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Preface

The Théorie analytique des Probabilités, henceforth referenced as the TAP, was
published in 1812 with a dedication to Napoléon-le-Grand [4]. A second edition
revised and augmented by the author appeared in 1814, a third with the introduction
further expanded and the addition of four supplements was published in 1820 [5].

After the death of Laplace an edition of his works was published at national
expense between 1843 and 1847. The seventh volume, dated 1847, contains the TAP.
A printing of his complete works in 14 volumes was undertaken between 1872 and
1912 [6]. The TAP is again contained in Volume 7. This latter edition sometimes
modernized the notation of earlier papers. The translation presented here is based
upon the original third edition.

Returning then to the third edition of 1820, we find that it may be partitioned
into five parts. These are

• Introduction. This has become known as the Essai philosophique sur les
probabilités. The essay has passed through a number of editions. An English
translation as A Philosophical Essay on Probabilities was made by Frederick
Truscott and Frederick Emory in 1902 from the sixth French edition [7]. More
recently, it has been retranslated by Andrew Dale as Philosophical Essay on
Probabilities from the fifth French edition [8].
• Book I. This consists of two parts. Part 1 is essentially a reprint of the 1779

memoir “Mémoire sur les Suites” [10]. Part 2 similarly reprints his memoir
of 1782 “Mémoire sur les Approximations des Formules qui sont fonctions de
très grands nombres” [11].

Part 1 treats of generating functions. Isaac Todhunter states that it has
been superceded by the Calculus of Operations developed by George Boole.
We disagree. Generating functions remain important in mathematics.

Part 2 extends the theory of generating functions to two variables.
• Book II. Here Laplace presents applications of the theory. For the most part,

he restricts himself to the most difficult questions. Many of the problems had
been treated by Laplace in earlier memoirs. Consequently the TAP may be
considered in one sense as a consolidation of his work in probability.
• Additions. The first addition offers a proof of Wallis’ Theorem which gives

a representation of π/2 as an infinite product. The second addition proves
a formula for finite differences. The third gives a demonstration of formula
(p) of §42 on page 135.
• Supplements.
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ii PREFACE

This volume presents a translation of the following front matter: the dedication
to Napoleon of the first edition, the forwards to the first, second and third editions,
and the plan of the work taken from the first edition. The original table of contents
has been moved to the front matter.

Parts 1 and 2 are followed by the Additions because these are related to Book I
alone.

Book II and the Supplements are relegated to the second volume of this transla-
tion.

The errata for the TAP are incomplete. There are clearly printer errors in the
1820 edition which are not in the official list. Where these occur, a comparison has
been made to both the 1847 and 1878 printings. On the other hand, new errors
are sometimes introduced in these also or known ones left unchanged. Nonetheless,
I believe the text here is as free as possible from them. All corrections are made
silently.

The text is for the most part reproduced faithfully. The most notable exception is
that I have generally suppressed the use of the period to separate factors in a product.
His notation overall is very clumsy. Examples of this are the following: Superscripts
are used whereas we would use subscripts. Primes are used to distinguish variables
whereas we would use different letters and reserve primes for derivatives. Care should
be taken to note that the differential dx is treated as an object and not just part of
an operator.

The reader will further note that Laplace puts a great burden on the reader to
understand and follow his arguments. He does not post guideposts except in a cursory
way. A very careful reading, however, uncovers an order and one will see how each
part develops from the previous.

The translation of the Mécanique Céleste of Laplace by Nathaniel Bowditch in-
cluded a memoir of Bowditch written by his son, Nathaniel Ingersoll Bowditch. In it
the son says,

Dr. Bowditch himself was accustomed to remark, “Whenever I meet in
La Place with the words ‘Thus it plainly appears,’ I am sure that hours,
and perhaps days, of hard study will alone enable me to discover how
it plainly appears.” [1, Vol. IV, p. 62]

This applies no less to the work presented here.

Originally I had planned to comment on the TAP as Bowditch did the Mécanique
Céleste. It does not seem worthwhile to do so for Book I. I refer the reader rather to
Todhunter for his summaries [12].



Dedication

First Edition

To Napoleon-le-grand,

Lord,
The benevolence with which Your Majesty has deigned to recieve graciously the

homage of my Traité de Mécanique Céleste, has inspired me the desire to dedicate this
Work on the Calculus of Probabilities to You. This delicate calculus is extended to the
most important questions of life, which are in fact, for the most part, only problems
of probability. It must, in this respect, interest Your Majesty of whom genius
knows to value so well and to encourage so worthily all that which can contribute to
the progress of knowledge and of public prosperity. I dare to beg Him to approve this
new homage dictated by the sharpest recognition, and by the profound sentiments of
admiration and of respect, with which I am,

LORD,
OF YOUR MAJESTY,

The very humble and very obedient,
servant and faithful subject,

LAPLACE.
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Forward

To the first edition

I myself propose to expose in this work, the analysis and the principles necessary
in order to resolve the problems concerning probabilities. This analysis is composed
of two theories that I have given, thirty years ago, in the Mémoires de l’Académie
des Sciences. One of them is the Theory of generating Functions ; the other is the
Theory of the approximation of Formulas functions of very great numbers. They are
the object of the first Book, in which I present them in a manner yet more general
than in the Memoirs cited. Their comparison shows evidently, that the second is only
an extension of the first, and that they are able to be considered as two branches of
one same calculus, that I designate by the name of Calculus of generating Functions.
This calculus is the foundation of my Théorie des Probabilités, which is the object of
my second Book. The questions relative to events due to chance, amount most often
with facility, to some linear equations in simple or partial differences: the first branch
of the calculus of generating functions gives the most general method to integrate
this kind of equations. But when the events that we consider, are in great number,
the expressions to which we are led, are composed of a so great multitude of terms
and factors, that their numerical calculation becomes impractical; it is therefore then
indispensable to have a method which transforms them into convergent series. It is
this that the second branch of the Calculus of generating Functions does with so much
more advantage, as the method becomes more necessary.

My object being to present here the methods and the general results of the theory
of probabilities, I treat especially the most delicate questions, the most difficult, and
at the same time the most useful of this theory. I apply myself especially, to determine
the probability of the causes and of the results indicated by the events considered in
great number, and to seek the laws according to which that probability approaches its
limits, in measure as the events are multiplied. This research merits the attention of
the Geometers, by the analysis that it requires: it is there principally that the theory
of approximation of the formulas functions of large numbers, finds its most important
applications. This research interests observers, by indicating to them the means that
they must choose among the results of their observations, and the probability of the
errors that they have yet to fear. Finally, it merits the attention of the philosophers,
by showing how the regularity completes by being established in the same things
which appear to us entirely delivered by chance, and by revealing the hidden, but
constant causes, on which this regularity depends. It is on this regularity of the mean
results of the events considered in great number, that diverse establishments repose,
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vi FORWARD

such as life annuities, tontines, assurances, etc. The questions which are related to
them, such as inoculation of vaccine, and to the decisions of electoral assemblies,
offer no difficulty according to my theory. I limit myself here to resolve the most
general; but the importance of these objects in civil life, the moral considerations of
which they complicate themselves, and the numerous observations that they suppose,
require a work apart.

If we consider the analytical methods to which the theory of probabilities has
already given birth, and those that it is able to yet give birth; the justice of the
principles which serve as foundation to it, the rigorous and delicate logic that their
use requires in the solution of the problems; the establishments of public utility which
depend on it: if we observe next that in the same things which are not able to be
submitted to the calculation, this theory gives the most certain outline which is able
to guide us in our judgments, and that it teaches to guard against illusions which
often mislead us; we will see that there is no science more worthy of our meditations,
and of which the results are more useful. It owes birth to two French Geometers of
the seventeenth century, so fecund in great men and in great discoveries, and perhaps
of all the centuries the one which gives most honor to the human spirit. Pascal and
Fermat proposed and resolved some problems on probabilities. Huygens united these
solutions, and extended them in a small treatise on this matter, which next had been
considered in a more general manner by Bernoulli, Montmort, Moivre, and by many
celebrated Geometers of these last times.



FORWARD vii

To the second edition

This Work has appeared in the course of 1812, namely, the first Part towards the
beginning of the year, and the second Part some months after the first. Since that
time, the Author has occupied himself especially in perfecting it, either by correcting
slight faults which had slipped there, or by useful additions. The principal is a quite
extended Introduction, in which the principles of the Theory of Probabilities and
their most interesting applications are exposed without the help of the calculus. This
Introduction, which serves as preface to the Work, appears further separately under
this title: Essai philosophique sur les Probabilités. The theory of the probability of
witnesses, omitted in the first edition, is here presented with the development that
its importance requires. Many analytic theorems, to which the Author had arrived
by some indirect paths, are demonstrated directly in the Additions, which contain,
moreover, a short extract from the Arithmetica infinitorum of Wallis, one of the
Works which have most contributed to the progress of Analysis and where we find
the germ of the theory of definite integrals, one of the bases of this new Calculus
of Probabilities. The Author desires that his Work, increased by at least a third by
these diverse Additions, merits the attention of the geometers, and excites them to
cultivate a branch so curious and so important in human knowledge.



viii FORWARD

To the third edition

This third Edition differs from the preceding: 1◦ by a new Introduction which has
appeared last year, under this title: Essai philosophique sur les Probabilités, fourth
Edition; 2◦ by three Supplements which are related to the application of the Calculus
of Probabilities to the natural sciences and to geodesic operations. The first two have
been published already separately; the third, relative to the operations of leveling, is
terminated with the exposition of a general method of the Calculus of Probabilities,
whatever be the number of the sources of error.
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Plan of the Work

It is divided into two Books: the first has for object, the Calculus of generating
Functions, which serve as base to the Theory of Probabilities, exposed in the Work.
This calculus is divided into two branches of which the one is the same theory of
generating functions, and of which the other is the extension of this theory to the
approximations of formulas 〈which are〉 functions of great numbers. The exposition
of the principles of the theory of probabilities, and the application of these principles
and of the analysis exposed in the first Book, to the most difficult and the most
important questions of the probabilities, are the object of the second Book. (1812
Edition)

Part 1. General considerations on the elements of magnitudes 1

The notation of exponents, imagined by Descartes, has led Wallis and Newton, to
the consideration of fractional exponents, positive and negative, and to the inter-
polation of series. Leibnitz has rendered these exponents variables, that which has
given birth to the exponential calculus, and has completed the system of elements
of finite functions. These functions are formed of exponential, algebraic and log-
arithmic quantities; quantities essentially distinct from one another. Integrals are
not often reducible to finite functions. Leibnitz having adapted to his differential
characteristic, of the exponents, in order to express the repeated differentiations;
he has been led by the analogy of the powers and of the differences, an analogy that
Lagrange has followed by way of induction, in all its developments. The theory of
generating functions, extends this analogy to some unspecified characteristics, and
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α
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.
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Part 1

General considerations on the elements
of magnitudes



§1. Magnitudes considered in general, are expressed commonly by the letters of
the alphabet, and it is to Viète that this handy notation is due which transports the
alphabets of the common languages to the analytic language.1 The application that
Viète makes of this notation, to Geometry, to the theory of equations and to the angu-
lar sections, forms one of the remarkable periods of the history of Mathematics. Some
very simple signs express the correlations of magnitudes. The position of a magnitude
one after another, suffices to express their product. If these magnitudes are the same,
this product is the square or the second power of that magnitude. But, instead of
writing it twice, Descartes imagined writing it[4] only once, by giving to it the number 2
for exponent; and he expressed the successive powers, by increasing successively this
exponent by one unit. This notation, by considering it only as an abbreviated way to
represent these powers, seems a little thing; but such is the advantage of a well-made
language, that its most simple notations have become often the source of the most
profound theories; and it is that which has held for the exponents of Descartes. Wallis
who applied himself especially to the line of induction and analogy, has been led by
this means, to express the radical powers, by some fractional exponents; and likewise
as Descartes expressed by the exponents 2, 3, etc., the second, third, etc. powers of
a magnitude; he expressed its second, third, etc. roots by the fractional exponents 1

2
,

1
3
, etc. In general, he expressed by the exponent m

n
the root n of a magnitude raised

to the power m. Indeed, following the notation of Descartes, this expression holds
in the case where m is divisible by n; and Wallis, by analogy, extended it to all the
cases. He noted next that the multiplication of the powers of one same magnitude,
reverts to adding the exponents of those powers, that it is necessary to subtract in
their division; so that the exponent n −m indicates the quotient of the power n of
a magnitude, divided by its power m; whence it follows that this quotient becomes
unity, when m is equal to n, each magnitude having zero for exponent, is the unit
itself. If m surpasses n, the exponent n−m becomes negative, and the quotient be-
comes unity divided by the power m−n of the magnitude. Wallis supposed therefore
generally that the negative exponent −m

n
expresses the unit divided by the nth root

of the magnitude raised to the power m.
It was in his work entitled Arithmetica infinitorum,2 that Wallis exposed those

remarks which led him to sum xn, x being supposed formed of an infinity of elements
taken for unity; that which, according to the actual notations, reverts to integrating
the differential xndx. He showed that this integral taken from x null, is xn+1

n+1
, that

which gave to him the integral of a series formed of similar differentials.[5] By considering

thus the integral
∫
dx(1−x 1

n )s, when n and s are whole numbers, and when it is taken
from x null to x = 1, he found that it is equal to 1.2.3···n

(s+1)(s+2)···(s+n)
. If the indices n and

s are fractional and equal to 1
2
, this integral expresses the ratio of the surface of the

1There is an English translation of François Viète by T. Richard Witmer. The Analytic Art,
Kent State U. Press (1983), reprinted by Dover Publications.

2The relevant passage may be found in A Source Book in Mathematics, 1200–1800, pages 244–
253. See also The Arithmetic of Infinitesimals: John Wallis 1656 by Jacqueline Stedall, Springer
(2004).
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circle to the square of its diameter. Wallis applied himself therefore to interpolate
the preceding product, in the case where n and s are fractional numbers; a problem
entirely new at the period where this illustrious Geometer busied himself with it, and
that he arrived to resolve by a quite ingenious method which contains the germs of
the theories of interpolations and definite integrals, of which the geometers have so
much occupied themselves, and which are the object of a great part of this work. He
obtained in this manner, the expression of the ratio of the surface of the circle to the
square of its diameter, as a product of an infinity of factors, which give values more
and more near to this ratio, in measure as we consider a greater number of these
factors; a result one of the most singular of Analysis. But it is remarkable that Wallis
who had so well considered the fractional indices of radical powers, had continued
to note these powers, as one had done before him. We see the notation of radical
powers, by fractional exponents, employed for the first time in the letters of Newton to
Oldenburg, inserted into the Commercium epistolicum. By comparing by the path of
induction of which Wallis had made such beautiful usage, the exponents of the powers
of the binomial, with the coefficients of the terms of its development, in the case where
these exponents are whole numbers; he determined the law of these coefficients, and
he extended it by analogy, to fractional powers and to negative powers. These diverse
results founded on the notation of Descartes, show the influence of handy notation
on all analysis.

This notation has further the advantage to give the simplest and most just idea of
logarithms, which are in fact, only whole and fractional exponents of one same mag-
nitude of which the diverse powers represent all numbers. But the most important
extension that this notation has received, is that of variable exponents; that which
constitutes the exponential calculus, one of the [6]most fertile branches of modern anal-
ysis. Leibnitz has indicated first, in the Actes de Leipzig for 1682,3 the transcendents
to variable exponents, and thence he has completed the system of elements of which
a finite function can be composed. For every explicit finite function is reduced in last
analysis, to some simple magnitudes, added or subtracted from one another, multi-
plied or divided among them, raised to some constant or variable powers. The roots
of equations formed of these elements, are implicit functions of them. It is thus that
c being the number of which the hyperbolic logarithm is unity, the logarithm of a
is the root of the transcendent equation cx − a = 0. We can consider further the
logarithmic quantities, as exponential functions of which the exponents are infinitely

small. Thus X logX ′ is equal to X′Xdx−1
dx

. All the modifications of magnitude that
we can imagine to the exponents, are found therefore represented by the exponential,
algebraic and logarithmic quantities. These quantities and their functions embrace
consequently, all the explicit finite functions; and the roots of the equations formed
of similar functions, embrace all the implicit finite functions.

These quantities are essentially distinct: the exponential ax, for example, can
never be identical with an algebraic function of x. For each algebraic function is

3“De vera proportione circuli ad Quadratum circumscriptum in Numeris rationalibus,” Acta
Eruditorum, 43–46. Reprinted Mathematische Schriften, Vol V (1858), 118–122.
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reducible into a descending series of the form kxn + k′xn−n
′

+ etc.: now it is easy
to demonstrate that a being supposed greater than unity, and x being infinite, ax

is infinitely greater than kxn, however great that we suppose k and n. Similarly,
it is easy to see that in the case of x infinite, x is infinitely greater than k(log x)n.
The exponential, algebraic and logarithmic functions of an indeterminate variable,
can therefore not re-enter into one another: the algebraic quantities hold the mid-
dle between the exponential and the logarithmic; the exponents, when the variable
is infinite, can be considered as infinite in the exponentials, finite in the algebraic
quantities, and infinitely small in the logarithmic quantities.

We can further establish in principle, that a radical function[7] of one variable,
cannot be identical with a rational function of the same variable, or with another
radical function. Thus (1 + x3)

1
4 , is essentially distinct from (1 + x3)

1
3 and from

(1 + x)
1
2 .

These principles founded on the nature itself of the functions, can be of great
utility in analytic researches, by indicating the forms of which the functions that one
intends to find, are susceptible, and by demonstrating their impossibility in a great
number of cases; but then it is necessary to be quite certain to omit none of the
possible forms. Thus differentiation leaving the exponential and radical quantities
to subsist, and by making the logarithmic quantities vanish, only as long as they
are multiplied by some constants; we must conclude from it that the integral of a
differential function can contain no other exponential and radical quantities, than
those which are contained in that function. By this means, I have recognized that
we can not obtain in the form of an explicit or implicit finite function of the variable
x, the integral

∫
dx√

1+αx2+βx4
. I have demonstrated similarly that the linear equations

in partial differences of the second order among three variables, are not most often,
susceptible of being integrated under a finite form; that which has led me to a general
method in order to integrate them under this form, when it is possible. In the other
cases, we can obtain a finite integral, only by means of definite integrals.

Leibnitz having adapted to the differential calculus, a very handy characteristic, he
imagined giving to it the same exponents as to magnitudes; but then, these exponents,
instead of indicating the repeated multiplications of one same magnitude, indicate the
repeated differentiations of one same function.4 This novel extension of the Cartesian
notation, led Leibnitz to this remarkable theorem, namely, that the nth differential of
a product xyz etc., is equal to (dx+dy+dz+ etc.)n, provided that in the development
of this polynomial, we apply to the characteristic d, the exponents of the powers of dx,
dy, dz, etc., and that thus we write drx.dr

′
y.dr

′′
z etc., instead of (dx)r.(dy)r

′
.(dz)r

′′

etc., by taking care to change d0x, d0y, d0z, etc. into x, y, z, etc. This great
Geometer[8] observed moreover, that this theorem subsists, by supposing n negative
there, provided that we change the negative differentials into integrals. Lagrange has
followed this singular analogy of powers and of differences in all his developments;
and by a sequence of very fine and fortunate inductions, he has deduced from it

4Laplace most likely refers here to “Symbolismus memorabilis calculi algebraici et infinitesimales
in comparatione potentiarum et differentiarum,” Miscellanea Berolinensia, pages 160–165, (1710).



5

general formulas as curious as useful, on the transformations of the differences and of
the integrals into one another, when the variables have diverse finite increases, and
when these increases are infinitely small. His Memoir5 on this object, inserted into
the Recuiel de l’Academie de Berlin for the year 1772, can be regarded as one of the
most beautiful applications that one has made, on the method of inductions. The
theory of generating functions extends the Cartesian notation to some unspecified
characteristics; it shows at the same time, evidently, the analogy of the powers and
of the operations indicated by these characteristics, and we are going to see all that
which concerns series, and the integration of linear equations in differences, rising
from it with an extreme ease.

5“Sur une nouvelle espece de calcul, rélatif à la differentiation & à l’intégration des quantités
variables,” Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres, pages 185–221.





CHAPTER 1

Concerning generating functions, in one variable

§2. Let yx be any function whatever of x; if we form the infinite series [9]

y0 + y1t+ y2t
2 + y3t

3 · · ·+ yxt
x + yx+1t

x+1 · · ·+ y∞t
∞;

we can always imagine a function of t, which developed according to the powers of t,
gives this series: this function is that which I name generating function of yx.

The generating function of any variable yx, is thus generally a function of t, which
developed according to the powers of t, has this variable for the coefficient of tx; and
reciprocally, the corresponding variable of a generating function, is the coefficient of tx

in the development of this function according to the powers of t; so that the exponent
of the power of t, indicates the rank that the variable yx occupies in the series which
we can imagine prolonged indefinitely to the left, relative to the negative powers of t.

It follows from these definitions, that u being the generating function of yx, that
of yx+r is u

tr
; because it is clear that the coefficient of tx in u

tr
is equal to the one of

tx+r in u; and consequently it is equal to yx+r.
The coefficient of tx in u

(
1
t
− 1
)

is therefore equal to yx+1−yx, or to the difference
of the two consecutive quantities yx+1 and yx, a difference that we will designate by
4yx, 4 being the characteristic of finite differences. We have therefore the generat-
ing function of the [10]finite difference of a variable quantity, by multiplying by 1

t
− 1,

the generating function of the quantity itself. The generating function of the finite

difference of 4yx, a difference that we designate by 42yx, is thus u
(

1
t
− 1
)2

; that of

the finite difference 42yx or 43yx, is u
(

1
t
− 1
)3

; whence we can generally conclude

that the generating function of the finite difference 4iyx is u
(

1
t
− 1
)i

.
Similarly, the coefficient of tx in the development of

u

(
a+

b

t
+
c

t2
+
e

t3
· · ·+ q

tn

)
is

ayx + byx+1 + cyx+2 + eyx+3 · · ·+ qyx+n;

by naming therefore ∇yx this quantity, its generating function will be

u

(
a+

b

t
+
c

t2
· · ·+ q

tn

)
.

If we name ∇2yx that which ∇yx becomes when we change yx into ∇yx there; if we
name similarly ∇3yx that which ∇2yx becomes when we change ∇yx into ∇2yx, and

7
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so forth, their corresponding generating functions will be

u

(
a+

b

t
+
c

t2
· · ·+ q

tn

)2

;

u

(
a+

b

t
+
c

t2
· · ·+ q

tn

)3

;

etc.,

and generally the generating function of ∇iyx will be

u

(
a+

b

t
+
c

t2
· · ·+ q

tn

)i
.

Thence it is easy to conclude generally that the generating function of 4i∇syx+r is

u

tr

(
a+

b

t
+
c

t2
· · ·+ q

tn

)s(
1

t
− 1

)i
.

We can generalize further these results, by supposing that ∇yx[11] represents any
finite or infinite linear function, of yx, yx+1, yx+2, etc.; that ∇2yx is that which ∇yx
becomes, when we change yx into ∇yx there; that ∇3yx is that which ∇2yx, becomes
when we change ∇yx into ∇2yx, and so forth; u being the generating function of yx,
usi will be the generating function of ∇iyx, s being that which ∇yx becomes, when
we change yx into unity, yx+1 into 1

t
, yx+2 into 1

t2
, etc. This is still true, when i is

a negative number, or even fractional and incommensurable, by making however in
this result, some convenient modifications.

Let us represent by Σ the characteristic of finite integrals, and let us name z the

generating function of Σiyx, u being the generating function of yx; z
(

1
t
− 1
)i

will be
by that which precedes, the generating function of yx. But this function must, by
having regard only to the positive powers of t, be reduced to u which contains only
positive powers of t, if we extend the multiple integral Σiyx only to the positive values
of x; we will have therefore then

z

(
1

t
− 1

)i
= u+

A

t
+
B

t2
+
C

t3
· · ·+ F

ti
;

whence we deduce

z =
uti + Ati−1 +Bti−2 + Cti−3 · · ·+ F

(1− t)i
,

A,B,C, . . . , F being arbitrary constants which correspond to the i arbitrary constants
that the i successive integrations of Σiyx introduce.

By setting aside these constants, the generating function of Σiyx is u
(

1
t
− 1
)−i

;
so that we obtain this generating function, by changing i into −i, in the generating
function of 4iyx; 4−iyx is therefore then equal to Σiyx; that is that the negative dif-
ferences are changed into integrals. But, if we have regard to the arbitrary constants,
it is necessary, in passing from the positive powers of 1

t
− 1 to its negative powers, to
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augment u with the series A
t

+ B
t2

+ C
t3

+ etc., prolonged until the number of its [12]terms
is equal the exponent of these powers. We can apply similar considerations, to the
generating function of ∇iyx.

We see by that which precedes, in what manner the generating functions are
formed from the law of the corresponding variables. Let us see now how the variables
are deduced from their generating functions. s being any function of 1

t
, if we develop si

according to the powers of 1
t
, and if we designate by k

tn
any term of this development;

the coefficient of tx in ku
tn

will be kyx+n; we will have therefore the coefficient of tx

in usi, a coefficient that we have designated previously by ∇iyx, 1◦ by substituting
into s, yx in place of 1

t
; 2◦ by developing that which si then becomes according to the

powers of yx, and by transporting to the index x, the exponent of the power of yx;
that is, by writing yx+1 instead of (yx)

1; yx+2 instead of (yx)
2, etc., and by multiplying

the terms independent of yx, and which can be counted to have (yx)
0 for factor, by

yx. When the characteristic ∇ is changed into 4, s is, by that which precedes, equal
to 1

t
− 1; we have therefore then

4iyx = yx+i − iyx+i−1 +
i(i− 1)

1.2
yx+i−2 − etc.

If, instead of developing si according to the powers of 1
t
, we develop it according to

the powers of 1
t
− 1, and if we designate by k

(
1
t
− 1
)n

, any term of this development;

the coefficient of tx in ku
(

1
t
− 1
)n

will be k4nyx; we will have therefore ∇iyx; 1◦

by substituting into s, 4yx in place of 1
t
− 1, or, that which reverts to the same,

1 +4yx in place of 1
t
; 2◦ by developing that which si then becomes according to the

powers of 4yx, and by applying to the characteristic 4, the exponents of the powers
of4yx, that is by writing4yx instead of (4yx)1, 42yx instead of (4yx)2, etc., [13]and by
multiplying by (4yx)0, or, that which is the same thing, by yx the terms independent
of 4yx.

In general, if we consider s as a function of r, r being a function of 1
t
, such that

the coefficient of tx in ur, is �yx; we will have ∇iyx, by substituting into s, �yx, in
place of r; by developing next si according to the powers of �yx, and by applying to
the characteristic �, the exponents of �yx, that is, by writing �yx, in place of (�yx),
�2yx in place of (�yx)2, etc.; and by multiplying by yx the terms independent of �yx.

The development of ∇iyx by a series ordered according to the successive variations
�yx, �2yx, etc., is reduced therefore to the formation of the generating function of
yx, in the development of that function, according to the powers of a given function;
finally, on the return of the generating function thus developed, to the corresponding
variable coefficients; the exponents of the powers of the development of the generating
function, becoming those of the characteristic of these coefficients. We see thus the
analogy of the powers with the differences, or with every other combination of the con-
secutive variable coefficients. The passage from these coefficients to their generating
functions, and the return of these developed functions to the coefficients constitute
the calculus of generating functions. The following applications will make known the
spirit and the advantages of them.
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On the interpolation of the series in one variable, and on the integration
of linear differential equations.

§3. All theory of the interpolation of series is reduced to determining, whatever be
i, the value of yx+i as a function of the terms which precede or which follow yx. For
this, we must observe that yx+i is equal to the coefficient of tx+i in the development
of u, and consequently equal to the coefficient of tx in the development of u

ti
; now we

have

u

ti
= u

(
1 +

1

t
− 1

)i
= u


1 + i

(
1

t
− 1

)
+
i(i− 1)

1.2

(
1

t
− 1

)2

+
i(i− 1)(i− 2)

1.2.3

(
1

t
− 1

)3

+ etc.

 .

Moreover,[14] the coefficient of tx in the development of u, is yx; this coefficient in the

development of u
(

1
t
− 1
)
, is 4yx; in the development of u

(
1
t
− 1
)2

, it is equal to
42yx, and so forth; the preceding equation will give therefore, by passing again from
the generating functions to the coefficients,

yx+i = yx + i4yx +
i(i− 1)

1.2
42yx +

i(i− 1)(i− 2)

1.2.3
43yx + etc.

This equation holding whatever be i, by supposing it even fractional, serves to inter-
polate the series of which the successive differences of the terms are decreasing.

If we have the equation in finite differences

4nyx = 0;

the preceding series is terminated, and we have, whatever be i, by making x null,

yi = y0 + i4y0 +
i(i− 1)

1.2
42y0 · · ·+

i(i− 1) . . . (i− n+ 2)

1.2.3 . . . (n− 1)
4n−1y0.

This is the complete integral of the proposed equation in the differences, y0, 4y0,
. . .4n−1y0 being the n arbitrary constants of this integral.

All the ways of developing the power 1
ti

, give as many different methods to inter-
polate the series. Let, for example,

1

t
= 1 +

α

tr
;
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by developing 1
ti

according to the powers of α, by formula (p) of §21 of the second
book of the Mécanique céleste,1 we will have

u

ti
= u


1 + iα +

i(i+ 2r − 1)

1.2
α2 +

i(i+ 3r − 1)(i+ 3r − 2)

1.2.3
α3

+
i(i+ 4r − 1)(i+ 4r − 2)(i+ 4r − 3)

1.2.3.4
α4 + etc.

 .

α being equal to tr
(

1
t
− 1
)
, the coefficient of tx in the development [15]of uα is, by §2,

4yx−r; this same coefficient in uα2 is 42yx−2r, and so forth. The preceding equation
will give therefore, by passing again from the generating functions to the coefficients,

yx+i = yx + i4yx−r +
i(i+ 2r − 1)

1.2
42yx−2r

+
i(i+ 3r − 1)(i+ 3r − 2)

1.2.3
43yx−3r + etc.

§4. Here is now a general method of interpolation, which has the advantage of
being applicable, not only to the series of which the differences of the terms conclude
by being null, but further to the series of which the ultimate ratio of the terms is that
of any recurrent series.

Let us suppose first that we have

t

(
1

t
− 1

)2

= z; (1)

and let us seek the value of 1
ti

in a series ordered with respect to the powers of z. It

is clear that 1
ti

is equal to the coefficient of θi in the development of the fraction 1
1− θ

t

.

If we multiply the numerator and the denominator of this fraction by 1− θt, we will
have this here

1− θt
1− θ

(
1
t

+ t
)

+ θ2.

Equation (1) gives
1

t
+ t = 2 + z,

that which changes the preceding fraction into this one here

1− θt
(1− θ)2 − zθ

;

1See Volume I of Oeuvres de Laplace (1843), p. 173. In his original paper of 1779 [10], Laplace
credits Lagrange with this formula: “Recherches sur les suites recurrentes dont les termes varient
de plusieurs manieres différentes, ou sur l’integration des équations linéaires aux différences finies et
partielles; et sur l’usage de ces équations dans la théorie des hazards.” This appeared in Nouveaux
Mémoires de l’Académie . . . Berlin for the year 1775, published in 1777, [3, pages 183–272]. The
formula appears there on page 115.
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now we have

1

(1− θ)2 − zθ
=

1

(1− θ)2
+

zθ

(1− θ)4
+

z2θ2

(1− θ)6
+ etc.;

besides the coefficient of θr in the development of 1
(1−θ)s , is[16]

s(s+ 1)(s+ 2) . . . (s+ r − 1)

1.2.3 . . . r
,

whence it follows that the coefficient of θi is, 1◦ i + 1 in the development of 1
(1−θ)2 ;

2◦ i(i+1)(i+2)
1.2.3

, in the development of θ
(1−θ)4 . 3◦ (i−1)i(i+1)(i+2)(i+3)

1.2.3.4.5
, in the development

of θ2

(1−θ)6 , and thus of the rest; therefore if we name Z the coefficient of θi in the

development of the function
1

(1− θ)2 − zθ
,

we will have

Z = i+ 1 +
i(i+ 1)(i+ 2)

1.2.3
z +

(i− 1)i(i+ 1)(i+ 2)(i+ 3)

1.2.3.4.5
z2

+
(i− 2)(i− 1)i(i+ 1)(i+ 2)(i+ 3)(i+ 4)

1.2.3.4.5.6.7
z3 + etc.,

or

Z = (i+ 1)

{
1 +

[(i+ 1)2 − 1]z

1.2.3
+

[(i+ 1)2 − 1][(i+ 1)2 − 4]z2

1.2.3.4.5
+ etc.

}
;

if we name next Z ′ the coefficient of θi in the development of

θ

(1− θ)2 − zθ
,

we will have Z ′ by changing i into i− 1 in Z, that which gives

Z ′ = i

[
1 +

(i2 − 1)z

1.2.3
+

(i2 − 1)(i2 − 4)z2

1.2.3.4.5
+ etc.

]
;

we will have thus Z − tZ ′ for the coefficient of θi in the development of the fraction

1− θt
(1− θ)2 − zθ

;

this will be consequently the expression of 1
ti

; therefore

u

ti
= u(Z − tZ ′).

This premised,[17] the coefficient of tx in u
ti

, is yx+i. This same coefficient, in any term

of uZ, such as kuzr or kutr
(

1
t
− 1
)2r

is, by §2, k42ryx−r. In any term of utZ ′, such
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as kutzr or kutr+1
(

1
t
− 1
)2r

, this coefficient is k42ryx−r−1; we will have therefore, by
passing again from the generating functions to their coefficients,

yx+i = (i+ 1)


yx +

(i+ 1)2 − 1

1.2.3
42yx−1

+
[(i+ 1)2 − 1][(i+ 1)2 − 4]

1.2.3.4.5
44yx−2 + etc.


− i
{
yx−1 +

i2 − 1

1.2.3
42yx−2 +

(i2 − 1)(i2 − 4)

1.2.3.4.5
44yx−3 + etc.

}
.

We can give the following forms to the preceding expression. Let Z ′′ be that
which Z ′ becomes when we change i into i− 1 there; and consequently, that which Z
becomes when we change i into i− 2. The equation

1

ti
= Z − tZ ′

will give

1

ti−1
= Z ′ − tZ ′′;

hence,

1

ti
=
Z ′

t
− Z ′′.

By adding these two values of 1
ti

, and taking the half of their sum, we will have

1

ti
=

1

2
Z − 1

2
Z ′′ +

1

2
(1 + t)

(
1

t
− 1

)
Z ′;

now we have

1

2
Z − 1

2
Z ′′ = 1 +

i2

1.2
z +

i2(i2 − 1)

1.2.3.4
z2 +

i2(i2 − 1)(i2 − 4)

1.2.3.4.5.6
z3 + etc.

hence

u

ti
= u

[
1 +

i2

1.2
t

(
1

t
− 1

)2

+
i2(i2 − 1)

1.2.3.4
t2
(

1

t
− 1

)4

+ etc.

]

+
i

2
u(1 + t)


1

t
− 1 +

i2 − 1

1.2.3
t

(
1

t
− 1

)3

+
(i2 − 1)(i2 − 4)

1.2.3.4.5
t2
(

1

t
− 1

)5

+ etc.

 ;
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whence[18] we conclude, by passing again from the generating functions to the coefficients,

yx+i = yx +
i2

1.2
42yx−1 +

i2(i2 − 1)

1.2.3.4
44yx−2

+
i2(i2 − 1)(i2 − 4)

1.2.3.4.5.6
46yx−3 + etc.

+
i

2
(4yx +4yx−1) +

i

2
· i

2 − 1

1.2.3
(43yx−1 +43yx−2)

+
i

2

(i2 − 1)(i2 − 4)

1.2.3.4.5
(45yx−2 +45yx−3) + etc.

This formula2 serves to interpolate between an odd number 2x + 1 of equidistant
quantities; the common interval which separates them being taken for unity, yx is
the middle of the magnitudes y0, y1, y2,. . . y2x; and i is the distance from yx+i to this
middle. The preceding expression is then symmetric relative to these magnitudes;
because 42yx−1, for example, is equal to yx+1−2yx + yx−1, and 4yx +4yx−1 is equal
to yx+1− yx−1. Thus the quantities placed above and below the mean yx, enter in the
same manner into this expression.

If we change i into i+1 in the last expression of u
ti

, and if we subtract from it that

expression itself; we will have the expression of u
ti+1 − u

ti
, or of u

ti

(
1
t
− 1
)
; by dividing

next this value by 1
t
− 1, we will have

u

ti
=
u

2
(1 + t)


1 +

[(i+ 1
2
)2 − 1

4
]

1.2
t

(
1

t
− 1

)2

+
[(i+ 1

2
)2 − 1

4
][(i+ 1

2
)2 − 9

4
]

1.2.3.4
t2
(

1

t
− 1

)4

+ etc.


+ (i+ 1

2
)ut

(
1

t
− 1

)
1 +

[(i+ 1
2
)2 − 1

4
]

1.2.3
t

(
1

t
− 1

)2

+
[(i+ 1

2
)2 − 1

4
][(i+ 1

2
)2 − 9

4
]

1.2.3.4.5
t2
(

1

t
− 1

)4

+ etc.


By passing again from the generating functions to the coefficients, we will have[19]

yx+i =
1

2
(yx + yx−1) +

[(i+ 1
2
)2 − 1

4
]

1.2
· 1

2
(42yx−1 +42yx−2)

+
[(i+ 1

2
)2 − 1

4
][(i+ 1

2
)2 − 9

4
]

1.2.3.4
· 1

2
(44yx−2 +44yx−3) + etc.

+ (i+ 1
2
)


4yx−1 +

[(i+ 1
2
)2 − 1

4
]

1.2.3
43yx−2

+
[(i+ 1

2
)2 − 1

4
][(i+ 1

2
)2 − 9

4
]

1.2.3.4.5
45yx−3 + etc.

 .

2In his original paper, Laplace states that this formula reverts to the one Newton gave in his
Methodus differentialis in order to interpolate between an odd number of equidistant quantities [10].
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This formula3 serves to interpolate between an even number 2x of equidistant quan-
tities, yx and yx+1 being the two middle quantities.4 It is disposed in a symmetric
manner relative to the quantities equally distant from the middle of the interval which
separates the extreme quantities: this middle is the origin of the values of i+ 1

2
, which

are positive above and negative below.
All these expressions of yx+i are identical, and such that if we imagine a parabolic

curve of which i is the abscissa, and yx+i the ordinate, and of which the equation is
that which gives the expression of yx+i; this curve will pass through the extremities
of the ordinates yx, yx+1, yx+2, etc.; yx−1, yx−2, etc. We can thus, by taking the
successive finite differences of any number of coordinates, make a parabolic curve
pass through the extremities of these coordinates.

§5. Let us suppose generally

z = a+
b

t
+
c

t2
+
e

t3
· · ·+ p

tn−1
+
q

tn
; (a)

we will have
1

tn
=
z − a
q
− b

qt
− c

qt2
· · · − p

qtn−1
,

that which gives
1

tn+1
=
z − a
qt
− b

qt2
− c

qt3
· · · − p

qtn
;

eliminating 1
tn

from the second member of this equation, by means of the proposed
(a), we will have

1

tn+1
= −p(z − a)

q2
+
pb+ q(z − a)

q2t
+ etc.

This [20]expression of 1
tn+1 contains only powers of 1

t
of an order inferior to n. By

multiplying it by 1
t
, we will have an expression of 1

tn+2 , which will contain the power
1
tn

; but by eliminating again this power, by means of the proposed (a), we will reduce

the expression of 1
tn+2 to contain only powers of 1

t
inferior to n. By continuing thus,

we will arrive to an expression of 1
ti

, which will contain only powers of 1
t

less than n,
and which will be consequently of the form

1

ti
= Z +

1

t
Z(1) +

1

t2
Z(2) · · ·+ 1

tn−1
Z(n),

Z, Z(1), Z(2), etc., being some rational and integral functions of z, of which the highest
power of z does not surpass i

n
.

This manner of determining 1
ti

would be very laborious, if i were a large number;
it would lead besides with difficulty to the general expression of this quantity. We
could arrive there directly by the following method.

3Again in his original paper, Laplace states that this formula reverts to the one given by Newton
in Methodus differentialis [10].

4The original has “yx−1 and yx+1 being the two middle quantities.” The errata replaces these
values by yx and yx+α. However, the change must be as above.
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1
ti

is equal to the coefficient of θi in the development of the fraction 1
1− θ

t

. If we

multiply the numerator and the denominator of this fraction by

(a− z)θn + b θn−1 + c θn−2 · · ·+ p θ + q;

and if in the numerator we substitute in the place of z, its value a+ b
t

+ c
t2

+ etc., we
will have

b θn−1
(
1− θ

t

)
+ c θn−2

(
1− θ2

t2

)
+ e θn−3

(
1− θ3

t3

)
· · ·+ q

(
1− θn

tn

)(
1− θ

t

)
(a θn + b θn−1 + c θn−2 · · ·+ p θ + q − zθn)

;

by dividing the numerator and the denominator of this fraction by 1− θ
t
;[21] it becomes

bθn−1 + c θn−2 + e θn−3 · · ·+ q

+
θ

t
(c θn−2 + e θn−3 · · · · · · · · ·+ q)

+
θ2

t2
(e θn−3 · · · · · · · · · · · · · · ·+ q)

+ etc.

+
θn−1

tn−1
q


a θn + b θn−1 + c θn−2 · · ·+ p θ + q − zθn

The pursuit of the coefficient of θi in the development of this fraction, is reduced thus
to determining, whatever be r, the coefficient of θr in the development of the fraction

1

a θn + b θn−1 + c θn−2 · · ·+ p θ + q − zθn
.

For this, let us consider generally the fraction P
Q
, P and Q being rational and integral

functions of θ, the first being of an inferior order to the second. Let us suppose that
Q has a factor θ − α raised to a power s, so that we have

Q = (θ − α)sR;

R being a rational and integral function of θ. We can decompose the fraction P
Q

into

two others A
(θ−α)s

+ B
R

, A and B being rational and integral functions of θ, the first,

of order s − 1, and the second, of an order inferior to 〈the one of〉 R; because it is
clear that by substituting for A and B, some functions of this nature, with some un-
determined coefficients; by reducing next the two fractions to the same denominator,
which becomes then equal to Q; by equating finally the sum of their numerators to
P ; the comparison of the powers similar to θ, will give as many equations as there
are undetermined coefficients. This premised, the equation

A

(θ − α)s
+
B

R
=

P

(θ − α)sR
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gives [22]

A =
P

R
− B(θ − α)s

R
.

If we consider A, B, P and R as some rational and integral functions of θ−α, A will
be a function of order s− 1, and consequently it will be equal to the development of
P
R

, into a series ordered with respect to the powers of θ − α, provided that we stop
ourselves at the power s− 1 inclusively. Let therefore

P

R
= u0 + u1(θ − α) + u2(θ − α)2 + etc.;

we will have
A

(θ − α)s
=

u0

(θ − α)s
+

u1

(θ − α)s−1
+

u2

(θ − α)s−2
+ etc.;

by rejecting the positive powers of θ−α; A
(θ−α)s

is, consequently, equal to the coefficient

of ts−1 in the development of the function

u0 + u1t+ u2t
2 + etc.

θ − α− t
.

If we name P ′ and R′ that which P and R become when we change θ−α into t there,
or, that which reverts to the same, θ into t+ α; we will have

P ′

R′
= u0 + u1t+ u2t

2 + etc.;

hence, A
(θ−α)s

is equal to the coefficient of ts−1 in the development of

P ′

R′(θ − α− t)
;

it is therefore equal to

1

1.2.3 . . . (s− 1)dts−1
· ds−1 · P ′

R′(θ − α− t)
,

provided that we suppose t null after the differentiations. Now, the coefficient of θr

in
P ′

R′(θ − α− t)
being [23]equal to

− P ′

R′(α + t)r+1
,

this same coefficient in

1

1.2.3 . . . (s− 1)dts−1
· ds−1 P ′

R′(θ − α− t)
will be

− 1

1.2.3 . . . (s− 1)dts−1
· ds−1 P ′

R′(α + t)r+1
,
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t being supposed null after the differentiations; this last quantity is therefore the
coefficient of θr in the development of A

(θ−α)s
. If we restore in P ′ and R′, θ − α in

place of t, that which changes them into P and R, we will have

ds−1 P ′

R′(α+t)r+1

dts−1
=
ds−1 P

Rθr+1

dθs−1
,

provided that we suppose θ = α, after the differentiations in the second member of
this equation; the function

− 1

1.2.3 . . . (s− 1)

ds−1 P
Rθr+1

dθs−1

is therefore, with this condition, the coefficient of θr in the development of the fraction
A

(θ−α)s
.

It follows thence that if we suppose

Q = a(θ − α)s(θ − α′)s′(θ − α′′)s′′ .etc.,

the coefficient of θr in the development of the fraction P
Q

, will be

− 1

1.2.3 . . . (s− 1)dθs−1
· ds−1

(
P

aθr+1(θ − α′)s′(θ − α′′)s′′ .etc.

)
− 1

1.2.3 . . . (s′ − 1)dθs′−1
· ds′−1

(
P

aθr+1(θ − α)s(θ − α′′)s′′ .etc.

)
− 1

1.2.3 . . . (s′′ − 1)dθs′′−1
· ds′′−1

(
P

aθr+1(θ − α)s(θ − α′)s′ .etc.

)
− etc.,

by making[24] θ = α in the first term; θ = α′ in the second term; θ = α′′ in the third
term, and so forth.

Now, let there be

V = a(θ − α)(θ − α′)(θ − α′′).etc.

By developing the fraction

1

V − zθn

into a series ordered with respect to the powers of z, we will have

1

V
+
zθn

V 2
+
z2θ2n

V 3
+
z3θ3n

V 4
+ etc.
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the coefficient of θr in the development of the fraction 1
V s

is, by that which precedes,
equal to

− 1

1.2.3 . . . (s− 1)asdθs−1
· ds−1



1

θr+1(θ − α′)s(θ − α′′)s.etc.

+
1

θr+1(θ − α)s(θ − α′′)s.etc.

+
1

θr+1(θ − α)s(θ − α′)s.etc.

+ etc.


; (o)

provided that after the differentiations, we suppose θ = α in the first term; θ = α′ in
the second term; θ = α′′ in the third term, etc. If there is only a single factor θ − α,
the function contained between the two parentheses, is reduced to 1

θr+1 , θ must be
changed into α after the differentiations, that which reduces the quantity (o) to

(−1)s · (r + 1)(r + 2)(r + 3) . . . (r + s− 1)

1.2.3 . . . (s− 1)as
1

αr+s
.

If in the expression of V , some of the factors θ − α, θ − α′, etc., are raised to some
powers higher than unity; for example, if θ − α is raised to the power m; it will be
raised to the power −ms in 1

V s
; and then it is necessary to change the first term of

the [25]quantity (o) in the following,

− 1

1.2.3 . . . (ms− 1)as
dms−1

dθms−1

1

θr+1(θ − α′)s(θ − α′′)s.etc.
;

and in the other terms, it is necessary to change (θ − α)s, into (θ − α)ms.

Let us represent generally by Z
(s−1)
r , the quantity (o); the coefficient of θi, in the

development of the fraction 1
V−zθn will be

Z
(0)
i + Z

(1)
i−nz + Z

(2)
i−2nz

2 + Z
(3)
i−3nz

3 + etc.;
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we will have therefore for the coefficient of θi, in the development of the first fraction5

on page [21], or for the value of 1
ti

,

1

ti
=b
[
Z

(0)
i−n+1 + zZ

(1)
i−2n+1 + z2Z

(2)
i−3n+1 + z3Z

(3)
i−4n+1 + etc.

]
+ c
[
Z

(0)
i−n+2 + zZ

(1)
i−2n+2 + z2Z

(2)
i−3n+2 + z3Z

(3)
i−4n+2 + etc.

]
+ e

[
Z

(0)
i−n+3 + zZ

(1)
i−2n+3 + z2Z

(2)
i−3n+3 + z3Z

(3)
i−4n+3 + etc.

]
+ etc.

+
1

t


c
[
Z

(0)
i−n+1 + zZ

(1)
i−2n+1 + z2Z

(2)
i−3n+1 + etc.

]
+ e

[
Z

(0)
i−n+2 + zZ

(1)
i−2n+2 + z2Z

(2)
i−3n+2 + etc.

]
+ etc.


+

1

t2

{
e
[
Z

(0)
i−n+1 + zZ

(1)
i−2n+1 + z2Z

(2)
i−3n+1 + etc.

]
+ etc.

}
+ etc.

. . . . . . . . . . . . . . . . . . . .

+
1

tn−1
q
[
Z

(0)
i−n+1 + zZ

(1)
i−2n+1 + z2Z

(2)
i−3n+1 + etc.

]
.

(A)

Presently, if we designate by ∇yx the quantity

ayx + byx+1 + cyx+2 · · ·+ qyx+n;

by ∇2yx, that which ∇yx becomes when we change yx into ∇yx there; by ∇3yx, that
which ∇2yx becomes when we change ∇yx into[26] ∇2yx, and so forth. It is clear by §2,

that the coefficient of tx in the development of uzs

tr
will be ∇syx+r; by multiplying

therefore the preceding equation by u and by considering in each term only the coeffi-
cient of tx, that is, by passing again from the generating functions to the coefficients;

5This refers to the fraction on 16 of this translation immediately after the page reference [21] in
the margin.
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we will have

yx+i =yx

[
bZ

(0)
i−n+1 + cZ

(0)
i−n+2 + eZ

(0)
i−n+3 · · ·+ qZ

(0)
i

]
+∇yx

[
bZ

(1)
i−2n+1 + cZ

(1)
i−2n+2 + eZ

(1)
i−2n+3 · · ·+ qZ

(1)
i−n

]
+∇2yx

[
bZ

(2)
i−3n+1 + cZ

(2)
i−3n+2 + eZ

(2)
i−3n+3 · · ·+ qZ

(2)
i−2n

]
+ etc.

+ yx+1

[
cZ

(0)
i−n+1 + eZ

(0)
i−n+2 · · ·+ qZ

(0)
i−1

]
+∇yx+1

[
cZ

(1)
i−2n+1 + eZ

(1)
i−2n+2 · · ·+ qZ

(1)
i−n−1

]
+ etc.

+ yx+2

[
eZ

(0)
i−n+1 · · ·+ qZ

(0)
i−2

]
+∇yx+2

[
eZ

(1)
i−2n+1 · · ·+ qZ

(1)
i−n−2

]
+ etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

+ qyx+n−1Z
(0)
i−n+1 + q∇yx+n−1Z

(1)
i−2n+1

+ q∇2yx+n−1Z
(2)
i−3n+1 + etc.

(B)

This formula will serve to interpolate the series of which the ultimate ratio of the
terms is that of a recurrent series; because it is clear that in this case, ∇yx, ∇2yx,
etc. are always decreasing, and end by being null in the infinite.

§6. Formula (B) is arrested when we have ∇ryx = 0, r being any positive whole
number; and then the preceding expression of yx+i becomes the integral of the equa-
tion in the finite differences ∇ryi = 0, that which is analogous to what we have seen
in §3 relative to the equation ∇ryi = 0. Let us suppose ∇yi = 0, or, that which
reverts to the same,

0 = ayi + byi+1 + cyi+2 · · ·+ qyi+n;

if we make x null in formula (B) of the preceding number, it [27]becomes

yi =y0

[
bZ

(0)
i−n+1 + cZ

(0)
i−n+2 + eZ

(0)
i−n+3 · · ·+ qZ

(0)
i

]
+ y1

[
cZ

(0)
i−n+1 + eZ

(0)
i−n+2 · · · · · · · · ·+ qZ

(0)
i−1

]
+ y2

[
eZ

(0)
i−n+1 · · · · · · · · · · · · · · · · · ·+ qZ

(0)
i−2

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ qyn−1Z
(0)
i−n+1;

y0, y1, y2,. . . ,yn−1 are the first n values of yi; these are the n arbitrary constants that
the integral of the equation ∇yi = 0 introduces.
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The value of Z
(0)
i−n+1 is equal to

− 1

aαi−n+2(α− α′)(α− α′′).etc.
− 1

aα′i−n+2(α′ − α)(α′ − α′′).etc.
− etc.

Thus V being equal to a(θ−α)(θ−α′)(θ−α′′) etc.; the first of these terms becomes

−α
n−2

αi dV
dθ

,

provided that we change θ into α in dV
dθ

; by having regard therefore only to the term

multiplied by 1
αi

, the preceding expression of yi will become

yi = − 1

αi+1 dV
dθ



y0(bαn−1 + cαn−2 + eαn−3 · · ·+ q)

+y1(cαn−1 + eαn−2 · · ·+ qα)

+y2(eαn−1 · · ·+ qα2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

+yn−1qα
n−1


.

By changing successively in the second member of this equation, α into α′, α′′, etc.,
and reciprocally; we will have so many terms which, added to the preceding, will form
the complete expression of yi.

Let us name k the function comprehended between the two parentheses, so that
this second member is − k

αi+1 dV
dθ

. If the two roots α[28] and α′ are equals, V will be of this

form (θ − α)2L. We will suppose that α and α′, instead of being rigorously equal,
differ infinitely little, and that we have α′ = α+ dα. Then the sum of the two terms
of yi relative to the roots α and α′ will be

− 1

dα

(
k′

α′i+1L′
− k

αi+1L

)
,

k′ being that which k becomes when we change α into α′ there; L and L′ being here,
that which L becomes when we change θ into α and α′. This quantity is therefore
equal to

−
d k
αi+1L

dα
;

but we have

L =
1

2

d2V

dθ2
,

θ must be changed into α after the differentiations. The sum of the terms of the
expression of yi, relative to the two equal roots, is therefore

− d

1.2dα

k

αi+1 ddV
dθ2

.
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We will find in the same manner, that if V contains three equal factors, the sum of
the terms of the expression of yi relative to these three factors is

− d2

1.2.1.2.3 dα2

k

αi+1 d3V
dθ3

;

and so forth. Z
(0)
i being, by that which precedes, the coefficient of θi in the develop-

ment of 1
V

; there results from it that yi is the coefficient of θi in the development of
the function 

y0(bθn−1 + cθn−2 · · ·+ q)

+y1(cθn−1 + eθn−2 · · ·+ qθ)

+y2(eθn−1 · · · · · · · · ·+ qθ2)

. . . . . . . . . . . . . . . . . . . .

+yn−1qθ
n−1


a θn + b θn−1 + c θn−2 · · ·+ p θ + q

.

This [29]function is therefore the generating function of yi or of the principal variable of
the equation in the differences ∇yi = 0. Formula (B) of the preceding section, will
give similarly the value of yi or the complete integral of the equation in the differences
∇2yi = 0; y0, ∇y0; y1, ∇y1; . . . , yn−1, ∇yn−1 will be the 2n arbitraries of this integral.
The case of the equal roots will be resolved in the same manner as above. We will
have by the same formula, the integral of the equations in the differences ∇3yi = 0,
∇4yi = 0, etc., that which shows the analogy which exists between interpolation of
the series and the integration of the equations in the differences.

Let yi = y′i + y′′i , and let us suppose that u′ is the generating function of y′i, and
u′′ that of y′′i , u being that of yi; we will have u = u′ + u′′. Let further

u′′ =
λ

zs
,

z being the signification that we have given to it in §5; and let us name Xi the
coefficient of ti in the development of λ; we will have, by §2,

Xi = ∇sy′′i .

Now, we have, by §5,

1

zs
=

tns

(a tn + b tn−1 + c tn−2 · · ·+ q)s
;

now the coefficient of ti, in the development of the second member of this equation,
is equal to the one of θi−ns in the development of

1

(a θn + b θn−1 + c θn−2 · · ·+ q)s
;

and by the preceding article, this coefficient is equal to Z
(s−1)
i−ns ; therefore the coefficient

of ti, in the development of λ
zs

will be

Xi−nsZ
(s−1)
0 +Xi−ns−1Z

(s−1)
1 +Xi−ns−2Z

(s−1)
2 · · ·+X0Z

(s−1)
i−ns ,
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or ΣXrZ
(s−1)
i−ns−r, the integral being taken relative to r, from r = 0 to[30] r = i − ns + 1;

this will be the value of y′′i . This premised, if in formula (B) of the preceding section,
we suppose ∇syi = 0; it will give, by observing that yi = y′i + y′′i ,

y′i + ΣXrZ
(s−1)
i−ns−r = y0

[
bZ

(0)
i−n+1 + cZ

(0)
i−n+2 · · ·+ qZ

(0)
i

]
+∇y0

[
bZ

(1)
i−2n+1 + cZ

(1)
i−2n+2 · · ·+ qZ

(1)
i−n

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+∇s−1y0

[
bZ

(s−1)
i−sn+1 + cZ

(s−1)
i−sn+2 · · ·+ qZ

(s−1)
i−sn+n

]
+ y1

[
cZ

(0)
i−n+1 · · ·+ qZ

(0)
i−1

]
+∇y1

[
cZ

(1)
i−2n+1 · · ·+ qZ

(1)
i−n−1

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+∇s−1y1

[
cZ

(s−1)
i−sn+1 · · ·+ qZ

(s−1)
i−sn+n−1

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ qZ
(0)
i−n+1yn−1 + qZ

(1)
i−2n+1∇yn−1 · · ·

· · ·+ qZ
(s−1)
i−sn+1∇s−1yn−1,

(C)

y0,∇y0, . . .∇s−1y0; y1,∇y1, etc. being the ns arbitraries of the integral of the equation
∇syi = 0 or

∇sy′i +∇sy′′i = 0;

now ∇sy′′i being equal to Xi, this equation becomes

0 = ∇sy′i +Xi;

we will have therefore, by the preceding formula, the integral of the equations linear
in the finite differences of which the coefficients are constants, in the case where they
have a last term function of i.

The definite integral, relative to r ΣXrZ
(s−1)
i−ns−r, can be easily transformed into a

series of indefinite integrals, relative to i; because the general expression of Z
(s−1)
i−ns−r

is formed of ns terms of the form Irµαr, I being a function of i independent of
the variable r; the preceding integral is therefore composed of integrals of the form
IΣrµαrXr; this last integral must be taken from r null to[31] r = i− ns + 1, it is equal
to the indefinite integral

IΣ(i− ns+ 1)µαi−ns+1Xi−ns+1,

taken from i = ns− 1.
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§7. We can give to the expression of 1
ti

an infinity of other forms of which many
can be utile. Let us give to it, for example, this form

1

ti
= Z(0) +

(
1

t
− 1

)
Z(1) +

(
1

t
− 1

)2

Z(2) · · ·+
(

1

t
− 1

)n−1

Z(n−1).

We will determine thus the values of Z(0), Z(1), Z(2), etc. We will put first the equation

z = a+
b

t
+
c

t2
· · ·+ q

tn

under this form, by substituting
(

1
t
− 1 + 1

)r
instead of 1

tr
, and developing according

to the powers of 1
t
− 1,

z = a′ + b′
(

1

t
− 1

)
+ c′

(
1

t
− 1

)2

· · ·+ q′
(

1

t
− 1

)n
,

and we will have

a′ = a+ b+ c · · ·+ q

b′ = b+ 2c+ 3e · · ·+ nq

c′ = c+ 3e · · · · · ·+ n(n− 1)

1.2
q

etc.

We will multiply next, as previously, the numerator and the denominator of the
fraction 1

1− θ
t

by

(a− z)θn + bθn−1 + cθn−2 · · ·+ pθ + q,

by observing to substitute into the numerator, 1◦ in place of z,

a′ + b′
(

1

t
− 1

)
+ c′

(
1

t
− 1

)2

+ etc.

2◦ [32]In place of aθn + bθn−1 + cθn−2 + etc., the quantity

θn

[
a′ + b′

(
1

θ
− 1

)
+ c′

(
1

θ
− 1

)2

+ etc.

]
;

if moreover we make, for brevity,

1

t
− 1 =

1

t′
;

we will have

b′θn−1
(
1− θ − θ

t′

)
+ c′θn−2

[
(1− θ)2 − θ2

t′2

]
· · ·+ q

[
(1− θ)n − θn

t′n

](
1− θ

t

)
(aθn + bθn−1 + cθn−2 · · ·+ pθ + q − zθn)

;

by dividing the numerator and the denominator of the preceding fraction, by 1 − θ
t
,

it is reduced to this one,
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θn−1

[
b′ + c′

(
1

θ
− 1

)
+ e′

(
1

θ
− 1

)2

· · ·+ q

(
1

θ
− 1

)n−1
]

+
θn−1

t′

[
c′ + e′

(
1

θ
− 1

)
· · ·+ q

(
1

θ
− 1

)n−2
]

+
θn−1

t′2

[
e′ · · ·+ q

(
1

θ
− 1

)n−3
]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
qθn−1

t′n−1


a θn + b θn−1 + c θn−2 · · ·+ p θ + q − z θn

Thence is easy to conclude that if we conserve to Z
(s−1)
r , the same signification that

we have given to it in §5, and if we consider that by designating qi the coefficient of
θi in the development of any function of θ, this same coefficient in the development
of this function multiplied by

(
1
θ
− 1
)µ

, will be, by §2, equal to 4µqi; we will have[33]

1

ti
=b′Z

(0)
i−n+1 + b′zZ

(1)
i−2n+1 + b′z2Z

(2)
i−3n+1 + etc.

+ c′4Z(0)
i−n+1 + c′z4Z(1)

i−2n+1 + c′z24Z(2)
i−3n+1 + etc.

+ e′42Z
(0)
i−n+1 + e′z42Z

(1)
i−2n+1 + e′z242Z

(2)
i−3n+1 + etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

+ q4n−1Z
(0)
i−n+1 + qz4n−1Z

(1)
i−2n+1 + qz24n−1Z

(2)
i−3n+1 + etc.

+
1

t′


c′Z

(0)
i−n+1 + c′zZ

(1)
i−2n+1 + etc.

+e′4Z(0)
i−n+1 + e′z4Z(1)

i−2n+1 + etc.

+ etc.


+

1

t′2

{
e′Z

(0)
i−n+1 + e′zZ

(1)
i−2n+1 + etc.

+ etc.

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

+
q

t′n−1

{
Z

(0)
i−n+1 + zZ

(1)
i−2n+1 + etc.

}
.

Presently, it is clear, by §2, that the coefficient of tx in the development of the
function uzs

t′r
is 4r∇syx; the preceding equation will give therefore, by multiplying

its two members by u, and by passing again from the generating functions to their
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coefficients,

yx+i =yx

[
b′Z

(0)
i−n+1 + c′4Z(0)

i−n+1 + e′42Z
(0)
i−n+1 · · ·+ q4n−1Z

(0)
i−n+1

]
+∇yx

[
b′Z

(1)
i−2n+1 + c′4Z(1)

i−2n+1 + e′42Z
(1)
i−2n+1 · · ·+ q4n−1Z

(1)
i−2n+1

]
+∇2yx

[
b′Z

(2)
i−3n+1 + c′4Z(2)

i−3n+1 + e′42Z
(2)
i−3n+1 · · ·+ q4n−1Z

(2)
i−3n+1

]
+ etc.

+4yx
[
c′Z

(0)
i−n+1 + e′4Z(0)

i−n+1 · · ·+ q4n−2Z
(0)
i−n+1

]
+4∇yx

[
c′Z

(1)
i−2n+1 + e′4Z(1)

i−2n+1 · · ·+ q4n−2Z
(1)
i−2n+1

]
+4∇2yx

[
c′Z

(2)
i−3n+1 + e′4Z(2)

i−3n+1 · · ·+ q4n−2Z
(2)
i−3n+1

]
+ etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ qZ
(0)
i−n+14n−1yx + qZ

(1)
i−2n+14n−1∇yx + qZ

(2)
i−3n+14n−1∇2yx + etc.,

the characteristic [34]∇ is related to the variable x, and the characteristic 4 is related
to the two variables x and i.

§8. Let us suppose in the preceding formula, x and i infinitely great, in a way
that we have

i =
x′

dx′
; x =

$

dx′
;

yx+i will become a function of $+x′, a function which we will designate by φ($+x′).
Let us suppose, moreover,

a′ = a′′; b′ =
b′′

dx′
; c′ =

c′′

dx′2
; . . . q =

q′′

dx′n
;

the equation

0 = a′ + b′
(

1

θ
− 1

)
+ c′

(
1

θ
− 1

)2

+ etc.

will become

0 = a′′ +
b′′

dx′

(
1

θ
− 1

)
+

c′′

dx′2

(
1

θ
− 1

)2

· · ·+ q′′

dx′n

(
1

θ
− 1

)n
.

This last equation gives for θ − 1, n roots fdx′, f ′dx′, f ′′dx′, etc., and consequently
for θ, the n values

θ = 1 + fdx′; θ = 1 + f ′dx′; θ = 1 + f ′′dx′; etc.

Now if we suppose θ = 1 + h dx′, we will have, i being supposed infinite,

1

θi
=

1

(1 + h dx′)i
= 1− ih dx′ + i2

1.2
h2dx′2 − etc. = c−hx

′
,
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c being the number of which the hyperbolic logarithm is unity. Besides the quantity
a is, by the preceding section, equal to a′ − b′ + c′ − etc., and consequently equal to
a′′− b′′

dx′
· · ·± q′′

dx′n
, a value which is reduced to its last term, which surpasses infinitely

the others; the expression of Z
(s−1)
r of §5 becomes, by changing r into i− 1,

Z
(s−1)
i−1 = − dx′

1.2.3 · · · (s− 1)(±q′′)sdhs−1
· ds−1



c−hx
′

(h− f ′)s(h− f ′′)s.etc.

+
c−hx

′

(h− f)s(h− f ′′)s.etc.

+
c−hx

′

(h− f)s(h− f ′)s.etc.

+ etc.


,

the[35] difference ds−1 being taken by making only h vary and by substituting after the
differentiations, f in place of h in the first term, f ′ in place of h in the second term,
and so forth. Let us name X(s−1)dx′ the preceding quantity; we will have, to the near
infinitely small, µ being a finite number

Z
(s−1)
i±µ = Z

(s−1)
i−1 = X(s−1)dx′.

Moreover we have yx = φ($); and the characteristic 4 of the finite differences must
be changed into the characteristic d of the infinitely small differences; so that the
equation

∇yx = ayx + byx+1 + cyx+2 + etc.

or, that which returns to the same, this here

∇yx = a′′ +
b′′

dx′
4yx +

c′′

dx′2
42yx + etc.

becomes, by changing dx′ into d$ there;

∇yx = a′′ + b′′
dφ($)

d$
+ c′′

d2φ($)

d$2
· · ·+ q′′

dnφ($)

d$n
.

The expression of yx+i found in the preceding article, will become therefore

φ($ + x′) =φ($)

(
b′′X(0) + c′′

dX(0)

dx′
+ e′′

d2X(0)

dx′2
· · ·+ q′′

dn−1X(0)

dx′n−1

)
+∇φ($)

(
b′′X(1) + c′′

dX(1)

dx′
+ e′′

d2X(1)

dx′2
· · ·+ q′′

dn−1X(1)

dx′n−1

)
+∇2φ($)

(
b′′X(2) + c′′

dX(2)

dx′
+ e′′

d2X(2)

dx′2
· · ·+ q′′

dn−1X(2)

dx′n−1

)
+ etc.

+
dφ($)

d$

(
c′′X(0) + e′′

dX(0)

dx′
· · ·+ q′′

dn−2X(0)

dx′n−2

)
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+
d∇φ($)

d$

(
c′′X(1) + e′′

dX(1)

dx′
· · ·+ q′′

dn−2X(1)

dx′n−2

)
+ etc.

+
d2φ($)

d$2

(
e′′X(0) · · ·+ q′′

dn−3X(0)

dx′n−3

)
+
d2∇φ($)

d$2

(
e′′X(1) · · ·+ q′′

dn−3X(1)

dx′n−3

)
+ etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ q′′
dn−1φ($)

d$n−1
X(0) + q′′

dn−1∇φ($)

d$n−1
X(1)

+ q′′
dn−1∇2φ($)

d$n−1
X(2) + etc.

This [36]formula will serve to interpolate the series of which the ultimate ratio of the
terms is that of a linear equation in the infinitely small differences with constant
coefficients.

If we have
∇sφ($ + x′) = 0,

the formula is terminated and gives the value of φ($+ x′), or the integral of the pre-

ceding differential equation; φ($), dφ($)
d$

, etc.; ∇φ($), d∇φ($)
d$

, etc.; ∇2φ($), d∇2φ($)
d$

,
etc. being the ns arbitraries of the integral.

Let us suppose that we have the differential equation

0 = ∇sφ($ + x′)− Vx′ ,
Vx′ being a given function of x′; it is necessary, by §6, to add to the preceding ex-

pression of φ($+ x′), the term
∫
VrX

(s−1)
x′−r dr, X

(s−1)
x′ being the same function of x′ as

X(s−1). The integral relative to r, must be taken from r = 0 to r = x′. This definite
integral can, by the section cited, be transformed into indefinite integrals relative to
x′.

Concerning the transformation of series.

§9. The theory of generating functions can serve further to transform the series
into others which follow a given law. Let us consider the infinite series

y0 + y1α + y2α
2 · · ·+ yxα

x + etc.; (V)

and let us name, as above, u the sum of the infinite series

y0 + y1αt+ y2α
2t2 · · ·+ yxα

xtx + etc.;

the [37]coefficient of tx in the development of the fraction u
1− 1

t

, will be equal to the sum

of the proposed series (V), taken from the term yxα
x inclusively, to infinity. Let

generally z be any function of 1
t
, and let us name Πyxα

x the coefficient of tx in uz.
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The coefficients of tx in uz2, uz3, etc. will be Π2yxα
x, Π3yxα

x, etc. This premised, we
will multiply the numerator and the denominator of the fraction u

1− 1
t

by k − z, and

we will take for k that which z becomes when we make t there equal to unity; k − z
will be divisible then by 1− 1

t
. Let

h+
h(1)

t
+
h(2)

t2
+
h(3)

t3
+ etc.

be the quotient of this division; we will have

u

1− 1
t

=
u.h

k

(
1 +

z

k
+
z2

k2
+ +

z3

k3
+ etc.

)
+
u.h(1)

kt

(
1 +

z

k
+
z2

k2
+ etc.

)
+
u.h(2)

kt2

(
1 +

z

k
+
z2

k2
+ etc.

)
+ etc.;

that which gives, by passing again from the generating functions to the coefficients,

Syxα
x =

hyxα
x

k
+
hΠ(yxα

x)

k2
+
hΠ2(yxα

x)

k3
+ etc.

+
h(1)yx+1α

x+1

k
+
h(1)Π(yx+1α

x+1)

k2
+ etc.

+
h(2)yx+2α

x+2

k
+
h(2)Π(yx+2α

x+2)

k2
+ etc.

+ etc.

The sign S designates the sum of the terms from x inclusively, to infinity. Let us
suppose now

z = a+
b

αt
+

c

α2t2
+

e

α3t3
+ etc.;

we[38] will have

Π(yxα
x) = αx(ayx + byx+1 + cyx+2 + eyx+3 + etc.).

By designating by ∇yx the quantity ayx + byx+1 + etc., we will have

Π(yxα
x) = αx∇yx;

and generally we will have

Πr(yxα
x) = αx∇ryx.

We have next

k = a+
b

α
+

c

α2
+

e

α3
+ etc.;
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this which gives

h =
b

α
+

c

α2
+

e

α3
+ etc.,

h(1) =
c

α2
+

e

α3
+ etc.,

h(2) =
e

α3
+ etc.,

etc.;

we will have therefore

Syxα
x =

(
b
α

+ c
α2 + e

α3 + etc.
)

k
αx
(
yx +

∇yx
k

+
∇2yx
k2

+ etc.

)
+

(
c
α

+ e
α2 + etc.

)
k

αx
(
yx+1 +

∇yx+1

k
+
∇2yx+1

k2
+ etc.

)
+

(
e
α

+ etc.
)

k
αx
(
yx+2 +

∇yx+2

k
+
∇2yx+2

k2
+ etc.

)
+ etc.

By making x = 0, we will have one transformed from the series proposed, of which
the terms follow another law; and if the quantities ∇yx, ∇2yx, . . . are decreasing, this
series will be convergent. It will be terminated anytime that we have ∇ryx = 0; that
which will take place when the proposed will be a recurrent series. We will have
therefore thus the sum of the recurrent series, by counting from any term yxα

x, and
consequently we will have also the sum of their terms, comprehended between any
two terms yxα

x and yx′α
x′ .

Theorems [39]on the development of functions and of their differences, into series.

§10. By applying to some particular functions, the general principles exposed in
§1, we will have an infinity of theorems on the development of functions, into series.
We are going to present here the most remarkable.

We have generally

u

(
1

ti
− 1

)n
= u

[(
1 +

1

t
− 1

)i
− 1

]n
.

Now it is clear that the coefficient of tx in the first member of this equation, is the nth

difference of yx, x varying by i; because this coefficient in u
(

1
ti
− 1
)

is yx+i−yx or ′4yx,
by designating by the characteristic ′4, the finite differences, when x varies by the
quantity i; whence it is easy to conclude that this same coefficient, in the development

of u
(

1
ti
− 1
)n

is ′4nyx. Moreover if we develop u
[(

1 + 1
t
− 1
)i − 1

]n
according to the

powers of 1
t
− 1, the coefficients of tx in the developments of u

(
1
t
− 1
)
, u
(

1
t
− 1
)2

,

etc. are, by §2, 4yx, 42yx, etc.; so that this coefficient, in u
[(

1 + 1
t
− 1
)i − 1

]n
, is

[(1 +4yx)i − 1]n, provided that in the development of this quantity, we apply to the
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characteristic 4, the exponents of the powers of 4yx, and that thus in place of any
power (4yx)r, we write 4ryx; we will have therefore with this condition,

′4nyx = [(1 +4yx)i − 1]n. (1)

If we designate by the characteristic ′Σ the finite integral, when x varies by i, ′Σnyx
will be, by §2, the coefficient of tx in the development of the function u

(
1
ti
− 1
)−n

,
by setting aside arbitrary[40] constants which the integration introduces; now we have

u

(
1

ti
− 1

)−n
= u

[(
1 +

1

t
− 1

)i
− 1

]−n
;

moreover, the coefficient of tx in u
(

1
t
− 1
)−r

is Σryx, by setting aside arbitrary con-

stants; this coefficient in u
(

1
t
− 1
)r

is 4ryx; we will have therefore

′Σnyx = [(1 +4yx)i − 1]−n; (2)

provided that in the development of the second member of this equation, we apply
to the characteristic 4, the exponents of the powers of 4yx; that we change the
negative differences into integrals, and that we substitute yx in place of 40yx; and
as this development contains the integral Σnyx, which can be counted to contain
n arbitrary constants; equation (2) is still true, by having regard to the arbitrary
constants.

We can observe that this equation is deduced from equation (1), by making in that
here, n negative and by changing the negative differences into integrals; that is, by
writing ′Σnyx in place of ′4nyx in the first member; and generally in the development
of the second member, Σryx in place of 4−ryx.

Equations (1) and (2) would equally hold, if x, instead of varying by unity in4yx,
varied by any quantity $, provided that the variation of x in ′4yx is equal to i$.
Indeed, it is clear that if in yx we make x = x′

$
, x′ will vary by $, when x will vary

by unity; 4yx will be changed into 4yx′ , the variation of x′ being $; and ′4yx will
be changed into ′4yx′ , the variation of x′ being i$. Now if after having substituted
these quantities into equations (1) and (2), we suppose $ infinitely small and equal
to dx′, 4yx′ will be changed into the infinitely small difference dyx′ . If moreover we
make i infinite, and idx′ = α, α being a finite quantity; the variation of x′ in ′4yx′
will be α; we will have therefore

′4nyx′ =
[
(1 + dyx′)

i − 1
]n

;

′Σnyx′ =
1

[(1 + dyx′)i − 1]n
;

(q)

now[41] we have

log(1 + dyx′)
i = i log(1 + dyx′) = i dyx′ = α

dyx′

dx′
;

that which gives

(1 + dyx′)
i = cα·

dyx′
dx′ ,
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c being the number of which the hyperbolic logarithm is unity; we have therefore

′4nyx′ =
(
cα·

dyx′
dx′ − 1

)n
, (3)

′Σnyx′ =
1(

cα·
dyx′
dx′ − 1

)n ; (4)

by taking care to apply to the characteristic d, the exponents of the powers of dyx′ ;
by changing the negative differences into integrals, and the quantity d0yx′ into yx′ .

We can give to equation (3) this singular form which will be useful to us in the
following.

′4nyx′ =

(
c
α
2
·
dyx′+nα2

dx′ − c−
α
2
·
dyx′+nα2

dx′

)n
.

Indeed, it gives
′4nyx′ = c

nα
2
·
dyx′
dx′
(
c
α
2
·
dyx′
dx′ − c−

α
2
·
dyx′
dx′
)n
.

Let us consider any term of the development of
(
c
α
2
·
dyx′
dx′ − c−α2 ·

dyx′
dx′

)n
, such as

k
(
dyx′
dx′

)r
. By multiplying it by c

nα
2
·
dyx′
dx′ , and developing this last quantity, we will

have

k
dr

dx′r

[
yx′ +

nα

2

dyx′

dx′
+
(nα

2

)2 d2yx′

1.2.dx′2
+ etc.

]
;

this quantity is equal to k
dryx′+nα2
dx′r

; whence it is easy to conclude

c
nα
2

dyx′
dx′
(
c
α
2

dyx′
dx′ − c−

α
2

dyx′
dx′
)n

=

(
c
α
2

dyx′+nα2
dx′ − c−

α
2

dyx′+nα2
dx′

)n
= ′4nyx′ .

If [42]in equations (1) and (2), we suppose further i infinitely small and equal to dx;
we will have

′4nyx = dnyx;
′Σnyx =

1

dxn

∫ n

yx dx
n;

we have besides

(1 +4yx)i = edx log(1+4yx) = 1 + dx log(1 +4yx);
equations (1) and (2) will become thus

dnyx
dxn

= [log(1 +4yx)]n, (5)∫ n

yxdx
n =

1

[log(1 +4yx)]n
. (6)

We can observe here a singular analogy between the positive powers and the differ-
ences, and between the negative powers and the integrals. The equation

′4yx = eα·
dyx
dx − 1 (o)
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is the translation of the known theorem of Taylor, when, in the development of its
second member, according to the powers of dyx

dx
, we apply to the characteristic d, the

exponents of these powers. By raising the two members of this equation to the power
n, and applying to the characteristics ′4 and d, the exponents of the powers of ′4yx
and of dyx, we will have equation (3), whence results equation (4), by changing the
negative differences into integrals.

The preceding equation gives

eα
dyx
dx = 1 + ′4yx.

By taking the logarithms of each member, we will have

α · dyx
dx

= log(1 + ′4yx); (r)

Supposing next α = 1, that which changes ′4yx into 4yx, and raising the two mem-
bers of that equation, to the power n, we will[43] have equation (5), provided that we
apply the exponents of the powers, to the characteristics. We will have equation (6),
by making n negative, and changing the negative powers into integrals.

If in the preceding equation (r), we change α into i, we will have

dyx
dx

= log(1 + ′4yx)
1
i ;

and if we suppose there α = 1, we will have

dyx
dx

= log(1 +4yx).

The comparison of these two values of dyx
dx

, gives

log(1 +4yx) = log(1 + ′4yx)
1
i ;

whence we deduce
′4yx = (1 +4yx)i − 1.

By raising each member to the power n, and applying the exponents of the powers
to the characteristics; we will have equation (1), whence equation (2) results, by
changing the negative differences into integrals. Equations (1), (2), (3), (4), (5) and
(6) result therefore from the theorem of Taylor, set under the form of equation (o),
by transforming that equation according to the rules of analysis, provided that in the
results we apply to the characteristics, the exponents of the powers, that we change
the negative differences into integrals, and that we substitute the variable yx itself,
in the place of its zero differences.6

This analogy of the positive powers with the differences, and of the negative powers
with the integrals, becomes evident by the theory of generating functions. It holds,
as we have seen, to this that the products of the function u, generator of yx, by the
powers 1

ti
− 1 are the generating functions of the successive finite differences of yx,

x varying by any given quantity i; while the quotients of u, divided by these same
powers, are the generating functions of the integrals of yx.

6In his original paper, Laplace credits these same equations to Lagrange [2].
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By considering, instead of the factor 1
ti
− 1 and of its powers, the powers [44]of any

rational and integral function of 1
t
, we can conclude from it some theorems analogous

to the preceding, on the successive deriveds of the functions. I name derived of a
function yx, each quantity derived from it, such as ayx + byx+1 + eyx+2 + etc. By
regarding next this derived function as a new function that I designate by y′x; the
quantity ay′x + by′x+1 + ey′x+2 + etc. will be a second derived from the function yx,
and so forth. When the function ayx + byx+1 + etc. becomes −yx + yx+1, the derived
becomes a finite difference.

Now we have

u

(
a+

b

t
+
e

t2
+
h

t3
+ etc.

)n
= u

[
a+ b

(
1 +

1

tdx
− 1

) 1
dx

+ e

(
1 +

1

tdx
− 1

) 2
dx

+ etc.

]n (q)

we have next generally, by §2, by designating by ∇yx the quantity ayx + byx+1 +
eyx+2 + etc., ∇nyx for the coefficient of the generating function of the first member
of this equation; moreover we have

u

(
1 +

1

tdx
− 1

) r
dx

= u

[
1 +

r

dx

(
1

tdx
− 1

)
+

r2

1.2.dx2

(
1

tdx
− 1

)2

+ etc.

]
.

The second member of this equation is the generating function of

yx + r
dyx
dx

+
r2

1.2
· d

2yx
dx2

+ etc.,

or of cr
dyx
dx ; by applying to the characteristic d the exponents of the powers of dyx

dx
, and

writing yx in place of
(
dyx
dx

)0
. Thence we conclude that, under the same conditions,

the second member of equation (q) is the generating function of[
a+ bc

dyx
dx + ec

2dyx
dx + hc

3dyx
dx + etc.

]n
;

and that thus this equation gives, by passing again from the generating functions [45]to
the coefficients,

∇nyx =
[
a+ bc

dyx
dx + ec

2dyx
dx + hc

3dyx
dx + etc.

]n
. (7)

We can thus obtain an infinity of similar results. We will limit ourselves to the

following, which will be useful to us in the sequel: u
(

1√
t
−
√
t
)n

is the generating

function of

yx+n
2
− nyx+n

2
−1 +

n(n− 1)

1.2
yx+n

2
−2 − etc.,

or of 4nyx−n
2
. Moreover, we have

u

(
1√
t
−
√
t

)n
= u

[(
1 +

1

tdx
− 1

) 1
2dx

−
(

1 +
1

tdx
− 1

)− 1
2dx

]n
;
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whence we deduce, by passing again by the preceding analysis, from the generating
functions to the coefficients

4nyx−n
2

=
(
c
dyx
2dx − c−

dyx
2dx

)n
.

§11. I have considered until now, only one function alone yx of x; but the consid-
eration of the product of many functions of the same variable, leads to diverse curious
and useful results of analysis. Let u be a function of t, and yx the coefficient of tx

in the development of that function; let u′ be a function of t′, and y′x the coefficient
of t′x in the development of that function; let further u′′ be a function of t′′, and
y′′x the coefficient of t′′x in its development; and so forth. It is clear that yxy

′
xy
′′
x.etc.

will be the coefficient of txt′xt′′x.etc. in the development of the product uu′u′′.etc.;
this product will be therefore the generating function of yxy

′
xy
′′
x.etc. The generating

function of yx+1y
′
x+1y

′′
x+1.etc.− yxy′xy′′x.etc., or of 4yxy′xy′′x etc. will be thus

uu′u′′.etc.

(
1

tt′t′′.etc.
− 1

)
;

and[46] the generating function of 4nyxy
′
xy
′′
x.etc. will be

uu′u′′.etc.

(
1

tt′t′′.etc.
− 1

)n
.

We will prove, as in §2, that the generating function of Σnyxy
′
xy
′′
x.etc. will be

uu′u′′.etc.

(
1

tt′t′′.etc.
− 1

)−n
;

that is that we can change n into −n in the generating function of 4nyxy
′
x.etc.

provided that we change 4−n into Σn.
Let us apply these results to the two functions yx and y′x. The generating function

of 4nyxy
′
x will be uu′

(
1
tt′
− 1
)n

. We can set it under this form

uu′
[

1

t
− 1 +

1

t

(
1

t′
− 1

)]n
;

by developing it, it becomes

uu′

{(
1

t
− 1

)n
+
n

t

(
1

t
− 1

)n−1(
1

t′
− 1

)
+
n(n− 1)

1.2.t2

(
1

t
− 1

)n−2(
1

t′
− 1

)2

+ etc.

}
;

the functions

uu′
(

1

t
− 1

)n
; uu′·1

t

(
1

t
− 1

)n−1(
1

t′
− 1

)
; uu′· 1

t2

(
1

t
− 1

)n−2(
1

t′
− 1

)2

; etc.;

are respectively generators of the products y′x4nyx; 4y′x4n−1yx+1; 42y′x4n−2yx+2;
etc. The equation

uu′
(

1

tt′
− 1

)n
= uu′

[(
1

t
− 1

)n
+
n

t

(
1

t
− 1

)n−1(
1

t′
− 1

)
+ etc.

]
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will give therefore, by passing again from the generating functions to the coefficients,

4nyxy
′
x = y′x4nyx + n4y′x4n−1yx+1 +

n(n− 1)

1.2
42y′x4n−2yx+2 + etc. (8)

By [47]changing n into −n, we will have

Σnyxy
′
x = y′xΣ

nyx − n4y′xΣn+1yx+1 +
n(n+ 1)

1.2
42y′xΣ

n+2yx+2 − etc. (9)

In general, we have

uu′u′′.etc.

(
1

tt′t′′.etc.
− 1

)n
= uu′u′′.etc.

[(
1 +

1

t
− 1

)(
1 +

1

t′
− 1

)(
1 +

1

t′′
− 1

)
.etc.− 1

]n
;

that which gives, by passing again from the generating functions to the coefficients,

4nyxy
′
xy
′′
x.etc. = [(1 +4)(1 +4′)(1 +4′′).etc.− 1]n, (10)

provided that in each term of the development of the second member of this equation,
we place immediately after each characteristic 4, 4′, 4′′, etc., respectively yx, y

′
x,

y′′x, etc., and that we multiply this term by the product of the functions of which the
characteristic is not contained at all. Thus in the case of three variables, we will write,
instead of 4r, the quantity y′xy

′′
x4ryx; instead of 4r4′r′ , we will write y′′x4ryx4r′y′x;

instead of 4′r′4′′r′′ , we will write yx4r′y′x4r′′y′′x; and thus of the remainder.
By making n negative, equation (10) yet subsists, provided that we change the

negative differences into integrals.
In the case of the infinitely small differences, the characteristics4,4′,4′′, etc. are

changed into d, d′, d′′, etc. Equation (10) becomes thus, by neglecting the differentials
of a superior order, relative to those of an inferior order,

dnyxy
′
xy
′′
x.etc. = (d+ d′ + d′′ + etc.)n.

This developed equation gives, relative to two functions yx and y′x,

dnyxy
′
x = y′xd

nyx + ndy′xd
n−1yx +

n(n− 1)

1.2
d2y′xd

n−2yx + etc.

By making n negative, the negative differences being changed into integrals, [48]we will
have ∫ n

yxy
′
xdx

n =y′x

∫ n

yxdx
n − ndy

′
x

dx

∫ n+1

yxdx
n+1

+
n(n+ 1)

1.2

d2y′x
dx2

∫ n+2

yxdx
n+2 − etc.
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We have

uu′u′′.etc.

(
1

tit′it′′i.etc.
− 1

)n
= uu′u′′.etc.

[(
1 +

1

t
− 1

)i(
1 +

1

t′
− 1

)i(
1 +

1

t′′
− 1

)i
.etc.− 1

]n
;

by designating therefore by ′4nyxy
′
xy
′′
x.etc., the finite difference of the product

yxy
′
xy
′′
x.etc., when x varies by i; the preceding equation will give, by passing again

from the generating functions to the coefficients

′4nyxy
′
xy
′′
x.etc. = [(1 +4)i(1 +4′)i(1 +4′′)i.etc.− 1]n; (11)

by observing the conditions prescribed above relative to the characteristics 4, 4′,
4′′, etc., and to their powers. This last equation subsists still, by making n negative,
provided that we change the negative differences into integrals.

Let us suppose

x =
x′

dx′
, i =

α

dx′
;

yx, y
′
x, etc. will become functions of x′, that we will designate by yx′ , y

′
x′ , etc.; equation

(11) will give thus the following, by observing that the characteristics 4, 4′, etc. are
changed into d, d′, etc., and that we have

(1 + dyx′)
α
dx′ = cα

dyx′
dx′ ,

′4nyx′y
′
x′y
′′
x′ .etc. =

(
cα

dyx′
dx′ +α

dy′
x′

dx′ +α
dy′′
x′

dx′ +etc. − 1

)n
; (12)

an equation which subsists still by making n negative, and changing the negative
differences into integrals.

Let us consider only two variables yx and y′x, and let us suppose y′x = px; we will
have

(1 +4′)i = px + i4px +
i(i− 1)

1.2
42px + etc.;

now[49] we have generally, x varying by unity,

4rpx = px(p− 1)r;

we will have therefore

(1 +4′)i = pipx.

Equation (11) will become thus

′4npxyx = px[pi(1 +4yx)i − 1]n; (13)

by making n negative, we will have

′Σnpxyx =
px

[pi(1 +4yx)i − 1]n
+ axn−1 + bxn−2 + etc.; (14)
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a, b, etc. being arbitrary constants due to the integration of pxyx repeated n times. I
add here these constants, to the second member of the preceding equation; because
they are implicitly contained in its first term, only when p = 1.

If we make in the two preceding equations x = x′

dx′
, i = α

dx′
, p = 1 + dx′ log h, we

will have
′4nhx

′
yx′ = hx

′
[
hαcα

dyx′
dx′ − 1

]n
, (15)

′Σnhx
′
yx′ =

hx
′[

hαcα
dyx′
dx′ − 1

]n + a′x′n−1 + b′n−2 + etc. (16)

If in equations (13) and (14), we suppose i infinitely small and equal to dx; ′4npxyx
will be changed into dnpxyx, and ′Σnpxyx will be changed into 1

dxn

∫ n
pxyxdx

n; we will
have next

pi(1 +4yx)i = cdx log[p(1+4yx)];

we will have therefore

[pi(1 +4yx)i − 1]n = dxn{log[p(1 +4yx)]}n;

and equations (13) and (14) will become

dnpxyx
dxn

= px{log[p(1 +4yx)]}n, (17)∫ n

pxyx dx
n =

px

{log[p(1 +4yx)]}n
+ axn−1 + bxn−2 + etc. (18)





CHAPTER 2

Concerning generating functions in two variables

§12. Let [50]us name u a function of t and t′; let us suppose that by developing it
according to the powers of t and t′, it gives the infinite series

y0,0 +y1,0t +y2,0t
2 · · ·+ yx,0t

x +yx+1,0t
x+1 · · ·+ y∞,0t

∞

+y0,1t
′ +y1,1tt

′ +y2,1t
2t′ · · ·+ yx,1t

xt′ +yx+1,1t
x+1t′ · · ·+ y∞,1t

∞t′

+y0,2t
′2+y1,2tt

′2+y2,2t
2t′2· · ·+ yx,2t

xt′2+yx+1,2t
x+1t′2· · ·+ y∞,2t

∞t′2

+etc.

The coefficient of txt′x
′

will be yx,x′ ; u will be therefore the generating function of
yx,x′ .

If we designate by the characteristic 4, the finite differences, when x alone varies
by unity, and by the characteristic ′4 the differences when x′ alone varies by the
same quantity, the generating function of 4yx,x′ will be, by §1, u

(
1
t
− 1
)

and that of
′4yx,x′ will be u

(
1
t′
− 1
)
: whence it is easy to conclude that the generating function

of 4i.′4i′yx,x′ will be

u

(
1

t
− 1

)i(
1

t′
− 1

)i′
.

In general, if we designate by ∇yx,x′ the quantity

Ayx,x′+Byx+1,x′ +Cyx+2,x′ +etc.

+B′yx,x′+1+C ′yx+1,x′+1+etc.

+C ′′yx,x′+2 +etc.

+etc.;

If we designate similarly by ∇2yx,x′ a function [51]in which ∇yx,x′ enters in the same
manner as yx,x′ in ∇yx,x′ ; if we designate further by ∇3yx,x′ a function in which
∇2yx,x′ enters in the same manner as yx,x′ in ∇yx,x′ and so forth; the generating
function of ∇nyx,x′ will be

u



A+
B

t
+
C

t2
+etc.

+
B′

t′
+
C ′

tt′
+etc.

+
C ′′

t′2
+etc.

+etc.



n

;

41
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hence, the generating function of 4i.′4i′∇nyx,x′ will be the preceding generating

function, multiplied by
(

1
t
− 1
)i ( 1

t′
− 1
)i′

.

s being supposed any function of 1
t

and of 1
t′

, if we develop si according to the

powers of these variables, and if we designate by k

tmt′m
′ any term of this development,

the coefficient of txt′x
′

in ku

tmt′m
′ being kyx+m,x′+m′ , we will have the one of txt′x

′
in usi,

or, that which reverts to the same, we will have ∇iyx,x′ , 1◦ by substituting into s, yx
in the place of 1

t
, yx′ in the place of 1

t′
; 2◦ by developing that which usi then becomes

according to the powers of yx and of yx′ , and by applying respectively to the indices
x and x′ the exponents of these powers, that is by writing in the place of any term
such as k(yx)

m(yx′)
m′ , kyx+m,x′+m′ and consequently kyx,x′ in the place of the total

constant term k, or k(yx)
0(y′x′)

0.
If, instead of developing si according to the powers of 1

t
and 1

t′
, we develop it

according to the powers of 1
t
−1 and 1

t′
−1, and if we designate by k

(
1
t
− 1
)m ( 1

t′
− 1
)m′

any term of this development, the coefficient of txt′x
′

in ku
(

1
t
− 1
)m ( 1

t′
− 1
)m′

, being

k4m.′4m′yx,x′ ; we will have ∇iyx,x′ , 1◦ by substituting into s, 4yx,x′ in the place[52] of
1
t
− 1 and ′4yx,x′ in the place of 1

t′
− 1; 2◦ by developing then si according to the

powers of 4yx,x′ and of ′4yx,x′ ; and by applying to the characteristics 4 and ′4,
the exponents of these powers, that is by writing, in the place of any term such as
k(4yx,x′)m(′4yx,x′)m

′
, this one k4m′ .′4m′yx,x′ ; and consequently kyx,x′ in the place

of the constant term k.
Let Σ be the characteristic of the finite integrals relative to x, and ′Σ that of the

finite integrals relative to x′; let moreover z be the generating function of Σi.′Σi′yx,x′ ;

we will have z
(

1
t
− 1
)i ( 1

t′
− 1
)i′

for the generating function of yx,x′ . This function
must, by having regard only to the positive or null powers of t and of t′, be reduced
to u; we will have thus, by §2,

z

(
1

t
− 1

)i(
1

t′
− 1

)i′
= u+

a

t
+
b

t2
+
c

t3
· · ·+ q

ti

+
a′

t′
+
b′

t′2
+
c′

t′3
· · ·+ q′

t′i′
,

a, b, c,. . . , q being arbitrary functions of t′, and a′, b′, c′,. . . , q′ being arbitrary
functions of t; hence

z =
utit′i

′
+ ati−1t′i

′
+ bti−2t′i

′ · · ·+ qt′i
′
+ a′tit′i

′−1 + b1t
it′i
′−2 · · ·+ q′ti

(1− t)i(1− t′)i′
.
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On the interpolation of series in two variables and on the integration of equations
linear in partial differences.

§13. yx+i,x′+i′ is evidently equal to the coefficient of txt′x
′

in the development of
u

tit′i′
; now we have

u

tit′i′
= u

(
1 +

1

t
− 1

)i(
1 +

1

t′
− 1

)i′
we will have therefore by the preceding section,

yx+i,x′+i′ = (1 +4yx,x′)i(1 + ′4yx,x′)i
′
;

by [53]developing the second member of this equation, we will have

yx+i,x′+i′ = yx,x′ + i4yx,x′ +
i(i− 1)

1.2
42yx,x′ +etc.

+ i′.′4yx,x′ + ii′4.′4yx,x′ +etc.

+
i′(i′ − 1)

1.2
′42yx,x′ +etc.

etc.

Let us now suppose that instead of interpolating according to the differences of
the function yx,x′ , we wish to interpolate according to other laws. For this, let

z = A +B
t

+C
t2

+D
t3

+etc.

+B′

t′
+C′

tt′
+ D′

t2t′
+etc.

+C′′

t′2
+D′′

tt′2
+etc.

+D′′′

t′3
+etc.

+etc.

If we make
A+ B′

t′
+ C′′

t′2
+ D′′′

t′3
+etc. = a,

B+ C′

t′
+ D′′

t′2
+etc. = b,

C+ D′

t′
+etc. = c,

etc.,

we will have for z an expression of this form

z = a+
b

t
+
c

t2
· · ·+ l

tn
.

We suppose here that the coefficient l of the highest power of 1
t

is constant or inde-
pendent of t′, and that this power is equal or greater than the sum of the powers of
1
t

and of 1
t′

in each of the other terms of z. It is easy to conclude [54]from the preceding

equation, as in §5, the successive values of 1
tn+1 , 1

tn+2 , 1
tn+3 , etc., as functions of a, b, c,

etc. and z; and it is clear that in each term of the expression of 1
ti

, the highest power

of 1
t

will be less than n, and the sum of the powers of 1
t

and of 1
t′

will not surpass i.
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Let us consider now formula (A) of §5, and let us suppose that by developing it
according to the powers of 1

t′
the quantity

bZ
(0)
i−n+1 + bzZ

(1)
i−2n+1 + etc.

+cZ
(0)
i−n+2 + czZ

(1)
i−2n+2 + etc.

+eZ
(0)
i−n+3 + ezZ

(1)
i−2n+3 + etc.

+ etc.,

we have

M +Nz + etc. +
1

t′
(M (1) +N (1)z + etc.)

+
1

t′2
(M (2) +N (2)z + etc.) · · ·+ 1

t′i
M (i);

the ulterior powers of 1
t′

vanish of themselves in this development, since the expression

of 1
ti

must not contain them at all. Let us suppose similarly that by developing the
quantity

cZ
(0)
i−n+1 + czZ

(1)
i−2n+1 + etc.

+eZ
(0)
i−n+2 + ezZ

(1)
i−2n+2 + etc.

+ etc.

we have

M1 +N1z + etc. +
1

t′
(M

(1)
1 +N

(1)
1 z + etc.) · · ·+ 1

t′i−1
M

(i−1)
1 .

Let us suppose further that by developing the quantity

eZ
(1)
i−n+1+ etc.

+ etc.,

we[55] have

M2 +N2z + etc. +
1

t′
(M

(1)
2 +N

(1)
2 z + etc.) · · ·+ 1

t′i−2
M

(i−2)
2 ;

and so forth. Formula (A) of §5 will give
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1

ti
=M +Nz + etc.

+
1

t′
(M (1) +N (1)z + etc.)

+
1

t′2
(M (2) +N (2)z + etc.)

. . . . . . . . . . . . . . . . . . . .

+
1

t′i
M (i)

+
1

t



M1 +N1z + etc.

+
1

t′
(M

(1)
1 +N

(1)
1 z + etc.)

. . . . . . . . . . . . . . . . .

+
1

t′i−1
M

(i−1)
1



+
1

t2



M2 +N2z + etc.

+
1

t′
(M

(1)
2 +N

(1)
2 z + etc.)

. . . . . . . . . . . . . . . . .

+
1

t′i−2
M

(i−2)
2


. . . . . . . . . . . . . . . . . . . . . . . .

+
1

tn−1



Mn−1 +Nn−1z + etc.

+
1

t′
(M

(1)
n−1 +N

(1)
n−1z + etc.)

. . . . . . . . . . . . . . . . . . . . .

+
1

t′i−n+1
M

(i−n+1)
n−1


.

This premised, if we name ∇yx,x′ the quantity

Ayx,x′ +Byx+1,x′ + Cyx+2,x′ + etc.

+B′yx,x′+1 + C ′yx+1,x′+1 + etc.

+ C ′′yx,x′+2 + etc.

+ etc.;

the coefficient [56]of txt′x
′
in the development of the quantity uzµ

trt′r′
will be, by the preceding

article, ∇µyx+r,x′+r′ ; the preceding equation will give consequently, by multiplying it
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by u, and by passing from the generating functions to their coefficients,

yx+i,x′ =


Myx,x′ +N∇yx,x′ + etc.

+M (1)yx,x′+1 +N (1)∇yx,x′+1 + etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

+M (i)yx,x′+i


+


M1yx+1,x′ +N1∇yx+1,x′ + etc.

+M
(1)
1 yx+1,x′+1 +N

(1)
1 ∇yx+1,x′+1 + etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+M
(i−1)
1 yx+1,x′+i−1


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+


Mn−1yx+n−1,x′ +Nn−1∇yx+n−1,x′ + etc.

+M
(1)
n−1yx+n−1,x′+1 +N

(1)
n−1∇yx+n−1,x′+1 + etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+M
(i−n+1)
n−1 yx+n−1,x′+i−n+1

 .

§14. If we suppose ∇y0,x′ = 0, the preceding equation will give, by making x = 0,

yi,x′ = My0,x′ +M (1)y0,x′+1 +M (2)y0,x′+2 · · ·+M (i)y0,x′+i

+M1y1,x′ +M
(1)
1 y1,x′+1 +M

(2)
1 y1,x′+2 · · ·+M

(i−1)
1 y1,x′+i−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+Mn−1yn−1,x′ +M
(1)
n−1yn−1,x′+1 · · · · · · · · ·+M

(i−n+1)
n−1 yn−1,x′+i−n+1

M (r), M
(r)
1 , M

(r)
2 , etc. being functions of i and of r. The preceding expression of yi,x′

can be set under this very simple form

yi,x′ = Σ

{
M (r)y0,x′+r +M

(r−1)
1 y1,x′+r−1 +M

(r−2)
2 y2,x′+r−2

· · ·+M
(r−n+1)
n−1 yn−1,x′+r−n+1

}
; (λ)

the[57] integral being taken from r = 0 to r = i + 1 with respect to the first term; from
r = 1 to r = i + 1 with respect to the second term, and so forth. This expression of
yi,x′ will be the complete integral of the equation ∇yx,x′ = 0, or

0 = Ayi,x′ +Byi+1,x′ + Cyi+2,x′ · · ·+ lyi+n,x′

+B′yi,x1+1 + C ′yi+1,x′+1 · · ·
+ C ′′yi,x′+2 · · ·

· · ·
+ hyi,x′+n.
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It is clear that y0,x′ , y1,x′ , y2,x′ ,. . ., yn−1,x′ are the n arbitrary functions that the
integration of the equation ∇yi,x′ = 0 introduces. In order to determine them, it is
necessary to know immediately, or at least to be able to conclude from the conditions
of the problem, the first n vertical ranks of the following table:

y0,0, y1,0, y2,0, y3,0, . . . yi,0, yi+1,0, . . . y∞,0,
y0,1, y1,1, y2,1, y3,1, . . . yi,1, yi+1,1, . . . y∞,1,
y0,2, y1,2, y2,2, y3,2, . . . yi,2, yi+1,2, . . . y∞,2,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
y0,x′ , y1,x′ , y2,x′ , y3,x′ , . . . yi,x′ , yi+1,x′ , . . . y∞,x′ ,
y0,x′+1, y1,x′+1, y2,x′+1, y3,x′+1, . . . yi,x′+1, yi+1,x′+1, . . . y∞,x′+1,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
y0,∞, y1,∞, y2,∞, y3,∞, . . . , yi,∞, yi+1,∞, . . . y∞,∞.

(Q)

In a great number of problems, the first n vertical ranks are given by some equa-
tions in linear finite differences, and consequently by a sequence of terms of the form
Apx

′
. Let us suppose that the expression of y0,x′ contains the term Apx

′
, the corre-

sponding part of yi,x′ given by formula (λ) will be

Apx
′
(M +M (1)p+M (2)p2 · · ·+M (i)pi);

but the function

M +
M (1)

t′
+
M (2)

t′2
· · ·+ M (i)

t′i

is the development of

bZ
(0)
i−n+1 + cZ

(0)
i−n+2 + etc.,

according [58]to the powers of 1
t′

; by changing therefore in this last quantity, 1
t′

into p, and

naming P that which it then becomes; we will have APpx
′
, for the part of yi,x′ which

corresponds to the term Apx
′
. It follows thence that if the value of y0,x′ is equal to

Apx
′
+A′p′x

′
+A′′p′′x

′
+ etc., and that if we name P ′, P ′′, etc. that which P becomes,

by changing there p into p′, p′′, etc., we will have for the corresponding part of yi,x′ ,

APpx
′
+ A′P ′p′x

′
+ A′′P ′′p′′

x′
+ etc.

We will find similarly that, if the value of y1,x′ is expressed by Bqx
′
+B′q′x

′
+B′′q′′x

′
+

etc. and if we name Q, Q′, Q′′, etc. that which the quantity

cZ
(0)
i−n+1 + eZ

(0)
i−n+2 + etc.,

becomes when we change successively 1
t′

into q, q′, q′′, etc., the corresponding part of
yi,x′ will be

BQqx
′
+B′Q′q′x

′
+B′′Q′′q′′

x′
+ etc.,

and so forth. The union of all these terms will give the expression of yi,x′ the simplest
to which we can arrive.

§15. The value of yi,x′ given by formula (λ) of the preceding section, depending

on the knowledge of M (r), M
(r−1)
1 , etc.; it is clear that these quantities will be known,
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when we will have the coefficient of 1
t′r

in the development of Z
(0)
i ; all is reduced

therefore to determining this coefficient. We have by §5,

Z
(0)
i =− 1

aαi+1(α− α′)(α− α′′) etc.

− 1

aα′i+1(α′ − α)(α′ − α′′) etc.

− 1

aα′′i+1(α′′ − α)(α′′ − α′) etc.

− etc.,

α, α′, α′′, etc.[59] being functions of 1
t′

. If we make 1
t′

= s, and if we differentiate the

preceding expression of Z
(0)
i , n times in sequence with respect to s, we will have

with the preceding equation, n + 1 equations, by means of which, by eliminating
the undetermined powers 1

αi+1 , 1
α′i+1 , 1

α′′i+1 , etc., we will arrive to a linear equation

among Z
(0)
i ,

dZ
(0)
i

ds
,
d2Z

(0)
i

ds2
, etc., of which the coefficients will be functions of α, α′, α′′,

etc. and of their differentials taken with respect to s; now it is clear that α, α′, α′′,
etc. must enter in the same manner into these coefficients that we can thus obtain
rational and integral functions of them from the coefficients of the equation which
give the values of α, α′, α′′, etc. and from the differences of these coefficients, and
consequently as rational functions of s. By making next the denominators of these

functions disappear, we will have a linear equation between Z
(0)
i and its differentials,

an equation of which the coefficients will be rational and integral functions of s. This

premised, let us consider any term of this equation, such as ksm
dµZ

(0)
i

dsµ
, and let us

name λr the coefficient of 1
t′r

in the development of Z
(0)
i according to the powers of

1
t′

; this coefficient in the development of ksm
dµZ

(0)
i

dsµ
will be

k(r + µ−m)(r + µ−m− 1)(r + µ−m− 2) · · · (r −m+ 1)λr+µ−m.

By thus passing again from the generating functions to their coefficients, the equation

between Z
(0)
i and its differences, will give an equation among λr, λr+1, etc. of which

the coefficients will be some rational functions of r and of which the integral will be
the value of λr.

It follows thence that integration of every linear equation in finite partial differ-
ences, of which the coefficients are constants, depends: 1◦ on the integration of a
linear equation in finite differences of which the coefficients are variables; 2◦ on a
definite integral. The definite integral[60] on which the value of yi,x′ depends in formula
(λ) is relative to r, and must be extended to r = i+ 1.

Relative to the equation in the partial differences of first order

0 = Ayi,x′ +Byi+1,x′

+B′yi,x′+1,
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we have

Z
(0)
i = − 1

aαi+1
;

we have moreover
a = A+B′s,

α = −B
a
,

that which gives

Z
(0)
i = −(A+B′s)i

(−B)i+1
,

whence we deduce this differential equation

0 =
dZ

(0)
i

ds
(A+B′s)− iB′Z(0)

i ;

that which gives the equation in finite differences

0 = (r + 1)Aλr+1 − (i− r)B′λr;
we have next

M (r) = Bλr.

Formula (λ) of the preceding article will become therefore

yi,x′ = BΣλry0,x′+r,

The finite integral being taken from r = 0 to r = i. It is the complete integral of the
preceding equation in partial differences of the first order.

The equation in the differences in λr give by integrating it

λr =
Hi(i− 1)(i− 2) . . . (i− r + 1)

1.2.3 . . . r

B′r

Ar
,

H being an arbitrary constant; and the denominator being unity when r is null. In
order to determine this constant, we will observe that the coefficient [61]independent of 1

t′

in Z
(0)
i is − Ai

(−B)i+1 ; it is the value of λ0, and consequently of H; we will have therefore

yi,x′ = −Σ
i(i− 1)(i− 2) . . . (i− r + 1)

1.2.3 . . . r

Ai−rB′r

(−B)i
y0,x′+r.

In passing from the finite to the infinitely small, the preceding method will give
the integral of the equations linear in infinitely small partial differences of which
the coefficients are constants, 1◦ by integrating a linear equation in infinitely small
differences; 2◦ by means of a definite integral. But this is not the place here to expand
myself on this object that I have considered elsewhere extensively.

We must make here an important remark relative to the number of arbitrary
functions which the general expression of yi,x′ contains. This number, in formula (λ)
of the preceding section, is equal to n; but it becomes smaller in the case where the
value of z of §13 containing only powers of 1

t′
less than n, the highest power n′ of

1
t′

has a coefficient constant or independent of 1
t
. Then by following the preceding

analysis, and determining by its means the value of 1
t′x′

, as we have determined that of
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1
ti

; by passing again from the generating functions to their coefficients, we will arrive
to a formula analogous to formula (λ); alone, the definite integral, instead of being
extended to r = i + 1 must be extended to r = x′ + 1. This new expression of yi,x′ ,
will no longer depend but on the n′ arbitrary functions yi,0, yi,1, yi,2, . . . yi,n′−1; and
while the first supposes the knowledge of the first n vertical ranks of Table (Q) of
§14; this one requires only the knowledge of the first n′ horizontal ranks of the same
table. Thus the n arbitrary functions y0,x′ , y1,x′ , y2,x′ , . . . , yn−1,x′ of formula (λ) are
equivalent only to n′ arbitrary distinct functions. Indeed, the proposed equation in
partial differences, gives yi,n′ by means of the values of yi±r,0, yi±r,1, . . . , yi±r,n′−1, r
being a whole number. It gives similarly yi,n′+1 by means of yi±r,0, yi±r,1, . . . , yi±r,n′ ,
and eliminating yi±r,n′ by means of its expression,[62] we have yi,n′+1 by means of yi±r,0,
yi±r,1, . . . , yi±r,n′−1; by continuing thus, we see that the general expression of yi,x′
depends only on the arbitraries yi±r,0, yi±r,1, . . . , yi±r,n′−1; we can therefore, by means
of the first n′ horizontal ranks of Table (Q), form all its vertical ranks, which are,
each, functions of x′, in which i is invariable.

By passing from the finite to the infinitely small, we see evidently, that the number
of arbitrary functions of the equations in partial differentials can be less than the
highest degree of the differential in these equations.

§16. Although the formulas given in §13 and 14 have a great generality, there
are however some cases which are not comprehended. These cases take place, when
the equation z = 0 gives the expression of 1

ti
in 1

t′
by an infinite series, that which

arrives all the time that the highest power of 1
t

is multiplied by a rational function

of 1
t′

. In order to have then the expression of yx,x′ in finite terms, it is necessary to
resort to some artifices of analysis that we are going to expose, by applying them to
the following equation:

z =
1

tt′
− a

t′
− b

t
− c. (a)

This equation gives

1

t
=

a
t′

+ c+ z
1
t′
− b

,

consequently

u

txt′x′
=
u
(
a
t′

+ c+ z
)x(

1
t′
− b
)x
t′x′

.

By developing the second member of this last equation, and passing again from the
generating functions to the coefficients, we will have the expression of yx,x′ ; because
this quantity is the coefficient of t0t′0 in the development[63] of the generating function
u

txt′x′
; and the coefficient t0t′0 in any term of the development of the second member,

such as u kzµ

t′x′+r
is K∇µy0,x′+r, ∇yx,x′ being the coefficient of the generating function

uz, a coefficient which is here equal to

yx+1,x′+1 − ayx,x′+1 − byx+1,x′ − cyx,x′ .
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If we have 0 = ∇yx,x′ , the coefficients of the affected terms of z will vanish, and
then we will have the expression of yx,x′ as function of y0,x′ , y0,x′+1, y0,x′+2, etc.; This
expression will be the integral of the equation

0 = yx+1,x′+1 − ayx,x′+1 − byx+1,x′ − cyx,x′ . (b)

In order to have this expression, z can be considered as null, since we must have
regard only to the terms independent of z; equation (a) becomes thus

0 =
1

tt′
− a

t′
− b

t
− c;

this is that which I name generating equation of equation (b) in the partial differences.
Indeed, we obtain this last equation by multiplying the preceding by u, and passing
again from the generating functions to the coefficients.

The expression that we obtain by the preceding analysis for yx,x′ is an infinite
series. We will arrive in this manner to a finite expression. Let us take the value of
u

txt′x′
, and let us give to it this form

u

txt′x′
=
u
(

1
t′
− b+ b

)x′ [
c+ ab+ a

(
1
t′
− b
)]x(

1
t′
− b
)x .

If we develop the second member of this equation, with respect to the powers of 1
t′
−b,

we will have

u

txt′x′
=u

{(
1

t′
− b
)x′

+ x′b

(
1

t′
− b
)x′−1

+
x′(x′ − 1)

1.2
b2

(
1

t′
− b
)x′−2

+ etc.

}

×

{
ax + x(c+ ab)

ax−1

1
t′
− b

+
x(x− 1)

1.2
(c+ ab)2 ax−2(

1
t′
− b
)2 + etc.

}
.

Let [64]there be

V = ax,

V (1) = x′bax + x(c+ ab)ax−1,

V (2) =
x′(x′ − 1)

1.2
b2ax + x′xb(c+ ab)ax−1 +

x(x− 1)

1.2
(c+ ab)2ax−2,

V (3) =
x′(x′ − 1)(x′ − 2)

1.2.3
b3ax +

x′(x′ − 1)

1.2
xb2(c+ ab)ax−1

+ x′
x(x− 1)

1.2
b(c+ ab)2ax−2

+
x(x− 1)(x− 2)

1.2.3
(c+ ab)3ax−3,

etc.;
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we will have

u

txt′x′
= u


V

(
1

t′
− b
)x′

+ V (1)

(
1

t′
− b
)x′−1

+ V (2)

(
1

t′
− b
)x′−2

· · ·+ V (x′)

+
V x′+1

1
t′
− b

+
V (x′+2)(
1
t′
− b
)2 · · ·+

V (x′+x)(
1
t′
− b
)x

 .

Now the equation

1

tt′
− a

t′
− b

t
− c = 0

gives

1
1
t′
− b

=
1
t
− a

c+ ab
;

hence

u

txt′x′
= u


V

(
1

t′
− b
)x′

+ V (1)

(
1

t′
− b
)x′−1

· · ·+ V (x′)

+
V x′+1

c+ ab

(
1

t′
− a
)

+
V (x′+2)

(c+ ab)2

(
1

t′
− a
)2

· · ·+ V (x′+x)

(c+ ab)x

(
1

t′
− a
)x
 .

In order to pass again now from the generating functions to the coefficients, we will
observe, 1◦ that the coefficient of t0t′0 in u

txt′x′
, is yx,x′ ; 2◦ that this same coefficient,

in any term, such as u
(

1
t′
− b
)r

or ubr
(

1
bt′
− 1
)r

, is br.′4r
(
y0,x′

bx′

)
, the characteristic

′4 of the differences corresponding to the variability of x′, and this variable must
be supposed null after the differentiations;[65] 3◦ that this coefficient in u

(
1
t
− a
)r

, is

ar4r
(yx,0
ax

)
, the characteristic 4 corresponding to the variability of x, and this vari-

able must be supposed null after the differentiations; we will have therefore, with
these conditions,

yx,x′ =V bx
′
.′4x′

(y0,x′

bx′

)
+ V (1)bx

′−1.′4x′−1
(y0,x′

bx′

)
· · ·+ V (x′)y0,0

+
a

c+ ab
V (x′+1)4

(yx,0
ax

)
+

a2

(c+ ab)2
V (x′+2)42

(yx,0
ax

)
. . .

· · ·+ ax

(c+ ab)x
V (x′+x)4x

(yx,0
ax

)
;

this is the complete integral of equation (b) in partial differences. It is clear that this
integral supposes that we know the first horizontal rank and the first vertical rank of
Table (Q) of §14.

§17. The preceding expression of yx,x′ offers this of the remarkable, namely, that
the characteristics4 and ′4 of the finite differences, have for exponents, the variables
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x and x′. Here is another example. Let us consider the equation in the partial
differences

0 = 4nyx,x′ +
a

α
4n−1.′4yx,x′ +

b

α2
4n−2.′42yx,x′ + etc.,

the characteristic 4 corresponding to the variable x of which unity is the difference,
and the characteristic ′4 corresponding to the variable x′ of which α is the difference.
The corresponding generating equation will be, by the preceding section,

0 =

(
1

t
− 1

)n
+
a

α

(
1

t
− 1

)n−1(
1

t′α
− 1

)
+

b

α2

(
1

t
− 1

)n−2(
1

t′α
− 1

)2

+ etc.

This equation gives the following n:

1

t
− 1 =

q

α

(
1− 1

t′α

)
,

1

t
− 1 =

q′

α

(
1− 1

t′α

)
,

1

t
− 1 =

q′′

α

(
1− 1

t′α

)
,

etc.

q, q′, q′′, etc. [66]being the n roots of the equation

0 = zn − azn−1 + bzn−2 − etc.

The equation
1

t
− 1 =

q

α

(
1− 1

t′α

)
gives

u

txt′x
′ =

u

t′x′

(
1 +

q

α
− q

α

1

t′α

)x
=

u

t′x′
(−1)x


qx

αx
1

t′αx
− x q

x−1

αx−1

(
1 +

q

α

) 1

t′α(x−1)

+ etc.

 .

By passing again from the generating functions to the coefficients, we will have

yx,x′ = (−1)x
{
qx

αx
y0,x′+αx − x

qx−1

αx−1

(
1 +

q

α

)
y0,x′+α(x−1) + etc.

}
.

The second member of this equation can be set under the form(
1 +

α

q

)x+x′
α (
− q
α

)x
.′4x

( q

α + q

)x′
α

y0,x′

 .
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By designating therefore by the arbitrary function φ(x′) the quantity
(

q
α+q

)x′
α
y0,x′ ,

the expression of yx,x′ will become

yx,x′ =

(
1 +

α

q

)x+x′
α (
− q
α

)x
.′4xφ(x′).

This value satisfies therefore the proposed equation in the partial differences.
It is clear that each of the roots q′, q′′, etc., furnish a similar value, in which we
can introduce another arbitrary. We will designate by φ1(x′), φ2(x′), etc. these new
arbitraries. The union of all these values will satisfy the proposed equation, because
it is linear, and this union will be the complete integral of it, which is thus,[67]

yx,x′ =

(
1 +

α

q

)x+x′
α (
− q
α

)x
.′4xφ(x′)

+

(
1 +

α

q′

)x+x′
α
(
−q
′

α

)x
.′4xφ1(x′)

+ etc.

If we suppose α infinitely small and equal to dx′; if we observe moreover that(
1 +

dx′

q

)x+ x′
dx′

= c
x′
q ,

as it is easy to be convinced of it, by taking the logarithms of each member of this
equation, we will have

yx,x′ = c
x′
q (−q)x

[
dxφ(x′)

dx′x

]
+ c

x′
q′ (−q′)x

[
dxφ1(x′)

dx′x

]
+ etc.;

it is the complete integral of the equation in the finite and infinitely small partial
differences,

0 = 4nyx,x′ + a4n−1

(
dyx,x′

dx′

)
+ b4n−2

(
d2yx,x′

dx′2

)
+ etc.

All the equations in the partial differences that we have examined until here, have
no last term independent of the principle value. If they had, we would have regard,
and we would integrate these equations by the method that we have given for this
object, relative to the equations in the simple differences, and that it is easy to apply
to the equations in partial differences.

Theorems on the development into series, of functions of many variables.

§18. If we apply to the functions of many variables, the method of §11; we will
have from the development of these functions into series, some theorems analogous
to those of §10. Let us consider the generating[68] function u

[
1

tt′t′′ etc.
− 1
]n

, and let us
give to it this form
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u

[(
1 +

1

t
− 1

)(
1 +

1

t′
− 1

)(
1 +

1

t′′
− 1

)
etc.− 1

]n
,

u being supposed a function of t, t′, t′′, etc., in the development of which yx,x′,x′′, etc. is

the coefficient of txt′x
′
t′′x
′′

etc. This coefficient in the development of u
[

1
tt′t′′ etc.

− 1
]n

will be 4nyx,x′,x′′, etc., x, x′, x′′, etc. being supposed to vary by unity in yx,x′,x′′, etc..
This same coefficient, in the development of the generating function

u

(
1

t
− 1

)r (
1

t′
− 1

)r′ (
1

t′′
− 1

)r′′
etc.,

will be
′4r. ′′4r′ . ′′′4r′′ etc. yx,x′,x′′, etc.,

the characteristics ′4, ′′4, ′′′4, etc. corresponding respectively to the variables x,
x′, x′′, etc.; we will have therefore, by passing again from the generating functions to
their coefficients,

4nyx,x′,x′′, etc. =

{
(1 + ′4yx,x′,x′′, etc.)(1 + ′′4yx,x′,x′′, etc.)

× (1 + ′′′4yx,x′,x′′, etc.) etc.− 1

}n

;

provided that in the development of the second member of this equation, we ap-
ply to the characteristics ′4, ′′4, etc. the exponents of the powers of ′4yx,x′,x′′, etc.,
′′4yx,x′,x′′, etc., etc.

By changing n into −n, the same equation subsists further, provided that we
change, as in the §§10 and 11, the characteristics 4, ′4, ′′4, etc., when they have a
negative exponent, into corresponding finite integrals, the signs Σ, ′Σ, ′′Σ, etc. being
the characteristics of the integrals, corresponding to the characteristics 4, ′4, ′′4,
etc. of the differences.

It is clear that u
[

1

tit′i′ t′′i
′′

etc.
− 1
]n

is the generating function of the nth finite

difference of yx,x′,x′′, etc., x varying by i, x′ varying by i′, x′′ varying by i′′, etc.. Now
we have [69]

u

(
1

tit′i′t′′i
′′

etc.
− 1

)n
= u

[(
1 +

1

t
− 1

)i(
1 +

1

t′
− 1

)i′ (
1 +

1

t′′
− 1

)i′′
etc.− 1

]n
,

by designating therefore by 4̄ the characteristic of the differences, when x varies by
i, x′ by i′, x′′ by i′′, etc., and by Σ̄ the corresponding integral characteristic, we will
have

4̄nyx,x′,x′′, etc. = [(1 + ′4yx,x′,x′′, etc.)
i(1 + ′′4yx,x′,x′′, etc.)

i′ etc.− 1]n,

Σ̄nyx,x′,x′′, etc. =
1

[(1 + ′4yx,x′,x′′, etc.)i(1 + ′′4yx,x′,x′′, etc.)i
′ etc.− 1]n

,

provided that in the development of the second member of these equations, we apply
to the characteristics ′4, ′′4, etc., the exponents of the powers of ′4yx,x′,x′′, etc.,
′′4yx,x′,x′′, etc., etc., and that we change the negative differences into integrals. We
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can thus dispense with indicating the arbitraries that the finite integral Σ̄n must
introduce, because they are counted contained in the integrals that the development
of its expression gives.

The two preceding equations yet hold, by supposing that in the differences
′4yx,x′,x′′, etc.,

′′4yx,x′,x′′, etc., etc., x, x′, x′′, etc., instead of varying by unity, vary

by any quantity $; provided that in the difference 4̄yx,x′,x′′, etc., x varies by i$,
x′ by i′$, x′′ by i′′$, etc. Now, if we suppose $ infinitely small, the differences
′4yx,x′,x′′, etc.,

′′4yx,x′,x′′, etc., etc., will be changed, the first into dx
(
dyx,x′, etc.

dx

)
, the

second into dx′
(
dyx,x′, etc.

dx

)
, etc. Moreover, if we make i, i′, i′′, etc. infinitely great,

and such that we have

i dx = α, i′dx′ = α′, etc.;

we will have

(1 + ′4yx,x′,x′′, etc.)
i =

{
1 + dx

(
dyx,x′, etc.

dx

)} α
dx

= c
α

(
dyx,x′, etc.

dx

)
,

c being always the number of which the hyperbolic logarithm is unity. We will have
similarly

(1 + ′′4yx,x′, etc.)
i′ = c

α′
(
dyx,x′, etc.

dx′

)
,

and so forth;[70] hence

4̄yx,x′, etc. =

[
c
α

(
dyx,x′, etc.

dx

)
+α′

(
dyx,x′, etc.

dx′

)
+etc.
− 1

]n
,

Σ̄yx,x′, etc. =
1[

c
α

(
dyx,x′, etc.

dx

)
+α′

(
dyx,x′, etc.

dx′

)
+etc.
− 1

]n ,
x varying by α, x′ by α′, etc., in the first two members of these equations.

If, instead of supposing $ infinitely small, we suppose it equal to unity, and i
infinitely small and equal to dx; if we suppose further i′, i′′, etc. infinitely small and
respectively equal to dx′, dx′′, etc., we will have

(1 + ′4yx,x′, etc.)
i = (1 + ′4yx,x′, etc.)

dx = 1 + dx log(1 + ′4yx,x′, etc.);

we will have similarly

(1 + ′′4yx,x′, etc.)
i′ = 1 + dx′ log(1 + ′′4yx,x′, etc.);

etc.

moreover 4̄nyx,x′, etc. is changed then into dnyx,x′, etc.; we will have therefore

dnyx,x′, etc. = [dx log(1 + ′4yx,x′, etc.) + dx′ log(1 + ′′4yx,x′, etc.) + etc.]n;

an equation which by making n negative, subsists yet, provided that we change the
negative differences into integrals. These diverse results are analogous to those that
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we have found in §10, relative to the functions of one variable alone; and we find again
the analogy that we have observed between the positive powers and the differences,
and between the negative powers and the integrals.

Considerations on the passage from the finite to the infinitely small.

§19. The passage from the finite to the infinitely small, consists in neglecting the
infinitely small differences, with respect to the finite quantities, and generally the
infinitely small of an order superior relative to those of an order inferior. This omission
seems to remove from this passage, geometric rigor; but, in order to be convinced of
its entire exactitude, it suffices to consider it as the result of the comparison [71]of the
homogeneous powers of an indeterminate variable, in the development of the terms of
an equation which subsists, whatever be that indeterminate; because it is clear that
the terms affected of the same power must be mutually destroyed.

In order to render that sensible by an example, let us consider the following
equation that equation (q) of §10 gives, by making n = 1,

′4yx = (1 + dyx′)
α
dx′ − 1,

′4 is the characteristic of the finite differences, x′ varying by α, and d is the charac-
teristic of the differences, x′ varying by dx′. The preceding equation developed gives,
by applying conformably to the analysis of the section cited, the exponents of the
powers of dyx′ to the characteristic d,

′4yx′ =
α

dx′
dyx′ +

(α2 − αdx′)
1.2.dx′2

d2yx′ + etc.;

dyx′ is equal to yx′+dx′−yx′ . Let us suppose that by developing the function of x′+dx′,
represented by yx′+dx′ , we have

yx′+dx′ = yx′ + dx′y′x′ + dx′2zx′ + etc.;

we will have

dyx′ = dx′y′x′ + dx′2zx′ + etc.;

whence we deduce

d2yx′ = dx′dy′x′ + dx′2dzx′ + etc.

Let us develop similarly y′x′+dx′ , zx′+dx′ , etc. according to the powers of dx′, and let
us suppose that we have

y′x′+dx′ = y′x′ + dx′y′′x′ + dx′2sx′ + etc.,

zx′+dx′ = zx′ + dx′z′x′ + etc.;

we will have

dy′x′ = dx′y′′x′ + dx′2sx′ + etc.,

dzx′ = dx′z′x′ + etc.,
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hence

d2yx′ = dx′
2
dy′′x′ + dx′

3
sx′ + etc.

+ dx′
3
z′x′ + etc.

The[72] preceding expression of ′4yx′ will become thus,

′4yx′ = αy′x′ +
α2

1.2
y′′x′ + etc.

+ dx′


α(zx′ − 1

2
y′′x′ + etc.)

+α2(sx′ + z′′x′ + etc.)

+ etc.


+dx′2 etc.,

(o)

dx′ being undetermined; the terms independent of dx′ must be equal separately among
them; we have therefore

′4yx′ = αy′x′ +
α2

1.2
y′′x′ + etc.

Now, y′x′ is the coefficient of dx′ in the development of yx′+dx′ ; it is that which we

designate in the differential Calculus, by
dyx′
dx′

. Similarly y′′x′ is the coefficient of dx′

in the development of y′x′+dx′ ; it is that which we designate by
dy′
x′

dx′
, or by

d2yx′
dx′2

, and
so forth; by substituting therefore, in the preceding equation, yx′+α − yx′ instead of
′4yx′ , we will have the following theorem:

yx′+α = yx′ + α
dyx′

dx′
+
α2

1.2

d2yx′

dx′2
+

α3

1.2.3

d3yx′

dx′3
+ etc.

Considered as a result of the comparison of the terms independent of dx′, this theorem
leaves no doubt on its rigorous exactitude, and it is clear by the preceding analysis,
that this comparison returns to neglecting the terms multiplied by dx′ and its powers,
relative to the finite quantities; this omission removes therefore nothing from the rigor
of the differential Calculus. But we see moreover, a priori, that the terms affected
of the same power of the indeterminate dx′ must be mutually destroyed, that which
we can verify a posteriori ; thus that which we neglect as infinitely small is rigorously
null; so that the omission of the infinitely small, relative to the finite quantities, is
at base only a easy way to eliminate the superfluous terms which must vanish in the
final result.

This[73] bringing together of the calculus in finite differences, and of the differential
calculus, puts into evidence the rigor of the results of this last calculation, and gives
its true metaphysics; but its applications to extent, duration and movement supposes
moreover, the principle of limits. We can, by a similar bringing together, clear up
diverse points of the infinitesimal analysis, which have been subjects of dispute among
geometers: such is the discontinuity of arbitrary functions in the integrals of equa-
tions in the partial differences. Those who have rejected this discontinuity, based
themselves on this that the ordinary analysis of infinitely small differences, suppose
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that the successive differentials of a function, must be infinitely small relative to the
previous, that which does not hold when the function is discontinuous. In order to
clarify this delicate question, it is necessary to consider it in the finite differences, and
to observe that which arrives in the passage from these differences to the infinitely
small differences.

Let us take for example the following equation in partial finite differences:

(yx+1,x′ − 2yx,x′ + yx−1,x′)− (yx,x′+1 − 2yx,x′ + yx,x′−1) = 0; (a)

its generating equation is, by §16,

t

(
1

t
− 1

)2

− t′
(

1

t′
− 1

)2

= 0;

and by following the analysis given previously, it is easy to conclude from it that the
complete integral of the proposed equation (a) is

yx,x′ = φ(x+ x′) + ψ(x− x′),

φ(x+x′) being an arbitrary function of x+x′, and ψ(x−x′) being an arbitrary function
of x−x′. It is easy moreover to be assured that this value satisfies the proposed, and
that it is the complete integral, since it contains two arbitrary functions.

Let us suppose presently that, in the following Table,

y0,0, y1,0, y2,0, y3,0, . . . yn−1,0, yn,0,
y0,1, y1,1, y2,1, y3,1, . . . yn−1,1, yn,1,
y0,2, y1,2, y2,2, y3,2, . . . yn−1,2, yn,2,
. . . . . . . . . . . . . . . . . . . . .
y0,∞, y1,∞, y2,∞, y3,∞, . . . yn−1,∞, yn,∞,

(Z)

we know [74]the first two horizontal ranks comprehended between the two extreme ver-
tical columns

y0,0, y0,1, y0,2, . . . y0,∞,
yn,0, yn,1, yn,2, . . . yn,∞,

and that we know moreover all the terms of these two columns; we could determine
all the values of yx,x′ which fall between these two columns. Because if we wish to
form the third horizontal rank, we will observe that equation (a) gives

yx,x′+1 = yx+1,x′ + yx−1,x′ − yx,x′−1.

By making in this last equation, x′ = 1, and successively x = 1, x = 2, x = 3, . . . ,
x = n− 1, we will have the values of y1,2, y2,2, y3,2, . . . , yn−1,2, or the third horizontal
rank, by means of the first two horizontal ranks. We will form in the same manner
the fourth horizontal rank, and so forth to infinity. But, if we wish to determine the
values of yx,x′ , which fall outside of Table (Z), the preceding conditions do not suffice,
and it is necessary to add others to them.

Let us take the integral

yx,x′ = φ(x+ x′) + ψ(x− x′);
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and let us suppose that the second horizontal rank which determines one of the two
arbitrary functions, be such that we have

ψ(x− x′) = φ(x− x′);
we will have

yx,x′ = φ(x+ x′) + φ(x− x′).
By making x′ = 0, we will have φ(x) = 1

2
yx,0; hence

yx,x′ = 1
2
yx+x′,0 + 1

2
yx−x′,0.

It is easy to see that this equation satisfies the proposed equation (a); but it is only
a particular integral, which corresponds to the case where the second horizontal rank
is formed from the first, by means of the equation

yx,1 = 1
2
yx+1,0 + 1

2
yx−1,0.

As much as x+ x′ will be equal or less than n, and as x− x′ will be positive or null,
we will have the value of yx,x′ , by means of the first horizontal rank.[75] But, when x′

increasing, x + x′ will become greater than n or when x − x′ will become negative;
it will be necessary to determine the values of yx+x′,0 and of yx−x′,0 by means of the
two extreme vertical columns. Let us suppose that all the terms of these columns are
null, and that we have thus y0,x′ = 0 and yn,x′ = 0. By making x null in the equation

yx,x′ = 1
2
yx+x′,0 + 1

2
yx−x′,0.

we will have
y−x′,0 = −yx′,0.

By making next x = n in the same equation, we will have

yn+x′,0 = −yn−x′,0.
If we change next in this last equation, x′ into n+ x′, we will have

y2n+x′,0 = −y−x′,0 = yx′,0;

by changing next x′ into n+ x′, we will have

y3n+x′,0 = yn+x′,0 = −yn−x′,0;

whence generally we will have

y2rn+x′,0 = yx′,0,

y(2r+1)n+x′,0 = −yn−x′,0.
We will thus be able, by means of these two equations, to continue the values of yx,x′
to infinity, on the side of the positive values of x, and we will conclude from them
those which correspond to x negative, by means of the equation

y−x′,0 = −yx′,0.
Thence results the following construction. Let us represent the values of yx,0 from
x = 0 to x = n, by the ordinates drawn at the angles of a polygon of which the
abscissa is x and of which the two extremities, that I designate by A and B, lead to
the points where x = 0 and x = n. We will carry this polygon from x = n to x = 2n,
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by giving a position to it contrary to the one which it had from x = 0 to x = n, that
is, a position such, that the parts which were above the axis of the abscissas x, are
found below, the point B remaining moreover in this second position, in the same

[76]place as in the first, and the point A corresponding thus to the abscissa x = 2n. We
will place next this same polygon, from x = 2n to x = 3n, by giving to it a position
contrary to the second, and consequently similar to the first, in a manner that the
point A, in this third position, conserves the place that it had in the second, and that
thus the point B corresponds to the abscissa x = 3n. By continuing to place thus this
polygon alternately above and below the axis of the abscissas; the ordinates drawn
at the angles of this sequence of polygons, will be the values of yx,0 which correspond
to x positive.

Similarly, we will place this polygon from x = 0 to x = −n, by giving it a position
contrary to that which it had from x = 0 to x = n, A remaining moreover in the
same place in these two positions. We will place next this polygon from x = −n to
x = −2n, by giving to it a position contrary to the second, the point B conserving
the same place, and so forth to infinity. The ordinates of these polygons represent
the values of yx,0 which correspond to x negative. We will have next the value of yx,x′
by taking the half-sum of the two ordinates which correspond to the abscissas x+ x′

and x− x′.
This geometric construction is general, whatever be the nature of the polygon

which we just considered. It will serve to determine all the values of yx,x′ compre-
hended from x = 0 to x = n, and from x′ = 0 to x′ = ∞, provided that we have
y0,x′ = 0 and yn,x′ = 0, and that moreover the second horizontal rank of Table (Z) is
such, that we have

yx,1 = 1
2
yx+1,0 + 1

2
yx−1,0.

We have by that which precedes,

yx,x′+n = 1
2
yx+x′+n,0 + 1

2
yx−x′−n,0;

moreover,
yx+x′+n,0 = −yn−x−x′,0, yx−x′−n,0 = −yn−x+x′,0;

therefore
yx,x′+n = −1

2
yn−x−x′,0 − 1

2
yn−x+x′,0 = −yn−x,x′ ;

it follows thence that in Table (Z), the (n+x′)th horizontal rank, is the x′th rank [77]taken

with a contrary sign and in a reversed order, so that the rth term of the (n + x′)th

rank is the same as the (n− r)th term of the x′th rank taken with a contrary sign. We
have next

yx,2n+x′ = 1
2
y2n+x+x′,0 + 1

2
yx−x′−2n,0;

we have besides, by that which precedes,

y2n+x+x′,0 = yx+x′,0;

yx−x′−2n,0 = −y2n+x′−x,0 = −yx′−x,0 = yx−x′,0;

hence
yx,2n+x′ = 1

2
yx+x′,0 + 1

2
yx−x′,0 = yx,x′ ;
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whence it follows that the (2n+x′)th horizontal rank is exactly equal to the x′th rank.
Let us consider presently the vibrations of a taut cord of which the initial figure

is anything, provided that it is very near in all its points, to the axis of the abscissas.
Let us name x the abscissa, t the time, yx,t the ordinate of any point of the cord after
time t. Let us imagine moreover the abscissa x divided into an infinity of parts equal
to dx, and that we take for unity; that which returns to considering x as an infinite
number. This premised, we will have, by the principles of dynamics,(

ddyx,t
dt2

)
=

a2

dx2
(yx+1,t − 2yx,t + yx−1,t);

a being a constant coefficient depending on the tension and on the thickness of the
cord. If we make t = x′

a
, we will have dt = dx′

a
, and yx,t will become a function of x

and of x′, which we will designate by yx,x′ ; now, the magnitude of dt being arbitrary,
we can suppose it such, that the variation of x′ is equal to that of x, which we have
taken for unity; the preceding equation will become thus

yx,x′+1 − 2yx,x′ + yx,x′−1 = yx+1,x′ − 2yx,x′ + yx−1,x′ ,

x and x′ being infinite numbers. This equation is the same as that which we just
considered; thus the geometric construction which we have given previously, can be
employed in this case:[78] the polygon of which the ordinates of the angles are represented
by yx,0, is here the initial figure of the cord; but it is necessary for this to suppose
the length n divided into an infinity of parts equal to dx. It is necessary moreover
that the cord be fixed at its extremities, finally that we have y0,x′ = 0 and yn,x′ = 0.
Moreover the equation of condition

yx,1 = 1
2
yx+1,0 + 1

2
yx−1,0);

or, that which reverts to the same,

yx,1 − yx,0 = 1
2
(yx+1,0 − 2yx,0 + yx−1,0)

is changed into this one

dt

(
dyx,0
dt

)
=

1

2
dx2

(
d2yx,0
dx2

)
;

that which gives (
dyx,0
dt

)
= 0.

Now
(
dyx,0
dt

)
is the initial velocity of the cord; this velocity must therefore be null at

the origin of the movement. Every time that these conditions will hold, the preceding
construction will give always the movement of the cord, whatever be its initial figure,
provided however that in all its points, yx+2,0 − 2yx+1,0 + yx,0 is an infinitely small
quantity of the second order, that is that two contiguous elements of the cord, do not
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form a finite angle. This condition is necessary in order that the differential equation
of the problem can subsist, and in order that this here

dt

(
dyx,0
dt

)
=

1

2
(yx+1,0 − 2yx,0 + yx−1,0)

gives
(
dyx,0
dt

)
= 0. But besides it is evident, by that which precedes, that the initial

figure of the cord can be discontinuous and composed of any number of arcs of different
curves, provided that these arcs are touching.

The different situations of the cord in its movement, are represented by the hor-
izontal ranks of Table (Z); and as the ranks [79]which correspond to the values of x′,
x′ + 2n, x′ + 4n, etc. are the same by that which precedes, there results from it that
the cord returns to the same situation after time t, t+ 2n

a
, t+ 4n

a
, etc.

We see next by the geometric construction given above, that if we imagine a
sequence of cords linked among them, and placed alternatively above and below the
axis of the abscissas, as in this construction; all the cords will vibrate in the same
manner, so that their initial figures being the same, their figures will be constantly
parallel. We can likewise fix only the two extremities of this sequence, and leave
their nodes entirely free; because the elements of the two cords at the point of their
junction, being in a straight line and equally taut, this point has no tendency to be
moved and must consequently remain immobile, that which experience confirms.

This analysis of the vibrating cords, establishes in an incontestable manner, the
possibility of admitting discontinuous functions into this problem, and we must gen-
erally conclude from it that these functions can be employed in all the problems which
depend on equations in partial infinitely small differences, provided that they may
subsist with these equations and with the conditions of the problem. We can indeed
consider these equations, as some particular cases of equations in finite differences, in
which we suppose that the variables become infinite; now nothing being neglected in
the theory of equations in the partial finite differences, it is clear that the arbitrary
functions of their integrals, are not at all subject to the law of continuity, and that
the constructions of these equations, by means of the polygons, hold whatever be the
nature of these polygons. Now, when we pass from the finite to the infinitely small,
these polygons are changed into some curves which, consequently, can be discontinu-
ous; thus the law of continuity is necessary neither in the arbitrary functions of the
integrals, nor in the geometric constructions which represent them. It is necessary
only to observe that if the equation in the partial differentials in yx,x′ is of order n, it

must not have a jump between two consecutive values of
(

dn−ryx,x′

dxs dx′n−r−s

)
, r [80]and s being

positive whole numbers, s being able to be null; that is that the differential of this
quantity must be infinitely small with respect to that quantity itself.

This condition is indispensable in order that the proposed differential equation
may subsist, because every partial differential equation supposes that the partial dif-
ferentials of yx,x′ from which it is formed, and divided by the respective powers of dx
and dx′, are finite quantities and comparable among themselves; but nothing obliges
admitting the same condition relative to the differences of yx,x′ of order n or of a
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superior order. By taking for arbitrary functions, the most elevated differences of the
arbitrary functions which enter into the integral of an equation in the partial differ-
ences; this integral will contain no more then but some arbitrary functions and their
successive integrals which are continuous, because in general the integral

∫
dsφ(s) is

continuous in the case even where the function φ(s) is not. The preceding condition
is reduced therefore to this that the (n− 1)th difference of each arbitrary function is
continuous, that is that its differential is infinitely small. It must not therefore have
a jump between two consecutive tangents of the curve which represents the arbitrary
function of the integral of an equation in the partial differentials of the second order;
thus, in the problem of the vibrating cords that we just discussed, it is necessary and
it suffices that any two contiguous elements of the initial figure of the cord, form be-
tween them an angle infinitely little different from two right angles. It must not have
a jump between two consecutive osculatory radii of the curve which represents the
continuous arbitrary function in the integral, if the equation in the partial differences
is of third order, and so forth.

General considerations on generating functions.

§20. It is often useful to know the generating function of a quantity given by an
equation in finite differences, ordinary or partial; because, analysis offering diverse
means to develop the functions into series, we can thus obtain in a quite simple
manner the value of the sought quantity. There results from §5,[81] that the quantity yx,
given by the equation in the finite differences

0 = a yx + b yx+1 + c yx+2 · · ·+ p yx+n−1 + q yx+n,

is the coefficient of tx in the development of the function

A+Bt+ Ct2 · · ·+Htn−1

a tn + b tn−1 + c tn−2 · · ·+ p t+ q
,

A, B, C,. . . , H being arbitrary constants. Indeed, if we compare that function to
this here,

y0 + y1t+ y2t
2 · · ·+ yxt

x + yx+1t
x+1 · · ·+ y∞t

∞,

we will have, by making the denominator vanish, and by virtue of the equation in the
differences in yx,

A+Bt+ Ct2 · · ·+Htn−1 = tn−1(b y0 + c y1 + etc.)

+ tn−2(c y0 + e y1 + etc.)

+ etc.;

by equating next the homogeneous powers of t, we will have the values of A, B, C, etc.
by means of the n values y0, y1, . . . , yn−1; we will have therefore thus the generating
function of yx.

If we suppose Σiyx = y′x, we will have yx = 4iy′x; and then the equation

0 = a yx + b yx+1 + c yx+2 · · ·+ q yx+n
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becomes

0 = a4iy′x + b4iy′x+1 · · ·+ q4iy′x+n;

that which gives, by integrating,

ay′x + by′x+1 · · ·+ qy′x+n = Mxi−1 +Nxi−2 + etc.,

M , N , etc. being arbitrary constants. By §2, u being the generating function of yx,
that of y′x is

uti + A′ti−1 +B′ti−2 + etc.

(1− t)i
;

the generating function of y′x or of the quantity given by the preceding equation [82]in y′x
is therefore

(A+Bt+ Ct2 · · ·+Htn−1)ti + (A′ti−1 +B′ti−2 + etc.)(atn + btn−1 · · ·+ q)

(1− t)i(a tn + b tn−1 + c tn−2 · · ·+ p t+ q)
.

Let us imagine now that a, b, c, etc. are rational and entire functions of t′ of order
n, and that A, B, C, etc. are arbitrary functions of the same quantity; yx will be
a function of x and of t′. By developing it with respect to the powers of t′, we will

name yx,x′ the coefficient of t′x
′

in this development. This premised, if we suppose

a = a′ t′
n

+ b′ t′
n−1

+ c′ t′
n−2

+ etc.

b = a′′ t′
n

+ b′′ t′
n−1

+ c′′t′
n−2

+ etc.

c = a′′′t′
n

+ etc.

etc.

The preceding differential equation in yx will give, by comparing the coefficients of

the power t′x
′+n, the following equation in the partial differences in yx,x′ ,

0 = a′yx,x′+b
′yx,x′+1 + c′yx,x′+2 + etc.

a′′yx+1,x′ + b′′yx+2,x′+1 + etc.

+ a′′′yx+2,x′ + etc.

+ etc.;

the generating function of the variable yx,x′ of this equation will be therefore

A+Bt+ Ct2 · · ·+Htn−1

a′tnt′n + b′tnt′
n−1

+c′tnt′
n−2

+ etc.

+ a′′tn−1t′n +b′′tn−1t′
n−1

+ etc.

+a′′′tn−2t′
n

+ etc.

+etc.

A, B, C,. . . being arbitrary functions of t′, they will give by their development, the
arbitrary functions which must enter into the expression of yx,x′ .
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We can further determine the generating functions of the equations in finite dif-
ferences, in which the coefficients are variables. Let us consider for this the equation
in the differences

0 = a yx + b yx+1 + c yx+2 · · ·+ q yx+n

+ x(a′ yx + b′ yx+1 + c′ yx+2 · · ·+ q′ yx+n)

+ x2(a′′yx + b′′yx+1 + c′′yx+2 · · ·+ q′′yx+n)

+ etc.

If we name[83] u the generating function of yx, we will have, by virtue of the preceding
equation,

u

(
a+

b

t
+
c

t2
· · ·+ q

tn

)
+ t

d

dt

{
u

(
a′ +

b′

t
+
c′

t2
· · ·+ q

tn

)}
+ t

d

dt

{
t
d

dt

{
u

(
a′′ +

b′′

t
+
c′′

t2
· · ·+ q′′

tn

)}}
+ etc.

=A+Bt+ Ct2 · · ·+Htn−1,

A, B, C, . . . , H being arbitrary constants, which depend on the values of y0, y1,
y2,. . . , yn−1. Indeed, if we substitute into this equation, the preceding value of u in
series; we see that by virtue of the proposed differential equation, all the coefficients
of the same power of t, vanish when this power is equal or greater than n; and the
comparison of the inferior powers give a number n of equations which determine the
constants A, B, C, etc., by means of the values y0, y1, y2,. . . , yn−1.

The preceding differential equation is generally integrable, only in the case where
it is of the first order, and then the coefficients of the equation in finite differences in
yx contain only the first power of x: in this last case, we can obtain the generating
function u by quadratures.

§21. The knowledge of generating functions of differential equations, gives the
expression of the integrals of these equations, by means of defined quadratures. Let
us take for this, the equation

u = y0 + y1t+ y2t
2 · · ·+ yxt

x + yx+1t
x+1 · · ·+ y∞t

∞.

Let us substitute into its two members cx$
√
−1 instead of tx, c being always the number

of which the hyperbolic logarithm is unity; and let us name U , that which u then
becomes. By multiplying the equation by c−x$

√
−1d$ and integrating, we will have∫

Ud$c−x$
√
−1 =

∫
d$

{
y0c
−x$

√
−1 + y1c

−(x−1)$
√
−1 · · ·

· · ·+ yx + yx+1c
$
√
−1 etc.

}
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If we substitute, for c±r$
√
−1, its value cos r$±

√
−1 sin r$, and if [84]we take the integral

from $ = −π to $ = π, 2π being the circumference, the second member is reduced
to 2πyx; we have therefore

yx =
1

2π

∫
Ud$(cosx$ −

√
−1 sinx$);

but this formula has the inconvenience of introducing imaginaries from which we can
be disencumbered in the following manner.

Let us consider the equation

0 = ayx + byx+1 · · ·+ qyx+n

+ x(a′yx + b′yx+1 · · ·+ q′yx+n),

and let us suppose

yx =

∫
t−x−1Tdt,

T being a function of t that it is a question of determining, as well as the limits of
the integral. By substituting for yx this value into the differential equation in yx, and
observing that we have

x

∫
t−x−1dt

T

tr
= −t−xT

tr
+

∫
t−xd

(
T

tr

)
,

that which makes the variable coefficient x vanish; we will have

0 =− Tt−x
(
a′ +

b′

t
· · ·+ q′

tn

)

+

∫
t−x−1dt


T

(
a+

b

t
· · ·+ q

tn

)
+ t

d

dt

[
T

(
a′ +

b′

t
· · ·+ q′

tn

)]
 .

(h)

By equating to zero the part under the sign
∫

, we will have

0 =T

(
a+

b

t
· · ·+ q

tn

)
+ t

d

dt

[
T

(
a′ +

b′

t
· · ·+ q′

tn

)]
.

This equation integrated gives T as function of t. It is the same as the differential
equation in u of the preceding section, by neglecting in the latter the term independent
of u. The value of T is therefore the part of u which is independent of this term.

In order to have the limits of the integral
∫
t−x−1Tdt, we will equate to zero the

part outside the
∫

sign, in equation (h); that which gives

0 = Tt−x
(
a′ +

b′

t
· · ·+ q′

tn

)
.
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This[85] equation is satisfied by supposing t infinite, and by supposing it equal to one of
the roots of the equation

0 = a′ +
b′

t
· · ·+ q′

tn
;

we will have thus n + 1 limits of the integral
∫
t−x−1Tdt; by multiplying next each

integral comprehended between one of these limits, and the n other limits, by an
arbitrary constant; the sum of these products will be the complete value of yx.

We can extend this method, to the equations in finite and infinitely small partial
differences, as we will show in the second part of this Book.

We see by that which precedes, the analogy which exists between the generating
functions of the variables, and the definite integrals by means of which these variables
can be expressed. In order to render it yet more sensible, let us consider the equation

yx =

∫
Tdt t−x,

T being a function of t, and the integral being taken within some determined limits.
We will have, x varying by α,

4yx =

∫
Tdt t−x

(
1

tα
− 1

)
,

and, generally,

4iyx =

∫
Tdt t−x

(
1

tα
− 1

)i
;

by making i negative, the characteristic 4 is changed into the integral sign Σ. If we
suppose α infinitely small and equal to dx; we will have

1

tα
= 1 + dx log

1

t
;

we will have therefore, by observing that then 4iyx is changed into diyx,

diyx
dxi

=

∫
Tdt t−x

(
log

1

t

)i
.

We will find in the same manner, and by adopting the denominations of §2,

∇iyx

∫
Tdt t−x

(
a+

b

t
· · ·+ q

tn

)i
.

Thus[86] the same analysis which gives the generating functions of the successive
deriveds of the variables, gives the functions, under the

∫
sign, of the definite integrals

which express these deriveds. The characteristic ∇i expresses, strictly speaking, only
a number i of consecutive operations; the consideration of the generating functions
reduces these operations to some elevations of a polynomial to its diverse powers; and
the consideration of the definite integrals gives directly the expression ∇iyx, in the
same case where we would suppose i a fractional number.

But the great advantage of this transformation of the analytic expressions, into
definite integrals, is to furnish an approximation as handy as convergent, of these
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expressions, when they are formed of a great number of terms and of factors; this is
that which takes place in the theory of probabilities, when the number of the events
that we consider is very great. Then the numerical calculus of the results to which we
are led by the solution of the problems, become impractical, and it is indispensable
to have for this calculation, a method of approximation so much more convergent, as
these results are more complicated.

Their expression in definite integrals, procures this advantage, and the one to give
the laws according to which the probability of the results indicated by the events,
approaches certitude in measure as the events are multiplied, laws of which the knowl-
edge is one of the most interesting objects of the theory of probabilities. It was on the
occasion of a problem of this kind, of which the solution depended on the expression
of the middle term of the binomial raised to a great power, that Stirling transformed
this expression into a very convergent series: his result can be regarded as one of the
most ingenious things that we have found on series. It is especially remarkable, in this
that in an inquiry which seems to admit only some algebraic quantities, it introduces
a transcendental quantity, namely, the square root of the ratio of the circumference
to the diameter. But the method of Stirling, based on a theorem of Wallis and on the
interpolation of series, left desiring a direct method which is extended to all functions
composed of a great number of terms and of factors. [87]Such is the method of which I
just spoke, and that I have given first1 in the Mémoires de l’Académie des Sciences
for the year 1778, and next2 more extensively, in the Memoirs of the same academy,
for the year 1782. The development of this method will be the object of the second
Part of this Book, and will complete thus the Calculus of generating functions.

The series to which this method leads, contains most often, the square root of
the ratio of the circumference to the diameter; and it is the reason for which Stirling
has encountered it in the particular case that he has considered; but sometimes they
depend on other transcendentals of which the number is infinite.

The limits of the definite integrals that this method reduces into convergent series,
are, as we just saw, given by the roots of an equation that we can name equation of the
limits. But a very important remark in this analysis, and which permits extending it
to the functions that the theory of probabilities presents most often, is that the series
to which we arrive, hold equally in the same case where, by some changes of sign
in the coefficients of the equation of the limits, its roots become imaginaries. These
passages [88]from the positive to the negative, and from the real to the imaginary, of
which the first applications have appeared, if I do not deceive myself, in the Memoirs
cited, have led me in these Memoirs, to the values of many definite integrals, which
offer that of the remarkable, namely, that they depend at the same time on these two
transcendentals, the ratio of the circumference to the diameter, and the number of
which the hyperbolic logarithm is unity. We can therefore consider these passages, as
means of discovering, similar to the induction of which geometers made long time use.

1“Mémoire sur les probabilités,” Mém. Acad. R. Sci. Paris, 1778 (1781), [9, pages 227-332]
Oeuvres 9, p. 383–485.

2“Mémoire sur les approximations des formules qui sont fonctions de trés-grands nombres,”
Mém. Acad. R. Sci. Paris, 1782 (1785), [11, pages 1–88] and Oeuvres 10, p.209–291.
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But these means, although employed with much precaution and reserve, leave always
desiring some demonstrations of their results. Their bringing together of the direct
methods, serving to confirm them and to show the great generality of the analysis,
and being able by this reason, to interest the geometers; I have insisted particularly on
those passages that Euler, considered at the same time as myself, and of which he has
made many curious applications, but which have appeared only since the publication
of the Memoirs cited.



Part 2

Theory of the approximations of
formulas which are functions of large

numbers.





CHAPTER 1

On the integration by approximation of the differentials which contain
factors raised to great powers

§22. We [88]just saw that we can always return to the integration of similar differen-
tials, the formulas given by the theory of generating functions. We are going therefore
to occupy ourselves first at length, with the approximation of this kind of integrals.

If we designate by u, u′, u′′, etc. and φ arbitrary functions of x, and by s, s′, s′′,
etc., very great numbers, each differential function which contains functions raised to

some great powers, will be comprehended in the term φ dxusu′s
′
u′′s

′′
etc. In order to

have in convergent series, its integral taken from x = 0 to x = θ, we will make

φusu′s
′
u′′

s′′
etc. = y;

and, by designating by Y that which y becomes when we change x to θ there, we will
suppose

y = Y c−t,

c [89]always being the number of which the hyperbolic logarithm is unity. We will have
thus

t = log
Y

y
.

If we consider x as a function of t given by this equation; we will have, by supposing
dt constant,

x = θ + t
dx

dt
+

t2

1.2

ddx

dt2
+

t3

1.2.3

d3x

dt3
+ etc.,

t needing to be supposed null after the differentiations, in the values of dx
dt

, ddx
dt2

, etc.
Now we have generally

dnx

dtn
=

1

dt
d · 1

dt
d · 1

dt
· · · d · dx

dt
;

the differential characteristic being related to all that which follows it, and dt being
able to vary in any manner whatever in the second member of this equation; moreover,
if we differentiate the preceding equation of t by y, and if we designate −ydx

dy
by v, we

will have dt = dx
v

; we will have therefore

dnx

dtn
=
vdv dv . . . dv

dxn−1
,

dx being supposed constant in the second member of this equation. Thus, by naming
U that which v becomes when we change x into θ; the value of dnx

dtn
which corresponds

73
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to x = θ, or, that which returns to the same, to t = 0, will be equal to

U dU dU . . . dU

dθn−1
;

we will have therefore

x = θ + Ut+
U dU

1.2 dθ
t2 +

U dU dU

1.2.3 dθ2
t3 + etc.,

whence we deduce

dx = U dt

(
1 +

dU

dθ
t+

dU dU

1.2 dθ2
t2 + etc.

)
consequently[90] ∫

y dx = UY

∫
dt c−t

(
1 +

dU

dθ
t+

dU dU

1.2 dθ2
t2 + etc.

)
.

If we take the integral from t = 0 to t infinity, we will have generally∫
tndt c−t

n

= 1.2.3 . . . n;

hence ∫
y dx = UY

(
1 +

dU

dθ
+
dU dU

dθ2
+
d.U dUdU

dθ3
+ etc.

)
,

the integral relative to x being taken from x = θ to the value of x which corresponds
to t infinite.

Let us name Y ′ and U ′ that which y and v become when we change x into θ′; we
will have similarly∫

y dx = U ′Y ′
(

1 +
dU ′

dθ′
+
d(U ′ dU ′)

dθ′2
+
d.U ′ dU ′dU ′

dθ′3
+ etc.

)
;

the integral relative to x being taken from x = θ′ to the value of x which corresponds
to t infinite. By subtracting therefore these two equations from one another, we will
have ∫

y dx =UY

(
1 +

dU

dθ
+
dU dU

dθ2
+
d.U dUdU

dθ3
+ etc.

)
− U ′Y ′

(
1 +

dU ′

dθ′
+
dU ′ dU ′)

dθ′2
+
dU ′ dU ′dU ′

dθ′3
+ etc.

)
;

(A)

the integral relative to x being taken from x = θ to x = θ′, so that the consideration
of t disappears in this formula. If θ and θ′ were originally contained in y, it would
be necessary to vary only the quantities θ and θ′ which introduce in U and U ′, the
changes from x into θ and θ′ in the function v.

Formula (A) will be very convergent, if v or −y dx
dy

is a very small quantity; now y

being, by assumption, equal to φusu′s
′
u′′s

′′
. etc., we have

v = − 1
s du
u dx

+ s′du′

u′dx
+ s′′du′′

u′′dx
+ etc. + 1

φ
dφ
dx

;
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Thus [91]in the case where s, s′, s′′, etc. are very great numbers, v will be very small;

and if we make 1
s

= α, α being a very small fraction, the function v will be of the
order α, and the successive terms of formula (A) will be respectively of the order α,
α2, α3, etc.

This formula would cease to be convergent, if the assumption of x = θ rendered
very small the denominator of the expression of v. Let us suppose, for example,
that (x − a)µ is a factor of this denominator; it is clear that the successive terms of
formula (A) are respectively divided by (θ − a)µ, (θ − a)2µ+1, (θ − a)3µ+2, etc. and
will become very large, if θ is little different from a; the convergence of this formula
requires therefore that (θ − a)µ, (θ′ − a)µ be greater than α; it cannot consequently
be used in the interval where (x − a)µ is equal or less than α; but, in this case, we
could make use of the following method.

§23. If we name Y that which y becomes when we change x into a; it is clear that

(x − a)µ being a factor of − dy
y dx

, or, what returns to the same, of
d log Y

y

dx
; (x − a)µ+1

will be a factor of log Y
y

. Let therefore

y = Y c−t
µ+1

v =
x− a

(log Y − log y)
1

µ+1

;

we will have

x = a+ vt,

v at no point becoming infinite, by the assumption x = a. If we designate next by
U , dU2

dx
, d2U3

dx2
, etc. that which v, dv2

dx
, d2v3

dx2
, etc., become when we change x into a after

the differentiations; we will have, by formula (p) of §21 of Book II of the Méchanique
céleste,

x = a+ Ut+
dU2

1.2 dx
t2 +

d2U3

1.2.3 dx2
t3 + etc.;

that [92]which gives∫
y dx = Y

∫
dt c−t

µ+1

(
U +

dU2

dx
t+

d2U3

1.2 dx2
t2 + etc.

)
; (B)

this formula could be used in each interval where x differs very little from a; it can
consequently serve as supplement to formula (A) of the preceding section; but instead
of being ordered, as it, with respect to the powers of α, it is only with respect to the

powers of α
1

µ+1 ; because it is clear that, in this last case, v is only of order α
1

µ+1 .
In order to determine more easily the quantities U , dU2

dx
, etc., let us suppose

log Y − log y = (x− a)µ+1
[
A+B(x− a) + C(x− a)2 + etc.

]
.
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We will have, by changing x into a after the differentiations,

A = − dµ+1 log y

1.2.3 . . . (µ+ 1) dxµ+1
,

B = − dµ+2 log y

1.2.3 . . . (µ+ 2) dxµ+2
,

etc.

We will have next, whatever be r,

vr = [A+B(x− a) + C(x− a)2 + etc.]−
r

µ+1 ;

whence it is easy to conclude by developing this expression of vr, and naming Q(x−
a)r−1 the term of this development, which has for factor (x− a)r−1,

dr−1Ur

1.2.3 . . . (r − 1)dxr−1
= Q.

Formula (B) presents thus no more difficulties other than those which result from

the integration of the quantities of the form
∫
tndt c−t

µ+1
; and we have generally,[93]

∫
tndt c−t

µ+1

=− ct
µ+1

µ+ 1


tn−µ +

n− µ
µ+ 1

tn−2µ−1 +
(n− µ)(n− 2µ− 1)

(µ+ 1)2
tn−3µ−2

· · ·+ (n− µ)(n− 2µ− 1) · · · (n− rµ+ µ− r + 2)tn−rµ−r+1

(µ+ 1)r−1


+

(n− µ)(n− 2µ− 1) · · · (n− rµ− r + 1)

(µ+ 1)r

∫
tn−rµ−rdt c−t

µ+1

;

r being equal to the quotient of the division of n by µ+ 1, if the division is possible,
or to the number immediately inferior, if it is not. The determination of the integral∫
y dx depends therefore on the integrals of this form∫

dt c−t
µ+1

,

∫
t dt c−t

µ+1

, . . .

∫
tµ−1dt c−t

µ+1

.

It is not possible to obtain exactly these integrals by known methods; but it will be
easy in all cases, to have their approximate values.

§24. We will have principally need in the following, of the value of
∫
y dx, taken for

the whole interval comprehended between two consecutive values of x, which render
y null; we are going consequently to expose the simplifications of which this value is
then susceptible. The variable y having been supposed, in the preceding section, equal
to Y c−t

µ+1
, it is clear that the two values of x which render y null, render equally null

the quantity c−t
µ+1

; that which requires that µ+1 be an even number, and that one of
these values of x corresponds to t = −∞, and the other to t =∞; Y is therefore then
the maximum of y, comprehended between these values. Let µ + 1 = 2i; if we take
the integral

∫
t2n+1dt c−t

2i
, from t = −∞ to t = ∞, its value will be null; because it

is clear that the elements of this integral, which correspond to the negative values of
t, are equal and of contrary sign to those which correspond to the same values taken
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positively. The integral
∫
t2n dt c−t

2i
is equal to 2

∫
t2n dt c−t

2i
, this last integral being

taken from t null to t infinity; [94]and in this case, we have by the preceding section,∫
t2n dt c−t

2i

=
(2n− 2i+ 1)(2n− 4i+ 1) · · · (2n− 2ri+ 1)

(2i)r

∫
t2n−2ridt c−t

2i

r being equal to the whole number of the quotient of the division of n by i. Let
therefore, by taking the integrals from t null to t infinity,

k =

∫
dt c−t

2i

,

k(1) =

∫
t2 dt c−t

2i

,

k(2) =

∫
t4 dt c−t

2i

,

. . . . . . . . . . . . . . . . ,

k(i−1) =

∫
t2i−2 dt c−t

2i

;

formula (B) of the preceding section will become∫
y dx = 2k Y

{
U +

1

2i
· d2iU2i+1

1.2.3 . . . 2i dx2i
+

2i+ 1

4i2
· d4iU4i+1

1.2.3 . . . 4i dx4i
+ etc.

}

+ 2k(1)Y


d2U3

1.2 dx2
+

3

2i
· d2i+2U2i+3

1.2.3 · · · (2i+ 2) dx2i+2

+
3(2i+ 3)

4i2
· d4i+2U4i+3

1.2.3 · · · (4i+ 2) dx4i+2
+ etc.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ 2k(i−1)Y


d2i−2U2i−1

1.2.3 · · · (2i− 2) dx2i−2
+

2i− 1

2i
· d4i−2U4i−1

1.2.3 · · · (4i− 2) dx4i−2

+
(2i− 1)(4i− 1)

4i2
· d6i−2U6i−1

1.2.3 · · · (6i− 2) dx6i−2
+ etc.

 .

This formula is the sum of a number i of different series, decreasing as the powers
of α, since U is of the order α

1
2i , and multiplied respectively by the transcendentals

k, k(1), etc., which it is, consequently, important to know; but it suffices for this to
know a number equal to the greatest whole number comprehended within i

2
.

Let us consider for this, the double integral∫∫
ds dx c−s(1+xn),

the [95]integrals being taken from s and x null to their infinite values. By integrating
first with respect to s, it is reduced to∫

dx

1 + xn
;
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but this last integral is π
n sin π

n
, n being any whole or fractional number; we have

therefore ∫∫
ds dx c−s(1+xn) =

π

n sin π
n

.

Let us integrate now this double integral, first with respect to x. By making sxn = tn,
it becomes ∫

dsc−s

s
1
n

∫
dt c−t

n

,

and if we make s = tn, we will have

n

∫
dt c−t

n

∫
tn−2dt c−t

n

=
π

n sin π
n

,

the integrals being taken from t null to t infinity. If we change n into n
r−1

, this equation
becomes

n2

∫
dt c−t

n
r−1

∫
t
n
r−1
−2dt c−t

n
r−1

=
(r − 1)2π

sin
(
r−1
n

)
π
,

and if in this new equation, we change t into tr−1, we will have

n2

∫
tr−2dt c−t

n

∫
tn−rdt c−t

n

=
π

sin
(
r−1
n

)
π
. (T)

We will have, by means of this formula, by making n = 2i, all the values of k,
k(1),. . . k(i−1), when we will know the half of it, if i is even, or the half less a half, if i
is odd.

By making n = 2 and r = 2, this formula gives this remarkable[96] result∫
dt c−t

2

= 1
2

√
π.

§25. We can by virtue of the generality of the analysis, extend the preceding re-
sults, to the case where t is imaginary. Let us consider the integral

∫
dx cos rx c−a

2x2 ,
taken from x null to x infinity. We can put it under this form

1
2

∫
dx c−a

2x2+rx
√
−1 + 1

2

∫
dx c−a

2x2−rx
√
−1;

The integral
∫
dx c−a

2x2+rx
√
−1 is equal to

c−
r2

4a2

∫
dx c

−
(
ax− r

√
−1

2a

)2
.

If we make

t = ax− r
√
−1

2a
,

it becomes

c−
r2

4a2

a

∫
dt c−t

2

:
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here the integral relative to t must be taken from t = − r
√
−1

2a
to t infinity, because

these two limits correspond to x null and to x infinity.
By making r negative in this formula, we will have the expression of the integral∫

dx c−a
2x2−rx

√
−1; but in this case, the limits of the integral relative to t are t = r

√
−1

2a
,

and t infinity; the union of these two integrals is therefore equal to

c−
r2

4a2

a

∫
dt c−t

2

,

the integral being taken from t = −∞ to t = ∞; for the first integral adds to the
second, that which is lacking to it in order to form the half of the integral taken

between the two infinite limits; now this latter integral is c
− r2

4a2
√
π

a
; we have therefore∫

dx cos rx.c−a
2x2 =

√
π

2a
c−

r2

4a2 .

The [97]analysis which just led us to this result, is based on the passage from the
real to the imaginary; for we treat the integrals relative to t and taken between two
limits, of which one is imaginary and the other is infinite, as if these limits were each
reals. But we can arrive to this result in the following manner.

Let us name y the integral
∫
x dx cos rx.c−a

2x2 , taken from x null to infinity; we
will have

dy

dr
= −

∫
xdx sin rx.c−a

2x2

=
1

2a2
sin rx.c−a

2x2 − r

2a2

∫
dx cos rx.c−a

2x2 ;

we will have therefore, by taking the integral from x null to x infinity,

dy

dr
+

r

2a2
y = 0.

The integral of this equation is

y = Bc−
r2

4a2 ;

B being an arbitrary constant which we will determine by observing that r being null,
we have

y = B =

∫
dx c−a

2x2 .

This last integral is, by the preceding section,
√
π

2a
; therefore B=

√
π

2a
; consequently∫

dx cos rx.c−a
2x2 =

√
π

2a
c−

r2

4a2 ;

that which is conformed to the result found above by the passage from the real to
the imaginary.

By differentiating 2n times with respect to r, we will have∫
x2ndx cos rx.c−a

2x2 = ±
√
π

2a

d2n

dr2n
c−

r2

4a2 ,



80 1. ON INTEGRATION BY APPROXIMATION

the + sign having place if n is even, and the − sign if n is odd. This[98] last equation
differentiated with respect to r, gives∫

x2n+1dx sin rx.c−a
2x2 = ∓

√
π

2a

d2n+1

dr2n+1
c−

r2

4a2 .

By integrating once with respect to r, the expression of
∫
dx cos rx.c−a

2x2 , we will
have ∫

dx sin rx

x
c−a

2x2 =

√
π

2a

∫
dr c−

r2

4a2 .

When a is null, r
a

becomes infinite, and the integral
∫

dr
2a
c−

r2

4a2 taken from r null,

becomes 1
2

√
π; therefore ∫

dx sin rx

x
=
π

2
.

§26. We can thence conclude the values of some singular definite integrals to
which I have been led, as we will see in the sequel, by the passage from the real to
the imaginary.

Let us consider the double integral∫∫
2dx y dy c−y

2(1+x2) cos rx,

the integrals being taken from x and y nulls to x and y infinity. By integrating first
with respect to y, it becomes ∫

dx cos rx

1 + x2
.

Let us now integrate it with respect to x. We have by the preceding section,∫
dx cos rx.c−y

2x2 =

√
π

2y
c
− r2

4y2 ;

that which gives ∫∫
2y dy dx cos rx.c−y

2(1+x2) =
√
π

∫
dy c

−y2− r2

4y2 .

The concern now is to have this last integral taken from y null to y infinity.
For that, let us give to it this form

cr
∫
dy c

−
(

2y2+r
2y

)2

.

r[99] being supposed positive, the quantity
(

2y2+r
2y

)2

has a minimum which corresponds

to y =
√

r
2
; that which gives 2r for this minimum; let therefore

y = 1
2
z + 1

2

√
z2 + 2r;
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y needing to be extended from y = 0 to y = ∞, z must be extended from z = −∞
to z =∞. This value of y gives

dy = 1
2
dz + 1

2

zdz√
z2 + 2r

.

By taking the integrals from z = −∞ to z =∞, we have∫
dz c−z

2

=
√
π;

∫
zdz c−z

2

√
z2 + 2r

= 0;

we have therefore∫
dy c

−
(

2y2+r
2y

)2

=

∫
dy c−z

2−2r = c−2r

∫
1
2
dz c−z

2

=
c−2r
√
π

2
;

hence ∫
dy c−y

2− r2

4y2 =
c−r
√
π

2
.

We will have generally by the same analysis, the integral∫
y±2ndy c−y

2− r2
4y2 ,

taken from y null to y infinity, and consequently also within the same limits, the
integral ∫

x±
n
2 dx c−ax−

b
x ,

a and b being positives and n being odd. This premised, we will have∫∫
2y dy dx cos rx.c−y

2(1+x2) =
π

2cr
;

we have therefore ∫
dx cos rx

1 + x2
=

π

2cr
.

By [100]differentiating with respect to r, we have∫
x dx sin rx

1 + x2
=

π

2cr
;

thence it is easy to conclude the value of the integral∫
(a+ bx)dx cos rx

m+ 2nx+ x2
,

taken from x = −∞ to x infinity, the denominator having no real factors in x of the
first degree. If we make

x = −n+ x′
√
m− n2,

this integral becomes, by supposing a−bn√
m−n2 = a′,∫

(a′ + bx′)dx′[cos(rx′
√
m− n2) cos rn+ sin(rx′

√
m− n2) sin rn]

1 + x′2
.
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This integral must be taken as that relative to x, from x′ = −∞ to x′ =∞; now the

integral
∫ x′ dx′ cos(rx′

√
m−n2)

1+x′2
, taken within these limits, is null; because its negative

elements destroy its corresponding positive elements; it is likewise of the integral∫ dx′ sin(rx′
√
m−n2)

1+x′2
; the preceding integral function is reduced therefore to∫

[a′ cos rn cos(rx′
√
m− n2) + b sin rn sin(rx′

√
m− n2)]x′ dx′

1 + x′2
.

We have by that which precedes,∫
dx′ cos(rx′

√
m− n2)

1 + x′2
= πc−r

√
m−n2

.

By differentiating this expression with respect to r, we have∫
x′ dx′ sin(rx′

√
m− n2)

1 + x′2
= πc−r

√
m−n2

;

we have therefore∫
(a+ bx)dx cos rx

m+ 2nx+ x2
= (a′ cos rn+ b sin rn)πc−r

√
m−n2

.

We[101] will find by the same analysis,∫
(a+ bx)dx sin rx

m+ 2nx+ x2
= (b cos rn− a′ sin rn)πc−r

√
m−n2

.

If we differentiate the first of these two equations, i− 1 times with respect to m, and
next 2s times with respect to r, we will have the expression of the integral∫

x2sdx(a+ bx) cos rx

(m+ 2nx+ x2)i
. (i)

Now M and N being rational and integer functions of x, the degree of the first being
supposed smaller than the one of the second, and N being supposed to have no
real factor of first degree; we will be able, as we know, to decompose the integral∫

M
N
dx cos rx, into different terms of the form (i); we will have therefore generally

the expression of this definite integral.
We will have in the same manner, the value of the integral∫

M

N
dx sin rx.

§27. Let us take now formula (B) of §23. The case of µ + 1 = 2 being most
ordinary, we are going to exhibit here the formulas which are relative there. Formula
(B) becomes, in this case,

∫
y dx = Y

∫
dt c−t

2


U + t

dU2

dx
+

t2

1.2

d2U3

dx2

+
t3

1.2.3

d3U4

dx3
+ etc.

 ; (b)
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here we have

t =
√

log Y − log y, v =
x− a√

log Y − log y
,

Y being the maximum of y, and a being the value of x which corresponds to this
maximum; U , dU

dx
, . . . are that which v, dv

dx
, etc. become, when we change x into a.

This formula gives, by integrating [102]from t = T to t = T ′,∫
y dx = Y

(
U +

1

2
· d

2U3

1.2 dx2
+

1.3

22
· d4U5

1.2.3.4 dx4
+ etc.

)∫
dt c−t

2

+
Y

2
c−T

2

(
dU2

dx
+ T

d2U3

1.2 dx2
+

(T 2 + 1)d3U4

1.2.3 dx3
+ etc.

)
;

− Y

2
c−T

′2
(
dU2

dx
+ T ′

d2U3

1.2 dx2
+

(T ′2 + 1)d3U4

1.2.3 dx3
+ etc.

) (c)

the integral
∫
dt c−t

2
being taken from t = T to t = T ′, and the integral

∫
y dx being

taken from the value of x which agrees with t = T , to that which agrees with t = T ′.
If we suppose T= −∞ and T ′ =∞, we will have generally

T nc−T
2

= 0, T ′nc−T
′2

= 0.

We have besides by §24
∫
dt c−t

2
=
√
π; the preceding formula becomes thus∫

y dx = Y
√
π

(
U +

1

2
· d

2U3

1.2 dx2
+

1.3

22
· d4U5

1.2.3.4 dx4
+ etc.

)
, (d)

the integral
∫
y dx being taken between the values of x which render y null, and Y

being the maximum of y, comprehended between these values. The different terms
of this formula will be determined easily by §23, and we will have

U =
1√
−d2 log y

2dx2

;

x needing to be changed into a, after the differentiations. We have

d2 log y =
ddy

y
− dy2

y2
;

the assumption of x = a makes dy disappear; we will have therefore

d2 log y

dx2
=

d2Y

Y dx2
,

Y and ddY
dx2

being that which y and ddy
dx2

, become when we change x into a. Thus, by
considering in formula (d) only the first term [103]of the series, we will have very nearly∫

y dx =

√
2πY

3
2√

−ddY
dx2

.

This expression of
∫
y dx will be so much more near, as the factors of y will be raised

to higher powers.
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Formula (c) contains the indefinite integral
∫
dt c−t

2
taken from t = T to t = T ′;

that which returns to taking it from t = 0 to the limits T and T ′, and by subtracting
the first integral from the second. It is not possible to obtain in finite terms, the
integral taken from t null; but we will obtain it in a manner quite near, if T is not
very large, by the following series:∫

dt c−t
2

= T − T 3

3
+

1

1.2
· T

5

5
− 1

1.2.3
· T

7

7
+

1

1.2.3.4
· T

9

9
− etc.

This series has the advantage of being alternately smaller or greater than the integral,
according as we arrest ourselves at a positive or negative term. This kind of series
that we can name series-limits, has thus the advantage to make known the limits of
the errors of the approximations. We have thus∫

dt c−t
2

= Tc−T
2

(
1 +

2T 2

1.3
+

(2T 2)2

1.3.5
+

(2T 2)3

1.3.5.7
+ etc.

)
.

These two series always terminate by being convergent, whatever be the value of T ;
but their convergence commences only at some terms distant from the first, if 2T 2

has a large value; it is appropriate therefore to use them only for some values equal or
less than four. For greater values, we will be able to make use of the following series,
which gives the value of the integral

∫
dt c−t

2
from t = T to t infinity,∫

dt c−t
2

=
c−T

2

2T

(
1− 1

2T 2
+

1.3

22T 4
− 1.3.5

23T 6
+ etc.

)
,

This series is again a series-limit. By subtracting it from 1
2

√
π, the value of the integral∫

dt c−t
2

taken from t null to t infinity, we will have the value of the integral taken
from t null to t = T . But[104] the series has the inconvenience to end by being divergent:
we obviate this inconvenience, by transforming it into a continued fraction, as I have
done in Book X of the Mécanique céleste, where I have found that by making q = 1

2T 2 ,
we have, the integral being taken from t = T to infinity.∫

dt c−t
2

=
c−T

2

2T

1

1 +
q

1 +
2q

1 +
3q

1 +
4q

1 +
5q

1 + etc.

In order to make use of this expression, it is necessary to reduce the continued fraction

1

1 +
q

1 +
2q

1 + etc.
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into fractions alternately greater and lesser than the entire fraction. The first two
fractions are 1

1
, 1

1+q
; the numerators of the following fractions are such, that the

numerator of the ith fraction is equal to the numerator of the (i − 1)st, plus to the
numerator of the (i−2)nd fraction, multiplied by (i−1)q; the denominators are formed
in the same manner. These successive fractions are

1

1
,

1

1 + q
,

1 + 2q

1 + 3q
,

1 + 5q

1 + 6q + 3q2
,

1 + 9q + 8q2

1 + 10q + 15q2
, etc.

When q or 1
2T 2 will be equal or less than 1

4
, these fractions will give in a prompt and

near manner the value of the entire fraction.

§28. We can easily extend the preceding analysis to double, triple, etc. integrals.
For that, let us consider the double integral

∫∫
y dx dx′, y being a function of x and

of x′, which contains factors [105]raised to some great powers. Let us suppose that the
integral relative to x′ must be taken from a function X of x to another function
X ′ + X of the same variable. By making x′ = X + tX ′, the integral

∫∫
y dx dx′ will

be changed into this here,
∫∫

y X ′dx dt; the integral relative to t needing to be taken
from t = 0 to t = 1: we can thus therefore reduce the integral

∫∫
y dx dx′ to some

limits constant and independent of the variables which it contains. We will suppose
that it has this form, and that the integral relative to x is taken from x = θ to x = $,
and that the integral relative to x′ is taken from x′ = θ′ to x′ = $′. This premised,
by naming Y that which y becomes when we change x and x′ into θ and θ′, we will
make

y = Y c−t−t
′
;

by supposing next

x = θ + u, x′ = θ′ + u′;

we will reduce log Y
y

to a series ordered with respect to the powers of u and of u′, and

we will have an equation of this form

Mu+M ′u′ = t+ t′,

in which M is the part of the development into series, of log Y
y

which contains all the

terms multiplied by u, and M ′ is the other part which contains the terms multiplied
by u′, and which are independent of u. We will divide the preceding equation, into
the two following

Mu = t, M ′u′ = t′;

whence we will deduce this, by the reversion of the series,

u = Nt, u′ = N ′t′,

N being a series ordered with respect to the powers of t and of t′, and N ′ being
uniquely ordered with respect to the powers of t′ and being independent of t; these
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two series are very convergent, if y contains very elevated factors. Now we have
dx dx′ = du du′; moreover we have

du =

(
dNt

dt

)
dt+

(
dNt

dt′

)
dt′,

du′ =

(
dN ′t′

dt′

)
dt′;

but[106] in the product du du′, the differential du is taken by making u′ constant, that
which renders t′ constant, or dt′ = 0; we have therefore

du =

(
dNt

dt

)
dt;

consequently

du du′ =

(
dNt

dt

)(
dN ′t′

dt′

)
dt dt′;

that which gives ∫
y dx dx′ = Y

∫ (
dNt

dt

)(
dN ′t′

dt′

)
dt dt′c−t−t

′
.

It is easy to integrate the different terms of the second member of this equation, since
the question is only of integrating the terms of the form

∫
tndt c−t.

If we take the integral relative to t′, from t′ null to t′ infinite, and if we name Q
the result of the integration, we will have∫

y dx′ = Y Q,

the integral relative to x′ being taken from x′ = θ′ to the value of x′, which corresponds
to t′ infinite. If we change next in Y and Q, θ′ into $′, and if we name Y ′ and Q′,
that which these quantities then become; we will have∫

y dx′ = Y ′Q′,

the integral being taken from x′ = $′ to the value of x′, which corresponds to t′

infinite.
By naming R and R′ the integrals

∫
Qdt and

∫
Q′dt, taken from t null to t infinity;

we will have ∫
ydx dx′ = Y R− Y ′R′,

the integral relative to x′ being taken from x′ = θ′ to x′ = $′, and the integral relative
to x being taken from x = θ to the value of x which corresponds to t infinite. If in
Y , R, Y ′, R′, we change θ into $, and if we name Y1, R1, Y ′1 , R′1, that which these
quantities then become; we will have∫

y dx dx′ = Y1R1 − Y ′1R′1,
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the integral [107]relative to x′ being taken between the limits θ′ and $′, and the integral
relative to x being taken from x = $ to the value x which corresponds to t infinite;
we will have therefore∫

y dx dx′ = Y R− Y ′R′ − Y1R1 + Y ′1R
′
1,

the integral relative to x being taken between the limits θ and $, and the integral
relative to x′ being taken between the limits θ′ and $′.

This formula corresponds to formula (A) of §22, which is relative only to a single
variable; it has, like it, the inconvenience of not being able to be extended to the
intervals near the maximum of y. It is necessary, for these intervals, to use a method
analogous to that of §23. Thus, by supposing that, in the interval comprehended
between θ and $, y becomes a maximum relative to x, so that the condition of this
maximum makes only the differential of y vanish, taken with respect to x, we will
make

y = Y c−t−t
′
,

Y being the value of y which corresponds to this maximum and to x′ = θ′; and if, in
the interval comprehended between the limits of the integrations relative to x and to
x′, y becomes a maximum, we will make

y = Y c−t
2−t′2 .

As we will have need principally, in the following, of the integral
∫
y dx dx′ taken

between the limits of x and x′ which render y null, we are going to discuss this case.
Let us consider the integral

∫
y dx dx′, y being a function of x, x′, which contains

factors raised to some great powers. If we name a, a′, the values of x, x′ which
correspond to the maximum of y, and if we name Y this maximum; we will make

y = Y c−t
2−t′2 ;

by supposing next

x = a+ θ, x′ = a′ + θ′;

we will substitute these values into the function log Y
y

, and by developing it into a

series ordered with respect to the powers and to [108]the products of θ, θ′, we will have
an equation of this form

Mθ2 + 2Nθθ′ + Pθ′2 = t2 + t′2.

This equation can be set under the form

M

(
θ +

N

M
θ′
)2

+

(
P − N2

M

)
θ′2 = t2 + t′2;

we will make therefore

t = θ
√
M +

Nθ′√
M
, t′ = θ′

√
P − N2

M
.



88 1. ON INTEGRATION BY APPROXIMATION

By differentiating these equations, we will have the differentials of this form

dt = L dθ + I dθ′

dt′ = L′dt+ I ′dθ′.

Now we have ∫
y dx dx′ =

∫
y dθ dθ′;

in the product dθ dθ′, dθ is taken by supposing θ′ constant, and then we have

dt = Ldθ;

next dt′ must be taken by regarding t constant, in the product dt dt′; then we have

0 = L dθ + I dθ′

dt′ = L′dθ + I ′dθ′;

that which gives

dt′ =
LI ′ − L′I

L
dθ′;

we have therefore
dt dt′ = dθ dθ′(LI ′ − L′I);

by this means, the integral
∫
y dθ dθ′ is transformed into this here:

Y

∫
dt dt′ c−t

2−t′2

LI ′ − L′I
.

The denominator LI ′ − L′I is a function of θ and of θ′ that we will reduce to a
function of t and t′, by means of the values of t and of t′ in θ and θ′. We will obtain

thus the preceding integral in a series of[109] terms of the form
∫
tnt′n

′
dt dt′ c−t

2−t′2 , the
integrals being taken from t and t′ equal to −∞, to their positive infinite values.
These integrals are nulls, when one of the two numbers n and n′ is odd; and in the
case where they are both even, n being equal to 2i, and n′ to 2i′, we have∫

t2it′2i
′
dt dt′ c−t

2−t′2 =
1.3.5 . . . (2i− 1).1.3.5 . . . (2i′ − 1)

2i.2i′
√
π.

If the powers to which the factors of y are raised, are very great; then we will
have, very nearly

M = −
(
ddY
dx2

)
2Y

, 2N = −
(
ddY
dx dx′

)
Y

, P = −
(
ddY
dx′2

)
2Y

,(
ddY
dx2

)
,
(
ddY
dxdx′

)
,
(
ddY
dx′2

)
, being that which

(
ddy
dx2

)
,
(

ddy
dx dx′

)
, and

(
ddy
dx′2

)
become when we

change x and x′ into a and a′ there; the integral
∫
y dx dx′ become thus very nearly,

2πY 2√(
ddY
dx2

) (
ddY
dx′2

)
−
(
ddY
dx dx′

)2
.



CHAPTER 2

On integration by approximation, of linear equations in the finite and
infinitely small differences

§29. We [110]have seen in §21, that the integrals of equations linear in the differences
among one variable s, of which the finite difference is supposed constant, and a
function ys of this variable, can be set under the form ys =

∫
xs φ dx, φ being a

function of x of the same nature as the generating function of the equation proposed
in the differences, and the integral being taken within some determined limits of x.
By supposing s a very great number, we will have by the preceding analysis, a very
near value of this integral, and consequently of ys. But this method of approximation
being very important in the theory of probabilities, we are going to develop it at
length.

Let us consider the equation in finite differences

S = Ays +B4ys + C42ys + etc., (1)

A, B, C being some rational and integral functions of s, to which we will give this
form

A = a+ a(1)s+ a(2)s(s− 1) + a(3)s(s− 1)(s− 2) + etc.,

B = b+ b(1)s+ b(2)s(s− 1) + b(3)s(s− 1)(s− 2) + etc.,

C = e+ e(1)s+ e(2)s(s− 1) + e(3)s(s− 1)(s− 2) + etc.,

etc.;

4ys is the finite difference of ys, s being supposed to vary by unity; 42ys, 43ys, etc.
are the second, third, etc. differences of ys; and S is a function of s. This premised, let
us represent ys by the integral

∫
xsφ dx, φ being a function of x which it is necessary

to determine, as well as [111]the limits of the integral. By designating xs by δy, we will
have

4ys =

∫
δy(x− 1)φ dx, 42ys =

∫
δy(x− 1)2φ dx, etc.;

we will have next

sxs = x
d δy

dx
, s(s− 1)xs = x2d

2 δy

dx2
, etc.;

89
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equation (1) in the differences becomes thus

S =

∫
φ dx



δy[a+ b(x− 1) + e(x− 1)2 + etc.]

+
x d δy

dx
[a(1) + b(1)(x− 1) + e(1)(x− 1)2 + etc.]

+
x2 d2 δy

dx2
[a(2) + b(2)(x− 1) + e(2)(x− 1)2 + etc.]

+ etc.


.

Instead of making ys equal to
∫
xs φ dx, we can suppose it equal to

∫
c−sxφ dx; then

we have

4ys =

∫
c−sx(c−x − 1)φ dx, 42ys =

∫
c−sx(c−x − 1)2φ dx, etc.

Moreover, if we designate c−sx by δy, we will have

sc−sx = −dδy
dx

, s2c−sx =
d2δy

dx2
, etc.;

by setting therefore the coefficients of equation (1) under this form,

A = a+ a(1)s+ a(2)s2 + etc.,

B = b+ b(1)s+ b(2)s2 + etc.,

C = e+ e(1)s+ e(2)s2 + etc.,

etc.

this equation will take the form

S =

∫
φ dx



δy[a+ b(c−x − 1) + e(c−x − 1)2 + etc.]

− d δy

dx
[a(1) + b(1)(c−x − 1) + e(1)(c−x − 1)2 + etc.]

+
d2 δy

dx2
[a(2) + b(2)(c−x − 1) + e(2)(c−x − 1)2 + etc.]

− etc.


.

By[112] representing generally ys by
∫
δy φ dx, the two forms that equation (1) takes under

the assumption δy = xs and of δy = c−sx will be comprehended in the following

S =

∫
φ dx

(
M δy +N

d δy

dx
+ P

d2 δy

dx2
+Q

d3 δy

dx3
+ etc.

)
,

M , N , P , Q, etc. being functions of x independent of the variable s, which enters into
the second member of this equation, only as far as δy and its differences are functions
of it.
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Now, in order to satisfy it, we will integrate by parts, its different terms; now we
have ∫

d δy

dx
Nφdx = δyNφ−

∫
δy d(Nφ),∫

d2 δy

dx2
Pφdx =

d δy

dx
Pφ− δyd(Pφ)

dx
−
∫
δy
d2(Pφ)

dx2
dx,

etc.;

the preceding equation becomes thus

S =

∫
δy dx

(
Mφ− d(Nφ)

dx
+
d2(Pφ)

dx2
+
d3(Qφ)

dx3
+ etc.

)
+ C + δy

(
Nφ− d(Pφ)

dx
+
d2(Qφ)

dx2
+ etc.

)
+
d δy

dx

(
Pφ− d(Qφ)

dx
+ etc.

)
+
d2 δy

dx2
(Qφ− etc.)

+ etc.,

C being an arbitrary constant.
Since the function φ must be independent of s, and consequently of δy, we must

separately equate to zero, the part of this equation, affected with the
∫

sign; that
which divides the preceding equation into the two following,

0 = Mφ− d(Nφ)

dx
+
d2(Pφ)

dx2
+
d3(Qφ)

dx3
+ etc., (2)

[113]

S = C + δy

(
Nφ− d(Pφ)

dx
+
d2(Qφ)

dx2
− etc.

)
+
d δy

dx

(
Pφ− d(Qφ)

dx
+ etc.

)
;

+
d2 δy

dx2
(Qφ− etc.)

+ etc.

(3)

The first of these equations serves to determine the function φ; and the second deter-
mines the limits in which the integral

∫
δyφ dx is comprehended.

We can observe here that equation (2) is the equation of condition which must
hold, in order that the differentiable function(

M δy +N
d δy

dx
+ P

d2 δy

dx2
+ etc.

)
φ dx
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is an exact differential, whatever be δy; and in this case, the integral of this function
is equal to the second member of equation (3); φ is therefore the factor in x alone
which must multiply the equation

0 = M δy +N
d δy

dx
+ P

d2 δy

dx2
+ etc.,

in order to render it integrable. If φ were known, we could lower this equation by one
degree; and, reciprocally, if this equation were lowered by a degree; the coefficient
of δy, in its differential divided by Mdx, would give a value of φ; this equation and
equation (2) are consequently linked between them, in a manner that an integral of
one gives an integral of the other.

The value of φ being supposed known, we will have that of ys by means of a
definite integral. The integration of equation (1) in the finite differences, is therefore
thus brought back to the integration of equation (2) in the infinitely small differences,
and to a definite integral.

Let us consider presently equation (3), and let us make first S = 0. If we suppose

that δy, d δy
dx

, d2 δy
dx2

, etc. become nulls, by means of one same value of x, which we
will designate by h, and which is independent of s, it is clear that by supposing C
null, this[114] value will satisfy equation (3), and that thus it will be one of the limits
between which we must take the integral

∫
δyφ dx. The preceding supposition holds

clearly, in the two cases of δy = xs and of δy = e−sx; in the first case, the equation
x = 0, and in the second case, the equation x = ∞, render null the quantities δy,
d δy
dx

, d2 δy
dx2

, etc. In order to have some other limits of the integral
∫
δyφ dx, we will

observe that these limits needing to be independent of s, it is necessary in equation
(3), to equate separately to zero, the coefficients of δy, d δy

dx
, etc.; that which gives the

following equations:

0 = Nφ− d(Pφ)

dx
+
d2(Qφ)

dx2
− etc.,

0 = Pφ− d(Qφ)

dx
+ etc.,

0 = Qφ− etc.,

etc.

These equations are in number i, if i is the order of the differential equation (2); we
will be able therefore to eliminate, by their means, all the arbitrary constants of the
value of φ, less one; and we will have a final equation in x, of which the roots will be
as many as limits of the integral

∫
δyφ dx. We will seek by this equation, a number

of different values of x, equal to the degree of the differential equation (1). Let q,
q(1), q(2), etc. be these values; they will give as many different values of φ, since the
arbitrary constants of φ, less one, are determined as functions of these values. We
could thus represent the values of φ, corresponding to the limits q, q(1), q(2), etc., by
Bλ, B(1)λ(1), B(2)λ(2), etc., B, B(1), B(2), etc. being some arbitrary constants; and we
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will have for the complete value of ys,

ys = B

∫
δyλ dx+B(1)

∫
δyλ(1)dx+B(2)

∫
δyλ(2) dx+ etc.;

the integral of the first term being taken from x = h to x = q, that of the second
term being taken from x = h to x = q(1), and thus of the rest. We will determine the
constants B, B(1), etc., by means of so many particular values of ys.

Let [115]us suppose now that in equation (3), S is not null. If we take the integral∫
δyφ dx from x = h to x equal to any quantity p; it is clear that we will have C = 0,

and that S will be that which the function

δy

(
Nφ− d(Pφ)

dx
+ etc.

)
+
d δy

dx
(Pφ− etc.)

+etc.;

becomes when we change x into p. Thus, for the success of the preceding method, it
is necessary that S have the form of this function. Let us make, for example, δy = xs,
and

S = ps[l + l(1)s+ l(2)s(s− 1) + l(3)s(s− 1)(s− 2) + etc.];

by comparing this value of S to the preceding, we will have

l = Nφ− d(Pφ)

dx
+ etc.,

l(1)p = Pφ− etc.,

etc.,

x needing to be changed into p in the second members of these equations of which the
number is equal to the degree of the differential equation (2). We could therefore, by
their means, determine the arbitrary constants of the value of φ; and if we designate
by ψ, that which φ becomes, when we have thus determined its arbitraries, we will
have

ys =

∫
xsψ dx.

Thence and from this that equation (1) is linear, it is easy to conclude that if S is
equal to

ps[l + l(1)s+ l(2)s(s− 1) + etc.]

+ ps1[l1 + l
(1)
1 s+ l

(2)
1 s(s− 1) + etc.]

+ etc.

By naming ψ′, etc., that which ψ becomes when we change successively [116]p, l, l(1), etc.,

into p1, l1, l
(1)
1 , etc., into p2, etc.; we will have

ys =

∫
xs ψ dx+

∫
xs ψ′ dx+ etc.;
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the first integral being taken from x = h to x = p, the second integral being taken
from x = h to x = p1, etc. This value of ys contains no arbitrary constant; but, by
joining it to that which we have found previously for the case of S null, we will have
the complete expression of ys.

§30. Let us suppose now that we have any number of linear equations in the
finite differences among a like number of variables ys, y

′
s, y

′′
s , etc., and of which the

coefficients are rational and integral functions of s. Let us make then

ys =

∫
xsφ dx, y′s =

∫
xsφ′ dx, y′′s =

∫
xsφ′′ dx, etc.;

these different integrals being taken between the same limits determined and inde-
pendent of s. We will have

4ys =

∫
xs(x− 1)φ dx, 42ys =

∫
xs(x− 1)2φ dx, etc.;

4y′s =

∫
xs(x− 1)φ′ dx, 42y′s =

∫
xs(x− 1)2φ′ dx, etc.;

etc.

The equations of which there is concern, will be able to be set under the following
forms

S =

∫
xsz dx, S ′ =

∫
xsz′ dx, S ′′ =

∫
xsz′′ dx, etc.,

S, S ′, S ′′, etc. being functions of s alone, and z, z′, z′′, etc., being rational and integral
functions of the same variable, and of x, φ, φ′, φ′′, etc., in which φ, φ′, etc., are under
a linear form.

Let us consider first the equation

S =

∫
xsz dx,

we have

z = Z + s4Z +
s(s− 1)

1.2
42Z +

s(s− 1)(s− 2)

1.2.3
43Z + etc.;

the[117] characteristic 4 of the finite differences being relative to the variable s, and Z,
4Z, etc. being that which z, 4z, etc. become, when we suppose s = 0. We will have
therefore

S =

∫
xsdx

(
Z + s4Z +

s(s− 1)

1.2
42Z + etc.

)
.

If we make xs = δy, we will have

sxs = x
d δy

dx
, s(s− 1)xs = x2d

2 δy

dx2
, etc.;

the preceding equation becomes thus

S =

∫
dx

(
Z δy + x4Z

d δy

dx
+
x242Z

1.2

d2 δy

dx2
+ etc.

)
,
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whence we deduce by integrating by parts, as in the preceding section, the following
two equations,

0 = Z− d(x4Z)

dx
+
d2(x242Z)

1.2 dx2
− etc., (a)

S = C + δy

(
x4Z− d(x242Z)

1.2 dx
+ etc.

)
+
d δy

dx

(
x242Z

1.2
− etc.

)
+ etc.,

(b)

C being an arbitrary constant. The equation

S ′ =

∫
xs z′ dx,

treated in the same manner, will give

0 = Z′ − d(x4Z′)

dx
+
d2(x242Z′)

1.2 dx2
− etc., (a′)

S ′ = C ′ + δy

(
x4Z′ − d(x242Z′)

1.2 dx
+ etc.

)
+
d δy

dx

(
x242Z′

1.2
− etc.

)
+ etc.

(b′)

the equations S ′′ =
∫
xs z′′ dx, S ′′′ =

∫
xs z′′′ dx, etc., will produce some similar

equations, which we will designate by (a ′′), (b ′′); (a ′′′), (b ′′′); etc.
Equations [118](a), (a ′), (a ′′), etc. will determine the variables φ, φ′, φ′′, etc. as function

of x; and the equations (b), (b ′), (b ′′), etc. will determine the limits within which we
must take the integrals

∫
xsz dx,

∫
xsz′ dx, etc. One of these limits is x = 0. In order

to have the others, we will suppose first S, S ′, S ′′, etc. nulls; the constants C, C ′, C ′′,
etc. will be consequently nulls in the equations (b), (b ′), etc., since the supposition of
x = 0 renders null the other terms of these equations. By equating next separately
to zero, the coefficients of δy, d δy

dx
, etc. in these same equations, we will have the
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following,

0 = x4Z− d(x242Z)

1.2 dx
+ etc.,

0 =
x242Z

1.2
− etc.,

etc.;

0 = x4Z′ − d(x242Z′)

1.2 dx
+ etc.,

0 =
x242Z′

1.2
− etc.,

etc.;

etc.

We will eliminate, by means of these equations, all the arbitrary constants, less
one, of the values of φ, φ′, φ′′, etc., and we will arrive to one final equation in x,
of which the roots are the limits of the integrals

∫
xsφ dx,

∫
xsφ′ dx, etc. We will

determine as many of these limits as it is necessary, in order that the values of ys, y
′
s,

etc. are complete.
Let us suppose now that S is not null, and that it is equal to

ps[l + l(1)s+ l(2)s(s− 1) + etc.].

By making C = 0 in equation (b) and by putting xs in the place of δy, we will have

ps[l + l(1)s+ l(2)s(s− 1) + etc.] =xs
(
x4Z− d(x242Z)

1.2 dx
+ etc.

)
+ sxs

(
x42Z

1.2
− etc.

)
+ etc.

whence[119] we conclude first x = p, so that the integrals
∫
xsφ dx,

∫
xsφ′ dx, etc., must

be taken from x = 0 to x = p. The comparison of the coefficients of s, s(s− 1), etc.,
will give next as many equations between l, l1), etc. and the arbitrary constants of the
expressions of φ, φ′, etc. The equating to zero of these same coefficients, in equations
(b ′), (b ′′), etc., will give some new equations among these arbitraries that we could
thus determine by means of all these equations. We will have, by this process, the
particular values of ys, which satisfy in the case where S ′, S ′′, etc. being nulls, S has
the form that we just supposed to it, or, more generally, is equal to any number of
functions of the same form.

Similarly, if we suppose that S, S ′′, etc. being nulls, S ′ is the sum of any number
of similar functions, we will determine the particular values of ys, y

′
s, etc., which

satisfy this case, and thus of the rest. By joining next all these values, to those which
we will have determined in the case where S, S ′, etc. are nulls, we will have the
complete expressions of ys, y

′
s, etc. corresponding to the case where S, S ′, . . . have

the preceding forms.
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It is easy to extend this method to the equations in infinitely small differences,
or in finite parts, and in infinitely small parts, and in which the coefficients of the
principal variables and of their differences, are rational functions of s, that we can
always render integral, by making the denominators vanish. If we designate, as above,
by ys, y

′
s, etc., the principal values of these equations, and if we make

ys =

∫
xsφ dx, y′s =

∫
xsφ′ dx, etc.;

we will have

dys
ds

=

∫
xsφ dx log x,

d2ys
ds2

=

∫
xsφ dx (log x)2, etc.;

4ys =

∫
xs(x− 1)φ dx, 42ys =

∫
xs(x− 1)2φ dx, etc.,

etc.;

dy′s
ds

=

∫
xsφ′ dx log x, etc.,

etc.;

The [120]proposed equations will take thus the following forms,

S =

∫
xsz dx, S ′ =

∫
xsz′ dx, etc.

In treating them by the preceding method, we will determine the values of φ, φ′, etc.
as functions of x, and the limits of the integrals

∫
xsφ dx,

∫
xsφ′ dx, etc.

By making

ys =

∫
c−sxφ dx, y′s =

∫
c−sxφ′ dx, etc.;

we would arrive to some similar equations. In many circumstances, these forms of ys,
y′s, etc. will be more suitable than the preceding.

§31. The principal difficulty that the application of the preceding method presents,
consists in the integration of the linear differential equations which determine φ, φ′,
φ′′, etc. in x. The degrees of these equations depend not at all on those of the equations
in the differences in ys, y

′
s, etc.; they depend uniquely on the highest powers of s, in

their coefficients. By considering therefore only a single variable ys, the differential
equation in φ will be of a degree equal to the highest exponent of s, in the coefficients
of the equation in the differences in ys. The differential equation in φ will be thus
resolvable generally only in the case where the highest exponent is unity. Let us
develop this case quite at length.

Let us represent the differential equation in ys by the following,

0 = V + sT,
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V and T being linear functions of the principal variable ys and of its differences, either
finite, or infinitely small. If we make

ys =

∫
δy φ dx,

δy being equal to xs, or to c−sx, it will become

0 =

∫
φ dx

(
Mδy +N

d δy

dx

)
;

M and N being functions of x; we will have therefore, by integrating by[121] parts as in
the preceding section, the following two equations,

0 = Mφ− d(Nφ)

dx
,

0 = C +Nφδy.

The first gives by integrating it,

φ =
H

N
c
∫
M
N
dx,

H being an arbitrary constant. Let us suppose C null in the second equation; x = 0
or x =∞ will be one of the limits of the integral

∫
δyφ dx, according as we take xs or

c−sx for δy. We will determine the other limits, by resolving the equation 0 = Nφδy.
Let us apply to this integral, the method of approximation of §23. If we designate

by a, the value of x, given by the equation

0 = d(N φδy),

and by Q that which the function Nφδy becomes, when we change x into a in it, we
will make

N φδy = Qc−t
2

,

that which gives

t =
√

logQ− log(Nφ)− log δy.

log δy being of order s; if we suppose s very great, and if we make 1
s

= α, α will be

a very small coefficient. The quantity under the radical will take this form (x−a)2

α
X,

X being a function of x− a and of α; we will have therefore, by the reversion of the
series, the value of x in t, by a series of this form

x = a+ α
1
2ht+ αh(1)t2 + α

3
2h(2)t3 + etc.

Now, ys being equal to
∫
δy φ dx, if we substitute into this integral, in the place

of φ δy, its value Qc−t
2

N
, it will become Q

∫
dx
N
c−t

2
; and if in dx

N
, we substitute for x, its

preceding value[122] in t, we will have ys by a series of this form,

ys = α
1
2Q

∫
dt c−t

2

[l + α
1
2 l(1)t+ αl(2)t2 + α

3
2 l(3)t3 + etc.],
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the limits of the integral relative to t needing to be determined by the condition that
at these limits, the quantity Nφδy, or its equivalent Qc−t

2
, be null; whence it follows

that these limits are t = −∞ and t =∞; we will have therefore, by §24,

ys = α
1
2Q
√
π

(
l +

1

2
αl(2) +

1.3

22
α2l(4) +

1.3.5

23
α3l(6) + etc.

)
.

This expression has the advantage of being independent of the determination of the
limits in x, which render null the function Nφδy; so that it subsists in the case even
where this function, equated to zero, has no real roots; it subsists further in the case
of s negative. This remark analogous to that which we have made in §25, and which
holds, as it, to the generality of analysis, is very remarkable in this that it gives
the means to extend the preceding formula, to a great number of cases to which the
method has led us, seems first to be refused.

This formula contains only the arbitrary constant H, and consequently, it is only
a particular integral of the differential equation proposed in ys, if this equation is of
an order superior to unity. In order to have the complete integral in this case, it will
be necessary to seek in the equation 0 = d(Nφδy), as many different values of x, as it
has units in this order. Let a, a′, a′′, etc. be these values; we will change successively
in the preceding expression of ys, a into a′, a′′, etc., and H into H ′,H ′′, etc.; we will
have as many particular values which will each contain one arbitrary, and of which
the sum will be the complete expression of ys.

When the coefficients of the proposed in ys contain powers of s superior to unity;
we can sometimes decompose this equation into many others which contain only that
first power. If we have, for example, the equation

ys+1 = Mys,

M [123]being a rational and integral function of s; we will set this function under the form

q(s+ b)(s+ b′)(s+ b′′).etc.

(s+ f)(s+ f ′)(s+ f ′′).etc.
;

we will make next

zs+1 = q(s+ b)zs, z′s+1 = (s+ b′)z′s, etc.;

ts+1 = q(s+ f)ts, t′s+1 = (s+ f ′)t′s, etc.

It is easy, by that which precedes, to determine zs, ts, etc. as definite integrals, and
to reduce these integrals into convergent series, when s is a great number. We will
have next

ys =
zsz
′
s.etc.

tst′s.etc.
.

In many cases where the differential equation in φ being of an order superior to
the first, cannot be integrated rigorously, we can determine φ by a very convergent
approximation; by substituting next this value of φ into the integral

∫
xsφ dx, we can

obtain in a manner quite close the value of this integral.
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§32. The analysis exposed in the preceding sections, is extended further to the
equations in partial differences, finite and infinitely small. For this, let us consider first
the equation linear in the partial differences of which the coefficients are constants.
In designating by ys,s′ the principal variable, s and s′ being the two variables of which
it is a function, and representing this equation by this one, V = 0, V being a linear
function of ys,s′ and of its partial differences, we will suppose

ys,s′ =

∫
xsx′s

′
φ dx,

φ being a function of x; then the equation V = 0 takes this form

0 =

∫
Mxsus

′
φ dx,

M being a function of x and of x′, with neither s nor s′. In equating therefore M
[124] to zero, we will have the value of x′ in x, and this value substituted into the integral∫

xsx′s
′
φ dx, will give the general expression of ys,s′ , in which φ is an arbitrary function

of x; the limits of the integral being independent of x, but moreover arbitraries. If
the proposed equation 0 = V , is of order n, it will be necessary, by means of the
equation M = 0, to determine a number n of values of x′ in x. The sum of the n
values of

∫
xsx′s

′
φ dx which will result from it, and in which we could set for φ the

different arbitrary functions of x, will be the expression of ys,s′ .
There results from that which we have said in the first part of this Book, that the

equation M = 0 is the generating equation of the proposed equation V = 0.
Let us consider presently the equation in the partial differences

0 = V + sT + s′R,

in which V , T , and R are any linear functions of ys,s′ and of its partial differences,
either finite or infinitely small. If we suppose, as above

ys,s′ =

∫
xsx′s

′
φdx,

x′ being a function of x which the concern is to determine. we will have an equation
in this form

0 =

∫
xsx′s

′
φ dx(M +Ns+ Ps′),

M , N , and P being functions of x and x′, with neither s nor s′; now we have

d(xsx′s
′
)

dx
= xsx′s

′
(
s

x
+
s′dx′

x′dx

)
;

therefore if we determine x′ by this equation

dx′

x′
=
P dx

Nx
,

we will have

xsx′s
′
(Ns+ Ps′) = Nx

d(xsx′s
′
)

dx
;
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consequently, if we designate xsx′s
′
by δy, and if we suppose that we have substituted

into M and N for x′ it value in x, we [125]will have

0 =

∫
φ dx

(
M δy +Nx

d δy

dx

)
.

This equation integrated by parts, as in the preceding sections, gives the following
two,

0 = Mφ− d(Nxφ)

dx
;

0 = Nxφ δy.

The first determines φ in x, and the second gives the limits of the integral
∫
δy φ dx.

This value of ys,s′ containing no arbitrary function at all, is only a particular
integral of the proposed equation in the partial differences. In order to render it
complete, we will observe that the integral of the equation

dx′

x′
=
Pdx

Nx
,

which determines x′ in x, is x′ = Q, Q being a function of x, and of one arbitrary
constant that we will designate by u; in representing therefore by ψ, an arbitrary
function of u, the proposed equation in the partial differences will be satisfied by this
value of ys,s′ ,

ys,s′ =

∫∫
xsQs′ψ dx du;

the integral relative to x being taken between the limits determined by the equation
0 = Nφδy, and the integral relative to u being taken between any limits whatsoever.
This value of ys,s′ will be therefore the complete integral of the proposed equation in
the partial differences, if this here is of first order; but, if it is of a superior order, it
will be necessary, by means of the equation 0 = Nφδy, to determine as many values
of x in u as there are units in that order. The union of the values of ys,s′ to which we
will arrive, will be the complete expression of ys,s′ .





CHAPTER 3

Application of the preceding method, to the approximation of diverse
functions of very great numbers.

Among [126]the diverse functions to which these methods can be applied, I am going
to consider the products of numbers, the developments of the polynomials, and the
infinitely small and finite differences of functions, these diverse quantities being those
which are present most often in the analysis of hazards.

Concerning the approximation of the products composed of a great number of
factors, and the terms of the polynomials raised to great powers.

§33. Let us propose to integrate the equation in finite differences

0 = (s+ 1)ys − ys+1.

If we suppose

ys =

∫
xsφdx;

we will have, by designating xs by δy,

0 =

∫
φ dx

[
(1− x)δy + x

d δy

dx

]
;

whence we deduce by integrating by parts, following the previous method, the follow-
ing two equations,

0 = φ(1− x)− d(xφ)

dx
,

0 = xs+1φ.

The first equation gives, by integrating it,

φ = Ac−x;

and [127]the second gives, in order to determine the limits of the integral
∫
xsφ dx,

0 = xs+1c−x;

these limits are consequently x = 0 and x =∞. Thus we have

ys = A

∫
xsdx c−x,

the integral being taken from x = 0 to x infinity, and A being an arbitrary constant.

103
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In order to have this integral in a series, we will determine, conformably to the
method exposed in §23, the value of x, which renders xsc−x a maximum; this value
is s. We will make therefore, according to the method cited,

xsc−x = ssc−sc−t
2

.

In supposing x = s+ θ, this equation becomes(
1 +

θ

s

)s
c−θ = c−t

2

;

hence

t2 = −s log

(
1 +

θ

s

)
+ θ =

θ2

2s
− θ3

3s2
+

θ4

4s3
− etc.;

that which gives by the reversion of the series

θ = t
√

2s+
2

3
t2 +

t3

9
√

2s
+ etc.;

consequently

dx = dθ = dt
√

2s

(
1 +

4t

3
√

2s
+
t2

6s
+ etc.

)
;

the function
∫
xs dx c−x will become therefore

ssc−s
∫
dt c−t

2√
2s

(
1 +

4t

3
√

2s
+
t2

6s
+ etc.

)
.

The integral relative to x needing to be taken from x null to x infinity, the integral
relative to t must be taken from t = −∞ to t =∞. By integrating as in §31, we will
have

ys = Ass+
1
2 c−s
√

2π

(
1 +

1

12s
+ etc.

)
.

We[128] can determine quite simply the factor 1 + 1
12s

+ etc. in this manner. Let us
designate by

1 +
B

s
+
C

s2
+ etc.;

that which gives

ys = Ass+
1
2 c−s
√

2π

(
1 +

B

s
+
C

s2
+ etc.

)
.

By substituting this value of ys into the proposed equation

ys+1 = (s+ 1)ys;

we will have(
1 +

1

s

)s+ 1
2

c−1

(
1 +

B

s+ 1
+

C

(s+ 1)2
+ etc.

)
= 1 +

B

s
+
C

s2
+ etc.,
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or (
1 +

B

s
+
C

s2
+ etc.

)[
c1−(s+ 1

2) log[1+ 1
s) − 1

]
= −B

s2
+
B − 2C

s3
− etc.;

now we have

1−
(
s+

1

2

)
log

(
1 +

1

s

)
= 1−

(
s+

1

2

)(
1

s
− 1

2s2
+

1

3s3
− 1

4s4
+ etc.

)
= − 1

12s2
+

1

12s3
− etc..

We will have therefore, by observing that c−
1

12s2
+etc. = 1− 1

12s2
+ etc.,(

1 +
B

s
+
C

s2
+ etc.

)(
− 1

12s2
+

1

12s3
− etc.

)
= −B

s2
+
B − 2C

s3
− etc.;

that which gives, by comparing the similar powers of 1
s
,

B =
1

12
, C =

1

288
, etc.;

therefore

ys = Ass+
1
2 c−s
√

2π

(
1 +

1

12s
+

1

288s2
+ etc.

)
.

We [129]will determine the arbitrary constant A, by means of a particular value of ys; by
supposing, for example, that, s being equal to µ, we have ys = Y ; we will have

Y = A

∫
xµ dx c−x,

that which gives

A =
Y∫

xµ dx c−x
;

consequently,

ys =
Y ss+

1
2 c−s
√

2π∫
xµ dx c−x

(
1 +

1

12s
+

1

288s2
+ etc.

)
. (q)

We see now of what nature is the function ys. For this, it is necessary to integrate
the equation in the finite differences

ys+1 = (s+ 1)ys.

We find easily that its integral is

ys = Y (µ+ 1)(µ+ 2)(µ+ 3) . . . s;



106 3. APPLICATION OF THE PRECEDING METHODS

we will have therefore, by comparing this expression to formula (q),

(µ+ 1)(µ+ 2)(µ+ 3) . . . s

=
ss+

1
2 c−s
√

2π
(
1 + 1

12s
+ 1

288s2
+ etc.

)∫
xµ dx c−x

. (q′)

If we make µ = 0, we will have
∫
xµdx c−x = 1; hence

1.2.3 . . . s = ss+
1
2 c−s
√

2π

(
1 +

1

12s
+

1

288s2
+ etc.

)
.

If we make µ = m
n

, m being less than n; we will have

s = s′ +
m

n
,

s′ being a whole number; thus

ss+
1
2 =

(
s′ +

m

n

)s′+m
n

+ 1
2

= s′s
′+m

n
+ 1

2 c(s
′+m

n
+ 1

2) log(1+ m
ns′ );

now[130] we have(
s′ +

m

n
+

1

2

)
log
(

1 +
m

ns′

)
=

(
s′ +

m

n
+

1

2

)(
m

ns′
− m2

2n2s′2
+ etc.

)
=
m

n
+
m2 +mn

2n2s′
+ etc.

We have moreover, by making x = tn,∫
x
m
n dx c−x =

m

n

∫
x
m
n
−1dx c−x = m

∫
tm−1dt c−t

n

,

the integral relative to t being taken from t = 0 to t infinity. In substituting these
values into formula (q ′), it will give

m(m+ n)(m+ 2n)(m+ 3n) · · · (m+ s′n)

=
ns
′
s′s
′+m

n
+ 1

2 c−s
′√

2π
(

1 + n2+6mn+6m2

12n2s′
+ etc.

)
∫
tm−1dt c−tn

; (q ′′)

so that the approximate value of the product of all the terms of the arithmetic progres-
sion m, m+n, m+2n, etc. depend on the three transcendentals c, π and

∫
tm−1dt c−t

n
.

If in this equation we make for greater simplicity, n = 1, that which changes m
into µ, and if we observe that

∫
tµ−1dt c−t = 1

µ

∫
tµdt c−t; we will have

(1 + µ)(2 + µ) . . . (s′ + µ) = s′s
′+µ+ 1

2 c−s
′√

2π
1 + 1+6µ+6µ2

12s′
+ etc.∫

tµdt c−t
.

By changing µ into −µ, we will have

(1− µ)(2− µ) . . . (s′ − µ) = s′s
′−µ+ 1

2 c−s
′√

2π
1 + 1−6µ+6µ2

12s′
+ etc.∫

t−µdt c−t
.
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By multiplying these two equations by one another, we will have

(1− µ2)(4− µ2) . . . (s′2 − µ2) =
s′2s

′+1c−2s′ .2π
(

1 + 1+6µ2

6s′
+ etc.

)
∫
t−µdt c−t

∫
tµdt c−t

.

Equation [131](T) of §24 gives

n3

∫
tn+r−2dt c−t

n

∫
tn−rdt c−t

n

= −(r − 1)π

sin r−1
n
π
.

By making n = 1 and µ = r − 1, we have∫
tµdt c−t

∫
t−µdt c−t =

µπ

sinµπ
;

we have therefore

sinµπ = 1
2
µ(1− µ2)(4− µ2) · · · (s′2 − µ2)

(
1− 1 + 6µ2

6s′
+ etc.

)
s′−2s′−1c2s′ .

If we make µ infinitely small, this equation gives

2π = 12.22.32 . . . s′2
(

1− 1

6s′
+ etc.

)
s′−2s′−1c2s′ ;

dividing therefore the preceding equations by this here, we will have

sinµπ = µπ(1− µ2)

(
1− µ2

4

)(
1− µ2

9

)
· · ·
(

1− µ2

s′2

)(
1− µ2

s′
+ etc.

)
.

If we make s′ infinity, we have for the expression of sinφ, φ being equal to µπ, the
infinite product

φ

(
1− φ2

π2

)(
1− φ2

22π2

)(
1− φ2

32π2

)(
1− φ2

42π2

)
etc.;

the expression of sinφ is thus decomposable into an infinity of factors; that which we
know besides.

By supposing φ imaginary and equal to φ′
√
−1, sinφ becomes c−φ

′−cφ′

2
√
−1

; we have

therefore

cφ
′ − c−φ′ = 2φ′

(
1 +

φ′2

π2

)(
1 +

φ′2

22π2

)(
1 +

φ′2

32π2

)
· · ·

· · ·
(

1 +
φ′2

s′2π2

)(
1 +

φ′2

s′π2
+ etc.

)
;

and by making s′ infinite, we see that cφ
′ − c−φ′ is equal to the infinite product

2φ′
(

1− φ′2

π2

)(
1− φ′2

22π2

)
etc.

We [132]will have, by a similar process, the continued product of factors of which the
general term is an integral or fractional rational function of s. But the expression
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to which we will arrive, will be able to contain other transcendentals dependent on
definite integrals of the form

∫
xµdx c−x.

We can observe here that these products being set under the form
∫
xsφ dx, their

differentiation with respect to the variable s, presents a clear idea, and then we have
for this differential,

∫
xsφ dx log x.

The expressions of ys given by formulas (q) and (q ′) of the preceding section, yet
hold according to the remark of §30, in the case where s and µ are negatives, although
in this case, the equation

0 = xs+1c−x,

which determines the limits of the definite integral which represents the value of ys,
does not have many real roots. If in formula (q) of the preceding section, we change
s into −s, and µ into −µ, it becomes

y−s =
Y
√
−1cs

√
2π
(
1− 1

12s
+ 1

288s2
− etc.

)
(−1)sss−

1
2

∫
dx c−x

xµ

,

Y being the value of ys which corresponds to s = −µ. All difficulty is reduced to
integrating

∫
dx c−x

xµ
. In order to arrive there, it is necessary to follow the same process

of which we have made use in order to reduce into series, the integral
∫
e−xxs dx. We

will make therefore

x = −µ+$
√
−1,

−µ being the value of x given by the equation

0 = d
c−x

xµ
;

we will have thus ∫
dx c−x

xµ
=
cµ
√
−1

(−1)µ

∫
d$c−$

√
−1

(µ−$
√
−1)µ

.

The[133] integral relative to x needing to be extended between the two limits which render

null the quantity c−x

xµ
, it is clear that the integral relative to $ must be extended from

$ = −∞ to $ =∞; by joining therefore the two quantities c−$
√
−1

(µ−$
√
−1)µ

and c$
√
−1

(µ+$
√
−1)µ

,

which correspond to the same values of $, affected with contrary signs, we will have

∫
dx c−x

xµ
=
cµ
√
−1

(−1)µ

∫
d$


cos$

(µ+$
√
−1)µ + (µ−$

√
−1)µ

(µ2 +$2)µ

+
√
−1 sin$

(µ−$
√
−1)µ − (µ+$

√
−1)µ

(µ2 +$2)µ

 ,

the integral relative to $ being taken from $ = 0 to $ = ∞. If we develop the
quantities under the

∫
sign, the imaginaries disappear, and there remains only a real

function which we will designate by Qd$; we will have thus∫
dx c−x

xµ
=
cµ
√
−1

(−1)µ

∫
Qd$;
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hence

y−s =
Y cs−µ

√
2π
(
1− 1

12s
+ 1

288s2
− etc.

)
(−1)s−µss−

1
2

∫
Qd$

.

Let us see presently what function of s is y−s. For this, let us take the original
equation

0 = (s+ 1)ys − ys+1;

by changing s into −s, and making y−s = us, it becomes

0 = (s− 1)us − us−1;

an equation of which the integral

us =
(−1)s−µY

µ(1 + µ)(2 + µ) · · · (s− 1)
= y−s,

Y being as above, equal to y−µ. If we compare this expression [134]of y−s to the preceding,
and if we observe that s−µ is a whole number, and that thus we have (−1)2s−2µ = 1;
we will have

1

(µ+ 1)(µ+ 2) · · · (s− 1)
=
µ
√

2πcs−µ
(
1− 1

12s
+ 1

288s2
− etc.

)
ss−

1
2

∫
Qd$

.

By dividing the two members of this equation by s, and by reciprocating them, we
will have

(µ+ 1)(µ+ 2)(µ+ 3) · · · s =
ss+

1
2 cµ−s

µ
√

2π

(
1 +

1

12s
+ etc.

)∫
Qd$.

If we compare this equation to formula (q ′) of the preceding section, we have this
remarkable result ∫

Qd$ =
2µπc−µ∫
xµ dx c−x

; (O)

I am arrived to this general equation, in the Mémoire de l’Académie des Sciences for
the year 1782,1 by the preceding analysis, based, as we see, on the passage from the
real to the imaginary. By making successively in Q, µ = 1, µ = 2, µ = 3, etc., we will
have the values of an infinite number of definite integrals; thus, in the case of µ = 1,
equation (O) gives ∫

d$(cos$ +$ sin$)

1 +$2
=
π

c
,

a formula that I have given similarly in the Memoirs cited. This formula and all those
of the same kind, can be verified by the formulas of §26; for we have by this section,∫

d$ cos$

1 +$2
=

π

2c
=

∫
$d$ sin$

1 +$2
.

1This is the paper “Mémoire sur les Approximations des Formules qui sont fonctions de très
grands nombres”, [11].
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We will observe here, as in the Memoirs cited, that
∫

dx c−x

xµ
being equal to

cµ
√
−1

(−1)µ

∫
Qd$; we have, by substituting instead of

∫
Qd$, its value given by equation

(O), ∫
dx c−x

xµ
=

2µπ(−1)−µ+ 1
2∫

xµdx c−x
=

2π(−1)−µ+ 1
2∫

xµ−1dx c−x
,

the[135] first integral being taken between the two imaginary values of x which render null

the quantity c−x

xµ
, and the two other integrals being taken from x null to x infinity;

that which gives an easy way to transform into these here, the integrals
∫

dx sinx
xµ

and∫
dx cosx
xµ

.

§34. Let us consider now the general equation

0 = (a′ + b′s)ys+1 − (a+ bs)ys.

If we make
a

b
= n,

a′

b′
= n′ + 1,

b

b′
= p;

it takes this form
0 = (n′ + s+ 1)ys+1 − (n+ s)pys.

Let us suppose

ys =

∫
xs−1φ dx;

we will have, by integrating by parts,

0 = xsφ(x− p)

+

∫
xs−1[φ dx(n′x− np) + (p− x)x dφ].

This first equation gives in order to determine φ, the following

0 = (n′x− np)φ dx+ (p− x)x dφ,

whence we deduce by integrating

φ = Axn(p− x)n
′−n,

A being an arbitrary constant. We will have next in order to determine the limits of
the integral, the equation

0 = xsφ(p− x)

or

0 = xn+s(p− x)n
′+1−n.

These limits are therefore x = 0 and x = p, if n + s and n′ + 1 − n are positive
quantities. Thus we will have, by taking the integral within these limits,

ys = A

∫
xn+s−1dx (p− x)n

′−n.
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We [136]will determine the constant A, by means of a particular value of ys. Let yµ be
this value; we will have

A =
yµ∫

xn+µ−1dx (p− x)n′−n
;

consequently,

ys =
yµ
∫
xn+s−1dx (p− x)n

′−n∫
xn+µ−1dx (p− x)n′−n

.

Let us integrate presently the proposed equation in the differences in ys. Its integral
is

ys =
(n+ µ)(n+ µ+ 1) . . . (n+ s− 1)

(n′ + µ+ 1)(n+ µ+ 2) . . . (n′ + s)
yµp

s−µ.

In this expression, as in all those formed from products, the factors of the numerator
commence only for the value of s which renders the last factor equal to the first, that
which holds here when s is equal to µ + 1; it is likewise for it of the factors of the
denominator. For the value of s equal to µ, the numerator and the denominator are
reduced to unity which is counted to multiply them both. If we compare the two
preceding expressions of ys, we will have

(n+ µ)(n+ µ+ 1) . . . (n+ s− 1)

(n′ + µ+ 1)(n+ µ+ 2) . . . (n+ s)
ps−µ =

∫
xn+s−1dx (p− x)n

′−n∫
xn+µ−1dx (p− x)n′−n

.

Let us make p− x = pu2; the second member of this equation will become

ps−µ
∫
u2n′−2n+1du (1− u2)n+s−1∫
u2n′−2n+1du (1− u2)n+µ−1

,

the integrals being taken from u = 0 to u = 1, because these limits correspond to the
limits x = p and x = 0. We have therefore

(n+ µ)(n+ µ+ 1) . . . (n+ s− 1)

(n′ + µ+ 1)(n′ + µ+ 2) . . . (n′ + s)
=

∫
u2n′−2n+1du (1− u2)n+s−1∫
u2n′−2n+1du (1− u2)n+µ−1

.

Let us suppose n = 1
2
, n′ = 0 and µ = 1; if we observe that∫

du
√

1− u2 = 1
4
π;

we [137]will have
(s+ 1)(s+ 2) . . . 2s

1.2.3 . . . s
=

22s+1

π

∫
du (1− u2)s−

1
2 .

The first member of this equation is the coefficient of the middle term or term indepen-

dent of a, of the binomial
(

1
a

+ a
)2s

; we will have therefore by means of the preceding
methods, this coefficient, by a rapid approximation, when s is a great number. For
this, we will make

1

s− 1
2

= α, 1− u2 = c−αt
2

;

that which gives

u =
√

1− c−αt2
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and ∫
du (1− u2)s−

1
2 =

∫
du c−t

2

.

Let us suppose√
1− c−αt2 = α

1
2 t(1 + αq(1)t2 + α2q(2)t4 + α3q(3)t6 + etc.).

By taking the logarithmic differences of the two members of this equation, we will
have

1 + 3αq(1)t2 + 5α2q(2)t4 + 7α3q(3)t6 + etc.

t+ αq(1)t3 + α2q(2)t5 + α3q(3)t7 + etc.
=

αtc−αt
2

1− c−αt2
;

and this last member is equal to

1− αt2 + α2

1.2
t4 − α3

1.2.3
t6 + etc.

t
(
1− αt2

1.2
+ α2t4

1.2.3
− α3t6

1.2.3.4
+ etc.

) .
We will have therefore by comparing this quantity to the first member, and reducing
to the same denominator; the general equation

0 = 2iq(i) − 2i− 3

1.2
q(i−1) +

2i− 6

1.2.3
q(i−2) − 2i− 9

1.2.3.4
q(i−3)

+
2i− 12

1.2.3.4.5
q(i−4) − etc.,

q(0) being equal to unity. If we make successively in this equation i = 1, i = 2, i = 3,
etc.; we will have the successive values of q(1), q(2), q(3), etc.;[138] and we will find

q(1) = −1

4
, q(2) =

5

96
, etc.

We will have next∫
du(1− u2)s−

1
2 = α

1
2

∫
dt c−t

2

[1 + 3αq(1)t2 + 5α2q(2)t4 + 7α3q(3)t6 + etc.].

The integral relative to u needing to be taken from u = 0 to u = 1, the integral
relative to t must be taken from t null to t infinity; we will have therefore, by §24,

∫
du(1− u2)s−

1
2 =

1

2

√
απ


1 +

1.3

2
αq(1) +

1.3.5

22
α2q(2)

+
1.3.5.7

23
α3q(3) + etc.

 ;

hence,

(s+ 1)(s+ 2)(s+ 3) . . . 2s

1.2.3 . . . s
=

22s√
(s− 1

2)
π


1 +

1.3

2
αq(1) +

1.3.5

22
α2q(2)

+
1.3.5.7

23
α3q(3) + etc.

 .

Thus we will have by a very convergent series, the middle term or term independent

of a, of the binomial
(

1
a

+ a
)2s

.
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We will arrive more simply to this result, by the following method, which can be
extended to any polynomial.

§35. Let us name ys, the middle term or term independent of a, of the binomial(
1
a

+ a
)2s

, or, that which reverts to the same, the term independent of c±$
√
−1, in the

development of the binomial (c$
√
−1 + c−$

√
−1)2s. If we multiply this development by

d$, and if we integrate from $ null to $ = 1
2
π; it is easy to see that this integral will

be 1
2
πys, and that thus we have

ys =
2

π

∫
d$ (c$

√
−1 + c−$

√
−1)2s.

Indeed, by developing the binomial contained under the
∫

sign, and substituting

instead of c±2r$
√
−1, its value cos 2r$ ±

√
−1 sin 2r$, we [139]will have the middle term

of the binomial, plus a series of cosines of the angle 2$ and of its multiples; by
multiplying them by d$, and integrating them, this series will be transformed into
a series of sines of the angle 2$ and of its multiples, sines which are null at the two
limits $ = 0 and $ = 1

2
π. There will remain thus in the integral only the middle

term of the binomial, multiplied by 1
2
π. This premised, if we substitute instead of the

binomial c$
√
−1 + c−$

√
−1, its value 2 cos$, we will have

ys =
22s+1

π

∫
d$ cos2s$;

by supposing sin$ = u, we will have

ys =
22s+1

π

∫
du(1− u2)s−

1
2 ,

the integral being taken from u = 0 to u = 1; that which coincides with that which
we have found in the preceding section.

Let us consider now the trinomial
(

1
a

+ 1 + a
)s

, and let us name ys the mid-
dle term or term independent of a, in the development of this trinomial. This
term will be the term independent of c±$

√
−1, in the development of the trinomial(

c$
√
−1 + 1 + c−$

√
−1
)s

; we will have consequently, by applying here the reasoning

which precedes,

ys =
1

π

∫
d$(1 + 2 cos$)s;

the integral being taken from $ = 0 to $ = π. The condition of the maximum of the
function (1 + 2 cos$)s gives sin$ = 0, so that the two limits of the integral, $ = 0
and $ = π, correspond to some maxima of this function; we will partition therefore
the preceding integral into the two following,∫

d$(1 + 2 cos$)s (−1)s
∫
d$(2 cos$ − 1)s;
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the first of these two integrals being taken from $ null to the value of $, which renders
null the quantity 2 cos$ + 1; and the second integral being taken from $ = 0, to its
value which renders null the quantity 2 cos$ − 1.

In[140] order to obtain the first integral in a convergent series, we will make

(1 + 2 cos$)s = 3sc−t
2

;

by supposing α = 1
s
, extracting the root s of each member, and developing cos$ and

c−αt
2
, we will have

3−$2 +
$4

12
− etc. = 3− 3αt2 +

3α2t4

2
− etc.;

whence we deduce by the reversion of the series,

$ = α
1
2 t
√

3

(
1− αt2

8
+ etc.

)
;

hence, ∫
d$(1 + 2 cos$)s =

3s+
1
2

√
s

∫
dt c−t

2

(
1− 3t2

8s
+ etc.

)
.

The integral relative to t must be taken from t null to t infinity; we will have therefore∫
d$(1 + 2 cos$)s =

3s+
1
2
√
π

2
√
s

(
1− 3

16s
+ etc.

)
.

We will find in the same manner∫
d$(2 cos$ − 1)s =

√
π

2
√
s

(
1− 5

16s
+ etc.

)
;

we will have therefore

ys =
3s+

1
2

2
√
sπ

(
1− 3

16s
+ etc.

)
+

(−1)s

2
√
sπ

(
1− 5

16s
+ etc.

)
;

s being a very large number, this quantity is reduced very nearly to 3s+
1
2

2
√
sπ

. This is the

rough approximation of the middle term or term independent of a, of the binomial(
1
a

+ 1 + a
)s

.
We will determine in the same manner, the middle term of any polynomial what-

soever, raised to a very high power. Let us suppose first the number of terms of the
polynomial, odd and equal to 2n+ 1; and[141] let us represent this polynomial by

1

an
+

1

an−1
· · ·+ 1

a
+ 1 + a · · ·+ an−1 + an.

By substituting c$
√
−1 for a, this polynomial becomes

1 + 2 cos$ + 2 cos 2$ · · ·+ 2 cosn$;
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now this function is equal to
sin( 2n+1

2 )$
sin 1

2
$

; the power s of the polynomial is therefore(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

.

The middle term of this power, is the term independent of $, in its development
in cosines of the angle $ and of its multiples. We will have evidently this term, by
multiplying the power by d$; by taking next the integral from $ = 0 to $ = π, and
by dividing it by π. This term is therefore equal to

1

π

∫
d$

(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

.

The condition of the maximum of
sin( 2n+1

2 )$
sin 1

2
$

gives the equation

tan

(
2n+ 1

2

)
$ = (2n+ 1) tan

1

2
$.

There is from $ null to $ = π, many maxima, alternatively positive and negative.
The first corresponds to $ null and gives(

sin
(

2n+1
2

)
$

sin 1
2
$

)s

= (2n+ 1)s.

In order to have the preceding integral, from this maximum to the point where
sin( 2n+1

2 )$
sin 1

2
$

is null, that which holds first when $ = 2π
2n+1

, [142]we will make(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

= (2n+ 1)sc−t
2

.

By taking logarithms, and reducing into series relative to the powers of$, the function

s log
sin
(

2n+1
2

)
$

sin 1
2
$

;

we will have
n(n+ 1)

6
s$2 + etc. = t2;

that which gives

d$ =
dt
√

6√
n(n+ 1)s

+ etc.;

the preceding integral becomes thus

(2n+ 1)s

π

∫
dt
√

6√
n(n+ 1)s

e−t
2

+ etc.

It must be taken from t null to t infinity; for at the origin, or when $ is null, t is null;
and at the limit, where $ = 2π

2n+1
, t is infinite; this integral becomes therefore, by
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considering only the first term, and neglecting the following which are, with respect
to it, of order 1

s
,

(2n+ 1)s
√

3√
n(n+ 1)2sπ

.

The second maximum is negative, and corresponds to a value of
(

2n+1
2

)
$ com-

prehended between 5
4
π and 3

2
π. Indeed, the equation of the maximum

tan

(
2n+ 1

2

)
$ = (2n+ 1) tan

1

2
$,

gives

tan

(
2n+ 1

2

)
$ >

(
2n+ 1

2

)
$.

Thus,[143]
(

2n+1
2

)
$ being comprehended within the second maximum between π and 2π,

tan
(

2n+1
2

)
$ surpasses π; consequently

(
2n+1

2

)
$ surpasses π + 1

4
π; it is therefore

comprehended between 5
4
π and 3

2
π. The preceding equation of the maximum gives

− sin
(

2n+1
2

)
$

sin 1
2
$

=
2n+ 1√

cos2 1
2
$ + (2n+ 1)2 sin2 1

2
$
.

This last member is smaller than

2n+ 1(
2n+1

2

)
$

sin 1
2
$

1
2
$

;

1
2
$ not surpassing 1

2
π, it is easy to be assured that

sin 1
2
$

1
2
$

is never less that its value

which corresponds to $ = π, and which is equal to 2
π
; the second member of which

there is question, is therefore generally smaller than

2n+ 1(
2n+1

2

)
$
· π

2
.

Relative to the second maximum,
(

2n+1
2

)
$ being comprehended between 5

4
π and 3

2
π,

this member will be smaller than (2n + 1)2
5
; thus the power of s of

sin( 2n+1
2 )$

sin 1
2
$

, will

not surpass at all (2n+ 1)s
(

2
5

)s
; it will be therefore, when s is a very great number,

incomparably smaller than the same power corresponding to the first maximum, and
which is equal to (2n+ 1)s.

We will see in the same manner, that the third maximum is comprehended between(
2n+1

2

)
$ = 9

4
$, and

(
2n+1

2

)
$ = 5

2
$, and that at this maximum, the power s of

sin( 2n+1
2 )$

sin 1
2
$

does not surpass (2n+1)s
(

2
9

)s
; that the fourth maximum is comprehended

between
(

2n+1
2

)
$ = 13

4
$, and

(
2n+1

2

)
$ = 7

2
$,[144] and that at this maximum, the power

s of
sin( 2n+1

2 )$
sin 1

2
$

does not surpass (2n+ 1)s
(

2
13

)s
at all, and so forth.
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Now, if, departing from any one of these maxima, we make(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

=

(
sin
(

2n+1
2

)
Π

sin 1
2
Π

)s

c−t
2

,

Π being the value of $ which corresponds to this maximum; and if we make

$ = Π +$′,

we will have by taking the logarithms of the two members of the preceding equation
between $ and t,

s log sin

(
2n+ 1

2

)
(Π +$′)− s log sin 1

2
(Π +$′)

= s

[
log sin

(
2n+ 1

2

)
Π− log sin 1

2
Π

]
− t2.

By developing the first member of this equation according to the powers of $′, the
comparison of the first power will give first the equation of the maximum

tan

(
2n+ 1

2

)
Π = (2n+ 1) tan 1

2
Π.

By considering next only the second power of $′, we will have

1
2
n(n+ 1)s$′2 = t2.

that which gives

d$′ =
2dt√

n(n+ 1)2s
;

the integral

1

π

∫
d$

(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

,

taken between the two limits between which
sin( 2n+1

2 )$
sin 1

2
$

is null on [145]both sides of the

maximum of this function, is therefore very nearly

2√
2n(n+ 1)sπ

(
sin
(

2n+1
2

)
Π

sin 1
2
Π

)s

.

This expression holds generally for the integrals relative to all the maxima which
follow the first; only it is necessary to take only the half of it relative to the last
which corresponds to Π = π. There results from that which precedes, that this
expression, with respect to the second maximum, is less, setting aside the sign, than

2√
2n(n+ 1)sπ

(
2

5

)s
;
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that, relative to the third maximum, it is less than

2√
2n(n+ 1)sπ

(
2

9

)s
;

and so forth. When s is a very great number, these quantities decrease with an
extreme rapidity, and they are incomparably smaller than the quantity relative to the
first maximum, and which, as we have seen, is

(2n+ 1)s
√

3√
2n(n+ 1)sπ

;

we can therefore have regard only for this last integral, and we see that it is rigorous
in the case of n infinite; for the equation of condition of the maximum gives then(

2n+1
2

)
Π =

(
2r+1

2

)
π, r being a whole number, that which renders

sin( 2n+1
2 )Π

sin 1
2

Π
finite,

when Π is zero excepted, that which corresponds to the first maximum.
If the polynomial is composed of any number of terms, even and equal to 2n, such

that
1

an−
1
2

+
1

an−
3
2

· · ·+ 1

a
1
2

+ a
1
2 · · ·+ an−

3
2 + an−

1
2 ,

by[146] substituting c$
√
−1 in place of a, it becomes

2 cos
1

2
$ + 2 cos

3

2
$ · · ·+ 2 cos

2n− 1

2
$,

or sinn$
sin 1

2
$

. This polynomial raised to an integral and positive power, can have a middle

term or term independent of the cosines of 1
2
$ and of its multiples, only so much as

that power is even; let us represent it by 2s: then the middle term will be

1

π

∫
d$

(
sinn$

sin 1
2
$

)2s

,

the integral being taken from $ null to $ = π. This integral is composed of diverse
partial integrals, relative to the diverse maxima of the function sinn$

sin 1
2
$

; but we will be

assured easily, by the preceding analysis, that all these integrals, when 2s is a very
great number, and when n is greater than unity, are incomparably smaller than the
one which is relative to the first maximum which corresponds to $ null; and then we
find very nearly the middle term of the 2s power of the polynomial equal to

ys =
(2n)2s

√
3√

(2n+ 1)(2n+ 1)sπ
.

In bringing closer this result, of the preceding, we see that if we name generally n′

the number of terms of the polynomial, and s′ the power to which it is raised; the
middle term of the development will be, when there is one of them,

n′s
′√

3√
n′2−1

2
s′π

;
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and provided that it has a middle term, (n′ − 1)s′ must be an even number; that is
that one or the other at least, of the numbers n′ − 1 and s′, must be even.

§36. The preceding analysis gives further the coefficient of a±l in the development
of the polynomial

(a−n + a−n+1 · · ·+ a−1 + 1 + a · · ·+ an−1 + an)s;

In [147]order to obtain it, we will observe that the coefficient of ar in the development of
this polynomial, is the same as the one of a−r; by naming therefore Ar this coefficient,
by making a = c$

√
−1, and uniting the two terms of the development, relative to ar

and a−r, we will have 2Ar cos r$ for their sum. Now, if we multiply this polynomial,

or its value

(
sin( 2n+1

2 )$
sin 1

2
$

)s
by d$ cos l$, and if we integrate the product from $ = 0

to $ = π; it is clear that all the terms vanish, except the one where r is equal to l;
the integral will be reduced therefore to 2Al

∫
d$ cos2 l$; that which gives

Al =
1

π

∫
d$ cos l$

(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

.

In order to integrate this function, we will make as above,(
sin
(

2n+1
2

)
$

sin 1
2
$

)s

= (2n+ 1)sc−t
2

.

By taking the logarithms and developing with respect to the powers of $, we will
have by the inversion of the series, for $, an expression of this form,

$ =
t
√

6√
n(n+ 1)s

(1 + At2 + etc.);

that which transforms the integral into this here,

(2n+ 1)s

π

√
6√

n(n+ 1)s

∫
dl cos

[
lt
√

6√
n(n+ 1)s

]
c−t

2

(1 + 3At2 + etc.),

the integral being taken from t null to t infinity. We can easily obtain it by §26, and
we find, by having regard only to its first term, for its value,

(2n+ 1)s
√

3√
n(n+ 1).2sπ

c−
3
2 l

2

n(n+1)s .

This [148]is the value sought of the coefficient of a±l in the development of the polynomial,
when its power s is very elevated.

Let us seek now the sum of all these coefficients, from the one of a−l inclusively,
to the one of al inclusively, l being a great number, but of an order inferior to s. For
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this, we will observe that we have, by §10,

Σyl =
1

c
dyl
dl − 1

=
1

dyl
dl

{
1 + 1

2
dyl
dl

+ 1
6

(
dyl
dl

)2
+ etc.

}
=

(
dyl
dl

)−1

− 1

2

(
dyl
dl

)0

+
1

12

dyl
dl

+ etc.;

whence we deduce by the section cited,

Σyl =

∫
yl dt− 1

2
yl + 1

12

dyl
dl

+ etc. + constant.

By taking the integral from the term corresponding to l null inclusively, we will have
the sum of the values of yl, from this origin to the term yl exclusively. The arbitrary
constant will be equal then to 1

2
y0 − 1

12
dy0
dl
− etc.; thus the sum of the values of yl,

from l null inclusively to yl inclusively, will be∫
yl dl + 1

2
y0 + 1

2
yl + 1

12
y
dyl
dl
− 1

12

dy0

dl
+ etc.

Let us suppose now

yl =
(2n+ 1)s

√
3√

n(n+ 1)2sπ
c−

3
2 l

2

n(n+1)s ;

then the differences of yl will be successively of an order inferior the ones to the others;
by considering therefore only the first three terms of the preceding series, we will have∫

yl dl + 1
2
y0 + 1

2
yl

for the sum of the coefficients of the terms of the development of the s power of the
polynomial, from l null inclusively to yl inclusively. By doubling this sum, and by
subtracting from this double, the term y0, we will have for the sum of the coefficients,
from the one of the term corresponding to a−l inclusively, to the one[149] of the term

corresponding to al inclusively,

(2n+ 1)s
√

6√
n(n+ 1)sπ

(∫
dl c−

3
2 l

2

n(n+1)s +
1

2
c−

3
2 l

2

n(n+1)s

)
.

§37. We have supposed in the preceding examples, that the equations in the
differences in ys, had no last term at all; let us give an example of an equation
enjoying a last term, and for this, let us consider the equation in the differences

ps = sys + (s− i)ys+1.

By making

ys =

∫
xs−1φ dx,

we will have

ps = xsφ(1 + x)−
∫
xs[(x+ 1)dφ+ (i+ 1)φ dx];
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that which gives first in order to determine φ, the equation

(1 + x)dφ+ (i+ 1)φ dx = 0;

whence we deduce by integrating,

φ =
A

(1 + x)i+1
,

A being an arbitrary constant. Next we have

ps = xsφ(1 + x),

or

ps =
Axs

(1 + x)i
;

whence we deduce

x = p, A = (1 + p)i;

so that

ys = (1 + p)i
∫

xs−1dx

(1 + x)i+1
,

the integral being taken from x = 0 to x = p. By adding to that value of y, this here

B(1 + p)i
∫

xs−1dx

(1 + x)i+1
,

the integral being taken from x null [150]to x infinite, and B being an arbitrary; we will
have for the complete integral of the proposed

ys = B

∫
xs−1dx

(1 + x)i+1
+ (1 + p)i

∫
xs−1dx

(1 + x)i+1
,

an expression that we can set under this form

ys = B′
∫

xs−1dx

(1 + x)i+1
− (1 + p)i

∫
xs−1dx

(1 + x)i+1
,

the first integral being taken from x null to x infinity, and the second being taken
from x = p to x infinity.

Now, the integral of the proposed

ps = sys + (s− i)ys+1

is

ys =
1.2.3 . . . (s− 1)

i(i− 1)(i− 2) . . . (i− s+ 1)

(
Q−

∑ i(i− 1)(i− 2) . . . (i− s+ 1)

1.2.3 . . . s
ps
)
,

Q being an arbitrary, and
∑

being the characteristic of the finite differences; so that

the function
∑ i(i−1)(i−2)...(i−s+1)

1.2.3...s
ps is equal to

1 + ip+
i(i− 1)

1.2
p2 · · ·+ i(i− 1)(i− 2) . . . (i− s+ 2)

1.2.3 . . . (s− 1)
ps−1,
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that is, the sum of s first terms of the binomial (1+p)i. If we compare this expression
of ys to the preceding, we will have

B′
∫

xs−1dx

(1 + x)i+1
− (1 + p)i

∫
xs−1dx

(1 + x)i+1

=
1.2.3 . . . (s− 1)

i(i− 1)(i− 2) . . . (i− s+ 1)

(
Q−

∑ i(i− 1)(i− 2) . . . (i− s+ 1)

1.2.3 . . . s
ps
)
.

If we make s = 1 in this equation, and if we observe that the product 1.2.3 . . . (s−1) is
reduced then to unity, as we have seen in §34; we find, after the integrations, B′ = Q:
thus, B′ being an arbitrary, this equation is partitioned into the two following,

1.2.3 . . . (s− 1)

i(i− 1)(i− 2) . . . (i− s+ 1)
=

∫
xs−1dx

(1 + x)i+1
,

1.2.3 . . . (s− 1)

i(i− 1)(i− 2) . . . (i− s+ 1)

∑ i(i− 1)(i− 2) . . . (i− s+ 1)

1.2.3 . . . s
ps = (1+p)i

∫
xs−1dx

(1 + x)i+1
;

whence[151] we deduce

1 + ip+
i(i− 1)

1.2
p2 · · ·+ i(i− 1)(i− 2) . . . (i− s+ 2)

1.2.3 . . . (s− 1)
ps−1 = (1 + p)i

∫
xs−1dx

(1+x)i+1∫
xs−1dx

(1+x)i+1

,

the integral of the numerator being taken from x = p to x infinity; and that of the
denominator being taken from x null to x infinity. When s and i are large numbers,
it will be easy to reduce these two integrals to convergent series, by the formulas of
§22 and §23. We will have thus the sum of the first s terms of the binomial raised to
a great power, by an approximation so much more rapid, as this power will be higher.

If we effect the integrations, the preceding equation becomes

1+ip+
i(i− 1)

1.2
p2 · · ·+ i(i− 1)(i− 2) . . . (i− s+ 2)

1.2.3 . . . (s− 1)
ps−1

= (1 + p)s−1


1 +

i− s+ 1

1

p

1 + p
+

(i− s+ 1)(i− s+ 2)

1.2

p2

(1 + p)2

· · ·+ (i− s+ 1) . . . (i− 1)

1.2.3 . . . (s− 1)

ps−1

(1 + p)s−1


The second member of this equation is a transformation of the partial sum of the
terms of the binomial (1 + p)i, a transformation which is able to be useful.

Concerning the approximation of the infinitely small and finite differences, very
elevated, of functions.

§38. Let us consider any function of z, that we will represent by φ(z). By changing
z into z + t, let us designate by ys the coefficient of ts in the development of this
function; we will have

dsφ(z + t)

dts
= 1.2.3 . . . s.ys,
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t being supposed null after the differentiations, and, as we have dφ(z+t)
dt

= dφ(z)
dz

, by
supposing t null, we will have

dsφ(z)

dzs
= 1.2.3 . . . s.ys.

Thus [152]the pursuit of the sth difference of φ(z), is reduced to developing the function
φ(z + t) into series.

Let us suppose that this function of t is a power of a polynomial in t, that we will
represent by

(a+ bt+ ct2 + etc.)µ.

In expressing by

y0 + y1t+ y2t
2 · · · yst3 + etc.

its development into series, we will have, by taking the logarithmic differences,

µ(b+ 2ct+ etc.)

a+ bt+ ct2 + etc.
=

y1 + 2y2t+ · · ·+ syst
s−1 + etc.

y0 + y1t+ y2t2 + · · ·+ ysts + etc.
.

Cross multiplying, and comparing the terms multiplied by ts−1, we will have

asys + b(s− 1)ys−1 + c(s− 2)ys−2 + etc. = µbys−1 + 2µcys−2 + etc.

Let us represent by
∫
xs−1φ dx, the expression of ys; this equation becomes

0 = xs
(
a+

b

x
+

c

x2
+ etc.

)
φ−

∫
xs


dφ

(
a+

b

x
+

c

x2
+ etc.

)
+ µφ dx

(
b

x2
+

2c

x3
+ etc.

)
 .

By equating separately to zero, the part of this equation, affected of the integral sign,
we have

0 = dφ

(
a+

b

x
+

c

x2
+ etc.

)
+ µφ dx

(
b

x2
+

2c

x3
+ etc.

)
;

that which gives by integrating,

φ = A

(
a+

b

x
+

c

x2
+ etc.

)µ
,

A being an arbitrary constant. The part of the preceding equation, beyond the
integral sign, will give next in order to determine the limits of the integral,

0 = xs
(
a+

b

s
+

c

x2
+ etc.

)µ+1

;

these [153]limits are therefore x = 0, and x equal to the diverse roots of the equation

0 = a+
b

x
+

c

x2
+ etc.
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We will have therefore by the preceding methods, and by a very prompt approxima-
tion, the coefficients of the very elevated powers of t, in the development into series
of the power

(a+ bt+ ct2 + etc.)µ,

and consequently we will have the very elevated differentials of the power

(a′ + b′z + c′z2 + etc.)µ,

which is changed into the preceding, by changing z into z + t and making

a = a′ + b′z + c′z2 + etc.,

b = b′ + 2c′z + etc.,

c = c′ + etc.,

etc.

Let us apply this analysis to an example.
z being the sine of an angle θ, we will have

ds+1θ

dzs+1
=

ds

dzs
1√

1− z2
.

In order to have the expression of the second member of this equation, we will observe
that we have, by that which we just saw,

ds

dzs
1√

1− z2
= 1.2.3 . . . s.ys,

ys being the coefficient of ts in the development of [1− (z + t)2]−
1
2 . We have next

ys = A

∫
xs−1dx

[
1−

(
z +

1

x

)2
]− 1

2

,

the limits of the integral being given by the equation

0 = xs

[
1−

(
z +

1

x

)2
]− 1

2

.

These[154] limits are

x = − 1

1 + z
, x = 0, x =

1

1− z
.

As x has three values, the expression of ys takes this form, by §29,

ys = A

∫
xs−1dx

[
1−

(
z +

1

x

)2
]− 1

2

+ A′
∫
xs−1dx

[
1−

(
z +

1

x

)2
]− 1

2

,

A and A′ being arbitrary constants, and the first integral being taken from x = − 1
1+z

to x = 0, and the second being taken from x = 0 to x = 1
1−z . If we make

x =
z + cos$

1− z2
.
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The preceding expression of ys becomes

ys = B

∫
d$(z + cos$)s

(1− z2)s+
1
2

+B′
∫
d$(z + cos$)s

(1− z2)s+
1
2

,

the first integral being taken from $ = 0 to $ equal to the angle of which the cosine is
−z, and the second being taken from this last angle to $ = π. In order to determine
the arbitraries B and B′, we will observe that

y0 =
1√

1− z2
, y1 =

1

(1− z2)
3
2

;

whence it is easy to conclude

B = B′ =
1

π
;

hence

ys =
1

π(1− z2)s+
1
2

∫
d$(z + cos$)s,

the integral being taken from $ = 0 to $ = π. By taking this integral, and observing
that ∫

d$ cos2r$ =
1

22r

∫
d$(c$

√
−1 + c−$

√
−1)2r

=
1.2.3 . . . 2r

22r(1.2.3 . . . r)2
π =

1.3.5 . . . (2r − 1)

2.4.6 . . . 2r
π;

we will have [155]

ys =
1

(1− z2)s+
1
2


zs +

1

2

s(s− 1)

1.2
zs−2 +

1.3

2.4

s(s− 1)(s− 2)(s− 3)

1.2.3.4
zs−4

+
1.3.5

2.4.6

s(s− 1)(s− 2)(s− 3)(s− 4)(s− 5)

1.2.3.4.5.6
zs−6

+ etc.

 ; (a)

this expression is quite compound, when s is a large number; but then we can obtain
its value in a very close manner, by applying to the expression of ys under the form
of definite integral, the methods exposed above. The function under the integral sign
having two maxima, one at the origin of the integral, and the other at its extremity,
we will decompose it into the following two

ys =
1

π(1− z2)s+
1
2

[∫
d$(z + cos$)s + (−1)s

∫
d$(cos$ − z)s

]
;

the first integral being taken from $ null to $ equal to the angle of which the cosine
is −z, and the second integral being taken from $ null to $ equal to the angle of
which z is the cosine. Let 1

s
= α, and let us make

(z + cos$)s = (1 + z)sc−t
2

;
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we will have by taking the logarithms and reducing cos$ into series,

log

(
1− $2

2(1 + z)
+

$4

24(1 + z)
− etc.

)
= −αt2;

whence it is easy to conclude

$ = α
1
2 t
√

2(1 + z)

(
1− α(2− z)

12
t2 + etc.

)
;

we will have thus, by observing that the integral must be taken from t null to t infinity,∫
d$(z + cos$)s =

α
1
2

√
2π

2
(1 + z)s+

1
2

[
1− α(2− z)

8
+ etc.

]
.

By changing z into −z, we will have∫
d$(cos$ − z)s =

α
1
2

√
2π

2
(1− z)s+

1
2

[
1− α(2 + z)

8
+ etc.

]
;

hence[156]

ys =
1

(1− z)s+
1
2

√
2sπ

(
1− α(2− z)

8
+ etc.

)
+

(−1)s

(1 + z)s+
1
2

√
2sπ

(
1− α(2 + z)

8
+ etc.

)
;

(b)

in the case of s very great, this expression is reduced to very nearly this very simple
term,

1

(1− z)s+
1
2

√
2sπ

.

If we multiply the expression (b) of ys by the product 1.2.3 . . . s, a product which
by §33, is equal to

ss+
1
2 c−s
√

2π
(

1 +
α

12
+ etc.

)
;

we will have very nearly

ds+1θ

dzs+1
=
ds 1√

1−z2

dzs
=

ssc−s

(1− z)s+
1
2

.

§39. When a function ys of s can be expressed by a definite integral of the form∫
xsφ dx, the infinitely small and finite differences of any order n, will be by §21,

dnys
dsn

=

∫
xsφ dx(log x)n,

4nys =

∫
xsφ dx(x− 1)n.
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If instead of expressing the function of s, by the integral
∫
xsφ dx, we express it by

the integral
∫
c−sxφ dx, then we have

dnys
dsn

= (−1)n
∫
xnφ dx c−sx,

4nys =

∫
φ dx c−sx(c−x − 1)n.

In order to have the nth integrals, either finite, or infinitely small, it will suffice
to make n negative in these expressions. We can observe that they are generally
true, whatever be n, by supposing it even [157]fractional; that which gives the way to
have the differences and the integrals corresponding to some fractional indices. All
the difficulty is reduced to putting under the form of definite integrals, a function
of s; that which we can make by §§29 and 30, when this function is given by an
equation linear in the infinitely small or finite differences. As we are principally led
in the analysis of hazards, to some expressions which are only the finite differences of
functions, or a part of these differences; we are going to apply the preceding methods,
and to determine their values in convergent series.

§40. Let us consider first the function 1
si

. In designating it by ys, it will be
determined by the equation in the infinitely small differences

0 = s
dys
ds

+ iys.

If we suppose in this equation,

ys =

∫
c−sxφ dx, c−sx = δy,

it will become

0 =

∫
φ dx

(
iδy + x

d δy

dx

)
;

whence we deduce by integrating by parts, conformably to the method of §29, the
two equations

0 = iφ− d(xφ)

dx
,

0 = xφ δy.

The first gives by integrating it,

φ = Axi−1,

A being an arbitrary. The second equation gives for the limits of the integral∫
c−sxφ dx, x = 0 and x =∞. We will have therefore within these limits,

1

si
= A

∫
xi−1dx c−sx.
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In[158] order to determine the constant A, we will observe that s being 1, the first
member of this equation is reduced to unity; that which gives

A =
1∫

xi−1dx c−x
;

hence

1

si
=

∫
xi−1dx c−sx∫
xi−1dx c−x

:

we will have therefore by the preceding section

4n 1

si
=

∫
xi−1dx c−sx(c−x − 1)n∫

xi−1dx c−x
, (µ)

the integrals of the numerator and of the denominator being taken from x null to x
infinity.

In order to develop this expression into series, let us suppose

xi−1c−sx(c−x − 1)n = ai−1c−sa(c−a − 1)nc−t
2

,

a being the value of x which corresponds to the maximum of the first member of this
equation. If we make x = a+θ, we will have, by taking the logarithm of each member,
and by developing the logarithm of the first, into a series ordered with respect to the
powers of θ,

hθ2 + h′θ3 + h′′θ4 + etc. = t2;

the quantities a, h, h′, h′′, etc. being given by the following equations:

0 =
i− 1

a
− s− nc−a

c−a − 1
,

h =
i− 1

2a2
− n

2

c−a

c−a − 1
+
n

2

(
c−a

c−a − 1

)2

,

h′ = −i− 1

3a3
− n

6

c−a

c−a − 1
− n

2

(
c−a

c−a − 1

)2

+
n

3

(
c−a

c−a − 1

)3

,

h′′ = −i− 1

4a4
− n

24

c−a

c−a − 1
+

7n

24

(
c−a

c−a − 1

)2

− n

2

(
c−a

c−a − 1

)3

+
n

4

(
c−a

c−a − 1

)4

,

etc.;

we will have therefore by the reversion of series,

θ =
t√
h

(
1− h′t

2h
√
h

+
5h′2 − 4hh′′

8h3
t2 + etc.

)
;

and[159] this series will be so much more convergent, as the number n will be greater.

By substituting this value of θ into the function
∫
dθ c−t

2
, and taking the integral
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within the limits t = −∞ and t = ∞, limits which correspond to the limits x = 0
and x =∞, we will have∫

xi−1dx c−sx(c−x − 1)n = ai−1c−sa(c−a − 1)n
√
π√
h

(
1 +

15h′2 − 12hh′′

16h3
+ etc.

)
.

We have besides ∫
xi−1dx c−x =

1

i

∫
xidx c−x;

and when i is very great, we have, by §32,∫
xidx c−x = ii+

1
2 c−i
√

2π

(
1 +

1

12i
+ etc.

)
;

by dividing therefore the one by the other, the two values of∫
xi−1dx c−sx(c−x − 1)n and

∫
xidx c−x,

we will have

4n 1

si
=

(
a
i

)i−1
ci−sa(c−a − 1)n
√

2hi


1 +

15h′2 − 12hh′′

16h3
+ etc.

− 1

12i
− etc.

 .

In order to have the nth finite difference of the positive power si; it suffices, by
§30, to change in this equation i into −i, and we will have

4nsi = (s+ n)i − n(s+ n− 1)i +
n(n− 1)

1.2
(s+ n− 2)i − etc.

=

(
i
a

)i+1
csa−i(ca − 1)n√

i(i+1)
a2
− ni ca

(ca−1)2

(
1 +

15l′2 − 12ll′′

16l3
+

1

12i
+ etc.

)
;

(µ′)

a, l, l′, l′′, etc. being given by the equations [160]

0 =
i+ 1

a
− s− nca

ca − 1
,

l = −i+ 1

2a2
− n

2

ca

ca − 1
+
n

2

(
ca

ca − 1

)2

,

l′ = −i+ 1

3a3
− n

6

ca

ca − 1
− n

2

(
ca

ca − 1

)2

+
n

3

(
ca

ca − 1

)3

,

l′′ = −i+ 1

4a4
− n

24

ca

ca − 1
+

7n

24

(
ca

ca − 1

)2

− n

2

(
ca

ca − 1

)3

+
n

4

(
ca

ca − 1

)4

,

etc.

The series (µ′) ceases to be convergent, when a is a very small fraction of order
1
n
; because it is clear that the quantities l, l′, l′′,etc., forming then an increasing
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progression, each term of the series is of the same order as the one which precedes it.
In order to determine in what case a is very small, let us resume again the equation

0 =
i+ 1

a
− s− nca

ca − 1
.

We can transform it into the following, when a is very small,

0 =
i+ 1

a
− s− n

a

(
1 +

a

2
+ etc.

)
;

whence we deduce very nearly, under the assumption of a very small,

a =
i+ 1− n
s+ n

2

;

thus a will be quite small all the time that i−n will be not very considerable relative
to s+ n

2
. In this case, we will determine 4nsi by the following method.

Let us resume again the equation

4nsi =

∫
dx
xi+1 c

−sx(c−x − 1)n∫
dx
xi+1 c−x

,

in which formula (µ) is changed, when we make i negative and[161] equal to −i. We can
put the function (c−x − 1)n under this form

c−
nx
2

(
c−

x
2 − c

x
2

)n
= (−1)nc−

nx
2 xn

(
1 +

1

1.2.3

x2

22
+

1

1.2.3.4.5

x4

24
+ etc.

)n
= (−1)nc−

nx
2 xn

(
1 +

nx2

24
+
n(5n− 2)

15.16.24
x4 + etc.

)
;

we will have therefore∫
dx

xi+1
c−sx(c−x − 1)n = (−1)n

∫
dx

xi+1−n c
−(s+n

2 )x
(

1 +
nx2

24
+ etc.

)
.

If we make (
s+

n

2

)
x = x′,

we will have generally

dx

xr
c−(s+n

2 )x =
(
s+

n

2

)r−1
∫
dx′c−x

′

x′r
;

now we have found in §33, by passage from the real to the imaginary,∫
dx′ c−x

′

x′r
=

2π(−1)r−
1
2∫

x′r−1dx′ c−x′
=

2π(−1)r−
1
2

(r − 1)(r − 2)(r − 3).etc.
;
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hence we will have

4nsi = (i− n+ 1)(i− n+ 2) . . .
(
s+

n

2

)i−n

×



1 + (i− n)(i− n− 1)
n

24
(
s+ n

2

)2

+ (i− n)(i− n− 1)(i− n− 2)(i− n− 3)
n(5n− 2)

15.16.24
(
s+ n

2

)4

+ etc.


.

(µ′′)

This series will be very convergent, if i− n is not very considerable relative to s+ n
2
;

it can moreover be employed in the case where i is fractional, as it is easy to be
convinced. As for the product (i − n + 1)(i − n + 2) . . . i, it is easy to obtain it in
convergent series, by §33.

The [162]preceding formula is a very simple application of the equation

4nys =

(
c
dys+n2
dx − c−

dys+n2
dx

)n
that we have given in §10; because by developing the second member of this equation,
and making ys = si, we obtain directly that formula that we have concluded from
the passages from the real to the imaginary; that which confirms the justice of these
passages.

§41. Formulas (µ′) and (µ′′) of the previous sections, suppose n equal or less than
i. Indeed, if we consider the expression

4nsi =

∫
dx c−sx

xi+1 (c−x − 1)n∫
dx c−x

xi+1

,

of which the development has produced these formulas; we see that the limits of the
integrals of the numerator and of the denominator being determined by the preceding
section, by equating to zero the product of the quantities under the integral sign, by
x; these limits will be totally imaginaries, when i will be greater than n; instead that
in the case where i will be less than n, the limits of the integral of the numerator will
be reals, while those of the denominator will be imaginaries; it is necessary therefore
then to bring back these last limits to the real state. In order to arrive there, we will
observe that we have generally∫

xi−1dx c−x =

∫
xi+rdx c−x

i(i+ 1)(i+ 2) . . . (i+ r)
.

If we make in this expression, i negative and equal to −r − m
n

, m being less than
n; we will have ∫

dx c−x

xi+1
=

(−1)r+1
∫
x−

m
n dx c−x

m
n

(
1 + m

n

) (
2 + m

n

)
· · · i

;
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now we have by §33, the integrals being taken from x null to x infinity,[163] (
1 +

m

n

)(
2 +

m

n

)
. . . i =

∫
xidx c−x∫
x
m
mdx c−x

,

i being here positive: this is the expression of
∫

dx c−x

xi+1 of which we must make use in
the case that we examine here. If we make x = tn, we will have

m

n

∫
x−

m
n dx c−x

∫
x
m
n dx c−x = n2

∫
tn−m−1dt c−t

n

∫
tm−1dt c−t

n

;

and equation (T) of §24 gives, by changing r into m+ 1,

n2

∫
tn−m−1dt c−t

n

∫
tm−1dt c−t

n

=
π

sin m
n
π

;

we will have therefore ∫
dx c−x

xi+1
=

(−1)r+1π

sin m
n
π
∫
xidx c−x

,

whence we deduce, by substituting this value into the preceding expression of 4nsi,

4nsi =
(−1)r+1 sin mπ

n

π

∫
xidx c−x

∫
dx

xi+1
c−sx(c−x − 1)n, (µ′′′)

the integrals being taken from x null to x infinity.
The process which just led us to this equation, is based on the reciprocal passages

from the real to the imaginary; but we can arrive there directly by the following
analysis which will confirm thus the justice of these passages.

If we take the integral
∫

dx c−sx

xi+1 from x = α to x infinity; we will have, by making
i = r + m

n
, the function[164]

(−1)rc−sα

m
n

(
1 + m

n

) (
2 + m

n

)
· · · iαm

n


sr − m

n

sr−1

α
+
m

n

(
1 +

m

n

) sr−2

α2
− etc.

+ (−1)r
m

n

(
1 +

m

n

)(
2 +

m

n

)
· · · i 1

αr


+

(−1)r+1sr+1

m
n

(
1 + m

n

) (
2 + m

n

)
· · · i

∫
dx c−sx

x
m
n

;

now we have generally, when α is infinitely small,

4nc−sαsr−f

αf
= 0,

f being zero or a positive whole number; for, if we develop c−sα in series, and if we
designate by kαqsq any term of this series, we will have

kαq−f4nsq+r−f = 0.

Indeed, if q surpasses f , this term becomes null by the assumption of α infinitely small.
If q is equal or less than f , q+ r− f will be equal or less than r, and consequently, it
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will be smaller than n; and then, by the known property of finite differences,4nsq+r−f

will be null. It follows thence that 4n
∫

dx c−sx

xi+1 , or
∫ dx c−sx(c−x−1)n

xi+1 is reduced to

(−1)r+14nsr+1
∫

dx c−sx

x
m
n

m
n

(
1 + m

n

) (
2 + m

n

)
· · · i

,

the integral being taken from x null to x infinity. If we make x = x′

s
, we will have∫

dx c−sx

x
m
n

= s
m
n
−1

∫
dx′ c−x

′

x′
m
n

;

the integrals [165]being taken from x and x′ nulls to x and x′ infinities; we will have
therefore ∫

dx c−sx(c−x − 1)n

xi+1
=

(−1)r+1
∫

dx′ c−x
′

x′
m
n
4nsi

m
n

(
1 + m

n

) (
2 + m

n

)
· · · i

.

By substituting for
(
1 + m

n

) (
2 + m

n

)
· · · i its value

∫
xidx c−x∫
x
m
n dx c−x

, and observing that we

have by that which precedes,

m

n

∫
x′
−m
n dx′ c−x

′
∫
x
m
n dx c−x =

π

sin m
n
π
,

we will have formula (µ′′′).
If i is a very large number, we will have by §33, the integral

∫
xidx c−x; we will

have next by that which precedes, the integral
∫ dx c−sx(c−x−1)n

xi+1 ; thus we will obtain,
by a very convergent series, the value of the second member of the formula cited.

Let us suppose i infinitely small, r will be null, and m
n

will be an infinitely small
fraction; we will have therefore

sin
m

n
π =

m

n
π = iπ,

4n

(
si − 1

i

)
= 4n log s;

formula (µ′′′) will give thus

4n log s = −
∫
c−sxdx

x
(c−x − 1)n,

an expression that we will reduce easily into convergent series, when n is a great
number.

§42. We have need often, in the analysis of hazards, to consider in the expression
of 4nsi, only the part in which the quantities raised to the power i are positive. We
are going to determine the sum of all these terms. For that, let us resume the [166]formula
(µ′′′) of the preceding section. If we substitute instead of 4nsi its value

(s+ n)i − n(s+ n− 1)i +
n(n− 1)

1.2
(s+ n− 2)i − etc.;
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and if we change next s into −s, we will have, in continuing the two series of the first
member of the following equation, only to the terms in which the quantity raised to
the power i, become negative, and observing that the + sign holds, if n is even, and
the − sign, if n is odd,

(1)i
[
(n− s)i − n(n− s− 1)i +

n(n− 1)

1.2
(n− s− 2)i − etc.

]
±(−1)i

[
si − n(s− 1)i +

n(n− 1)

1.2
(s− 2)i − etc.

]
=

(−1)r+1

π
sin

mπ

n
·
∫
xidx c−x

∫
dx

xi+1
csx(c−x − 1)n.

If we change in the last integral, x into −2x′
√
−1, it becomes, after all the reductions,

2n−i(−1)
n+i
2

∫
x′n−i−1dx′[cos(2s− n)x′ −

√
−1 sin(2s− n)x′]

(
sinx′

x′

)n
;

the integral relative to x′ being taken from x′ null to x′ infinity. We will have therefore

(1)i
[
(n− s)i − n(n− s− 1)i +

n(n− 1)

1.2
(n− s− 2)i − etc.

]
± (−1)i

[
si − n(s− 1)i +

n(n− 1)

1.2
(s− 2)i − etc.

]
=

(−1)r+1

π
2n−i(−1)

n+i
2 sin

mπ

n

∫
x dx c−x

∫
x′n−i−1dx′

× [cos(2s− n)x′ −
√
−1 sin(2s− n)x′]

(
sinx′

x′

)n
.

(o)

Let us suppose r = n − 1, that which gives i = n − 1 + m
n

, and let us compare
separately the real parts and the imaginary parts of the preceding equation. We have

(1)i = (1)n−1(1)
m
n = 1

m
n ;

now[167] we have

1 = cos 2lπ +
√
−1 sin 2lπ,

l being a whole number; we will have therefore

(1)
m
n = cos

2lmπ

n
+
√
−1 sin

2lmπ

n
.

The corresponding values of (−1)
m
n are

cos(2l + 1)
mπ

n
+
√
−1 sin(2l + 1)

mπ

n
.

Now (1)i needing to be supposed equal to unity, in equation (o), it is necessary to
choose l in a manner that cos 2lmπ

n
+
√
−1 sin 2lmπ

n
be 1, that which requires that we

have
2lmπ

n
= 2fπ,
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f being a whole number that we are able to suppose null; then we have

(−1)
m
n = cos

mπ

n
+
√
−1 sin

mπ

n
;

but we have
±(−1)i = ±(−1)n−1+m

n = −(−1)
m
n ;

the imaginary part of the first member of equation (o) is therefore

−
√
−1 sin

mπ

n

[
si − n(s− 1)i +

n(n− 1)

1.2
(s− 2)i − etc.

]
.

Let us determine the imaginary part of the second member of equation (o). We have

(−1)r+n−1 = (−1)2n−2 = 1;

we have next
(−1)

n+i
2

+r+1 = −
√
−1(−1)

m
2n

because of r = n− 1 and of i = n− 1 + m
n

; now we have by that which precedes, [168]

(−1)
m
2n = cos

mπ

2n
+
√
−1 sin

mπ

2n
;

we will have therefore, for the imaginary part of the second member of equation (o),

−2n−1
√
−1

sin mπ
n

π

∫
dx′ x′−

m
n cos

[
(2s− n)x′ − mπ

2n

](sinx′

x′

)n ∫
xidx c−x.

If we equate this function to the imaginary part of the first member of this equation;
if we observe moreover that∫

xidx c−x =
(

1 +
m

n

)(
2 +

m

n

)
. . . i

∫
x
m
n dx c−x

=
(

1 +
m

n

)(
2 +

m

n

)
. . . ink,

by making k =
∫
tn+m−1dt c−t

n
, the integral being taken from t null to t infinity;

finally, if we suppose 2s− n = z; we will have

(n+ z)n−1+m
n − n(n+ z − 2)n−1+m

n + n(n−1)
1.2

(n+ z − 4)n−1+m
n − etc.(

1 + m
n

) (
2 + m

n

)
· · ·
(
n− 1 + m

n

)
=
nk2n

π

∫
x′−

m
n dx′ cos

(
zx′ − mπ

2n

)(sinx′

x′

)n
.

(p)

In the first member of this formula, the series must be continued until we arrive to a
negative quantity raised to the power n − 1 + m

n
, z not surpassing n; in the second

member, the integral must be taken from x′ null to x′ infinity.
The comparison of the real parts of the two members of equation (o) leads to

the same result; and besides, it proves that for the coincidence of the two results
deduced from the comparison of the real quantities between them and of the imaginary
quantities between them, it is necessary to suppose, as we have done, f = 0.

We [169]can further arrive to formula (p), by means of the following equation:

i[φ(z + 2, n)− φ(z, n)] = (n+ z + 2)φ′(z + 2, n) + (n− z)φ′(z, n),
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φ′(z, n) being the coefficient of dz in the differential of φ(z, n), and φ(z, n) being equal
to

(n+ z)i − n(n+ z − 2)i +
n(n− 1)

1.2
(n+ z − 4)i − etc.;

all the terms in which the quantity raised to the power i is negative, needing to be
rejected, and z not surpassing n, so that the quantity raised to the power i, never
surpasses 2n. In resolving this equation in the infinitely small and finite differences,
by the method of §30, and determining conveniently the arbitrary constants, we arrive
to the form (p).

We are going now to give some applications of this formula, which will lead us to
many curious theorems of analysis.

Let us suppose m null; then we have

k =

∫
tn+m−1dt c−t

n

=
1

n
;

formula (p) thus becomes

(n+ z)n−1 − n(n+ z − 2)n−1 + n(n−1)
1.2

(n+ z − 4)n−1 − etc.

1.2.3 . . . (n− 1)2n

=

∫
dx′ cos zx′

(
sinx′

x′

)n
π

,

we have

log

(
sinx′

x′

)n
= n log

(
1− 1

6
x′2 +

1

120
x′4 − etc.

)
;

that which gives (
sinx′

x′

)n
= c−

n
6
x′2
(

1− nx′4

180
+ etc.

)
;

we will have therefore, by §26, by making z = r
√
n,[170] ∫

dx′ cos sx′
(

sinx′

x′

)n
π

=

√
3

2nπ
c−

3
2
r2
[
1− 3

20n
(1− 6r2 + 3r4) + etc.

]
=

(n+ r
√
n)n−1 − n(n+ r

√
n− 2)n−1 + n(n−1)

1.2
(n+ r

√
n− 4)n−1 − etc.

1.2.3 . . . (n− 1)2n

(q)

the series of this last member needing to be arrested at the powers of the negative
quantities.

By differentiating this equation with respect to r, we will have, with the condition
of the exclusion of the powers of the negative quantities,

n

1.2.3 . . . (n− 2)2n

[
(n+ r

√
n)n−2 − n(n+ r

√
n− 2)n−2 +

n(n− 1)

1.2
(n+ r

√
n− 4)n−2 − etc.

]
= −3r

√
3

2π
c−

3
2
r2
[
1− 3

20n
(5− 10r2 + 3r4) + etc.

]
.
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By continuing to differentiate thus, we will have the values of the inferior differences,
provided however that the number of these differentiations be quite small relative to
the number n. We can observe that these equations subsist, by making r negative;
for cos zx′ or cos x′r

√
n is the same in the two cases of r positive and of r negative.

We can, by integrating successively equation (q), obtain analogous theorems on
the finite differences of the powers superior to n, by excluding always the powers of
the negative quantities. Thus we have, by a first integration,

(n+ r
√
n)n − n(n+ r

√
n− 2)n + n(n−1)

1.2
(n+ r

√
n− 4)n − etc.

1.2.3 . . . n2n

=

√
3

2π

∫
dr c−

3
2
r

[
1− 3

20n
(1− 6r2 + 3r4)

]
+ etc.

=C +

√
3

2π

[∫
dr c−

3
2
r2 − 3

20n
r(1− r2)c−

3
2
r2 + etc.

]
.

We will determine the arbitrary constant C, by starting with r, the integral
∫
dr c−

3
2
r2 ,

and by observing that then r remaining null, the last [171]member of the equation is
reduced to this constant. In this case, the first becomes

nn − n(n− 2)2 +
n(n− 1)

1.2
(n− 4)n − etc..

But we have, as we know, without the exclusion of the power of the negative quanti-
ties,

nn − n(n− 2)n + etc.∓ n(2− n)n ∓ (−n)n = 1.2.3 . . . n.2n,

the superior sign holding if n is even, and the inferior sign if n is odd. In the two
cases, we see that the sum of the terms in which the quantities raised to the power
n are negatives, is equal to the sum of the other terms; we have therefore, with the
exclusion of the powers of the negative quantities,

nn − n(n− 2)n +
n(n− 1)

1.2
(n− 4)n − etc. = 1.2.3 . . . n.2n−1;

that which gives C = 1
2
; consequently,

(n+ r
√
n)n − n(n+ r

√
n− 2)n + n(n−1)

1.2
(n+ r

√
n− 4)n − etc.

1.2.3 . . . n.2n

=
1

2
+

√
3

2π

[∫
dr c−

3
2
r2 − 3

20n
r(1− r2)c−

3
2
r2 + etc.

]
.

By integrating anew this expression, and determining conveniently the arbitrary con-
stant, we find

(n+ r
√
n)n+1 − n(n+ r

√
n− 2)n+1 + n(n−1)

1.2
(n+ r

√
n− 4)n+1 − etc.

1.2.3 . . . (n+ 1)2n
√
n

=

√
3

2π

{
r

∫
dr c−

3
2
r2 + c−

3
2
r2
[

1

3
+

1

60n
(1− 3r2)

]}
+

1

2
r.
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§43. We can extend the preceding methods to the determination of the nth dif-
ference of any power of a rational function of s. It suffices for that to reduce, by
the method of §29, this function to the form

∫
xsφ dx. But we have seen then that

we[172] arrive in order to determine φ, to a differential equation of a degree equal to the
highest exponent of s in this function, and which most often is not integrable. We can
obviate this disadvantage, by means of multiple integrals, in the following manner.

Let us consider generally the function

1

(s+ p)i(s+ p′)i′(s+ p′′)i′′ .etc.
.

If in the integral
∫
xi−1dx c−(s+p)x, taken from x null to x infinity, we change (s +

p)x into x′, it becomes 1
(s+p)i

∫
x′i−1dx′ c−x

′
, the new integral being taken within the

preceding limits. The comparison of the two integrals will give

1

(s+ p)i
=

∫
xi−1dx c−(s+p)x∫
xi−1dx c−x

.

It follows thence that

1

(s+ p)i(s+ p′)i′(s+ p′′)i′′ .etc.

=

∫
xi−1x′i

′−1x′′i
′′−1.etc.dx dx′ dx′′.etc.c−px−p

′x′−p′′x′′−etc.−s(x+x′+x′′+etc.)∫
xi−1dx c−x x′i′−1dx′ c−x′

∫
x′′i

′′−1dx′′ c−x′′ .etc.

all the integrals being taken from x, x′, x′′, etc. null to their infinite values; we will
have therefore

4n 1

(s+ p)i(s+ p′)i′ .etc.

=

∫
xi−1x′i

′−1.etc.dx dx′.etc..c−px−p
′x′−etc.−s(x+x′+etc.)(c−x−x

′−etc. − 1)n∫
xi−1dx c−x x′i′−1dx′ c−x′ .etc.

We will reduce easily into convergent series, by the method of §40, the numerator and
the denominator of this expression; and if we change in this series, the signs of i, i′,
etc.; we will have the very near value of

4n(s+ p)i(s+ p′)i
′
.etc.,

n, i, i′, etc. being supposed very large numbers. We will find by the section cited,[173]

4n(s+ p)i(s+ p′)i
′
etc.

=

(
i
a

)i+1 ( i′
a′

)i′+1
.etc.c(s+p)a+(s+p′)a′+etc.−i−i′−etc.(ca+a′+etc. − 1)n√(

i(i+1)
a2
− nica+a′+etc.

(ca+a′+etc.−1)2

)(
i′(i′+1)
a′2
− ni′ca+a′+etc.

(ca+a′+etc.−1)2

)
.etc.
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a, a′, etc. being determined by the equations

0 =
i+ 1

a
+ s− p− nca+a′+etc.

ca+a′+etc. − 1
,

i′ + 1

a′
=
i+ 1

a
+ p′ − p,

i′′ + 1

a′′
=
i+ 1

a
+ p′′ − p,

etc.

The most ordinary case is the one in which the exponents i, i′, i′′, etc. are equal,
and s + p, s + p′, etc. form an arithmetic progression. We can obtain then, by the
following method, the finite difference of their product elevated to a high power.

Let us consider the difference 4n[s(s− 1)]i. If we make s = s′ + 1
2
, it becomes

4ns′2i
(

1− 1

4s′2

)i
.

By developing this function in series, we have

4ns′2i − i

4
4ns′2i−2 +

i(i− 1)

1.2.42
4ns′2i−4 − etc.

The formulas of §40 will give the near value of each of the terms of this series, and we
see, by these formulas, that, n and i being very great numbers, 4ns2i−2 is of an order
less by two units than 4ns2i; whence it follows that each term of the preceding series
is of an order inferior by one unit, to the one which precedes it; that which shows the
convergence of the series.

We would arrive to the same result by resolving by approximation, the differential
equation of the second order in φ, to which the method of §29 leads. When we suppose(

s′2 − 1

4

)−i
=

∫
c−s

′xφ dx;

we have [174]

2is′
∫
c−s

′xφ dx =

(
s′2 − 1

4

)∫
c−s

′xφ dx.

By making s′ of the coefficients of this equation vanish, by the method cited, in the
terms affected with the integral sign; equating next to zero, the sum of these terms,
and supposing next, in the differential equation that we obtain thus, φ equal to an
ascending series with respect to the powers of x, we will have a convergent series. We
will have next

4n

(
s′2 − 1

4

)−i
=

∫
c−s

′x(c−x − 1)nφ dx;

whence we will deduce a value in series of 4n
(
s′2 − 1

4

)−i
, and in which it will suffice

to change the sign of i, in order to have the value of 4n
(
s′2 − 1

4

)i
.
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This manner to resolve by approximation, the differential equation in φ, and that
we have indicated at the end of §30, can serve in a great number of cases where this
equation is not integrable exactly.

General remark on the convergence of series.

§44. We will terminate this Introduction, with an important observation on the
convergence of the series of which we have made a so frequent use. These series
converge very rapidly in their first terms; but often this convergence diminishes and
ends by being changed into divergence. It must not prevent the use of these series, by
employing only their first terms, in which the convergence is rapid; because the rest
of the series, which we neglect, is the development of an algebraic function or integral,
very small with respect to that which precedes. In order to render this sensible by an
example, let us consider the development into series, of the integral

∫
dt c−t

2
, taken

from t = T to t infinity. We have, by §27,[175] ∫
dt c−t

2

=
c−T

2

2T

(
1− 1

2T 2
+

1.3

22T 4
− 1.3.5

23T 6
+ etc.

)
.

This series ends by being divergent, however great that the value be that we suppose
to T; but then we can employ without sensible error, its first terms. Indeed, if we

consider, for example, its first four terms, the rest of the series will be 1.3.5.7
24

∫
dt c−t

2

t8
;

now this quantity, setting aside the sign, is smaller than the term −1.3.5.c−T
2

24T 7 which
precedes, that is that we have

c−T
2

T 7
> 7

∫
dt c−t

2

t8
;

for we have

7

∫
dt c−t

2

t8
= constant− c−t

2

t7
− 2

∫
dt c−t

2

t6
.

In determining the constant, in a manner that the integral be null, when t = T , we

will have c−T
2

T 7 for this constant; we will have therefore, by taking the integral from
t = T to t infinity,

7

∫
dt c−t

2

t8
=
c−T

2

T 7
− 2

∫
dt c−t

2

t6
.

The preceding series therefore can be employed, as long as it is convergent; since we
are sure that that which we neglect, is below the term at which we arrest ourselves.

This series enjoys further this property, namely, that it is alternatively greater
and smaller than its entire value, according as we are arrested at a positive term, or
at a negative term. We can name for this reason, this kind of series, limited-series.
Besides, we have seen in §27, that in the case where they are divergent; we can, in
reducing them to continued fractions, obtain always convergent approximations.

That which we just said on the preceding series, can be extended to all those that
we have considered, and must remove all disquiet on the uses that we have made of



3. APPLICATION OF THE PRECEDING METHODS 141

them. Indeed, we can always stop these series at the point where they cease to be
convergent, [176]and represent the rest by an integral. This is that which we are going to
demonstrate on the most general formula of the development of functions into series.

We have, in taking the integral from z = 0,∫
dz φ′(x− z) = φ(x)− φ(x− z),

φ′(x) being the differential of φ(x) divided by dx. If we designate similarly by φ′′(x)
the differential of φ′(x) divided by dx; by φ′′′(x) the differential of φ′′(x) divided by
dx, and so forth, we will have∫

dzφ′(x− z) = zφ′(x− z) +

∫
zdz φ′′(x− z),∫

dzφ′′(x− z) = 1
2
z2φ′′(x− z) +

∫
1
2
z2dz φ′′′(x− z),

etc.

By continuing thus, we will find generally∫
dzφ′(x− z) = zφ′(x− z) +

z2

1.2
φ′′(x− z) · · ·+ zn

1.2.3 . . . n
φ(n)(x− z)

=

∫
zndz

1.2.3 . . . n
φ(n+1)(x− z).

By comparing this expression to the preceding, we will have

φ(x) = φ(x− z) + zφ′(x− z) +
z2

1.2
φ′′(x− z) · · ·+ zn

1.2.3 . . . n
φ(n)(x− z)

=
1

1.2.3 . . . n

∫
zndz φ(n+1)(x− z).

Let us make x− z = t, the preceding equation will take this form

φ(t+ z) = φ(t) + zφ′(t) +
z2

1.2
φ′′(t) · · ·+ zn

1.2.3 . . . n
φ(n)(t)

=
1

1.2.3 . . . n

∫
z′ndz′ φ(n+1)(t+ z − z′),

the integral being taken from z′ = 0 to z′ = z. It is clear that if we made in this
integral φ(n+1)(t + z − z′) constant, we could have a too great result, if we took the
greatest value of this quantity; and a too small result, by taking its least value. It has
therefore in the interval of z′ = 0 to z′ = z, a value of z′ such that in supposing this
quantity constant, we will have an exact [177]result. Let u be this value; the preceding
integral becomes thus

zn+1

1.2.3 . . . (n+ 1)
φ(n+1)(t+ z − u),
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that which gives

φ(t+ z) = φ(t) + zφ′(t) · · ·+ zn

1.2.3 . . . n
φ(n)(t)

+
zn+1

1.2.3 . . . (n+ 1)
φ(n+1)(t+ z − u),

z − u being comprehended between zero and z. We could thus judge from the con-
vergence of the series and from the degree of approximation, when we stop ourselves
at one of its terms.

END OF THE FIRST PART



Additions

I.

We have integrated [462]by a very convergent approximation, in §34 of Book I, the
equation in the finite differences,

0 = (n′ + s+ 1)ys+1 − (n+ s)ys.

It is easy to conclude from our analysis, the expression of the ratio of the circumference
to the radius, in infinite products, given by Wallis. In fact, this analysis has led us in
the section cited, to the general expression

(n+ µ)(n+ µ+ 1) · · · (n+ s+ 1)

(n′ + µ+ 1)(n′ + µ+ 2) · · · (n′ + s)
=

∫
u2n′−2n+1du(1− u2)n+s−1∫
u2n′−2n+1du(1− u2)n+µ−1

, (a)

the integrals being taken from u = 0 to u = 1. By making first n′ = 0, n = 1
2
, µ = 1

and observing that
∫
du(1 − u2)

1
2 = 1

4
π, π being the ratio of the semi-circumference

to the radius, we will have

4

π
=

3.5 . . . (2s− 1)

4.6 . . . 2s
∫
du(1− u2)s−

1
2

.

By supposing therefore generally

1∫
du(1− u2)s

= ys;

one will have

4

π
=

3.5 . . . (2s− 1)

4.6 . . . 2s
ys− 1

2
=

3.5 . . . (2s+ 1)

4.6 . . . (2s+ 2)
ys+ 1

2
= etc.;

that which gives

ys− 1
2

=
2s+ 1

2s+ 2
ys+ 1

2
.

If we make next in formula (a), n′ = −1
2
, n = 0 and µ = 1, it gives [463]

3.5 . . . (2s− 1)

2.4 . . . (2s− 2)
= ys−1;

whence we deduce

ys−1 =
2s

2s+ 1
ys;

an equation which coincides with the preceding between ys− 1
2

and ys+ 1
2
, by changing

s into s+ 1
2
; so that this equation holds, s being whole, or equal to a whole plus 1

2
.

143
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The two expressions of ys−1 and of 4
π

give

4

π
=

3.3

2.4
· 5.5

4.6
· · · (2s− 1)(2s− 1)

(2s− 2)2s

ys− 1
2

ys−1

;

the equations in the differences in ys and ys− 1
2

give

ys− 1
2

ys−1

=
(2s+ 1)2

2s(2s+ 2)
·
ys+ 1

2

ys
=

(2s+ 1)2

2s(2s+ 2)
· (2s+ 3)2

(2s+ 2)(2s+ 4)
·
ys+ 3

2

ys+1

= etc.

The ratio
y
s− 1

2

ys−1
is greater than unity: it diminishes without ceasing, in measure as s

increases; and, in the case of s infinite, it becomes unity. In fact, this ratio is equal
to ∫

du(1− u2)s−1∫
du(1− u2)s−

1
2

.

Now the element du(1− u2)s−1 is greater than the element du(1− u2)s−
1
2 , or du(1−

u2)s−1(1 − u2)
1
2 ; the integral of the numerator of the preceding fraction surpasses

therefore that of the denominator; this fraction is therefore greater than unity. When
s is infinite, these integrals have a sensible value only when u is infinitely small;
because u being finite, the factor (1− u2)s−1 becomes a fraction having an infinitely

great exponent; one can therefore then suppose (1− u2)
1
2 = 1, this which renders the

ratio
s− 1

2

ys−1
equal to unity.

This ratio[464] is equal to the product of an infinite sequence of fractions of which the

first is (2s+1)2

2s(2s+2)
, and of which the others are deduced from it, by increasing successively

s by one unit; it becomes ys
y
s− 1

2

, by changing s into s + 1
2
, and the fraction (2s+1)2

2s(2s+2)

becomes (2s+2)2

(2s+1)(2s+3)
; now we have, whatever be s,

(2s+ 1)2

2s(2s+ 2)
>

(2s+ 2)2

(2s+ 1)(2s+ 3)
;

we have therefore this inequality

ys− 1
2

ys−1

>
ys
ys− 1

2

.

By changing s into s− 1
2
, we will have

ys−1

ys− 3
2

>
ys− 1

2

ys−1

.

These two inequalities give

ys− 1
2

ys−1

>

√
ys
ys−1

<

√
ys− 1

2

ys− 3
2

.
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Substituting in place of the ratios ys
ys−1

and
y
s− 1

2

y
s− 3

2

, their values given by the equations

in the differences in ys, we will have

ys− 1
2

ys−1

>

√
1 +

1

2s
<

√
1 +

1

2s− 1
;

we will have therefore

4
π
> 3.3

2.4
· 5.5

4.6
· · · (2s−1)(2s−1)

(2s−2)(2s)

√
1 + 1

2s
,

4
π
< 3.3

2.4
· 5.5

4.6
· · · (2s−1)(2s−1)

(2s−2)(2s)

√
1 + 1

2s−1
.

 (A)

Wallis [465]published in 1657, in his Arithmetica infinitorum2, this beautiful theorem, one
of the most curious in analysis, by itself, and by the manner in which the inventor is
arrived there. His method containing the principles of the theory of definite integrals,
that the geometers have specially cultivated in these recent times; I think that they
will see with pleasure, a succinct exposition, in the actual language of Analysis.

Wallis considers the series of fractions of which the general term is 1∫
dx
(

1−x
1
n

)s ,
n and s being whole numbers, by commencing with zero. By developing the bino-
mial contained under the integral sign, and integrating each term of the expansion,
he obtains for one same value of n, the numerical values of the preceding fraction,
corresponding to s = 0, s = 1, s = 2, etc.; that which gives to him a horizontal series,
of which s is the index. By supposing successively n = 0, n = 1, n = 2, etc., he has
so many horizontal series. Thence he forms a table in double entry, of which s is the
horizontal index, and n the vertical index.

In this table, the horizontal and vertical series are the same, so that by designating
by yn,s the term corresponding to the indices n and s, we have this fundamental
equation,

yn,s = ys,n.

Wallis observes next that the first series is unity; that the second is formed of the
natural numbers; that the third is formed of the triangular numbers, and so forth; in
a manner that the general term yn,s of the horizontal series corresponding to n is

(s+ 1)(s+ 2) · · · (s+ n)

1.2.3 . . . n
;

this fraction being equal to

(n+ 1)(n+ 2) · · · (s+ n)

1.2.3 . . . s
,

we see clearly that yn,s is equal to ys,n.
Now [466]if we arrive to interpolate in the preceding table, the term corresponding to

n and s equal to 1
2
, we would have the ratio of the square of the diameter to the

surface of the circle; because the term of which there is concern is 1∫
dx(1−x2)

1
2

, or 4
π
.

Wallis seeks therefore to make this interpolation. It is easy in the case where one of

2This work has been translated into English. See [13, 14].



146 ADDITIONS

the two numbers n and s is a whole number. Thus, by making successively s equal

to a whole number less 1
2
, in the function (s+1)(s+2)···(s+n)

1.2.3...n
, he obtains all the terms of

the horizontal series, corresponding to the values of s, −1
2
, 3

2
, 5

2
, etc.; and by making

n equal to a whole number less 1
2
, in the function (n+1)(n+2)···(n+s)

1.2.3...s
, he obtains all the

terms of the vertical series, corresponding to the values of n, −1
2
, 3

2
, etc. But the

difficulty consists in finding the terms corresponding to n and s both equal, to some
whole numbers less 1

2
.

Wallis observes for this that the equation

yn,s =
(s+ 1)(s+ 2) · · · (s+ n)

1.2.3 . . . n

gives

yn,s−1 =
s(s+ 1) · · · (s+ n− 1)

1.2.3 . . . n
,

and that thus we have

yn,s =
s+ n

s
yn,s−1; (a)

so that each term of a horizontal series is equal to the preceding, multiplied by the
fraction s+n

s
; whence it follows that all the terms of a horizontal series, departing from

s = −1
2
, s increasing successively by unity, are the products of yn,− 1

2
, by the fractions

2n+1
1

, 2n+3
3

, 2n+5
5

, etc.; and, departing from s = 1, these terms are the products of

yn,0, by the fractions n+1
1

, n+2
2

, n+3
3

, etc. He supposes that the same laws subsist in

the case of n fractional[467] and equal to 1
2
, so that we have all the terms, departing from

s = −1
2
, by multiplying y 1

2
,− 1

2
by the series of fractions 2

1
, 4

3
, 6

5
, etc. By designating

therefore by � the term corresponding to n = 1
2

and s = 1
2
, a term which, as we have

seen, is equal to 4
π
, we have

� = 2
1
y 1

2
,− 1

2
,

that which gives

y 1
2
,− 1

2
= 1

2
�.

Departing from y 1
2
,0 or from unity, he obtains the successive terms of the series,

corresponding to s whole, by multiplying successively unity, by the fractions 3
2
, 5

4
, 7

6
,

etc. He forms thus the following horizontal series which corresponds to n = 1
2
, and

to s successively equal to −1
2
, 0, 1

2
, 1, 3

2
, etc.

1

2
�, 1, �,

3

2
,

4

3
�,

3

2
· 5

4
,

4

3
· 6

5
�, etc.; (i)

a series which represents this here,

1∫
dx(1− x2)−

1
2

,
1∫

dx(1− x2)0
,

1∫
dx(1− x2)

1
2

, etc.
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Series (i) gives generally, s being a whole number,

y 1
2
,s− 1

2
=

4

3
· 6

5
· · · 2s

2s− 1
�,

y 1
2
,s−1 =

3

2
· 5

4
· · · 2s− 1

2s− 2
;

whence we deduce

� =
3.3

2.4
· 5.5

4.6
· · · (2s− 1)(2s− 1)

(2s− 2)2s

y 1
2
,s− 1

2

y 1
2
,s−1

. (B)

Wallis considers next that in the series (i), the ratio of each term to the one which
precedes it by one unit, is greater than unity, and diminished without ceasing, so that
we have

y 1
2
,s

y 1
2
,s−1

>
y 1

2
,s+1

y 1
2
,s

.

This results [468]in fact from the equation

y 1
2
,s =

2s+ 1

2s
y 1

2
,s−1.

He supposes that this holds equally for all the consecutive terms of the series; so that
we have the two inequalities

y 1
2
,s− 1

2

y 1
2
,s−1

>
y 1

2
,s

y 1
2
,s− 1

2

<
y 1

2
,s−1

y 1
2
,s− 3

2

;

whence he deduces, as we have done above,

y 1
2
,s− 1

2

y 1
2
,s−1

>

√
1 +

1

2s
<

√
1 +

1

2s− 1
;

thence, it changes formula (B) into formula (A).
This manner to proceed by way of induction, must appear, and appeared in fact,

extraordinary to the geometers accustomed to the rigor of the ancients. Thus we
see that some great contemporary geometers of Wallis, were not very satisfied with
it, and Fermat, in his correspondence with Digby,3 made some objections not very
worthy of him, against this method which he had not studied sufficiently deeply. It
must be, without doubt, employed with an extreme circumspection: Wallis himself
said, in responding to Fermat, that it is thus that he is served by it, and in order
to confirm the exactitude, he supported it on a calculation by which lord Brouncker4

had found, by means of formula (A), the ratio of the circumference to the diameter,
comprehended between the limits

3.14159 26535 69,

3.14159 26536 96,

3Sir Kenelm Digby (1603–1665).
4William Brouncker (1620–1684)
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limits which coincide in the first ten digits, with this ratio that we have carried
beyond one hundred decimals. Notwithstanding these confirmations, it is always
useful to demonstrate in rigor, that which one obtains by these means of invention.
Wallis observes that the ancients had, without doubt, similar ones that they had
not made known at all, being content to give their results supported on synthetic
demonstrations.[469] He regrets with reason, that they had concealed from us their ways
to arrive there, and he said to Fermat, that one must be thankful to him not to have
imitated them, and to not have destroyed the bridge after the flood having passed.5

It is worthy to note that Newton who had profited from this method of induction
of Wallis and of his results, in order to discover his theorem on the binomial, had
merited the reproaches that Wallis made to the ancients geometers, in concealing the
means which had led them to their discoveries.

Let us resume formula (B) of Wallis. If we suppose

y 1
2
,s− 1

2

y 1
2
,s−1

= us,

this formula will give

us−1 =
(2s− 1)2

(2s− 2)2s
us,

or

0 = 2s(2s− 2)(us − us−1) + us. (l)

Let there be

us = A(0) +
A(1)

s+ 1
+

A(2)

(s+ 1)(s+ 2)
+

A(3)

(s+ 1)(s+ 2)(s+ 3)
+ etc.;

and let us consider that which produces in the second member of equation (l), the
term

A(r)

(s+ 1) · · · (s+ r)
.

By having regard only to this term in us, we will have

us − us−1 =
−rA(r)

s(s+ 1)(s+ 2) · · · (s+ r)
;

the term 2s(2s− 2)(us − us−1) of the equation (l) becomes thus

−4rA(r)(s− 1)

(s+ 1) · · · (s+ r)
,

or
−4rA(r)

(s+ 1) · · · (s+ r − 1)
+

4r(r + 1)A(r)

(s+ 1) · · · (s+ r)
.

5Text: détruit le pont après avoir passé le fleuve, i.e., not conceal the means to safety.
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The [470]term of us depending on A(r+1), will produce similar terms, and thus of the others.
By comparing therefore in equation (l) the terms which have the same denominator
(s+ 1) · · · (s+ r), we will have

0 = 4r(r + 1)A(r) − 4(r + 1)A(r+1) + A(r),

that which gives

A(r+1) =
(2r + 1)2A(r)

4(r + 1)
.

It is clear, by that which precedes, that us is reduced to unity, when s is infinite, that
which gives A(0) = 1. Thence, we deduce

us = 1+
12

4(s+ 1)
+

12.32

42.1.2(s+ 1)(s+ 2)
+

12.32.52

43.1.2.3(s+ 1)(s+ 2)(s+ 3)
+etc. =

ys− 1
2

ys−1

.

The ratio of the mean term of the binomial (1 + 1)2s to the entire binomial, is

(s+ 1)(s+ 2) · · · 2s
22s.1.2.3 . . . s

or
1.3.5 . . . (2s− 1)

2.4.6 . . . 2s
.

By naming therefore T this mean term, formula (B) will give

T2 =
1

sπus
.

This theorem and the preceding expression of us in series, are due to Stirling; and we
see how they are attached to the theorem and to the analysis of Wallis. This value
of T 2 is able to serve to determine by approximation, the ratio of the circumference
to the diameter, that which was the object of Wallis; or this ratio being supposed
known, it gives the mean term of the binomial, that which was the object of Stirling.
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II.

The expression of 4nsi given by formula (µ′) of §40 of the first book, has been
concluded from the expression of 4n 1

si
, by changing in that one, i into −i.[471] This

passage from the positive to the negative, is analogous to the inductions that Wallis
and other geometers have so happily employed. All these means of invention, which
hold in the generality of analysis, require in their usage, a great circumspection, and
it is always good to demonstrate the results directly. This is that which we are going
to do relative to formula (µ′).

Let us consider the integral ∫
d$ c−as$

√
−1

(1−$)
√
−1)i+1

,

taken from $ = −∞, to $ =∞. This integral is equal to

−
√
−1

i

c−as$
√
−1

(1−$)
√
−1)i

+
as

i

∫
d$ c−as$

√
−1

(1−$)
√
−1)i+1

+ constant.

This constant is √
−1

i

cas$
√
−1

(1−$)
√
−1)i

,

$ being supposed infinite. By uniting it with the term

−
√
−1

i

c−as$
√
−1

(1−$)
√
−1)i

,

in which we must similarly suppose $ infinite, we will have

√
−1
i

{
cos(as$)[(1−$

√
−1)i − (1 +$

√
−1)i]

+
√
−1 sin(as$)[(1−$

√
−1)i + (1 +$

√
−1)i]

(1 +$2)i
:

the numerator of this fraction is real, as also its denominator; and it is clear that it
becomes null, in making $ infinity; we have therefore∫

d$ c−as$
√
−1

(1−$
√
−1)i+1

=
as

i

∫
d$ c−as$

√
−1

(1−$
√
−1)i

.

Thence it is easy to conclude that in making i = r − m
n

, r being a[472] positive whole
number, we will have∫

d$ c−as$
√
−1

(1−$
√
−1)i+1

=
arsr

i(i− 1) · · ·
(
1− m

n

) ∫ d$ c−as$
√
−1

(1−$
√
−1)1−m

n

Let as$ = $′, and let us make as = q; we will have

arsr
∫

d$ c−as$
√
−1

(1−$
√
−1)1−m

n

= qi
∫

d$′ c−$
′√−1

(q −$′
√
−1)1−m

n

,
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the integrals being taken from $ and $′ equal to −∞, to $ and $ equal to +∞.
Let us designate by k the integral∫

d$′ c−as$
′√−1

(q −$′
√
−1)1−m

n

;

we will have

dk

dq
= −

(
1− m

n

)∫ d$′ c−$
′√−1

(q −$′
√
−1)2−m

n

=

√
−1c−$

′√−1

(q −$′
√
−1)1−m

n

−
∫

d$′ c−$
′√−1

(q −$′
√
−1)1−m

n

+ constant.

We will see, as above, that this last member is reduced to the term affected with
the integral sign, a term which is equal to −k; we have therefore

dk

dq
= −k;

that which gives, by integrating,
k = Ac−q,

A being an arbitrary constant independent of q. It is clear that this equation supposes
q positive; for by making q positive or negative infinity, k is infinitely small. We have
therefore ∫

d$ cas(1−$
√
−1)

(1−$
√
−1)i+1

=
Aaisi

i(i− 1) · · ·
(
1− m

n

) .
This [473]equation holds whatever be the value of a, provided that as is positive. By
making s = 1, and changing a into another constant a′, we will have∫

d$ c−a
′(1−$

√
−1)

(1−$
√
−1)i+1

=
Aa′i

i(i− 1) · · ·
(
1− m

n

) ;

we will have therefore

si =
a′i

ai

∫
d$ cas(1−$

√
−1)

(1−$
√
−1)i+1∫

d$ ca
′(1−$

√
−1)

(1−$)
√
−1)i+1

;

that which gives

4nsi =
a′i

ai

∫ d$ cas(1−$
√
−1)(ca(1−$

√
−1)−1)n

(1−$
√
−1)i+1∫

d$ ca
′(1−$

√
−1)

(1−$
√
−1)i+1

.

In order to have the integrals in series; we will suppose

cas(1−$
√
−1)(ca(1−$

√
−1) − 1)n

(1−$
√
−1)i+1

= cas(ca − 1)nc−t
2

;

we will have by taking logarithms,

−as$
√
−1 + n log

[
1 +

ca

ca − 1
(c−a$

√
−1−1)

]
− (i+ 1) log(1−$

√
−1) = −t2.
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Let us determine a, in a manner that, in the development of the first member of this
equation, the first power of $ vanishes, and let us suppose this development equal to

−fa2$2 − f ′a3$3 − f ′′a4$4 − etc. = −t2;

we will have first

0 =
i+ 1

a
− s− nca

ca − 1
;

next[474]

f =
i+ 1

2a2
+
n

2

ca

ca − 1
− n

2

(
ca

ca − 1

)2

,

f ′ =
√
−1

[
i+ 1

3a3
− n

6

ca

ca − 1
+
n

2

(
ca

ca − 1

)2

− n

3

(
ca

ca − 1

)3
]
,

f ′′ = −i+ 1

4a4
− n

24

ca

ca − 1
+

7n

24

(
ca

ca − 1

)2

− n

2

(
ca

ca − 1

)3

+
n

24

(
ca

ca − 1

)4

,

etc.

We have next, by the reversion of series,

a$ =
t√
f

(
1− f ′t

2f
√
f

+
5f ′2 − 4ff ′′

8f 3
t2 + etc.

)
:

we have therefore, by taking the integrals from $ and t equal to −∞, to t and $
equal to +∞, ∫

d$ cas(1−$
√
−1)(ca(1−$

√
−1) − 1)n

(1−$
√
−1)n

=
cas(ca − 1)n

a

∫
dt√
f

(
1− f ′t

f
√
f

+ 3
5f ′2 − 4ff ′′

8f 3
t2 + etc.

)
=

√
π√
f

(
1 +

15f ′2 − 12ff ′′

16f 3
+ etc.

)
cas(ca − 1)n

a
.

If we suppose s = 1, n = 0 and if we change a into a′, we will have

a′ = i+ 1, f =
1

2(i+ 1)
, f ′ =

√
−1

3(i+ 1)2
, f ′′ =

1

4(i+ 1)3
, etc.

we will have therefore∫
d$ ca

′(1−$
√
−1)

(1−$
√
−1)i+1

=
ci+1

i+ 1

(
1− 1

12i
+ etc.

)√
2(i+ 1)π.

Thence it is easy to conclude

4nsi =

(
i
a

)i+1
cas−i(ca − 1)n√

i(i+1)
a2
− in ca

(ca−1)2

(
1 +

15f ′2 − 12ff ′′

16f 3
+

1

12i
+ etc.

)
,

a formula[475] which coincides with formula (µ′) of §40 of the first book.
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This formula supposes a positive, and this is that which holds, when i+1 surpasses
n. In fact, if, in the equation

0 =
i+ 1

a
− s− nca

ca − 1
,

we suppose a infinitely small, the second member is positive and equal to i+1−n
a

;
next, a being positive and infinite, this second member becomes negative and equal
to −s − n; there is therefore a positive value of a which satisfies this equation. But
there is only one; because if there were two, the function i+1

a
− s − nca

ca−1
would have

a maximum between these two values; we would have therefore at this maximum,

0 = −i+ 1

a2
+

nca

(ca − 1)2
,

that which cannot be, a being positive. In fact, (ca − 1)2 is greater than a2ca, or
ca − 1 > ac

a
2 , that which is clear; because we have

c
a
2 − c−

a
2 = a+

a3

4.1.2.3
+ etc. > a;

we have therefore
nca

(ca − 1)2
<

n

a2
<
i+ 1

a2
.

Thus formula (µ′) can be used, while i + 1 surpasses n; that which is conformed to
that which we have said in §41 of the first book, according to the consideration of
the passages from the real to the imaginary, passages that the preceding analysis
confirms.

III.

Formula (p) of §42 of the first book, is quite remarkable: it can be demonstrated
in the following manner, which shows distinctly the reason for which the series of
differences must be arrested, when the quantity under the exponent of the power,
becomes negative.

Let [476]us consider the integral∫
x−

m
n dx cos

(
zx− mπ

2n

)(sinx

x

)n
,

and let us give to it this form

cos
mπ

2n

∫
x−

m
n dx cos zx

(
sinx

x

)n
+ sin

mπ

2n

∫
x−

m
n dx sin zx

(
sinx

x

)n
,
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the integrals being taken from x null to x infinity. Let us suppose first n even and
equal to 2i; we will have, by the known formulas,

(
sinx

x

)2i

=
(−1)i

22i−1x2i


cosnx− n cos(n− 2)x+

n(n− 1)

1.2
cos(n− 4)x− etc.

±1

2
· n(n− 1)(n− 2) . . . (n− i+ 1)

1.2.3 . . . i

 ,

the + sign holding, if i is even, and the − sign, if i is odd. By multiplying this
equation by cos zx, we will have

(
sinx

x

)2i

cos zx =
(−1)i

22ix2i


cos(n± z)x− n cos(n− 2± z)x± etc.

±1

2

n(n− 1)(n− 2) . . . (n− i+ 1)

1.2.3 . . . i
cos(1

2
zx)

 ,

where we must observe that by cos(n− 2r± z)x, I understand the sum of the cosines
cos(n− 2r+ z)x and cos(n− 2r− z)x, 2r being here at most equal to n or 2i. Let us
multiply the second member of this equation by x−

m
n dx; we have generally

∫
x−n−

m
n dx cos(n− 2r ± z)x

=− cos(n− 2r ± z)x(
n+ m

n
− 1
)
xn+m

n
−1

+
(n− 2r ± z) sin(n− 2r ± z)x(
n+ m

n
− 1
) (
n+ m

n
− 2
)
xn+m

n
−2

[477]

+
(n− 2r ± z)n cos(n− 2r ± z)x(

n+ m
n
− 1
) (
n+ m

n
− 2
) (
n+ m

n
− 3
)
xn+m

n
−3

− etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(−1)i(n− 2r ± z)n(
n+ m

n
− 1
)
· · · m

n

∫
dx x−

m
n cos(n− 2r ± z)x.

We have therefore

∫
x−

m
n dx cos zx

(
sinx

x

)n
=

(−1)i

22ixn+m
n
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×



− x

n+ m
n
− 1



cos(n± z)x− n cos(n− 2± z)x

+
n(n− 1)

1.2
cos(n− 4± z)x

−etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

±1

2

n(n− 1) · · · (n− i+ 1)

1.2.3 . . . i
cos(±zx)


+

x2(
n+ m

n
− 1
) (
n+ m

n
− 2
)


(n± z) sin(n± z)x

−n(n− 2± z) sin(n− 2± z)x

+etc.


+

x3(
n+ m

n
− 1
) (
n+ m

n
− 2
) (
n+ m

n
− 3
) { (n± z)2 cos(n± z)x

−etc.

}
− etc.



+
1

22i
(
n+ m

n
− 1
)
· · · m

n

∫
dx x−

m
n



(n± z)n cos(n± z)x

−n(n− 2± z)n cos(n− 2± z)x

+
n(n− 1)

1.2
(n− 4± z)n cos(n− 4± z)x

−etc.

+± 1

2

n(n− 1) · · · (n+ i− 1)

1.2.3 . . . i
zn cos(±zx)

+ constant.

This constant must be determined in a manner that the second member [478]of this equa-
tion be null: when x is null: now we have, by that which precedes,

cos(n± z)x− n cos(n− 2± z)x+ etc. = (−1)i22i(sinx)n cos zx.

By differentiating this equation with respect to x, we have

−[(n± z) sin(n± z)x− n(n− 2± z) sin(n− 2± z)x+ etc.]

= (−1)i22id[(sinx)n cos zx]

dx
;

differentiating again, we have

−[(n± z)2 cos(n± z)x− n(n− 2± z)2 cos(n− 2± z)xetc.]

= (−1)i22id
2[(sinx)n cos zx]

dx2
;
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and so forth: now we have to the two limits x = 0 and x infinity,

x−n−
m
n

+1 (sinx)n cos zx = 0,

x−n−
m
n

+2d[(sinx)n cos zx]

dx
= 0,

etc.

We have therefore, by integrating next x null to x infinity,

∫
x−

m
n dx cos zx

(
sinx

x

)n
=

1

22i
(
n+ m

n
− 1
)
· · · m

n

×
∫
x−

m
n dx



(n± z)n cos(n± z)x

−n(n− 2± z)n cos(n− 2± z)x

+etc.

±1

2

n(n− 1) · · · (n− i+ 1)

1.2.3 . . . i
zn cos(±zx)

Now we have, by making (n− 2r ± z)x = x′,

∫
x−

m
n dx (n− 2r ± z)n cos(n− 2r ± z)x

= (n− 2r ± z)n−1+m
m

∫
dx′ x′−

m
n cosx′.

We[479] have moreover, as we will demonstrate it hereafter,

∫
x′−

m
n dx′ cosx′ = k′ sin

mπ

2n
,∫

x′−
m
n dx′ sinx′ = k′ cos

mπ

2n
,

k′ being equal to
∫
t−

m
n dt c−t, the integral being taken from t null to t infinity. This

premised, we will have

∫
x−

m
n dx cos zx

(
sinx

x

)n
=

k′ sin mπ
2n

2n
(
n+ m

n
− 1
) (
n+ m

n
− 2
)
· · · m

n
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×



(n+ z)n−1+m
n − n(n+ z − 2)n−1+m

n

+
n(n− 1)

1.2
(n+ z − 4)n−1+m

n

. . . . . . . . . . . . . . . . . . . . . . . . . . .

±1

2

n(n− 1) · · · (n− i+ 1)

1.2.3 . . . i
zn

+(n− z)n−1+m
n − n(n− z − 2)n−1+m

n + etc.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

±1

2

n(n− 1) · · · (n− i+ 1)

1.2.3 . . . i
(−z)n−1+m

n

It is easy to see by the preceding analysis, that if n−z−2r is negative, it is necessary
to change the power (n− z − 2r)n−1+m

n into (2r + z − n)n−1+m
n , because we have

cos(n− z − 2r)x = cos(2r + z − n)x.

We will find by the same analysis, [480]∫
x−

m
n dx sin zx

(
sinx

x

)n
=

1

2n
(
n+ m

n
− 1
)
· · · m

n

×
∫
x−

m
n dx



(n+ z)n sin(n+ z)x

−n(n+ z − 2)n sin(n+ z − 2)x

+etc.

−(n− z)n sin(n− z)x

+n(n− z − 2)n sin(n− z − 2)x

+etc.

Now we have ∫
x−

m
n (n± z − 2r)ndx sin(n± z − 2r)x

= (n± z − 2r)n−1+m
n k′ cos

mπ

2n
.

If (n− z − 2r) is negative, we have∫
x−

m
n (n− z − 2r)ndx sin(n− z − 2r)x

= −
∫
x−

m
n dx (2r + z − r)n sin(2 + z − n)x

= −(2r + z − n)n−1+m
n k′ cos

mπ

2n
.
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Thence we deduce

cos
mπ

2n

∫
x−

m
n dx cos zx

(
sinx

x

)n
+ sin

mπ

2n

∫
x−

m
n dx sin zx

(
sinx

x

)n

=
k′ sin mπ

2n

[
(n+ x)n−1+m

n − n(n+ z − 2)n−1+m
n + n(n−1)

1.2
(n+ z − 4)n−1+m

n − etc.
]

2n
(
n+ m

n
− 1
) (
n+ m

n
− 2
)
· · · m

n

;

(i)
the series being continued to that which in the power (n+z−2r′)n−1+m

n , the quantity
n + z − 2r′ becomes negative, 2r′ being able here to be extended to 2n. In fact, it
is clear that in the expressions of the two terms of the first member of equation (i),

[481] the terms relative to the power (n+ z − 2r)n−1+m
n , are the same and are added. The

terms relative to the power (n − z − 2r)n−1+m
n , are the same and of contrary signs,

as long as n − z − 2r is positive; but they have the same sign, when n − z − 2r is
negative; and the preceding power must, by that which precedes, be changed into
(2r + z − n)n−1+m

n . The sum of the terms relative to this power is

(−1)r n(n−1)···(n−r+1)
1.2.3...r

(z + 2r − n)n−1+m
n

2n
(
n+ m

n
− 1
)
· · · m

n

k′ sin
mπ

n
;

now this term is encountered in the series of the second member of equation (i). This
series contains the term

(−1)r
′ n(n−1)···(n−r′+1)

1.2.3...r′
(n+ z − 2r′)n−1+m

n

2n
(
n+ m

n
− 1
)
· · · m

n

k′ sin
mπ

n
;

n + z − 2r′ being supposed positive. If we make n − 2r′ = 2r − n, that which
gives r′ = n − r, this term becomes equal to the preceding; because then we have
(−1)r

′
= (−1)r, and

n(n− 1) · · · (n− r′ + 1)

1.2.3 . . . r′
=
n(n− 1) · · · (n− r + 1)

1.2.3 . . . r
.

Formula (T) of §24 of the first book, gives

1

r − 1

∫
tr−1dt c−t

∫
t1−rdt c−t =

π

sin(r − 1)π
,

the integrals being taken from t null to t infinity. If we suppose r − 1 = m
n

, we will
have ∫

t
m
n dt c−t

∫
t−

m
n dt c−t =

m
n
π

sin mπ
n

.

That[482] which we have named k in formula (p) from §42 of the first book, is equal to∫
tm+n−1dt e−t

n
, and it is easy to see that the integrals being taken from t null to t

infinity, we have ∫
tn−1+mdt e−t

n

=
1

n

∫
t
m
n dt c−t;
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we have therefore

nkk′ =
m
n
π

sin m
n

.

By multiplying the two members of equation (i) by nk2n

π
, and substituting into the

second member thus multiplied, instead of nkk′, its value
m
n
π

sin mπ
n

, we will have the

formula (p) cited.
The same analysis is applied to the case where n is an odd number. It shows

distinctly the reason for which the series of the differences must be arrested, when
the quantity raised to the power n− 1 + m

n
becomes negative.

There remains for us now to demonstrate the formulas∫
x′−

m
n dx′ cosx′ = k′ sin

mπ

n
,∫

x′−
m
n dx′ sinx′ = k′ cos

mπ

n
,

For this, let us consider the definite integral∫
dx c−ax

xω
(cos rx−

√
−1 sin rx),

this integral being taken from x null to x infinity; ω being less than unity. In devel-
oping it by the known expressions of cos rx and of sin rx, into series, it becomes

∫
dx c−ax

xω


1− r2x2

1.2
+

r4x4

1.2.3.4

− rx
√
−1

(
1− r2x2

1.2.3
+

r4x4

1.2.3.4.5
− etc.

)


Now [483]we have generally, by taking the integral from x null to x infinity,∫
xi−ωdx c−ax =

(1− ω)(2− ω) · · · (i− ω)

ai

∫
dx c−ax

xω
.

By making next ax = t, we have∫
dx c−ax

xω
=

1

a1−ω

∫
t−ωdt c−t =

k′

a1−ω ,

the integral relative to t being taken from t null to t infinity, and k′ being supposed
to express the integral

∫
t−ωdt c−t, taken within these limits. We will have thus∫

xi−ωdx c−ax =
(1− ω)(2− ω) · · · (i− ω)k′

ai+1−ω ;
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whence we deduce∫
dx c−ax

xω
(cos rx−

√
−1 sin rx)

=
k′

ai−ω


1− (1− ω)(2− ω)

1.2

r2

a2
+

(1− ω)(2− ω)(3− ω)(4− ω)

1.2.3.4

r4

a4
− etc.

−
√
−1

[
(1− ω)

r

a
− (1− ω)(2− ω)(3− ω)

1.2.3

r3

a3
+ etc.

]
If we make r

a
= s, the second member of this equation becomes

k′

a1−ω(1 + s
√
−1)1−ω

.

Let A be an angle of which s is the tangent, we will have

sinA =
s√

1 + s2
, cosA =

1√
1 + s2

,

that which gives

cosA−
√
−1 sinA =

√
1 + s2

1 + s
√
−1

,

whence we deduce, by the known theorem,

cos(1− ω)A−
√
−1 sin(1− ω)A =

(1 + s2)
1−ω
2

(1 + s
√
−1)1−ω

.

The tangent s is not only the tangent of angle A, but further[484] that of the same angle
increased by any multiple of the semi-circumference; but the first member of this
equation needing to be reduced to unity, when s is null, it is clear that we must take
for A, the smallest of the angles which have s for tangent.

Now, this equation gives, by substituting r
a

in place of s,

k′

a1−ω(1 + s
√
−1)1−ω

=
k′

(a2 + r2)
1−ω
2

× [cos(1− ω)A−
√
−1 sin(1− ω)A] :

we have therefore∫
dx c−ax

xω
(cos rx−

√
−1 sin rx)

=
k′

(a2 + r2)
1−ω
2

[cos(1− ω)A−
√
−1 sin(1− ω)A].

In comparing separately the real and the imaginary quantities, we have∫
dx cos rx c−ax

xω
=

k′

(a2 + r2)
1−ω
2

cos(1− ω)A,∫
dx sin rx c−ax

xω
=

k′

(a2 + r2)
1−ω
2

sin(1− ω)A.
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If a is null, r
a

is infinite, and the smallest angle, of which it is the tangent, is π
2
; we

have therefore ∫
dx cos rx

xω
=

k′

r1−ω sin
ωπ

2
,∫

dx sin rx

xω
=

k′

r1−ω cos
ωπ

2
.

By supposing r = 1 and ω = m
n

, we will have the equations that there was concern
to demonstrate.
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