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(SUITE)

P.S. Laplace∗
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This Memoir being a sequel to that which has appeared under the same object in
the preceding Volume, I will conserve the order of the articles and of the sections. I
have given, in the first article, a general method to reduce to highly convergent series
the differential functions which contain some factors raised to great powers. In the
second article, I have restored to this kind of integrals all the functions given by some
equations linear in the ordinary or partial differences, finite and infinitely small; and
I am thus arrived, in the third article, to determine the approximate values of many
formulas which are encountered frequently in Analysis, but of which the application
becomes very painful when the numbers of which they are functions are large. There
remains to me presently to show the usage of this analysis in the theory of chances.

ARTICLE IV.
Application of the preceding analysis to the theory of chances.

XXXII.

All events, even those which by their smallness and their irregularity seem to not
depend upon the general system of nature, are a series as necessary as the revolutions
of the Sun. We attribute them to chance, because we are ignorant of the causes which
produce them and the laws which link them to the great phenomena of the universe;
thus the apparition and the movement of comets, which we know today depend on the
same law which restores the seasons, was regarded yesterday as the effect of chance by
those who arranged these stars among the meteors. The word chance expresses thus
only our ignorance of the causes of the phenomena which we see to happen and to
succeed themselves without any apparent order.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. August 29, 2010
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Probability is relative in part to this ignorance, in part to our knowledge. We know,
for example, that out of three, or a greater number of events, one alone must exist; but
nothing brings to belief that one of them will arrive rather than the others. In this state
of indecision, it is impossible to pronounce with certitude on their existence. It seems
to us however probable that one of these events, taken at will, will not exist, because
we see many cases equally possible which exclude its existence, while one alone favors
it.

The theory of chances consists therefore to reduce all the events which can take
place relatively to an object, into a certain number of equally possible cases, that is
such that we are equally undecided on their existence, and to determine the number
of the cases favorable to the event of which we seek the probability. The ratio of this
number to the one of all the possible cases is the measure of this probability.

All our judgments on the things which are only probables are founded on the par-
allel ratio: the difference of the facts which each man has on them and the errors which
we commit in evaluating this ratio give birth to that crowd of opinions which we see
reign on the same objects; the combinations of this type are so delicate and the illusions
so frequent, that a great attention is often necessary to escape the error.

The theory of chances offers a great number of examples, in which the results
of Analysis are entirely contrary to those which present themselves at first glance, that
which proves how often it is useful to apply the calculus to the important objects of civil
life; and, when even the possibility of these applications would oblige to make some
hypotheses which would be only approximate, the precision of the analysis renders
always the results of it preferable to the vague reasonings which we employ often to
treat these objects.

The preceding notion of the probability gives a quite simple solution to a question
discussed by some philosophers, and which consists in knowing if the past events influ-
ence on the probabilities of the future events. We suppose that in the game of croix et
pile we have brought forth croix more often than pile; by that alone we will be brought
to believe that, either in the constitution of the coin, or in the manner of casting it, there
exists a constant cause which favors the first of these events; the past trials have then
one influence on the probability of the future trials; but, if we are assured that the two
faces of the coin are perfectly similar, and if moreover the circumstances of its projec-
tion are at each trial varied, in a way that we are restored without ceasing to the state
of an absolute indecision on that which must happen, the past can have no influence on
the probability of the future, and it will be evidently absurd to take account of it.

When the possibility of the simple events is known, the probability of the composite
events can often be determined by the theory of combinations alone; but the most
general method in order to attain it consists in observing the law of the variations
which it sustains by the multiplication of the simple events, and to make it depend on
one equation in the ordinary or partial finite differences: the integral of this equation
will give the analytic expression of the sought probability. If the event is so composite
that the use of this expression becomes impossible, because of the great number of its
terms and of its factors, we will have its approximate value by the method exhibited in
the preceding articles. We will see an example at the end of this Memoir.

In a great number of cases, and these are the most interesting in the analysis of
chances, the possibilities of the simple events are unknown, and we are reduced to seek
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in the past events some indices which can guide us in our conjectures on the future.
But in what manner do these events unfold to us, in expanding themselves, their re-
spective possibility? According to what laws do they influence on the probability of
future events? These are some difficult questions, of which the solution requires some
very delicate metaphysical considerations and a sensitive analysis. The difficulty of
solving them makes itself felt principally when the question is to ascertain some small
differences through the observations, because then a considerable number of observed
events can indicate only these differences with a very small probability; and, if we use
these events in very great number, we are led to some formulas of which it is impossible
to make use. It is therefore indispensable then to have a simple means to obtain the law
according to which the probability of a result indicated by the observations increases
with them, and the number to which the observed events must be raised in order that,
this result acquiring a great probability, we are justified to research the causes which
produce it. I have given moreover the principles and the method necessary for this ob-
ject, and this method has the advantage of being so much more precise as the observed
events are in greater number: the analysis exhibited in the preceding articles having led
me to generalize it and to simplify it, I am going to present it here in a new day, by
giving some very convenient formulas in order to determine, after the observation of
results composed of a great number of simple events, the possibilities of these events,
the differences that the time, the climate, or other causes can produce in it, and the
probability of future events.

In order to clarify this method by an example, I will apply it to some problems on
the births: it is an important object in the natural history of man, and the observation
offers in this regard some remarkable varieties relatively to the difference of the sexes
and of the climates; but they are so small in themselves that they can become sensible
only by a great number of births. By comparing those which have been observed
in the great cities, I find that from the north to the middle of Europe they indicate a
greater possibility in the births of boys than in those of girls, with a probability so very
near to certitude that there exists in natural philosophy no result better established by
the observations. This superiority in the possibility of the births of boys is therefore
a general law of nature, at least in the part of the globe that we inhabit; and, if we
consider that it subsists despite the great varieties of climates and of productions, which
take place from Naples to Petersburg, it will appear probable that this law extends to
the whole Earth.

An equally interesting result and which the observations indicate with great proba-
bility is that the possibility of the births of boys, relatively to that of the births of girls,
is not everywhere the same. It is here especially that it matters to have an easy method
to compare a very great number of births and to determine the probability which re-
sults from it that the observed differences are not due to chance: these differences are
so inconsiderable that often many millions of births are necessary to establish that they
are the result of always active causes and that we must distinguish them from those
small varieties which chance alone brings forth in the succession of the equally pos-
sible events. I give, in order to obtain this probability, some very simple formulas, by
means of which we can immediately judge its magnitude: these formulas, applied to
the births observed at London and at Paris, give a probability of more than four hun-
dred thousand against one that the possibility of the births of boys compared to that of
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the births of girls is greater in the first of these two cities than in the second; whence it
follows that there exists very probably in London a cause greater than in Paris which
renders the births of the boys superior to those of girls. The births observed in the realm
of Naples seems to indicate similarly in this realm a greater possibility than in Paris in
the births of boys; but, although the sum of the observed births in these two places is
elevated to more than two millions, this result is hardly indicated with a probability
of one hundred to one. Thus, in order to pronounce irrevocably on this object, it is
necessary to await a greater number of births.

XXXIII.

Whatever be the manner in which two events are linked to one another, it is clear
that the probability of their sum is equal to the probability of the first, multiplied by
the probability that, the one taking place, the second must similarly exist; we will have
therefore this last probability in determining a priori the probability of the sum of two
events and by dividing it by the probability of the first event determined a priori.

In order to express analytically this result, we name E and e the two events; E+e
their sum; V the probability of E; v that of E+e; and p the probability of e, by supposing
that E exists. We will have, this put,

p =
v

V
.

This quite simple equation is the basis of the following researches, and all the the-
ory of the probability of causes and of the future events, taken from the past events,
proceed from it with a great ease. Let us see first how it gives the respective probabili-
ties of the different causes to which we can attribute an observed event.

XXXIV.

Let E be this event and we suppose that it can be attributed to the n causes e, e(1),
e(2), . . . , e(n−1); if we name p(r) the probability of the cause e(r), taken from the event
E, V the probability of E and v that of E+e(r), we will have, by the preceding section,

p(r) =
v

V
.

It is necessary now to determine v and V; for this we will observe that the proba-
bility a priori of the existence of the cause e(r) is 1

n ; by naming therefore a, a(1), a(2),
. . . , a(n−1) the respective probabilities that, the causes e, e(1), e(2), . . . being supposed
to exist, the event E will take place, a

(r)

n will be the probability of E+e(r) determined
a priori: it is the quantity which we have named v.

The sum of all these probabilities relative to each of n causes will be evidently the
probability of E, since this event can arrive only by one of these causes; we will have
therefore

V =
1

n
(a+ a(1) + · · ·+ a(n−1)),

hence

p(r) =
a(r)

a+ a(1) + a(2) + · · ·+ a(n−1)
,
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that is that we will have the probability of one cause, taken from the event, by divid-
ing the probability of the event, taken from that cause, by the sum of all the similar
probabilities.

We suppose, for example, that an urn contains three balls which can be only white
or black; that after having drawn from it a ball we remit it into the urn in order to
proceed to a new drawing and that after m drawings we have brought forth only white
balls: it is clear that we can make a priori only four hypotheses, because the balls will
be entirely white or entirely black, or two will be white and one black, or two will
be black and one white. If we consider these hypotheses as so many different causes
e, e(1), e(2), e(3) of the observed event, the respective probabilities of this event, taken
from these causes, will be 1,

(
2
3

)m
,
(
1
3

)m
, 0; these are the quantities which we have

named a, a(1), a(2), a(3). The respective probabilities of these hypotheses, taken from
the event, will be therefore, by the preceding formula,

3m

3m + 2m + 1
,

2m

3m + 2m + 1
,

1

3m + 2m + 1
, 0.

We see, besides, that it is useless to have regard to the hypotheses which exclude
the event, because, the probability of the event resulting from these hypotheses being
null, their omission changes not at all the value of p(r).

XXXV.

The possibility of most of the simple events is unknown and, considered a priori,
it seems to us equally susceptible of all the values from zero to unity; but, if we have
observed a result composed of many of these events, the manner in which they enter it
renders some of these values more probable than the others. Thus, in measure as the
observed result is composed by the expansion of simple events, their true possibility is
made more and more known, and it becomes more and more probable that it falls within
some limits which are narrowed without ceasing and ending by coinciding when the
number of simple events is infinite. In order to determine the laws according to which
this possibility is discovered, we will name it x. The known theory of chances will give
the probability of the observed result in a function of x; let y be this function. If we
regard the different values of x as so many causes of the observed result, the probability
of x will be, by No. XXXIV, equal to a fraction of which the numerator is y and of
which the denominator is the sum of all the values of y. By multiplying therefore
the two terms of this fraction by dx, this probability will be y dx∫

y dx
, the integral of the

denominator being taken from x = 0 to x = 1.
The probability that x is contained between the two limits x = θ and x = θ′ is,

consequently, equal to
∫
y dx∫
y dx

, the integral of the numerator being taken from x = θ to
x = θ′ and that of the denominator being taken from x = 0 to x = 1.

The most probable value x is that which renders y a maximum; we will designate
it by a: the least probable values are those which render y null. In nearly all the cases,
this happens at the two limits x = 0 to x = 1. Thus we will suppose y null at these
limits, and then each value of y will be a corresponding value which will be equal to it
at the other side of the maximum.
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If the values of x, considered independently of the observed result, are not all
equally possible, but that their probability is expressed by a function z of x, it will
suffice to change, in the preceding formulas, y into yz, that which returns to suppos-
ing all the values of x equally possible and to considering the observed result as being
formed of two independent results, of which the probabilities are y and z. We can
therefore restore in this manner all the cases to the one where we suppose an equal
possibility to the different values of x and, by this reason, we will adopt this hypothesis
in the following researches.

XXXVI.

We will consider a result composed of a very great number of simple events and
suppose that, after the observation of this result, we wish to have the probability that
the possibility x of these events not surpass any quantity θ less than a; this probability
is, by the preceding section, equal to the fraction

∫
y dx∫
y dx

, the integral of the numerator
being taken from x = 0 to x = θ and that of the denominator being taken from x = 0
to x = 1. We will have these integrals in a highly convergent series by the formulas
of No. VI. If we make first −y dxdy = v, and if we designate by U and J that which v
and y become when we change x into θ, formula (a) of this section will give, for the
expression in series of the integral

∫
y dx taken from x = 0 to x = θ,∫

y dx = −UJ
[
1 +

dU
dθ

+
d(U dU)

dθ2
+ · · ·

]
.

If we name next Y the maximum of y or that which this function becomes when
we change x into a, if we make

x− a√
logY− log y

= u,

these logarithms being hyperbolic, and if we designate by U, dU2

dx ,
d2U3

dx2 , . . . that which
u, du

2

dx ,
du3

dx2 , . . . become when we change x into a, formula (d) of the same section will
give for the expression in series of the integral

∫
y dx, taken from x = 0 to x = 1,∫

y dx = Y
√
π

(
U +

1

2

d2U3

1.2 dx2
+

1.3

2

d4U5

1.2.3.4 dx4
+ · · ·

)
,

π being the ratio of the semi-circumference to the radius. The probability that x is
equal or less than θ will be therefore

(a′)
−UJ

[
1 + dU

dθ + d(U dU)
dθ2 + · · ·

]
Y
√
π
(

U + 1
2
d2U3

1.2 dx2 + 1.3
2

d4U5

1.2.3.4 dx4 + · · ·
) .

The numerator of this series forms a divergent series if θ is very near to a; in this
case, we will have the integral

∫
y dx from x = 0 to x = θ by formula (c) of No. VI,
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and we will find for the expression in series of this integral∫
y dx =Y

(
U +

1

2

d2U3

1.2 dx2
+

1.3

22
d4U5

1.2.3.4 dx4
+ · · ·

)∫
dt e−t

2

− Ye−T2

2

(
dU2

dx
+ T

d2U3

1.2 dx2
+ · · ·

)
,

the integral relative to t being taken from t =T to t =∞,T being given by the equation

T2= logY− log J,

in which the logarithms are hyperbolic, and e being the number of which the hyperbolic
logarithm is unity. The probability that x is equal or less than θ will be therefore given
by this formula

(b′)
∫
dt e−t

2

√
π

−
e−T2

(
dU2

dx + T d2U3

1.2 dx2 + · · ·
)

2
√
π
(

U + 1
2
d2U3

1.2 dx2 + · · ·
) .

We can, in every case, determine by means of formulas (a′) and (b′) the probability
that x is equal or less than θ, θ being smaller than a.

If θ surpasses a, we will make 1− θ = θ′, 1−x = x′ and, by naming y′ that which
y becomes, we will seek the probability that x′ is equal or less than θ′ by the formula∫
y′ dx′∫
y′ dx′

, in which the integral of the numerator is taken from x′ = 0 to x′ = θ′, that of
the denominator being taken from x′ = 0 to x′ = 1. Formulas (a′) and (b′) will give
this probability, by changing y, u, v, θ into y′, u′, v′, θ′; by subtracting it from unity
next, we will have the probability that x is equal or less than θ.

The integral
∫
dt e−t

2

is encountered frequently in this analysis, and, for this rea-
son, it will be very useful to form a Table of its values, from t = ∞ to t = 0. When
this integral is taken from t =T to t =∞, T being equal or greater than 3, we can make
use of the formula

(c′)
∫
dt e−t

2

=
e−T2

2T

(
1− 1

2T2 +
1.3

4T4 −
1.3.5

8T6 + · · ·
)
,

which will give a value alternately greater or lesser than the true.

XXXVII.

We will determine the probability that the value of x is contained between the two
limits a− θ and a+ θ′, which embraces the value of a corresponding to the maximum
of y. This probability is equal to

∫
y dx∫
y dx

, the integral of the numerator being taken from
x = a− θ to x = a+ θ′, and that of the denominator being taken from x = 0 to x = 1.

We suppose θ and θ′ very small and such that the two values of y, corresponding to
x = a− θ and to x = a+ θ′, are equal to one same quantity which we will designate
by J; formula (c) of No. VI will give, very nearly∫

y dx = YU

∫
dt e−t

2

,
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the integral relative to x being taken from x = a − θ to x = a + θ′, and the integral
relative to t being taken from t = −

√
logY− log J to t =

√
logY− log J; the sought

probability will be therefore equal to
∫
dt e−t

2

√
π

.
y being supposed to have for factors some very elevated powers, the exponents of

these powers become coefficients in its logarithm, so that, if we designate by α a very
small fraction, log y will be of order 1

α , and
√
logY− log J will be of order 1

α
1
2

, at
least when J is very little different from Y.

We suppose that it differs from it rather little in order that
√
logY− log J is equal

to 1

α
λ
2

, λ being positive and less than unity; if we reduce logJ into a series ordered with

respect to the powers of θ, the function
√
logY− log J will become of this form θQ

α
1
2

;

thus, in order that it be of order 1

α
λ
2

, it is necessary that θ be quite small of order α
1−λ
2 ;

we will prove the same thing relatively to θ′. The interval θ + θ′ contained between
the two limits a− θ and a+ θ′ will be therefore of order α

1−λ
2 ; it will be consequently

so much less as the events will be more multiplied, so that it will become null if their
number is infinite, and, in this case, the two limits will confound themselves with the
value of a which corresponds to the maximum of y.

In order to have the probability that the value of x is contained within these limits,
it is necessary to determine the integral

∫
dt e−t

2

from t = − 1

α
λ
2

to t = 1

α
λ
2

. This

integral is evidently the double of the integral
∫
dt e−t

2

taken from t = 0 to t = ∞,
less the double of that same integral taken from t = 1

α
λ
2

to t = ∞; now we have, by
No. IV, ∫

dt e−t
2

=
1

2

√
π,

the integral being taken from t = 0 to t = ∞; we have moreover, by formula (c′) of
the preceding section,∫

dt e−t
2

=
1

2
α
λ
2 e−

1

αλ

(
1− αλ

2
+

3α2λ

4
− · · ·

)
;

the integral
∫
dt e−t

2

, taken from t = − 1

α
λ
2

to t = 1

α
λ
2

, will be therefore

√
π − αλ

2 e−
1

αλ + · · ·

By dividing it by
√
π, we will have the probability that x is contained between the

limits a− θ and a+ θ′; the expression of this probability will be, consequently,

(d′) 1− α
λ
2

√
π
e−

1

αλ + · · ·

When 1
α is a large number, this formula converges rapidly to unity, principally because

of the factor e−
1

αλ , which becomes very small when α is a very small fraction; thence
results this theorem:
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The probability that the possibility of the simple events is contained between some
limits which are contracted more and more approaches without ceasing to unity, in a
manner that, under the supposition of an infinite number of simple events, these two
limits coming to be joined, and the probability is confounding with certitude, the true
possibility of the simple events is exactly equal to that which renders the observed result
the most probable.

We see thus how the events, by being multiplied, discover for us their respective
possibility; but we must observe that there is in this analysis two approximations, of
which the one is relative to the limits which contain the value of x and which are
contracted more and more, and of which the other is relative to the probability that x is
found between these limits, a probability which approaches without ceasing to unity or
to certitude. It is in this that these approximations differ from ordinary approximations,
in which we are always assured that the result is contained within the limits which we
assign to it.

It matters principally, in these researches, to be able to judge immediately if a
result is indicated by the observations with a great possibility, because it suffices often
to be assured that it is very probable, without that there be a need to know with much
precision the value of the probability; by supposing therefore that the question is to
determine if it is very probable that the possibility of a simple event is contained within
some given limits, we can easily arrive to the following formula.

We have, by that which precedes,

logY− log J =
1

αλ
.

Moreover, if we suppose θ very small, we have

log J = logY + θ
d logY
dx

+
θ2

1.2

d2 logY
dx2

+ · · · ;

but the condition of the maximum gives

d logY
dx

= 0,
d2 logY
dx2

=
d2Y

Y dx2
:

we will have therefore

−θ2 d2Y
Y dx2

=
1

αλ
;

thus the probability that the possibility x of the simple event is contained between the
limits a− θ and a+ θ will be, by formula (d′),

1− 1

θ
√
−π d2Y

Y dx2

eθ
2 d2Y

Y dx2 + · · · ;

whence we see that this probability will be very great if −θ2 d2Y
Y dx2 is an inconsiderable

number, such as 11 or 12, that which gives a very simple way to judge the magnitude
of this probability.
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XXXVIII.

The possibility of the simple events can not be the same in different epochs or in
some different countries: the climate, the productions and a thousand other physical
and moral causes can produce the differences that a great number of observations ren-
der sensible; but, as the single combinations of chance suffice to introduce the slight
differences in the result of the observations, we see that a very great number is nec-
essary in order to be assured that the observed differences, when they are very small,
are due to some always acting causes. This problem, one of the most important in the
theory of chances, require a delicate analysis; here is a quite simple solution of it.

We suppose that we have observed, in two different places, two results composed
of a very great number of simple events of the same kind. Let

x be the possibility of the simple event in the first place;

y be the function of x which expresses the probability of the observed result in that
place;

a be the value of x which corresponds to the maximum of y.

Let similarly

x′ be the possibility of the simple event in the second place;

y′ be the function of x′ which expresses the probability of the observed result in
that place;

a′ be the value of x′ which corresponds to the maximum of y′;

a and a′ are the possibilities of the simple events which render the observed re-
sults the most probable, and these quantities will be, by the preceding section, the true
possibilities of the simple events, if the observed results were composed of an infi-
nite number of these events. We suppose a′ very little different from a, and that it
is a little greater; finally we name P the probability that the possibility of the simple
event is greater in the first place than in the second. This put, we will have, by some
considerations analogous to those of No. XXXV,

P =

∫∫
yy′ dx dx′∫∫
yy′ dx dx′

,

the integrals of the numerator being taken from x′ = 0 to x′ = x, and from x = 0 to
x = 1; those of the denominator being taken from x′ = 0 to x′ = 1, and from x = 0 to
x = 1.

In order to have these integrals, we will suppose x′ = ux, and we will name z that
which xyy′ becomes then; we will have

P =

∫∫
z dx du∫∫
z dx du

,
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the integrals of the numerator being taken from u = 0 to u = 1, and from x = 0 to
x = 1; those of the denominator being taken from u = 0 to u = 1

x , and from x = 0 to
x = 1. We determine first the integrals of the numerator.

For this, we will observe that, y being null at the two limits x = 0 and x = 1, z is
similarly null at these two limits; let therefore Z be that which this function becomes
when we substitute for x its value in u, given by the equation 0 = ∂z

∂x ; we will have
very nearly, by No. VI, ∫

z dx =

√
2πZ√
− d2Z

Zdx2

,

hence ∫∫
z du dx =

√
2π

∫
Z du√
− d2Z

Zdx2

.

The integral relative to u must be taken from u = 0 to u = 1; but, at the maximum
of the differential function yy′ dx dx′, we have

x = a and x′ = a′

and, consequently,

u =
a′

a
.

The value of u, corresponding to this maximum, exceeds therefore very slightly unity;
thus we must, in this case, make use of formula (c) of No. VI. Let

du′ =
du√
− d2Z

Zdx2

,

and we name Z′ that which Z becomes at the point where we have

0 =
∂Z
∂u′

;

we name next S that which Z becomes when we make u = 1; the formula cited will
give, quite nearly, ∫

Z du′ =
Z′
∫
dt e−t

2√
− 1

2
∂2Z′

Z′∂u′2

,

the integral relative to t being taken from t =T to t =∞, T being given by the equation

T2 = logZ′ − log S.

The equation 0 = ∂Z
∂u′ can be put under this form

0 =
∂Z
∂u

∂u

∂u′
,
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whence we deduce
0 =

∂Z
∂u

and
∂2Z′

∂u′2
=
∂2Z′

∂u2
du2

du′2
= −

∂2Z′
∂u2

∂2Z′
∂x2

Z′
;

we will have therefore ∫
Z du′ =

Z′√
1
2
∂2Z′

Z′∂u2
∂2Z′

Z′∂x2

∫
dt e−t

2

.

The numerator of the expression of P will be, consequently, very nearly equal to

2
√
π Z′√

∂2Z′
Z′∂x2

∂2Z′
Z′∂u2

∫
dt e−t

2

;

we will now determine its denominator.
y being null at the two limits x′ = 0 and x′ = 1, it is clear that z is null at the

two limits u = 0 and u = 1
x ; it is similarly null at the two limits x = 0 and x = 1.

By naming therefore U that which z becomes when we substitute for u and for x their
values given by the equations

0 =
∂z

∂u
and 0 =

∂z

∂x
,

we will have, by No. VII, ∫∫
z du dx =

2πU√
∂2U

U∂u2
∂2U

U∂x2

;

this is the quite approximate value of the denominator of P. It is easy to see that Z′ =U,
because the one and the other of these quantities is that which z becomes when we
substitute for u and x their values deduced from the equations

0 =
∂z

∂u
, 0 =

∂z

∂x
;

the value of P will be, consequently, given by this very simple formula

P =

∫
dt e−t

2

√
π

.

The two limits between which the integral relative to t must be extended are t =T
and t = ∞, T2 being equal to logZ′ − logS. The maximum of z or of xyy′ is Z; the
maximum of y corresponds to x = a; that of xy corresponds to a value of x which
differs from it only by a quantity of order α, and as, at the point of the maximum, the
magnitudes vary only in an insensible manner, we can suppose x = a at the maximum

12



of xy. Let Y be that which y becomes in this case, the maximum of xy will be aY.
The maximum of y′ corresponds to x′ = a′; let Y′ be that which y′ becomes, we will
have therefore Z′ = aYY′. S is the maximum of xyy′ when u = 1, or, that which
returns to the same, when we make x′ = x in y′; let a′′ be the value of x which in this
case renders yy′ a maximum, and we name Y′′ this maximum, we will have S= a′′Y′′:
hence

T2 = logY + logY′ − logY′′ + log
a

a′′
.

The value of a′′ is mean between a and a′, and since these last two quantities are
supposed to differ very little between them, we will have very nearly a

a′′ = 1, and
consequently we can neglect the term log a

a′′ .
If T2 is a slightly large number, such as 11 or 12, P will be a very small fraction

less than 1
500000 ; it will be therefore hardly probable that the possibility of the simple

event is greater in the first place than in the second, or, that which returns to the same,
it will be very probable that, in the second place where a′ surpasses a, the possibility of
the simple events is greater than in the first. The observations will indicate then, with
much likelihood, that there exists in the second place a cause of more than in the first,
which facilitates the production of the simple event. The following analysis will give
the law according to which this probability increases with the expansion of the simple
events.

For this, we will observe that, a′′ being very slightly different from a and from a′,
we will have quite nearly

logY′′ = logY + logY′ +
1

2
(a′′ − a)2 d2Y

Y dx2
+

1

2
(a′′ − a′)2 d2Y′

Y′ dx′2
,

that which gives

T2 = −1

2
(a′′ − a)2 d2Y

Y dx2
− 1

2
(a′′ − a′)2 d2Y′

Y′ dx′2
;

but a′′ is given by the equation

0 =
dy

y dx
+

dy′

y′dx′
,

x′ needing to be changed into x in dy′

y′dx′ . If we suppose next x = a′′ = a+ (a′′ − a),
we have

dy

y dx
=

dY
Y dx

+ (a′′ − a) d
2Y

Y dx2
;

moreover we have 0 = dY
dx . We will have therefore

dy

y dx
= (a′′ − a) d

2Y
Y dx2

;

we will find similarly
dy′

y′ dx′
= (a′′ − a′) d2Y′

Y′ dx′2
.

13



We will have therefore

0 = (a′′ − a) d
2Y

Y dx2
+ (a′′ − a′) d2Y′

Y′ dx′2
,

whence we deduce

a′′ =
a d2Y

Y dx2 + a′ d
2Y′

Y′ dx′2
d2Y

Y dx2 + d2Y′
Y′ dx′2

;

we will have thus very nearly

T2 =
1
2 (a
′ − a) d2Y

Y dx2
d2Y′

Y′ dx′2
d2Y

Y dx2 + d2Y′
Y′ dx′2

.

We can easily judge, by this value of T2, of the probability with which the obser-
vations indicate a difference between the possibilities of the simple events; because,

this probability being, by that which precedes, equal to 1−
∫
dt e−t

2

√
π

, the integral being
taken from t =T to t = ∞, a Table of values of this integral, from t = ∞ to t = 0,
will give immediately the sought probability with sufficient precision.

The simple events, by being expanded, make the values of d2Y
Y dx2 and of d2Y′

Y′ dx′2

increase, and consequently also that of T2, that which indicates clearly the law which
exists between their expansion and the probability of the results which they seem to
indicate. The value of T2 shows further the more the differences between a and a′

are smaller, it is necessary the more simple observed events to establish that these
differences are not the effect of chance, that which moreover is evident a priori, and
there results from it that, for a difference two times less, there are necessary around
four times more observations.

XXXIX.

We apply the formulas of the preceding sections to the births; for this we suppose
that, out of p + q observed births, there have been p boys and q girls, p being greater
than q, and we seek the probability that the possibility of the births of the boys not
surpass any quantity θ. It is necessary, in this case, to make use of the formulas of No.
XXXVI. If we designate by x the possibility of the births of the boys and if we name
β the quantity 1.2.3...(p+q)

1.2.3...p.1.2.3...q , the probability that out of p + q births there will be p
boys and q girls will be βxp(1− x)q: it is the quantity which we have named y in the
section cited; the quantity which we have named v will become thus x(1−x)

(p+q)x−p , and the
function

UJ
(
1 +

dU
dθ

+ · · ·
)

will become

βθp+1(1− θ)q+1

(p+ q)θ − p

{
1− (p+ q)θ2 + p(1− 2θ)

[(p+ q)θ − p]2
+ · · ·

}
.

Now, the quantity which we have named U in No. XXXVI is, by No. VI, equal to√
− 2Ydx2

d2Y , Y and d2Y being that which y and d2y become when x = a; moreover, a

14



being the value of x which corresponds to the maximum of y, it is determined by the
equation 0 = dy

y dx , whence we deduce a = p
p+q , and consequently

Y =
βppqq

(p+ q)p+q
, − d2Y

Y dx2
=

(p+ q)3

pq
.

The function

Y
√
π

(
U +

1

2

d2U3

1.2 dx2
+ · · ·

)
will become therefore, by observing that it is reduced to very nearly its first term, when
p and q are large numbers,

βpp+
1
2 qq+

1
2

√
2π

(p+ q)p+q+
3
2

;

the formula (a′) of the section cited will give thus for the probability that x not surpass
θ

θp+1(1− θ)q+1(p+ q)p+q+
3
2

√
2π[p− (p+ q)θ]pp+

1
2 qq+

1
2

{
1− (p+ q)θ2 + p(1− 2θ)

[p− (p+ q)θ]2
+ · · ·

}
.

If we make θ = 1
2 , we will have for the probability that x not surpass 1

2 or, that which
returns to the same, that the possibility of the births of the boys is less than that of the
girls,

(e′)
(p+ q)p+q+

3
2

(p− q)2p+q+ 3
2 pp+

1
2 qq+

1
2
√
π

[
1− p+ q

(p− q)2
+ · · ·

]
;

by subtracting this formula from unity, we will have the probability with which the
observed births indicate a greater possibility in the births of boys than in those of girls.

Among the births observed in Europe, we will consider those which have been at
London, at Paris and in the realm of Naples.

In the space of the ninety-five years elapsed from the beginning of 1664 to the end
of 1758, there is born at London 737629 boys and 698958 girls, that which gives nearly
19
18 for the ratio of the births of boys to those of girls.

In the space of twenty-six years elapsed from the beginning of 1745 to the end of
1770, there is born at Paris 251527 boys and 241945 girls, that which gives 26

25 nearly
for the ratio of the births of boys to those of girls.

Finally, in the space of the nine years elapsed from the beginning of 1774 to the
end of 1782, there is born in the realm of Naples, not containing Sicily, 782352 boys
and 746821 girls, that which gives 22

21 nearly for the ratio of the births of boys to those
of girls.

The less considerable of these three numbers of births is that of the births observed
at Paris; moreover it is in this city that the births of boys and of girls are removed
the less from equality: for these two reasons, the probability that the possibility of the
births of boys surpasses 1

2 must be less than at London and in the realm of Naples. We
will determine numerically this probability.
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It is necessary for this to have to twelve decimals the tabulated logarithms of
p, q, p + q and 2, because these numbers are elevated in formula (e′) to some great
powers; now we have

log p = log 251527 = log 5.4005 8461 0947,
log q = log 241945 = log 5.3837 1665 1469,
log(p+ q) = log 493472 = log 5.6932 6251 5480,

log 2 = log 0.3010 2999 5664,

that which gives

log
(p+ q)p+q+

3
2

(p− q)pp+ 1
2 qq+

1
2 2p+q+

3
2
√
π

= −41.9384918.

By naming therefore µ the number to which this logarithm belongs, and which is ex-
cessively small, because it is equal to a fraction of which, the numerator being unity,
the denominator is the number 8 following 41 ciphers, the formula (e′) will become

µ(1− 0.0053747 + · · · ).

By subtracting it from unity, we will have the probability that at Paris the possibility
of the births of the boys surpasses that of the girls, whence we see that this probability
differs so little from unity, that we can regard as certain that the excess of the births of
the boys over those of the girls, observed at Paris, is due to a greater possibility in the
births of the boys.

If we apply similarly formula (e′) to the births of boys observed in the principle
cities of Europe, we will find that the superiority in the births of the boys, compared to
those of the girls, observed everywhere, from Naples to Petersburg, indicates a greater
possibility in the births of boys, with a probability very near to certitude. This result
seems therefore to be a general law, at least in Europe, and if, in some small towns
where we have observed only a less considerable number of births, nature seems to
deviate from it, there is every place to believe that this deviation is only apparent and
that in the long run the observed births in these towns would offer, by being multiplied,
a result similar to the one of the great cities. Many philosophers, deceived by these
apparent anomalies, have sought the causes of phenomena which are only the effect
of chance; that which proves the necessity to encourage similar researches, for that of
the probability with which the phenomenon of which we just determined the cause is
indicated by the observations: the following example will confirm this remark.

Out of 415 births observed during five years in the little town of Viteaux, in Bour-
gogne, there have been 203 boys and 212 girls, that which gives nearly 23

22 for the ratio
of the births of girls to those of boys. The natural order appears reversed here, because
the births of the girls surpasses those of the boys; let us see with what probability these
observations indicate a greater possibility in the births of girls.

p having been supposed greater than q, in the preceding formulas, it represents in
this case the number of girls and q that of the boys; formula (e′) will give the prob-
ability that the births of the boys surpasses those of the girls; but, this formula being
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divergent, it is necessary to use formula (b′) of No. XXXVI, and we will find, after all
the reductions, that, if we make y = βxp(1− x)q and θ = 1

2 , it will become∫
dt e−t

2

√
π

+
(p− q)e−T2

3
√

1
2πpq(p+ q)

,

the integral being taken from t =T to t =∞, T2 being given by the equation

T2 = p log p+ q log q − (p+ q) log
p+ q

2
,

in which the logarithms are hyperbolic. This formula is the expression of the proba-
bility that the possibility of the births of the boys carries it over that of the births of
the girls; if we substitute, in the place of p and of q, their preceding values relative to
the town of Viteaux, we will find 0.329802 for this probability; by subtracting it from
unity, the difference 0.670198 will be the probability that at Viteaux the possibility of
the births of the girls is superior to that of the births of the boys; this greater possibility
is therefore indicated only with a probability of two against one, that which is much
more feeble to counterbalance the analogy which leads us to think that at Viteaux, as in
all the towns where we have observed a considerable number of births, the possibility
of the births of boys is greater than that of the girls.

XL.

We have seen, in the preceding section, that the ratio of the births of boys to that
of girls is around 19

18 at London, while it is at Paris around 26
25 ; this difference seems to

indicate, in the first city, a possibility in the births of boys greater than in the second
city. We determine with what likelihood the observations indicate this result.

This problem is a particular case of that which we have solved in No. XXXVIII;
thus we make use of the formulas which we have given there; for this, it is necessary
to know the quantities which we have named y and y′. Let p be the number of births of
boys observed at Paris, q that of the births of girls, and x the possibility of the births of
boys in that city; if we make

β =
1.2.3 . . . (p+ q)

1.2.3 . . . p.1.2.3 . . . q
,

the probability of the result observed at Paris will be

βxp(1− x)q;

this is the quantity y.
If we name similarly p′ the number of births of boys observed at London, q′ that of

the births of girls, and x′ the possibility of the births of boys in that city; if we make
next

β′ =
1.2.3 . . . (p′ + q′)

1.2.3 . . . p′.1.2.3 . . . q′
;
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the probability of the result observed at London will be

β′x′p
′
(1− x′)q

′
;

this is the quantity y′.
By designating therefore by P the probability that at Paris the possibility of the

births of boys is greater than at London, we will have, by No. XXXVIII,

P =

∫
dt e−t

2

√
π

,

the integral being taken from t =T to t = ∞. We see that which T becomes in the
present case.

We have, by the section cited,

T2 = logY + logY′ − logY′′ + log
a

a′′
.

Y is the maximum of y or of βxp(1−x)q; the value of x which corresponds to this
maximum is p

p+q ; this is the quantity which we have named a. We will have therefore

Y =
βppqq

(p+ q)p+q
;

we will have in the same manner

Y′ =
β′p′p

′
q′q
′

(p′ + q′)p′+q′
.

Y′′ is the maximum of yy′ when we make x′ = x in y′, that which gives

yy′ = ββ′xp+p
′
(1− x)q+q

′
;

the value of x corresponding to the maximum of this function is p+p′

p+p′+q+q′ ; this is the
quantity which we have named a′′. We will have thus

Y′′ =
ββ′(p+ p′)p+p

′
(q + q′)q+q

′

(p+ p′ + q + q′)p+p′+q+q′
;

these values give

T2 =(p+ p′ + q + q′ + 1) log(p+ p′ + q + q′)

− (p+ p′ + 1) log(p+ p′)− (q + q′) log(q + q′)

+ (p+ 1) log p+ q log q − (p+ q + 1) log(p+ q)

+ p′ log p′ + q′ log q′ − (p′ + q′) log(p′ + q′).

Now we have, by the preceding section,

p = 251527, p′ = 737629,

q = 241945, q′ = 698958,
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whence we deduce, by tabulated logarithms,

log p =5.4005 8461 0947,

log q =5.3837 1665 1469,

log(p+ q) =5.6932 6251 5480,

log p′ =5.8678 3798 2735,

log q′ =5.8444 5108 0009,

log(p′ + q′) =6.1573 3193 2083,

log(p′ + p) =5.9952 6474 1371,

log(q + q′) =5.9735 4485 3243,

log(p+ p′ + q + q′) =6.2855 7058 5161.

By making use of these logarithms, we would have

T2 = 4.5357576;

but, these logarithms were tabulated, it is necessary, as we know, to multiply them by
the number 2.3025851, in order to reduce them to hyperbolic logarithms; we will have
therefore the true value of T2 by multiplying the preceding by the same number, that
which gives

T2 = 10.4439679.

This put, if we determine the integral
∫
dt e−t

2

by formula (c′) of No. XXXVI we
will have

P = 0.0000025422(1− 0.047875 + 0.0068759− · · · ).

The first three terms of this expression give

P = 0.00000243797 =
1

410178
.

This value of P is a little too large; but, as, in taking one term more, we would have
a value too small, without the impairment of 1

250 , we see that it is quite near, and that
thus there are odds of more than 400000 against 1 that there exists at London a cause
more than at Paris, which facilitates the births of boys.

The numerical calculation of T2 supposes that we have the tabulated logarithms
of p, q, p + q, p′, q′, . . . to twelve decimals; the Tables of Gardiner, which are those
of which we make the most use, contain the logarithms of the first 1161 numbers to
twenty decimals, and we can conclude from it the logarithms of the superior numbers;
but the calculation that this supposes is too long; we can supplement it quite simply
by consideration of the expression of T2, and to determine the value of this quantity
without recourse to the logarithms of the numbers superior to 1161.
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For this, we put it under this form

T2 = (p+ 1) log
p

p+ q
+ q log

(
1− p

p+ q

)
+ p′ log

p′

p′ + q
+ q′ log

(
1− p′

p′ + q

)
− (p+ p′ + 1) log

p+ p′

p+ p′ + q + q′

− (q + q′) log

(
1− p+ p′

p+ p′ + q + q′

)
.

If we make vary by a very small quantity α the ratio p
p+q in the function

(p+ 1) log
p

p+ q
+ q log

(
1− p

p+ q

)
,

it will not change sensibly in value, because it becomes then

(p+ 1) log

(
p

p+ q
+ α

)
+ q log

(
1− p

p+ q
− α

)
;

by reducing log
(

p
p+q + α

)
and log

(
1− p

p+q − α
)

into series ordered with respect to
the powers of α, and by rejecting the quantities of order α which are not multiplied by
the large numbers p and q, it is reduced to

(p+ 1) log

(
p

p+ q

)
+ q log

(
1− p

p+ q

)
.

This put, we will seek, by the method of continued fractions, the fraction which,
having a denominator equal or less than 1161, most near to p

p+q ; the difference of this
fraction and of p

p+q being only of order α, we can use this fraction in the place of p
p+q ,

and, as the Tables give with twenty decimals the logarithms of its numerator and of its
denominator, so that the logarithms of the numerator and of the denominator of the new
fraction which we have by subtracting the preceding from unity, we will have easily
the tabulated value of

(p+ 1) log

(
p

p+ q

)
+ q log

(
1− p

p+ q

)
.

We will find in the same manner the tabulated values of the other parts of the ex-
pression of T2; we will have thus the tabulated expression of T2, and this expression,
taken in less, will be the tabulated logarithm of e−T2

; we will have next the true value
of T2 by multiplying the preceding by 2.3025851.

We can nearly always employ, without sensible error, the formula of No. XXXVIII

T2 =
1
2 (a
′ − a) d2Y

Y dx2
d2Y′

Y′ dx′2
d2Y

Y dx2 + d2Y′
Y′ dx′2

.
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and, as we have, in this case,

a =
p

p+ q
, a′ =

p′

p′ + q′
,

− d2Y
Y dx2

=
(p+ q)2

pq
, − d2Y′

Y′ dx′2
=

(p′ + q′)2

p′q′
,

we will have

T2 =

(
p′

p′+q′ −
p
p+q

)2
(p+ q)3(p′ + q′)3

2p′q′(p+ q)3 + 2pq(p′ + q′)3
.

If we apply this formula to the observed births at Paris and in the realm of Naples,
it will be necessary to suppose

p = 251527, q = 241945,

p′ = 782352, q′ = 746821,

that which gives
T = 2.7206;

we find then the probability P, that the possibility of the births of boys at Paris is greater
than in the realm of Naples, equal to around 1

100 ; it is therefore likely that there exists in
this realm, as at London, a cause more than at Paris, which facilitates the births of boys;
but the probability with which it is indicated by the observations is too inconsiderable
again in order to pronounce irrevocably on this object.

XLI.

We will consider now the probability of future events, taken from past events, and
we suppose that, having observed a result composed of any number of simple events,
we wish to determine the probability that a future result composed of the same events.

If we designate by x the possibility of the simple events, by y the probability cor-
responding to the observed result, and by z that of the future result, y and z being
functions of x; if we name next P the probability of the future result, taken from the
observed result, it is easy to conclude from No. XXXIV

P =

∫
yz dx∫
y dx

,

the integrals of the numerator and of the denominator being taken from x = 0 to x = 1.
This formula contains the law according to which the past events influence on the

probability of future events; we examine this influence in some particular cases. For
this, we suppose that an urn contains an infinity of white and black balls, and that, after
having drawn from it a white ball, we seek the probability of bringing forth a similar
ball in the following drawing. If we name x the ratio of the white balls of the urn to the
total number of balls, it is clear that x will be the probability, as much of the observed
event as of the future event; we will have therefore

P =

∫
x2 dx∫
x dx

=
2

3
,
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that is that there are odds of two against one that we will bring forth in the second
drawing a ball similar to that of the first drawing.

By supposing always that we have brought forth a white ball in the first drawing, if
we seek the probability of bringing forth next n black balls, x will be the probability of
the observed result, and (1− x)n that of the future result; we will have therefore then

P =

∫
x(1− x)n dx∫

x dx
=

2

(n+ 1)(n+ 2)
.

If the white and black balls were equal in number in the urn, we would have P= 1
2n ;

this value of P is less than the preceding when n is equal to or greater than 4; whence
there results that, although the first drawing renders probable that the white balls are
in greater number than the black, however the probability of bringing forth four black
balls in the following four drawings is more considerable than if we would suppose
the number of black balls equal to that of the white balls. This result, which seems
paradoxical, leads to this that the probability of bringing forth n black balls is equal
to the probability of bringing forth one of them, multiplied by the probability that in
having brought forth a first one we will bring forth from it a second, multiplied further
by the probability that in having brought forth two we will bring forth from it a third,
and thus in sequence; and it is clear that these partial probabilities always proceed by
increasing and end by being reduced to unity when n is infinite.

XLII.

We suppose the observed result composed of a great number of simple events; let
a be the value of x, which renders y a maximum; Y this maximum; a′ the value of x
which renders yz a maximum; Y′ and Z′ that which y and z becomes then; we will
have very nearly, by No. VI, ∫

y dx =
Y

3
2

√
2π√

−d2Y
dx2

,

∫
yz dx =

(Y′Z′)
3
2

√
2π√

−d
2(Y′Z′)
dx2

;

the expression of P of the preceding number becomes therefore

P =
(Y′Z′)

3
2

√
−d2Y
dx2

Y
3
2

√
−d

2(Y′Z′)
dx2

.

This expression will be very close if the observed result is quite composite.
If this result were composed of an infinity of simple events, the possibility of these

events would be, by No. XXXVII, equal to that which renders the observed result
most probable; we can therefore without sensible error calculate the probability of a
less composite future result, by supposing the possibility of the simple events equal
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to that which renders the probability of a very composite event a maximum; but this
supposition would cease to be exact if the future result were itself very composite. Let
us see at what point we can make use of it.

The observed result being composed of a very great number of simple events, we
suppose that the future result is much less composite; the equation which gives the
value of a′ corresponding to the maximum of yz is

0 =
dy

y dx
+

dz

z dx
;

dy
y dx is a very great quantity of order 1

α , and, since the future result is very little com-
posite with respect to the observed result, dz

z dx will be of a lesser order which we
will suppose equal to 1

α1−λ ; thus, a being the value of x which satisfies the equation
0 = dy

y dx , the difference between a and a′ will be of order aλ, and we can suppose

a′ = a+ αλµ.

This supposition gives

Y′ = Y + αλµ
dY
dx

+
α2λµ2

1.2

d2Y
dx2

+ · · · ;

but we have dY
dx = 0, whence it is easy to conclude that d

nY
dxn is of order equal or less

than 1

α
n
2

; the term αnλµn

1.2.3...n
dnY
dxn will be consequently of the order αn(λ−

1
2 ). Thus the

convergence of the expression in series of Y′ supposes λ > 1
2 , and in this case Y′ is

reduced nearly to Y.
If we name Z that which z becomes when we make x = a, we will be assured in

the same manner that Z′ is reduced to Z.
Finally we will prove, by a similar reasoning, that d

2(Y′Z′)
dx2 is reduced very nearly

to Zd2Y
dx2 ; by substituting these values into the expression of P, we will have

P = Z,

that is that we can in this case determine the probability of the future result, by sup-
posing x equal to the value which renders the observed result most probable; but it is
necessary for this that the future result be sufficiently less composite in order that the
exponents of the factors of z are of an order less than the square root of the exponents
of the factors of y; if this is not, it exposes the preceding supposition to some sensible
errors.

If the future result is a function of the observed result, z will be a function of y,
which we will represent by φ(y); the value of z which renders yz a maximum is in this
case the same as that which corresponds the maximum of y; we will have thus a′ = a,
and, if we designate dφ(y)

dy by φ′(y), the expression of P will give, by observing that
dY
dx = 0,

P =
φ(Y)√

1 + Yφ′(Y)
φ(Y)

.
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Let φ(y) = yn, so that the future event is n times the repetition of the observed
event, we will have

P =
Yn√
n+ 1

.

This probability, determined under the supposition that the possibility of the simple
events is equal to that which renders the observed result the most probable, is equal to
Yn; we see thence that the small errors which result from this supposition are accumu-
lated by reason of the simple events which enter into the future result and become very
sensible when these events are in great number.

XLIII.

Since 1745, when we have begun to distinguish at Paris the births of boys from
those of girls, we have constantly observed that the number of the first was superior to
that of the second, that which can give place to research how much it is probable that
this superiority will be maintained in the space of a century.

Let p be the observed number of births of boys at Paris; q that of the girls; 2n
the annual number of births; x the possibility of the births of the boys. The binomial
(x+ 1− x)2n gives by its expansion

x2n + 2nx2n−1(1− x) + 2n(2n− 1)

1.2
x2n−2(1− x)2 + · · · ,

and the sum of the first n terms will be the probability that the number of boys will
carry it away, each year, over that of the girls. We name z this sum; zi will be the
probability that this superiority will be maintained during the number i of consecutive
years. Hence, if P designates the true probability that this will take place, we will have,
by No. XLI,

P =

∫
xpdx zi(1− x)q∫
xpdx (1− x)q

,

the integrals of the numerator and of the denominator being taken from x = 0 to x = 1.
If we name a the value of x which corresponds to the maximum of xpzi(1 − x)q ,

and if we designate by Z, dZ
dx ,

d2Z
dx2 that which z, dzdx ,

d2z
dx2 become when we change x

into a, we will have, by No. VI,∫
xpzi dx (1− x)q = ap+1(1− a)q+1Zi

√
2π√

p(1− a)2 + qa2 + ia2(1− a)2 dZ2−Zd2Z
Z2dx2

.

z being the sum of the first n terms of the function

x2n

[
1 + 2n

1− x
x

+
2n(2n− 1)

1.2

(
1− x
x

)2

+ · · ·

]
,

we have, by No. XXI,

z =

∫
un−1du

(1+u)2n+1∫
un−1du

(1+u)2n+1

,
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the integral of the numerator being taken from u = 1−x
x to u = ∞, and that of the

denominator being taken from u = 0 to u = ∞. Let u = 1−s
s , this value of z will

become

z =

∫
snds(1− s)n−1∫
snds(1− s)n−1

,

the integral of the numerator being taken from s = 0 to s = x, and that of the denomi-
nator being taken from s = 0 to s = 1; thence it is easy to conclude

dz

z dx
=

xn(1− x)n−1∫
sndx(1− s)n−1

,
d2z

z dx2
=

dz

z dx

n− (2n− 1)x

x(1− x)
,

the integral being taken from s = 0 to s = x. By changing x into a, we will have the
values of Z, dZ

Zdx ,
d2Z

Zdx2 ; all the difficulty is reduced therefore to determining a.
Its value is given by the equation

0 =
p

a
− q

1− a
+ i

dZ
Z dx

,

whence we deduce, by substituting in the place of dZ
Z dx its preceding value

a =
p

p+ q
+

ian+1(1− a)n

(p+ q)
∫
snds(1− s)n−1

,

the integral being taken from s = 0 to s = a; this is the equation according to which it
is necessary to determine a. For this, we will observe that, a being greater than p

p+q , it
surpasses sensibly the value of s, which corresponds to the maximum of sn(1−s)n−1;
thus, n being a great number, we can suppose, in the preceding equation, that the
integral is taken from s = 0 to s = 1, that which gives, by No. VI,∫

snds(1− s)n−1 =
nn+

1
2 (n− 1)n−

1
2

√
2π

(2n− 1)2n+
1
2

=

√
π

22n
√
n
.

The equation which determines a will become thus, very nearly,

a =
p

p+ q
+
ian+1(1− a)n22n

√
n

(p+ q)
√
π

.

In order to solve it, we will observe that a differs very little from p
p+q , so that, if we

suppose a = p
p+q + µ, µ being quite small, and we will have, in a quite close manner,

µ =
i
√
n22n

(
p
p+q

)n+1 (
q
p+q

)n
(p+ q)

√
π

e−nµ
(p+q)(p−q)

pq .

Now, if we divide by 26 the sum of the births observed at Paris from 1745 to 1770,
we will have, very nearly, 19000 for the annual number of births; we will suppose thus
n = 9500, i = 100; we have besides

p = 251527, q = 241945.
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The preceding equation will give therefore

µ = 0.000157929 e−738.144µ,

whence we deduce
µ = 0.00014222

and, consequently,
a = 0.5098509.

The radical √
p(1− a)2 + qa2 + ia2(1− a)2 dZ2 − Zd2Z

Z2dx2

becomes, by substituting, in the place of d2Z
Z dx , its value dZ

Z dx
n−(2n−1)a
a(1−a) , and, in the

place of dZ
Z dx , its value (p+q)a−p

ia(1−a) or (p+q)µ
ia(1−a) , given by the equation of the maximum,√

p(1− a)2 + qa2 + µ(p+ q)

[
(p+ q)µ

i
+ (2n− 1)a− n

]
= 369.419;

moreover we have, very nearly,

ap(1− a)q =
(

p

p+ q

)p(
q

p+ q

)q
e−

µ2(p+q)2

2pq

and
e−

µ2(p+q)2

2pq = 0.980229;

we will have therefore∫
xpz100dx(1− x)q = 0.000663199

√
2π

(
p

p+ q

)p(
q

p+ q

)q
Z100.

We have next by No. VI, by taking the integral from x = 0 to x = 1,∫
xpdx(1− x)q = pp+

1
2 qq+

1
2

√
2π

(p+ q)p+q+
3
2

= 0.000711634
√
2π

(
p

p+ q

)p(
q

p+ q

)q
,

whence we deduce
P = 0.931938Z100,

so that there is no longer question but of having Z.
We have

Z =

∫
sndx(1− s)n−1∫
sndx(1− s)n−1

,

the integral of the numerator being taken from s = 0 to s = a, and that of the denomi-
nator being taken from s = 0 to s = 1; it is easy to conclude from it that, if we make
1− s = s′, we will have

Z = 1−
∫
s′n−1ds′(1− s′)n∫
s′n−1ds(1− s′)n

,
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the integral of the numerator being taken from s′ = 0 to s′ = 1 − a, that of the
denominator being taken from s′ = 0 to s′ = 1. We will have thus, quite nearly, by
No. VI,

Z = 1−
∫
dt e−t

2

√
π

,

the integral relative to t being taken from t =T to t =∞, T being given by the equation

T2 = (n− 1) log
1

2(1− a)
+ n log

1

2a
,

these logarithms being hyperbolic. We can give to this expression of T2 this quite close
form

T2 = (n− 1) log
p+ q

2q
+ n log

p+ q

2p
+
nµ(p+ q)(p− q)

pq
,

and we will deduce from it
T2 = 3.66793.

If we make use of formula (c′) of No. XXXVII, we will have∫
dt e−t

2

=
e−T2

2T
(1− 0.136317 + 0.055747− 0.037996 + 0.036256− · · · ).

This series is quite convergent, but it has the advantage of giving alternatively a sum
greater and lesser than the truth, according as we are stopped at a number of terms even
or odd; by adding therefore to the sum of the first four terms the half of the fifth, the
error will be less than this half and, consequently, below 1

50 of the entire sum; we will
have thus ∫

dt e−t
2

=
e−T2

2T
0.899562,

that which gives
Z = 0.9966174

and, consequently,
P = 0.664;

there is therefore, very nearly, odds of two against one that, in the space of a century,
the births of boys will carry away each year at Paris over those of girls.

XLIV.

The preceding researches suffice to show the advantages of the analysis exhibited at
the beginning of this Memoir, in the part of the theory of chances, where the question
is to carry up from observed events to their respective possibilities and to determine
the probability of future events. This analysis is not less useful in the solution of
the problems where we seek the probability of a result formed of a great number of
simple events, of which the possibilities are known: in order to give an example, we
will suppose that we propose to have the probability that all the tickets in a lottery
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composed of n tickets, and of which there is extracted from it one at each drawing, all
will be extracted after the number i of drawings.

I have given, in Volume VI of the Mémoires des Savants étranges1, the solution of
this problem, whatever be the number of tickets which we bring forth at each drawing,
and there results from this that, in the case where there exit at each drawing only a
single ticket, if we name yi the probability that all the tickets will be extracted after the
number i of drawings, we will have

yi =
4nsi

ni
,

the characteristic 4 being that of the finite differences, and s being necessary to sup-
pose null in the final result. This expression, quite simple in appearance, would lead
to some impractical calculations if n and i were very large numbers; it would be much
more difficult yet to conclude from it the number i, to which corresponds a given value
of yi; but we can easily determine this number by the formulas of No. XXVII.

Formula (µ′) of this section gives, very nearly,

4nsi =
(
i
a

)i+1
esa−1(ea − 1)n√

i(i+1)
a2 − niea

(ea−1)2

(
1 +

15l′2 − 12ll′′

16l3
+

1

12i

)
,

a, l, l′, l′′ being given by the following equations

0 =
i+ 1

a
− s− nea

ea − 1
,

l = − i+ 1

2a2
− n

2

ea

ea − 1
+
n

2

(
ea

ea − 1

)2

,

l′ = − i+ 1

3a2
+
n

6

ea

ea − 1
− n

2

(
ea

ea − 1

)2

+
n

3

(
ea

ea − 1

)3

,

l′′ = − i+ 1

4a2
− n

24

ea

ea − 1
+

7n

24

(
ea

ea − 1

)2

− n

2

(
ea

ea − 1

)3

+
n

4

(
ea

ea − 1

)4

.

If we suppose s = 0 and ea of order n or i, these equations will become

a =
i+ 1

n
(1− e−a),

l = − i+ 1

2a2
, l′ = − i+ 1

3a3
, l′′ = − i+ 1

4a4
;

the preceding formula will give therefore, in this case,

4nsi

ni
=

(
i
i+1

)i+ 1
2

ena−i(1− e−a)n−i√
1− i+1−na

n

.

1“Mémoire sur les suites récurro-récurrentes et sur leurs usages dans la théorie des hasards.” Oeuvres de
Laplace, t. VIII, p.17.
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Now we have (
i

i+ 1

)i+ 1
2

= e−1,

and if we make e−a = z, z being supposed a very small fraction of order 1
i , we will

have

(1− e−a)n−i = e(i−n)z
(
1 +

i− n
2

z2
)
;

we have next
i+ 1− na = (i+ 1)z.

We will have therefore, very nearly,

4nsi

ni
= e−nz

(
1 +

i− 2n+ 1

2n
z +

i− n
2

z2
)

= yi.

In order to determine z, we will observe that the equation a = i+1
n (1 − z) gives,

for the first value of a,

a =
i

n
;

by designating therefore e
−i
n by q, we will have, for a first value of z,

z = q;

this value substituted into the expression of a gives, for the second value of this quan-
tity,

a =
i+ 1

n
− i

n
q;

by substituting it into the equation z = e−a, we will have, for the second value of z,

z = q

(
1− i

n
+
i

n
q

)
,

whence it is easy to conclude

yi = e−nq
(
1 +

i

2n
q − i+ n

2
q2
)
.

This value of yi will be very close if, n and i being very large numbers, q is of
order 1

n ; and this is that which will always take place when yi will not be a very small
fraction, because then e−nq will not be a very small number, that which supposes q of
order 1

n .
Let yi = 1

2 , and we seek the number i of drawings to which this probability corre-
sponds. We will have, in order to determine it, the following two equations

q − i

2n2
q +

i+ n

2n
q2 =

log 2

n
,

i = −n log q,
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these logarithms being hyperbolic.
Let n = 10000, we have

log hyperb. 2 = 0.6931472;

the first of the two preceding equations gives, for the first value of q, by neglecting the
terms − i

2n2 q and i+n
2n q

2,
q = 0.00006931472.

This value being of order 1
n , we see that it is here the case of using the preceding

expression of yi. The second equation gives

i = 95768.5.

This value can differ yet by some units from the truth; but, by correcting the value
of q by its mean, we will have

q = 0.00006932250,

that which will give, for the second value of i,

i = 95767.41;

whence it follows that there are odds a little less than one against one that all the tickets
will exit after 95767 drawings, and that there are odds a little more than one against
one that they will exit after 95768 drawings.
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