
of merit, which we will designate by a; the order of the names on each ballot, does only to
indicate that the elector prefers the first to the second, the second to the third, etc. We will
determine thus the numbers that it is necessary to write on the ballot, beside the names of
the candidates.

Let t1, t2, t3, . . . ti be the respective merits of the i candidates, in the opinion of the
elector, t1 being the merit that he supposes to the one of the candidates who he has set at
the first rank, t2 being the merit that he supposes at the second, and so forth. The integral∫
trdt1dt2 . . . dti will express the sum of the merits that the elector can attribute to candidate

r, provided that we integrate first with respect to ti, from ti = 0 to ti = ti−1; next with
respect to ti−1, from ti−1 to ti−2, and so forth, to the integral relative to t1, which we will
take from t1 null to t1 = a. Because it is clear that then ti never surpasses ti−1, ti−1 never
surpasses ti−2, etc. By dividing the preceding integral by this here

∫
dt1dt2 . . . dti which

expresses the total sum of the combinations in which the preceding condition is fulfilled,
we will have the mean expression of the merit which the elector can attribute to the rth

candidate. In executing the integrations, we find i−r+1
i+1

a for this expression.
Thence it follows that we can write on the ballot of each elector i beside the first name,

i−1 beside the second, i−2 beside the third, etc. By uniting next all the numbers relative to
each candidate, on the diverse ballots; the one of the candidates who will have the greatest
sum, must be presumed the candidate who, in the eyes of the electoral [274]assembly, has the
greatest merit, and must consequently be chosen.

This mode of election would be without doubt the better, if some strange considerations
in the merit did not influence at all often with respect to the choice of the electors, even the
most honest, and did not determine them at all to place in the last ranks the most formidable
candidates to the one who they prefer; that which gives a great advantage to the candidates
of a mediocre merit. Also experience has caused abandoning it in the establishments which
have adopted it.

Let us suppose that the errors of an observation are able to be extended within the
limits +a and −a; but that ignoring the law of probability of these errors, we subject it
only to the condition to give to them a probability so much smaller, as they are greater;
the probability of the positive errors being supposed the same as that of the corresponding
negative errors, all things that it is natural to admit. Formula (ε) will give again the mean
law of the errors. For this we will imagine the interval a partitioned into an infinite number
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i of parts represented by dx, so that i = a
dx

; we will make next r = x
dx

; formula (ε) becomes
thus

s dx

a

∫
dx

x
,

the integral being taken from x = x to x = a. In the present question s = 1
2
; because the

error must fall within the limits −a and +a, the probability that it will fall within the limits
zero and a is 1

2
; it is the quantity s that it is necessary to apportion on all the points of the

interval a; formula (ε) becomes then

dx

2a
log

a

x
.

Thus the mean law of the probabilities of the positive errors x, or negatives −x, is

1

2a
log

a

x
.
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