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Analysis often leads to some formulas of which the numerical calculus, when we
substitute into it some very large numbers, becomes impractical, because of the multi-
plicity of the terms and of the factors of which they are composed. This inconvenience
takes place principally in the theory of the probabilities, where we consider events re-
peated a great number of times. It is therefore useful then to be able to transform these
formulas into series so much more convergent as the substituted numbers are more
considerable. The first transformation of this kind is due to Stirling, who reduced in
the most fortunate manner, into a similar series, the middle term of the binomial raised
to a high power; and the theorem to which he arrived can be set at the rank of the most
beautiful things which we have found in analysis. That which struck the geometers
above all, and especially Moivre, who had long occupied himself in this object, was
the introduction of the square root of the circumference of which the radius is unity,
in a research which seems estranged from this transcendent. Stirling had arrived there
by means of the expression of the circumference as a fraction of which the numerator
and the denominator are the products in infinite number, an expression that Wallis had
given. This indirect means left room for a direct and general method to obtain, not
only the approximation of the middle term of the binomial, but also that of many other
more complicated formulas and which present themselves at each step in the analysis
of chances. This is that which I myself have proposed in diverse Memoirs published in
the volumes of the Académe des Sciences for the years 1778 and 1782.1 The method
which I have presented in these Memoirs transform generally into convergent series
∗Read on 9 April 1810.
†Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-

sity, Cincinnati, OH. August 26, 2011
1Oeuvres de Laplace, T. IX and X.
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the integrals of the equations linear in the ordinary or partial differences, finite and
infinitely small, when we substitute some large numbers into these integrals. It is ex-
tended yet to many other similar formulas, such as the very elevated differences of the
functions. These series have most often for factor the square root of the circumfer-
ence, and this is the reason for which this transcendent is presented to Stirling; but,
sometimes, they contain some higher transcendents of which the number is infinite.

Among the formulas which I have transformed in this manner, one of the most re-
markable is that of the finite difference of the power of a variable. But we have need
frequently, in the questions of the probabilities, to consider only a part of these terms
and to stop when the variable, by its successive diminutions, becomes negative. This
case holds, for example, in the problem where we seek the probability that the mean
inclination of the orbits of any number of comets is contained within some given lim-
its, all the inclinations being equally possible, a problem of which the solution serves
to acknowledge if these orbits participate in the original tendency of the orbits of the
planets and of the satellites for the sake of being brought together in the plane of the
solar equator. In resolving this problem, by the method which I have given for this kind
of questions in the Volume of the Académie des Sciences of the year 1778,2 the prob-
ability of which there is question is expressed by the finite difference of the power of a
variable which decreases uniformly, the degrees of the power and of the difference be-
ing the same number of the orbits which we consider, and the formula must be stopped
when the variable becomes negative. The numerical calculation of this formula is im-
practical for the comets already observed; because it is necessary to consider nearly
fifty very composite terms and which, being alternately positives and negatives, destroy
themselves nearly entirely; so that, in order to have the final result of them together, it
would be necessary to calculate them separately with a precision superior to that which
we can obtain by means of the most extended Tables of logarithms. This difficulty
has stopped me for a long time: I have finally arrived to conquer it by considering the
problem under a new point of view, which has led me to express the sought probability,
by a convergent series, in the general case where facilities of the inclinations follow
any law. This problem is identical with the one in which we seek the probability that
the mean of the errors of a great number of observations will be contained within some
given limits, and there results from my solution that, by multiplying indefinitely the
observations, their mean result converges towards a fixed term, in a manner that, by
taking on both sides of this term any interval as small as we will wish, the probability
that the result will fall in this interval will stop by differing from certitude only by a
quantity less than every assignable size. This mean term is confounded with the truth
if the positive and negative errors are equally possible, and generally this term is the
abscissa of the curve of facility of the errors corresponding to the ordinate of the center
of gravity of the area of this curve, the origin of the abscissas being that of the errors.

By comparing the two solutions of the problem obtained by the methods of which I
just spoke, we have, by some convergent series, the value of the finite differences of the
elevated powers of a variable and those of many other similar functions, by stopping
them at the point where the variable becomes negative; but, this manner being indirect,
I have sought a direct method to obtain these approximations, and I have come by the

2Oeuvres de Laplace, T. IX.
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aid of equations in the finite and infinitely small partial differences on which these func-
tions depend, that which leads to diverse curious theorems. These approximations are
deduced yet very simply from the reciprocal passage of the imaginary results to the real
results, of which I have given diverse examples in the Mémoires cited in the Académie
des Sciences and very recently in Book VIII of the Journal de l’École Polytechnique.3

It is analogous to the one from the positive integers, to the negative numbers and to
the fractional numbers, passage from which the geometers have known to deduce, by
induction, many important theorems; employed as they do with reserve, it becomes a
fecund means to discover, and it indicates more and more the generality of analysis. I
dare to hope that these researches, which serve to supplement those which I have given
earlier on the same object, may interest the geometers.

In order to apply these researches to the orbits of the comets, I have considered
all those which we have observed until 1807 inclusively. Their number is elevated
to ninety-seven and, among them, fifty-two have a direct movement and forty-five a
retrograde movement; the mean inclination of their orbits to the ecliptic differs very
little from the mean of all the possible inclinations or from a half right angle. We find
by the formulas of this Memoir that, by supposing the inclinations, at the same time
the direct and retrograde movements, equally easy, the probability that the observed
results must be brought together more from their mean state is much too weak in order
to indicate in these stars an original tendency to be moved all onto one same plane and
in the same sense. But, if we apply the same formulas to the movements of rotation
and of revolution of the planets and of the satellites, we see that this double tendency is
indicated with a probability much superior to that of the greatest number of historical
facts on which we permit no doubt.

I.

We suppose all the inclinations to the ecliptic equally possible from zero to the
right angle, and we demand the probability that the mean inclination of n orbits will be
contained within some given limits.

We designate the right angle by h, and we represent by k the law of facility of
the inclinations of an orbit. Here k will be constant from the null inclination to the
inclination h. Beyond this limit, the facility is null; we can therefore generally represent
the facility by k(1 − lh), provided that we make its second term begin only at the
inclination h and that we suppose l equal to unity in the result of the calculation.

This put, we name t, t1, t2, . . . the inclinations of the n orbits, and we suppose
their sum equal to s, we will have

t+ t1 + t2 + · · ·+ tn−1 = s.

The probability of this combination is evidently the product of the probabilities of
the inclinations t, t1, t2, . . . and consequently it is equal to kn(1− lh)n. By taking the
sum of all the probabilities relative to each of the combinations in which the preceding
equation holds, we will have the probability that the sum of the inclinations of the orbits

3Mémoire sur divers points d’analyse. (1809)
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will be equal to s. In order to have this sum of the probabilities, we will observe that
the preceding equation gives

t = s− t1 − t2 − · · · − tn−1.

If we suppose first t2, t3, . . . , tn−1 constants, the variations of t will depend only on
those of t1 and they will be able to be extended from t null, in which case t1 is equal
to s− t2 − · · · − tn−1, to

t = s− t2 − · · · − tn−1,

that which renders t1 null. The sum of all the probabilities relative to these variations
is evidently

kn(1− lh)n(s− t2 − · · · − tn−1).

It is necessary next to multiply this function by dt2 and to integrate it from t2 null to
t2 = s− t3 − · · · − tn−1, this which gives

kn(1− lh)n

1.2
(s− t3 − · · · − tn−1)2.

By continuing thus to the last variable, we will have the function

kn(1− lh)nsn−1

1.2.3 . . . (n− 1)
.

It is necessary next to multiply this function by ds and to integrate it within the given
limits, which we will represent by s− e and s+ e′, and we will have

kn(1− lh)n

1.2.3 . . . n
[(s+ e′)n − (s− e)n]

for the probability that the sum of the errors will be contained within these limits. But
we must make here an important observation. Any term, such as Qlrh(s − e)n, can
have place only as long as a number r of the variables t, t1, . . . , tn−1 begin to surpass
h; because it is only in this way that the factor lrh can be introduced. It is necessary
then to increase each of them by the quantity h in the equation

t+ t1 + t2 + · · ·+ tn−1 = s,

that which happens to make these variables depart from zero, by diminishing s by rh.
The term Qlrh(s − e)n becomes thus Qlrh(s − rh − e)n. Moreover, as the variables
t, t1, . . . are necessarily positives, this term must be rejected when s − rh − e begins
to become negative. By this means, the preceding function becomes, by making l = 1
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in it,
kn

1.2.3 . . . n

[
(s+ e′)n − n(s+ e′ − h)n

+
n(n− 1)

1.2
(s+ e′ − 2h)n

− · · ·
− (s− e)n + n(s− e− h)n

− n(n− 1)

1.2
(s− e− 2h)n

+ · · ·
]
,

by rejecting the terms in which the quantity under the sign of the power is negative.
This artifice, extended to some arbitrary laws of facilities, gives a general method to
determine the probability that the error of any number of observations will be contained
in some given limits. [See the Mémoires de l’Académie des Sciences, year 1778, page
240 and the following.4]

In order to determine k, we will make n = 1, s + e′ = h and s − e null. The
preceding formula becomes then kh; but this quantity must be equal to unity, since it
is certain that the inclination must fall between zero and h. We have therefore

k =
1

h
,

that which changes the preceding formula into this one

(a)



1

1.2.3 . . . n.hn

[
(s+ e′)n − n(s+ e′ − h)n

+
n(n− 1)

1.2
(s+ e′ − 2h)n

− · · ·
− (s− e)n + n(s− e− h)n

− n(n− 1)

1.2
(s− e− 2h)n

+ · · ·
]
.

If we make s+e′ = nh and s−e = 0, the probability that the sum of the inclinations
will be contained between zero and nh, being certitude or unity, the preceding formula
gives

nn − n(n− 1)n +
n(n− 1)

1.2
(n− 2)n − · · · = 1.2.3 . . . n,

that which we know besides.

4“Mémoire sur les probabilités”, §VII. Oeuvres de Laplace, T. IX, p. 396 ff.
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II.

We apply this formula to the inclinations of the orbits of the planets. The sum of
the inclinations of the other orbits to that of the Earth was, in decimal degrees,5 of
91G.4187 at the beginning of 1801. If we make the inclinations vary from zero to the
half circumference, we make vanish the consideration of the retrograde movements;
because the direct movement changes itself into retrograde when the inclination sur-
passes a right angle. Thus the preceding formula will give the probability that the sum
of the inclinations of the orbits of the ten other planets to the ecliptic will not surpass
91G.4187, by making n = 10G in it, h = 200G, s + e′ = 91G.4187, s − e = 0. We
find then this probability equal to 1− 1.0972

(10)10 ; consequently, the probability that the sum
of the inclinations must surpass that which has been observed is equal to 1 − 1.0972

(10)10 .
This probability approaches so to certitude that the observed result becomes unlikely
under the supposition where all inclinations are equally possible. This result indicates
therefore with a very great probability the existence of an original cause which has
determined the orbits of the planets to draw nearer to the plane of the ecliptic or, more
naturally, to the plane of the solar equator. It is likewise of the sense of the movement
of the eleven planets, which is the one of the rotation of the Sun. The probability that
this ought not to take place is 1 − 1

210 . But if we consider that the eighteen satellites
observed until now make their revolutions in the same sense as their respective planets,
and that the observed rotations, in the number of thirteen in the planets, the satellites
and the ring of Saturn, are yet directed in the same sense, we will have 1− 1

242 for the
probability that this ought not take place under the hypothesis of an equal possibility
in the direct and retrograde movements. Thus the existence of a common cause which
has directed these movements in the sense of the rotation of the Sun is indicated by the
observations with an extreme probability.

We see now if this cause has influenced on the movement of the comets. The
number of these which we have observed until 1807 inclusively, by counting for the
same the diverse apparitions of the one of 1759, is of ninety-seven, of which fifty-
two have a direct movement and forty-five a retrograde movement. The sum of the
inclinations of the orbits of the first is 2622G.944 and that of the inclination of the orbits
of the others is 2490G.089. The mean inclination of all these orbits is 51G.87663. If in
formula (a) of the preceding article we suppose e′ = e and s = 1

2nh, it becomes

1

1.2.3 . . . n.2n

[(
n+

2e

h

)n
− n

(
n+

2e

h
− 2

)n
+
n(n− 1)

1.2

(
n+

2e

h
− 4

)n
− · · ·

−
(
n− 2e

h

)n
+ n

(
n− 2e

h
− 2

)n
− · · ·

]
.

In the present case, n = 97, h = 100G, e = 182G.033, and then it gives the
probability that the sum of the inclinations must be contained within the limits 50G ±

5Also known as Grads. 400G = 360 ˚ = 2π radians.
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1G.87664; but the considerable number of terms of this formula and the precision with
which it is necessary to have each of them renders the calculation of it impractical. It
is therefore indispensable to seek a method of approximation for this kind of analytic
expressions or to resolve the problem in another manner. This is that which I have done
by the following method.

III.

I imagine the interval h divided into an infinite number 2i of parts that I take for
unity, and I consider the function

e−i$
√
−1+e−(i−1)$

√
−1+ · · ·+e−$

√
−1+1+e$

√
−1+ · · ·+e(i−1)$

√
−1+ei$

√
−1,

by designating now by e the number of which the hyperbolic logarithm is unity.
By raising it to the power n, the coefficient of el$

√
−1 of the development of this

power will express the number of the combinations in which the sum of the inclinations
of the orbits is equal to l. This power can be put under the form

(1 + 2 cos$ + 2 cos 2$ + · · ·+ 2 cos i$)n.

By multiplying it by d$e−l$
√
−1, the term multiplied by el$

√
−1 in the development

of the power will become independent of $ in the product; whence it is easy to con-
clude that we will have the coefficient of this term by taking the integral

(a′)
1

π

∫
d$ cos l$ (1 + 2 cos$ + · · · 2 cos i$)n.

from $ null to $ = π, π being the semi-circumference or 200G, because the terms of
the integral dependent on $ all becoming null at the same time, and, for the first time,
only within these limits.

Now we have

1 + 2 cos$ + · · ·+ 2 cos i$ =
cos i$ − cos(i+ 1)$

1− cos$
= cos i$ +

cos 1
2$ sin i$

sin 1
2$

Let i$ = t, we will have

cos i$ +
cos 1

2$ sin i$

sin 1
2$

= cos t+
cos t

2i sin t

sin t
2i

.

The second member of this equation becomes, because of i infinite,

2i
sin t

t
.

Moreover, if we make
l = ir

√
n,

we will have
cos l$ = cos rt

√
n.
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The function (a′) becomes therefore

(a′′)
(2i)n

iπ

∫
dt cos rt

√
n

(
sin t

t

)n
.

We have, by reducing sin t into series,

log

(
sin t

t

)n
= n log

(
1− 1

1.2.3
t2 +

1

1.2.3.4.5
t4 − · · ·

)
= −nt

2

6
− n

180
t4 − · · ·

this which gives(
sin t

t

)n
= e−

nt2

6 −
n

180 t
4−··· = e−

nt2

6

(
1− n

180
t4 − · · ·

)
,

e being the number of which the hyperbolic logarithm is unity. The function (a′′) takes
then this form

(a′′′)
(2i)n

iπ

∫
dt cos rt

√
n e−

nt2

6

(
1− n

180
t4 − · · ·

)
.

We consider the different terms of this function. We have first, by reducing into series
cos rt

√
n and making t′ = t

√
n
6 ,∫

dt cos rt
√
n e−

nt2

6 =

√
6

n

∫
dt′ e−t

′2
(

1− r2

1.2
6t′2 +

r4

1.2.3.4
62t′4 − · · ·

)
.

The integral must be taken from t null to t infinity, because t being infinite, t or i$
become infinite at the limit $ = π; the integral relative to t′ must therefore be taken
from t′ null to t′ infinity. In this case, we have, as I have shown in the Mémoires cités
de l’Académie des Sciences for the year 17786,∫

dt′ e−t
′2

=
1

2

√
π.

We have next, by integrating by parts,∫
t′2dt′ e−t

′2
= −1

2
t′ e−t

′2
+

1

2

∫
dt′ e−t

′2
.

By taking the integral from t′ null to t′ infinity, this second member is reduced to
1
2 .

1
2

√
π. Generally we have, in the same limits,∫

t′2mdt′ e−t
′2

=
1.3.5.(2m− 1)

2m
1

2

√
π.

6“Mémoire sur les probabilités”, §XXIII. Oeuvres de Laplace, T. IX.
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We will have therefore∫
dt cos rt

√
n e−

nt2

6 =

√
6

n

1

2

√
π

(
1− 3

2
r2 +

(
3
2

)2
r4

1.2
− · · ·

)
=

√
6

n

1

2

√
π e−

3
2 r

2

.

The first term of the function (a′′′) becomes thus

(2i)n

2i
√
π

√
6

n
e−

3
2 r

2

.

We consider presently the term∫
nt4dt e−

t2n
6 cos rt

√
n.

By integrating by parts, this term becomes

−3t3e−
t2n
6 cos rt

√
n+ 3

∫
e−

t2n
6 d(t3 cos rt

√
n).

But we have

3

∫
e−

t2n
6 d(t3 cos rt

√
n) = 9

∫
t2dt e−

t2n
6 cos rt

√
n+3r

d

dr

∫
t2 dt e−

t2n
6 cos rt

√
n;

we have next∫
t2dt e−

t2n
6 cos rt

√
n = −3t

n
e−

t2n
6 cos rt

√
n+

3

n

∫
e−

t2n
6 d(t cos rt

√
n)

and ∫
e−

t2n
6 d(t cos rt

√
n) =

∫
dt cos rt

√
n e−

t2n
6 + r

d

dr

∫
dt e−

t2n
6 cos rt

√
n

=

√
6

n

1

2

√
π

(
e−

3
2 r

2

+ r
d

dr
e−

3
2 r

2

)
.

By reuniting these values and taking the integral from t null to t infinity, we will have∫
nt4 dt e−

t2n
6 cos rt

√
n =

33

n

√
3π

2n
e−

3
2 r

2

(1− 6r2 + 3r4).

We can obtain easily from this other way the integral∫
dt cos rt

√
n t2fe−

t2n
6 .

For this, we will substitute, in place of cos rt
√
n, its value ert

√
−n+e−rt

√
−n

2 . We con-
sider first the integral

1

2

∫
dt ert

√
−n t2f e−

nt2

6 ;
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we put it under this form

1

2
e−

3
2 r

2

∫
dt e−

1
6 (t
√
n−3r

√
−1)2t2f .

We make
t
√
n− 3r

√
−1√

6
= t′,

this integral will become

1

2
e−

3
2 r

2

√
6

n

∫
dt′ e−t

′2 (t′
√

6 + 3r
√
−1)2f

nf
.

But it must be taken from t′ = − 3r
√
−1√
6

to infinity. The part 1
2e
−rt
√
−n from cos rt

√
n

will give likewise the integral

1

2
e−

3
2 r

2

√
6

n

∫
dt′ e−t

′2 (t′
√

6− 3r
√
−1)2f

nf
,

the integral being taken from t′ = 3r
√
−1√
6

to infinity. Thence it is easy to conclude that

the integral
∫
dt t2f cos rt

√
n e−

nt2

6 is equal to

1

2
e−

3
2 r

2

√
6

n

∫
dt′ e−t

′2 (t′
√

6− 3r
√
−1)2f

nf
,

the integral being taken from t′ = −∞ to t′ = +∞, or, that which reverts to the same,
to the real part of the integral

e−
3
2 r

2

√
6

n

∫
dt′ e−t

′2 (t′
√

6 + 3r
√
−1)2f

nf
,

the integral being taken from t′ null to t′ infinity. By making 2f = 4, we have∫
dt t4 cos rt

√
n e−

nt2

6 =
e−

3
2 r

2

n2
√
n

33(1− 62 + 3r4)

√
3

2
π,

this which coincides with the preceding result.
The function (a′′′) will be thus reduced into the series descending according to the

powers of n,

(2i)n

2i
√
π

√
6

n
e−

3
2 r

2
[
1− 3

20n
(1− 6r2 + r4)− · · ·

]
.

We will have the sum of all the functions contained between −l and l, by observing
that 1 is the differential of l; now this differential is idr

√
n; we can therefore substitute

dr
√
n in the place of 1

i . The sum of all the functions of which there is question is thus,
by doubling the integral,

(2i)n
√

6

π

∫
dr e−

3
2 r

2

[
1− 3

20n
(1− 6r2 + 3r4) + · · ·

]
.
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In order to have the probability that the sum of the inclinations will be contained
between −l and l, it is necessary to divide the preceding function by the number of
all the possible combinations, and this number is (2i)n. We have therefore, for this
probability, √

6

π

∫
dr e−

3
2 r

2

[
1− 3

20n
(1− 6r2 + 3r4) + · · ·

]
=

√
6

π

[∫
dr e−

3
2 r

2

− 3r

20n
(1− r2)e−

3
2 r

2

]
.

But we have
2i = h,

l

i
= r
√
n;

the limits of the integral are therefore −h2 r
√
n and +h

2

√
n; consequently the probabil-

ity that the mean inclination of the orbits will be contained within the limits 1
2h−

rh
2
√
n

and 1
2h+ rh

2
√
n

, will be expressed by the preceding integral.
If we make 3

2r
2 = s2, this integral becomes

2√
π

∫
ds e−s

2

[
1− 3

20n
(1− 4s2 +

4

3
s4) + · · ·

]
or

(aiv)
2√
π

[∫
ds e−s

2

− 1

20n
e−s

2

(3s− 2s3) + · · ·
]
.

When the value of s to its limit is quite great, then
∫
ds e−s

2

approaches 1
2

√
π, in

a way to differ from it less than any given magnitude, if we increase indefinitely the
number n; moreover, the terms following − 1

20ne
−s2(3s − 2s3) become then entirely

insensible. We can therefore, by the increase of n, tighten at the same time the limits
± h

2
√
n

and to increase at the same time the probability that the mean inclination of the

orbits will fall between the limits 1
2h±

rh
2
√
n

, in a way that the difference from certitude
to this probability and the interval contained between these limits are less than every
assignable magnitude.

When s is quite small, we have, by a convergent series,∫
ds e−s

2

= s− 1

1.2

s3

3
+

1

1.2.3

s5

5
− · · ·

This series can be employed when s does not surpass 3
2 ; but when it surpasses it, we

can make use of the continued fraction that I have given in Book X of the Mécanique
céleste, ∫

ds e−s
2

=
1

2

√
π − e−s

2

2s


1

1 + q

1+ 2q

1+
3q

1+
4q

1+

. . .
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q being equal to 1
2s2 . The continued fraction 1

1+ q

1+

. . .

is reduced, according as we stop

it at the first, at the second, . . . terms into the following fractions, alternatively greater
and smaller than the continued fraction:

1

1
,

1

1 + q
,

1 + 2q

1 + 3q
,

1 + 5q

1 + 6q + 3q2
,

1 + 9q + 8q2

1 + 10q + 15q2
, · · ·

The numerators of these fractions are deduced from one another, by observing that the
numerator of the ith fraction is equal to the numerator of the (i − 1)st fraction, plus to
the numerator of the (i − 2)nd multiplied by (i − 1)q. The denominators are deduced
from one another in the same manner.

IV.

We can now apply our formulas to the observed comets, by making use of the data
of article II. We have, according to these data,

n = 97, h = 100G,

rh

2
√
n

= 1G.87763,

this which gives

s =
1G.87763

100G 2
√

97

√
3

2
= 0.452731.

We can here make use of the expression of the integral
∫
ds e−s

2

in series, and then we
have

2√
π

∫
ds e−s

2

= 0.4941.

The probability that the mean inclination must be contained within the limits 50G ±
1G.87663 is, by formula (aiv), equal to 0.4933, or 1

2 very nearly; the probability that
this inclination must be below is therefore 1

4 , and the probability that it must be above
is 1

4 . All these probabilities are too little different from 1
2 in order that the observed

result throws out the hypothesis of an equal facility of the inclinations of the orbits,
and in order to indicate the existence of an original cause which has influence on these
inclinations, a cause that we can not refrain from admitting in the inclinations of these
planets.

The same thing holds with respect to the sense of the movement. The probability
that, on ninety-seven comets, forty-five at most are retrogrades, is the sum of the first
forty-six terms of the binomial (p + q)97, by making p = q = 1

2 ; but the sum of the
first forty-eight terms is the half of the binomial or 1

2 ; whence it is easy to conclude
that the sought probability is

1

2
− 97.96 . . . 50

1.2.3 . . . 48.297

(
1 +

48

50
+

48.47

50.51

)
.
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Now we have
97.96 . . . 50

1.2.3 . . . 48.297
=

1.2.3 . . . 97

(1.2.3 . . . 49)2
49

297
;

moreover, we have generally, when s is a great number,

1.2.3 . . . s = ss+
1
2 e−s

√
2π

(
1 +

1

12s
+ · · ·

)
,

this which gives
1.2.3 . . . 97

(1.2.3 . . . 49)2
49

297
=

(
48.5
49

)98 1165
1164e√

π · 48.5
(
589
588

)2 .
We find thus the sought probability equal to 0.2713, a fraction much too great in order
that it can indicate a cause which has favored, in the origin, the direct movements.
Thus the cause which has determined the sense of the movements of rotation and of
revolution of the planets and of the satellites does not appear to have influenced on the
movement of the comets.

V.

If we neglect the terms of order 1
n , the integral 2√

π

∫
ds e−s

2

or 2√
π

√
3
2

∫
dr e−

3
2 r

2

expresses the probability that the sum of the inclinations of the orbits will be contained
within the limits h

2 −
rh
2
√
n

and h
2 + rh

2
√
n

; but this same probability is, by article II, equal
to

1

1.2.3 . . . n.2n

[
(n+ r

√
n)n − n(n+ r

√
n− 2)n

+
n(n− 1)

1.2
(n+ r

√
n− 4)n − · · ·

− (n− r
√
n)n + n(n− r

√
n− 2)n

− · · ·
]
;

this function is therefore equal to the preceding integral. Now we have, without the
exclusion of the negative quantities elevated to the power n in the first member, the
following equation:

(n+ r
√
n)n − n(n+ r

√
n− 2)n +

n(n− 1)

1.2
(n+ r

√
n− 4)n − · · ·

= (n+ r
√
n)n − n(n+ r

√
n− 2)n + · · ·

+ (n− r
√
n)n − n(n− r

√
n− 2)n + · · ·

The first member is, as we know, equal to 1.2.3 . . . n.2n; the second expression of the
probability becomes thus, by eliminating (n − r

√
n)n − n(n − r

√
n − 2)n + · · · by

means of its value given by the preceding equation,

1

1.2.3 . . . n.2n−1

[
(n+ r

√
n)n − n(n+ r

√
n− 2)n + · · · − 1.2.3 . . . n.2n−1

]
;

13



be equating it to the integral which expresses the same probability, we will have this
remarkable equation

(b)



1

1.2.3 . . . n.2n

[
(n+ r

√
n)n − n(n+ r

√
n− 2)n

+
n(n− 1)

1.2
(n+ r

√
n− 4)n − · · · − 1.2.3 . . . n.2n−1

=

√
3

2π

∫
dr e−

3
2 r

2

If, instead of eliminating (n − r
√
n)n − n(n − r

√
n − 2)n + · · · , we eliminated

(n + r
√
n)n − n(n + r

√
n − 2)n + · · · , we would have an equation which would

coincide with the preceding, by making r negative in it; thus this equation holds, r
being positive or negative, the integral must begin with r, and the series of differences
must stop when the quantity elevated to the power n becomes negative.

Equation (b) differentiated with respect to r gives
√
n

1.2.3 . . . (n− 1).2n
[(n+ r

√
n)n−1 − n(n+ r

√
n− 2)n−1 + · · · ] =

√
3

2π
e−

3
2 r

2

;

by differentiating again, we will have

n

1.2.3 . . . (n− 2).2n
[(n+r

√
n)n−2−n(n+r

√
n−2)n−2+· · · ] = −3r

√
3

2π
dr e−

3
2 r

2

.

By continuing to differentiate thus, we will have in a very approximate manner the
values of the successive differentials of the first member of equation (b), provided that
the number of these differentiations are very small relative to the number n. All these
equations hold, r being positive or negative; and when r is null, they become

√
n

1.2.3 . . . (n− 1)2n

[
nn−1 − n(n− 2)n−1 +

n(n− 1)

1.2
(n− 4)n−1 − · · ·

]
=

√
3

2π
,

n

1.2.3 . . . (n− 2)2n

[
nn−2 − n(n− 2)n−2 + · · ·

]
= 0,

n
√
n

1.2.3 . . . (n− 3)2n

[
nn−3 − n(n− 2)n−3 + · · ·

]
= −3

√
3

2π
,

n2

1.2.3 . . . (n− 4)2n

[
nn−4 − n(n− 2)n−4 + · · ·

]
= 0,

· · ·

The second members of these equations are zero, when the exponent of the power
is of the form n− 2s, this which is easy to see besides, by observing that

nn−2s − n(n− 2)n−2s + · · ·

is the half of the series nn−2s − n(n − 2)n−2s + · · · , without the exclusion of the
negative quantities elevated to the power n − 2s, a series which, being the nth finite
difference of a power less than n, is null.
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We can, by integrating successively equation (b′), obtain some analogous theorems
on the differences of the powers superior to n; thus we have by a first integration

(b′)


1

1.2.3 . . . (n+ 1)
√
n.2n

[(n+ r
√
n)n+1 − n(n+ r

√
n− 2)n+1 + · · · −Nn]

=
1

2
r +

√
3

2π

∫∫
dr2 e−

3
2 r

2

,

the integrals beginning with r, and Nn being equal to

nn+1 − n(n− 2)n+1 + · · ·

In order to determine this function, we will observe that we have

nn+1 − n(n− 2)n+1 + · · ·

= n
[
nn − n(n− 2)n +

n(n− 1)

1.2
(n− 4)n − · · ·

]
+ 2n[(n− 1 + r′

√
n− 1)n − (n− 1)(n− 1 + r′

√
n− 1− 2)n + · · · ]

by making r′
√
n− 1 = −1. We have next

nn − n(n− 2)n + · · · = 1.2.3 . . . n.2n−1,

because the first member of this equation is the half of the series of the differences,
without the exclusion of the negative quantities elevated to the power n. Moreover,
if we change, in equation (b’), n into n − 1, r into r′, and if we suppose in it next
r′ = − 1√

n−1 , we will have very nearly

(n− 1 + r′
√
n− 1)n − (n− 1)(n− 1 + r′

√
n− 1− 2)n + · · ·

= Nn−1 + 1.2.3 . . . n
√
n− 1.2n−1

[
− 1

2
√
n− 1

+
1

2(n− 1)

√
3

2π

]

We will have therefore

Nn = 2nNn−1 + 1.2.3 . . . n.2n−1
√

3

2π

n√
n− 1

;

if we make
Nn = 1.2.3 . . . n.2nδn,

we will have

δn − δn−1 =
1

2

√
3

2π

n√
n− 1

,

this which gives very nearly, by integrating,

δn =

√
3

2π

1

3
(n+ 1)

√
n;
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it is easy to see that we can neglect here the arbitrary constant. Therefore

Nn = 1.2.3 . . . (n+ 1)2n
√
n

1

3

√
3

2π
,

hence
1

1.2.3 . . . (n+ 1)2n
√
n

[(n+ r
√
n)n+1 − n(n+ r

√
n− 2)n+1 + · · · ]

=
1

3

√
3

2π
+

1

2
r +

√
3

2π

∫∫
dr2 e−

3
2 r

2

.

By integrating anew, we have

1

1.2.3 . . . (n+ 2)2nn
[(n+ r

√
n)n+2 − n(n+ r

√
n− 2)n+2 + · · ·

− nn+2 + n(n− 2)n+2 − · · · ]

=

√
3

2π

r

3
+

1

4
r2 +

√
3

2π

∫∫∫
dr3 e−

3
2 r

2

.

all the integrals must begin with r. But we have

nn+2 − n(n− 2)n+2 + · · · = 1.2.3 . . . (n+ 2)2n−1
n

6
.

In fact, we have, as we know,

∆nu =
(
eα

du
dx − 1

)n
by applying to the characteristic d the exponents of the powers of du

dx , in the develop-
ment of the second member of this equation, and α being the variation of x. If we make
u = xn+2, we will have, without exclusion of the powers of the negative quantities,

(x+ 2n)n+2 − n(x+ 2n− α)n+2 + · · ·

= 1.2.3 . . . (n+ 2)αn
(
x2

2
+
αnx

2
+
α2n2

8
+
α2n

3.8

)
,

this which gives without this exclusion, and making x = −n and α = 2,

nn+2 − n(n− 2)n+2 + · · · = 1.2.3 . . . (n+ 2)2n
n

6
,

and, with the exclusion of the powers of the negative quantities,

nn+2 − n(n− 2)n+2 + · · · = 1.2.3 . . . (n+ 2)2n−1
n

6
;

we have therefore
1

1.2.3 . . . (n+ 2)2nn
[(n+ r

√
n)n+2 − n(n+ r

√
n− 2)n+2 + · · · ]

=
1

12
+

√
3

2π

r

3
+

1

4
r2 +

√
3

2π

∫∫∫
dr3 e−

3
2 r

2

,

and thus in sequence.
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VI.

The problem which we have resolved in article I, relatively to the inclinations, is the
same as the one in which we proposed to determine the probability that the mean error
of a number n of observations will be contained within some given limits, by supposing
that the errors of each observation can equally be extended within the interval h. We
are going to consider now the general case in which the facilities of the errors follow
any law.

We divide the interval h, into an infinite number of parts i+ i′, the negative errors
can be extended from zero to −i, and the positive errors from zero to i′ . For each
point of the interval h, we raise some ordinates which express the facilities of the
corresponding errors; we name q the number of the parts contained from the ordinate
relative to the error zero to the ordinate of the center of gravity of the area of the curve
formed by these ordinates. This put, we represent by φ

(
s

i+i′

)
the probability of the

error s for each observation, and we consider the function

φ

(
−i
i+ i′

)
e−i$

√
−1 + φ

(
−(i− 1)

i+ i′

)
e−(i−1)$

√
−1 + · · ·

+ φ

(
0

i+ i′

)
+ · · ·+ φ

(
i′ − 1

i+ i′

)
e(i
′−1)$

√
−1 + φ

(
i′

i+ i′

)
ei
′$
√
−1.

By raising this function to the power n, the coefficient of er$
√
−1 in the development

of this power will be the probability that the sum of the errors of n observations will
be r, whence it follows that, by multiplying the preceding function by e−q$

√
−1 and

raising the product to the power n, the coefficient of er$
√
−1 in the development of this

product will be the probability that the sum of the errors will be r + nq. This product
is

(o)
[∑

φ

(
r

i+ i′

)
e(r−q)$

√
−1
]n
.

the sign
∑

must be extended from r = −i to r = i′. If we make

r

i+ i′
=
x

h
,

q

i+ i′
=
q′

h
,

1

i+ i′
=
dx

h

the function (o) becomes, by reducing the exponentials into series,

(i+ i′)n

hn

[∫
φ
(x
h

)
dx+ (i+ i′)$

√
−1

∫
x− q′

h
φ
(x
h

)
dx

− (i+ i′)2

1.2
$2

∫
(x− q′)2

h2
φ
(x
h

)
dx+ · · ·

]n
;

x is the abscissa of which the ordinate is φ
(
x
h

)
, the origin of the abscissas correspond-

ing to the ordinate relative to the error zero; q′ is the abscissa corresponding to the
ordinate of the center of gravity of the area of the curve; the integrals must be taken
from x = −ih

i+i′ to x = i′h
i+i′ . We have, by the nature of the center of gravity of the curve,∫

x− q′

h
φ
(x
h

)
dx = 0;
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by making

k =

∫
φ
(x
h

)
dx, k′ =

∫
(x− q′)2

h2
φ
(x
h

)
dx, . . . ,

the preceding function becomes thus

(i+ i′)n

hn
kn
[
1− k′

2k
(i+ i′)2$2 + · · ·

]n
.

If, conformably to the analysis of article IV, we multiply the function (o) by 2 cos l$,
the term independent of $ in the product will express the probability that the sum of
the errors will be either nq − l or nq + l; by multiplying this product by d$, and inte-
grating from $ null to $ = π, the integral divided by π will express this probability
which will be thus, by rejecting the odd powers of $, which are multiplied by

√
−1

and which result from the development of the sine of $ and from its multiples in the
function (o),

(o′)
(i+ i′)nkn

hn
2

π

∫
cos l$

[
1− k′

2k
(i+ i′)2$2 + · · ·

]n
d$.

Let presently
(i+ i′)$ = t;

we will have

log

[
1− k′

2k
(i+ i′)2$2 + · · ·

]n
= n log

(
1− k′

2k
t2 + · · ·

)
= n

(
− k
′

2k
t2 + · · ·

)
,

this which gives for
[
1− k′

2k (i+ i′)2$2 + · · ·
]n

an expression of this form

e−
k′
2knt

2

(1 +Ant4 + · · · ).

The function (o′) will become therefore

(o′′)
(i+ i′)nkn

hn
2

π

1

i+ i′

∫
cos

lt

i+ i′
dt e−

k′
2knt

2

(1 +Ant4 + · · · ).

The error of each observation must necessarily fall with the interval h, we have

(i+ i′)k

h
= 1.

Let l
i+i′ = r

√
n; the preceding expression will become, by having regard only to its

first term,
2

π(i+ i′)

∫
cos rt

√
n e−

k′
2knt

2

dt,

this which, by integrating from t null to t infinity, becomes, by the analysis of article
III,

2

(i+ i′)
√
π

√
k

2k′n
e−

k
2k′ r

2

.
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If we multiply this function by dl, by integrating it we will have the probability that
the sum of the errors will be contained within the limits nq ± l or nq ± (i + i′)r

√
n;

now we have
dl = (i+ i′)dr

√
n;

this probability will be therefore

2√
π

√
k

2k′

∫
e−

k
2k′ r

2

dr.

i+ i′ being equal to h, and q′ can be substituted for q, the preceding limits will become

nq′ ± hr
√
n,

and those of the mean of the errors will be

q′ ± rh√
n
.

In the case that we have considered in article III, q′ is null; k = h, k′ = 1
12h; the

preceding expression becomes, by making r = 1
2r
′ in it,

2√
π

√
3

2

∫
e−

3
2 r
′2
dr′,

and the limits of the mean of the errors is±
1
2 r
′h√
n

: this which is conformed to the article
cited.

In general, q′ is null when the curve of the facilities of errors is symmetric on
each side of the ordinate corresponding to the error zero. If the law of the facilities is
represented by A( 1

4h
2 − x2), we will have

k =
A

6
h2, 2k′ =

A

60
h2

and, consequently,
k

2k′
= 10;

thus the probability that the mean error of the observations will be contained within the
limits ± rh√

n
will be

2√
π

√
10

∫
e−10r

2

dr.

By applying in this case the method of article I, we will have the expression of
the same probability by a series of a very great number of terms, analogous to that of
the finite differences, by which we have determined the probability in the case of an
equal facility of errors. But this new series, which we have given in the Mémoirs cited
from l’Académie des Sciences for the year 1778, page 249,7 is too complicated to offer

7Oeuvres de Laplace, T. IX, p. 404. “Mémoire sur les probabilités,” §IX.
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for the sake of its comparison with the preceding expression of the probability of the
results which can interest the geometers.

In the case where the errors can be extended to infinity, the preceding analysis gives
yet the probability that the mean error of a very great number of observations will be
closed up within the given limits. In order to see how we can now apply this analysis,
we suppose that e−

x
p is the expression of the facility of errors, the exponent of e must

always be negative and the same as regards the equal errors positives and negatives. By
supposing the errors positives, we will have∫

e−
x
p dx = p

(
1− e−

h
2p

)
,

by taking the integral from x null to x = 1
2h. In order to have the entire value of k, it

is necessary to double this quantity, because the negative errors give a quantity equal
to the preceding; by supposing therefore h great enough in order that e−

h
2p disappears

beyond unity, this which holds exactly in the case h infinite, we will have very nearly

k = 2p.

We will find in the same manner, by taking the integral
∫
x2dx
h2 e−

x
p ,

k′ =
4p2

h2
;

thus
k

2k′
=

h2

4p2
.

The probability that the mean error will be contained within the limits ± rh√
n

will be
therefore

2√
π

h

2p

∫
e
− h2

4p2
r2
dr.

Let rh = r′p, the limits become ± r′p√
n

, and the probability that the mean error will be
contained within the limits becomes

1√
π

∫
e−

1
4 r
′2
dr′;

then the consideration of h supposed infinite disappears.

VII.

The manner which has led us to equation (b) of article V leaves room for improve-
ment a direct method in order to arrive to it; its research is the object of the following
analysis.

We designate by φ(r, n) the second member of this equation which it is the question
to determine; by differentiating it with respect to r, it will give

1

1.2.3 . . . (n− 1)2n
[(n+ r

√
n)n−1 − n(n+ r

√
n− 2)n−1 + · · · ]

=
1√
n
φ′(r, n), φ′(r, n), φ′′(r, n), . . .
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designating the successive differences of φ(r, n), divided by the corresponding powers
of dr; but we have

(n+ r
√
n)n−1 − n(n+ r

√
n− 2)n−1 +

n(n− 1)

1.2
(n+ r

√
n− 4)n−1 − · · ·

= (n− 1 + r′
√
n− 1)n−1 − (n− 1)(n− 1 + r′

√
n− 1− 2)n−1 + · · ·

− (n− 1 + r′′
√
n− 1)n−1 + (n− 1)(n− 1 + r′′

√
n− 1− 2)n−1 + · · ·

by making
r′
√
n− 1 = r

√
n+ 1, r′′

√
n− 1 = r

√
n− 1.

Equation (b) gives, by changing n into n− 1 in it,

1

1.2.3 . . . (n− 1)2n−1
[(n− 1 + r′

√
n− 1)n−1 − (n− 1)(n− 1 + r′

√
n− 1− 2)n−1 + · · ·

− (n− 1 + r′′
√
n− 1)n−1 + (n− 1)(n− 1 + r′′

√
n− 1− 2)n−1 − · · · ]

= φ(r′, n− 1)− φ(r′′, n− 1);

we have therefore this equation in the finite and infinitely small partial differences

(p) φ(r′, n− 1)− φ(r′′, n− 1) =
2√
n
φ′(r, n).

We can obtain a second equation in this manner; we have

(n+ r
√
n)n − n(n+ r

√
n− 2)n +

n(n− 1)

1.2
(n+ r

√
n− 4)n − · · ·

= (n+ r
√
n)[(n+ r

√
n)n−1 − n(n+ r

√
n− 2)n−1 + · · · ]

+ 2n[(n+ r
√
n− 2)n−1 − (n− 1)(n+ r

√
n− 4)n−1 + · · · ].

Equation (b) gives, by differentiating it with respect to r,

n+ r
√
n

1.2.3 . . . n.2n
[(n+ r

√
n)n−1 − n(n+ r

√
n− 2)n−1 + · · · ]

=

(
1√
n

+
r

n

)
φ′(r, n),

and the same equation gives, by changing in it as above n into n− 1 and r into r′′,

2n

1.2.3 . . . n.2n−1
[(n− 1 + r′′

√
n− 1)n−1 − (n− 1)(n− 1 + r′′

√
n− 1− 2)n−1 + · · · ]

= φ(r′′, n− 1) +
1

2
;

therefore

1

1.2.3 . . . n.2n
[(n+ r

√
n)n − n(n+ r

√
n− 2)n + · · · ]

=

(
1√
n

+
r

n

)
φ′(r, n) + φ(r′′, n− 1) +

1

2
;
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substituting this value into equation (b), we will have

(q)
(

1√
n

+
r

n

)
φ′(r, n) + φ(r′′, n− 1) = φ(r, n).

This equation, combined with equation (p), gives

(q′)
(
− 1√

n
+
r

n

)
φ′(r, n) + φ(r′, n− 1) = φ(r, n).

We have

r′ = r

(
1 +

1

2n
+

3

8n2
+ · · ·

)
+

1√
n

(
1 +

1

2n
+

3

8n2
+ · · ·

)
,

r′′ = r

(
1 +

1

2n
+

3

8n2
+ · · ·

)
− 1√

n

(
1 +

1

2n
+

3

8n2
+ · · ·

)
.

By substituting these values into equations (q) and (q′) and by developing into series
the functions φ(r′, n − 1) and φ(r′′, n − 1), we see that these two equations differ
only in this that the terms affected of 1√

n
have contrary signs; we can therefore equate

separately to zero the terms of the development of equation (q) which have at no point√
n for divisor; and then we have an equation of this form

(r)



1

2n
[3rφ′(r, n− 1) + φ′′(r, n− 1)]

= φ(r, n)− φ(r, n− 1)− r

n
[φ′(r, n)− φ′(r, n− 1)]

+
M

n2
+
M ′

n3
+ · · · ,

M, M ′, . . . being some rational and entire functions of r, multiplied by the differen-
tials of φ(r, n− 1), and that it is easy to form. We find thus

M =− 3

8
φ′(r, n− 1)− 4 + r2

8
φ′′(r, n− 1)

− r

4
φ′′′(r, n− 1)− 1

24
φiv(r, n− 1).

Equation (p) gives, by integrating it and designating by φ′(r, n) the integral
∫
dr φ(r, n),

beginning with r, and observing that dr′ = dr′′ = dr
√
n√

n−1 ,

φ′(r
′, n− 1)− φ′(r′′, n− 1) =

2√
n− 1

φ(r, n).

By substituting for r′ and r′′ their preceding values and developing in series the func-
tions φ′(r′, n− 1) and φ′(r′′, n− 1), we have an equation of this form

(r′)



1√
n− 1

[φ(r, n)− φ(r, n− 1)]

=
1

6n
√
n− 1

[3rφ′ (r, n− 1) + φ′′(r, n− 1)]

+
N

n2
√
n− 1

+
N ′

n3
√
n− 1

+ · · · ,
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N , N ′, . . . being some functions of the same nature as M, M ′ , . . . and which it is easy
to form in the same manner; we find thus

N =
3r

8
φ′(r, n− 1) +

4 + 3r2

24
φ′′(r, n− 1)

+
r

12
φ′′′(r, n− 1) +

1

120
φiv(r, n− 1).

If we substitute into equation (r), instead of φ(r, n) − φ(r, n − 1), its value given by
equation (r′ ), we will have

(s)



1

3n
[3rφ′(r, n− 1) + φ′′(r, n− 1)]

= − r

6n2
d

dr
[3rφ(r, n− 1) + φ′′(r, n− 1)]

+
M +N

n2
+
M ′ +N ′

n3
+ · · · − r

n3
dN

dr
− r

n4
dN ′

dr′
− · · · ,

In order to integrate this equation, we suppose

φ(r, n− 1) = Ψ(r) +
Π(r)

n
+

Γ(r)

n2
+ · · · ;

by substituting this expression into the preceding equation, and comparing the coeffi-
cients of the descending powers of n, we will have the following equations

0 = 3rΨ′(r) + Ψ′′(r),

3rΠ′(r) + Π′′(r) = −1

2
r
d

dr
[3rΨ′(r) + Ψ′′(r)] + 3(M +N),

M and N being that which M and N become when we change φ(r, n − 1) in it into
Ψ(r). Be continuing thus we will have the equations necessary to determine Γ(r) and
the following functions.

The first equation gives, by integrating it,

Ψ′(r) = Ae−
3
2 r

2

,

A being an arbitrary constant. In order to integrate the second, we must observe that
the preceding expressions of M and of N give

M =
3Ar

4
(1− r2)e−

3
2 r

2

, N = −3Ar

20
(1− r2)e−

3
2 r

2

.

The equation in Π′(r) becomes thus

3rΠ′(r) + Π′′(r) =
36A

20
(r − r3)e−

3
2 r

2;

by multiplying it by e
3
2 r

2

and integrating, we will have

Π′(r) = Be−
3
2 r

2

+
3A

20
(6r2 − 3r4)e−

3
2 r

2

,
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B being a second arbitrary. We will have in the same manner Γ′(r), . . . , and we will
obtain thus φ(r, n− 1).

In order to determine the arbitrariesA, B, . . . ,we will observe that, if we integrate∫
dr φ′(r, n − 1) from r nul to r =

√
n, that which returns to take it to r infinity,

because we can neglect the terms multiplied by the exponential e−
3
2n, on account of

the magnitude supposed in n, we will have for this integral a quantity that we will

designate by L
√

3
2n , L being a linear function of A, Bn , . . .; but, when r =

√
n, the

first member of equation (b) becomes, whatever be n, equal to 1
2 ; we have therefore

L

√
3

2n
=

1

2
.

By equating to zero in this equation the coefficients of the successive powers of 1
n ,

we will have as many equations which will determine the arbitraries A,B, . . .; thus
φ′(r, n− 1) being, by that which precedes, equal to(

A+
B

n
+ · · ·

)
e−

3
2 r

2

+
3A

20n
(6r2 − 3r4)e−

3
2 r

2

+ · · · ,

we have, by integrating from r null to r infinity,∫
dr φ′(r, n− 1) =

√
π

6

(
A+

B

n
+

3A

20n
+ · · ·

)
;

equating this quantity to 1
2 and comparing the powers of 1

n , we have

A =

√
3

2π
, B = −3A

20
, · · · ,

that which gives

φ′(r, n− 1) =

√
3

2π
e−

3
2 r

2

[
1− 3

20n
(1− 6r2 + 3r4) + · · ·

]
.

By changing n into n + 1 and neglecting the quantities of order 1
n2 , we will have the

expression of φ′(r, n) which results from articles III and V; for we see, by article V,
that φ(r, n) must be a half of the probability that we have determined in article IV, and
of which the half is equal to the integral of dr multiplied by this expression of φ′(r, n).

VIII.

We can reduce equations (q) and (q′) to a single equation in the infinitely small and
finite differences. In fact, if in equation (q) we increase r by 2√

n
; then r′′ is changed

into r′, and we have(
1√
n

+
r + 2√

n

n

)
φ′
(
r +

2√
n
, n

)
+ φ(r′, n− 1) = φ

(
r +

2√
n
, n

)
.
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By subtracting from this equation the equation (q′), member by member, we have

1√
n

[
φ′
(
r +

2√
n
, n

)
+ φ(r′, n)

]
+
r + 2√

n

n
φ′
(
r +

2√
n
, n

)
− r

n
φ′(r, n)

= φ

(
r +

2√
n
, n

)
− φ(r, n).

Let s = r
√
n, and we designate φ(r, n) by Ψ(s), that which gives

dr φ′(r, n) = dsΨ′(s)

and, consequently,
φ′(r, n) =

√
nΨ′(s);

the preceding equation will become

Ψ′(s+ 2) + Ψ′(s) = Ψ(s+ 2)−Ψ(s)− s+ 2

n
Ψ′(s+ 2) +

s

n
Ψ′(s).

By differentiating, we will have

(x)


Ψ′′(s+ 2) + Ψ′′(s) =[Ψ′(s+ 2)−Ψ′(s)]

n− 1

n

− s+ 2

n
Ψ′′(s+ 2) +

s

n
Ψ′′(s).

This equation is susceptible to the general method which I have presented in Mémoires
de l’Académie des Sciences for the year 1782, page 44.8 I make therefore, conforming
to this method, and by employing the cosine in the place of the exponentials,

Ψ′(s) =

∫
cos stΠ(t) dt.

The question is to determine the function Π(t) and the limits of the integral. For this,
we will substitute this integral, in place of Ψ′(s), into equation (x), and we will make
the coefficients s+ 2 and s of this equation disappear by means of integration by parts;
we will have thus

(y)


0 =

t

n
sin(s+ 1)t sin tΠ(t)

+

∫
sin(s+ 1)t

[
(t cos t− sin t)Π(t)− t sin t

n
Π′(t)

]
dt.

Following the method cited, we determine Π(t) by equating the function under the
integral sign to zero, that which gives

0 = (t cos t− sin t)Π(t)− t sin t

n
Π′(t),

8“Mémoire sur les approximations des formules qui sont fonctions de très grands nombres,” § XV. Oeu-
vres de Laplace, T. X., p. 249.
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whence we deduce, by integrating,

Π(t) = A

(
sin t

t

)n
and, consequently,

Ψ′(s) = A

∫
cos st

(
sin t

t

)n
dt = A

∫
cos rt

√
n

(
sin t

t

)n
dt,

A being an arbitrary constant. We will have next, by the same method, the limits of
this last integral by equating to zero the part outside of the

∫
sign in equation (y); now,

this part is null when t is null and when t is infinity, because Π(t) becomes null then.
We can therefore take t = 0 and t = ∞ for these limits. This expression of Ψ′(s) is
of the same form as that which we have found in article IV, for the probability that the
sum of the inclination of the orbits of n comets will be nh

2 ±
rh
√
n

2 ; and, by treating it
by the method of the article cited, we will arrive, in order to determine φ(r, n), to the
same formulas which we just gave.

IX.

We can extend the preceding researches to the differences of fractional powers. For
this, we consider the function

(n− i)(n− i− 1)(n− i− 2) · · · (f − i)2n−i
[
(n+ r

√
n)n−i − n(n+ r

√
n− i)n−i

+
n.n− 1

1.2
(n+ r

√
n− 4)n−i + · · ·

]
,

i being any whole or fractional number very small relatively to n, and f being the
number immediately superior to i. By designating this function by φ(r, n), we will
have first, by following the preceding analysis, equation (p). We will have next, in
place of equation (q), this one

n

n− i

(
1√
n

+
r

n

)
φ′(r, n) +

n

n− i
φ(r′′, n− 1) = φ(r, n).

By combining these two equations and reducing to series, as above, we will have, by
neglecting the powers superior to 1

n ,

0 = 3rφ′(r, n− 1) + φ′′(r, n− 1) + 3iφ(r, n− 1),

and, by changing n− 1 into n,

(u) 0 = 3rφ′(r, n) + φ′′(r, n) + 3iφ(r, n).

We satisfy this equation when i is a whole number by making

φ(r, n) = A
di−1e−

3
2 r

2

dri−1
,
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A being an arbitrary constant and the differential characteristic d must be changed into
the integral sign

∫
, if i− 1 is negative, and then we obtain the preceding results; but, if

i is fractional, the integration of equation (u) presents more difficulties. We can obtain
it then by definite integrals.

We consider the case of i = 1
2 ; we will have for the integral of equation (u)

φ(r, n) =

∫
1√
x
e−

x2

6 cos rx+ b sin rx)dx,

a and b being two arbitrary constants, and the integral being taken from x null to x
infinity. In fact, if, conformably to the method exhibited on pages 49 and the following
of Mémoires de l’Académie des Sciences for the year 1782,9 we make

φ(r, n) =

∫
cos rxΨ(x)dx;

by substituting this value into the differential equation (u), and making the coefficient
r vanish in this equation by means of integration by parts, we will have

0 = 3x cos rxΨ(x) +

∫
cos rx

[(
3

2
− x2

)
dxΨ(x)− 3d.xΨ(x)

]
.

Following the method cited, we determine Ψ(x) by equating to zero the part under the∫
sign, and we have

0 =

(
3

2
− x2

)
dxΨ(x)− 3d.xΨ(x),

an equation which, integrated, gives

Ψ(x) =
a√
x
e−

1
6x

2

.

We determine next the limits of the integral by equating to zero the part 3x cos rxΨ(x)
under the integral sign. This part becomes

3a
√
x cos rx e−

1
6x

2

,

and it is null with x and when x is infinity. Thus the integral∫
dx√
x

cos rx e−
1
6x

2

must be taken within these limits. If, in place of the integral∫
cos rxΨ(x)dx,

9“Mémoire sur les approximations des formules qui sont fonctions de très grands nombres”, §XVII.
Oeuvres de Laplace, T. X., p. 254 ff.
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we had considered this one ∫
sin rxΨ(x)dx,

we would have found for Ψ(x)
b√
x
e−

1
6x

2

.

The reunion of these two integrals is therefore the complete integral of equation (u).
In order to determine the constants a and b, we observe that, if we make r =

√
n

and x = x′√
n

, the integral
∫

1√
x
e−

x2

6 (a cos rx+ b sin rx)dx becomes

1

n
1
4

∫
dx′√
x′

(a cosx′ + b sinx′)e−
x′2
6n .

When n is a very great number, we can suppose the factor e−
x′2
6n equal to unity,

in all extent of the integral taken from x′ null to x′ infinity, because then this factor
begins to deviate sensibly from unity only when x′ is of the order

√
n, and the integral,

taken from a value of this order for x′ to x′ infinity, can be neglected relatively to the
entire integral. Now we have, as I have shown in Book VIII of the Journal de l’École
Polytechnique, page 248,10

∫
dx′ cosx′√

x′
=

∫
dx′ sinx′√

x′
=

√
1

2
π.

The preceding integral is reduced therefore to

1

n
1
4

√
2π

a+ b

2
;

this is the expression of φ(r, n) when we make r =
√
n in it. Then we have

φ(r, n) =
2n

1.3.5 . . . (2n− 1)

[
nn−

1
2 − n(n− 1)n−

1
2 +

n(n− 1)

1.2
(n− 2)n−

1
2 − · · ·

]
.

The formula (µ′′) on page 82 of the Mémoires de l’Académie des Sciences for the year
178211 gives, by having regard only to its first term,

nn−
1
2 − n(n− 1)n−

1
2 · · · = 1

2n
1.3.5 . . . (2n− 1)

√
2

n
;

we have therefore
a+ b

2
=

1

n
1
4
√
π
.

10“Mémoire sur divers points d’analyse”. XV Cahier, T. VIII; 1809.
11“Mémoire sur les approximations des formules qui sont fonctions de très grands nombres”, §XXVIII.

Oeuvres de Laplace, T. X., p. 285.
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If we make next in φ(r, n), r = −
√
n, this function becomes null; we have conse-

quently

0 =

∫
dx√
x
e−

x2

6n (a cosx
√
n+ b sinx

√
n).

or

0 =

∫
dx′√
x′

(a cosx′ + b sinx′),

that which gives
a = b.

Therefore
a = b =

1

n
1
4
√
π

and, consequently,

φ(r, n) =
1

n
1
4
√
π

∫
dx√
x
e−

x2

6n (cos rx+ sin rx)

or

φ(r, n) =
1

6n
1
4
√
π

∫
dx(9 + 2x2)

x
3
2

sin rx.e−
x2

6 , ()

the integrals being taken from x null to x infinity.
The same analysis leads us to determine generally φ(r, n), whatever be the number

i. By supposing it less than unity, we will satisfy the differential equation (u) in φ(r, n)
by the assumption of

φ(r, n) =

∫
e−

x2

6

x1−i
(a cos rx+ b sin rx)dx,

a and b being some constants that we will determine thus.
By supposing r =

√
n, we will have

φ(r, n) =
∆nsn−1

(1− i)(2− i) · · · (n− i)
,

s increasing from unity and being null at the origin. Formula (µ′′) of page 82 of the
Mémoires de l’Académie des Sciences for the year 178212 gives, by considering in it
only its first term,

∆nsn−1 = (1− i)(2− i) · · · (n− i) 2i

ni
;

we have therefore, in the case of r =
√
n,

φ(r, n) =
2i

ni
.

12“Mémoire sur les approximations des formules qui sont fonctions de très grands nombres”, §XXVIII.
Oeuvres de Laplace, T. X., p. 285.
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If we make next, in the preceding expression of φ(r, n), r =
√
n and x = x′√

n
, it

becomes
1

n
i
2

∫
x′(1−i)

e−
x′2
6n (a cosx′ + b sinx′)dx′;

now we have, by the formulas of the Volume cited of the Journal de l’École Polytech-
nique, page 250,13 ∫

1

x′(1−i)
cosx′dx′ =

k

i
cos

iπ

2
,∫

1

x′(1−i)
sinx′dx′ =

k

i
sin

iπ

2
,

k being the integral
∫
dt e−t

1
i taken from t null to t infinity; by taking therefore for

unity the factor e−
x′2
6n , as we can for it when n is a very great number, the expression

of φ(r, n) becomes
k

in
1
2

(
a cos

iπ

2
+ b sin

iπ

2

)
.

By equating it to 2i

ni , we will have

a cos
iπ

2
+ b sin

iπ

2
=

i.2i

kn
i
2

.

By making next r = −
√
n in φ(r, n), it is reduced to zero; but then, in its expression

as definite integral, sin rx is changed into − sinx
√
n. Thence it is easy to conclude

that we have
0 = a cos

iπ

2
− b sin

iπ

2
,

consequently

a =
i.2i

2kn
1
2 cos iπ2

, b =
i.2i

2kn
i
2 sin iπ

2

.

We have therefore

φ(r, n) =
i.2i

kn
i
2 sin iπ

∫ (
sin

iπ

2
cos rx+ cos

iπ

2
sin rx

)
e−

x2

6 dx

x1−i

or

φ(r, n) =
i.2i

kn
i
2 sin iπ

∫
e−

x2

6 sin
(
rx+ iπ

2

)
dx

x1−i
.

X.

We can obtain quite simply all the results which precede by the following analysis.

13 Mémoire sur divers points d’analyse. XV Cahier, T. VIII; 1809.
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We consider generally the integral
∫
e−sxdx
xn−i+1 taken from x null to x infinity, n − i

being equal to i′ + 1
2f , i

′ expressing a whole number positive or zero. By integrating
by parts, from x = α to x infinity, we have

(−1)i
′
e−sα

1
2f

(
1
2f + 1

)(
1
2f + 2

)
· · · (n− i)α

1
2f

[
si
′
− 1

2f

si
′−1

α
+

1

2f

(
1

2f
+ 1

)
si
′−2

α2
+ · · ·

+ (−1)i
′ 1

2f

(
1

2f
+ 1

)
· · · (n− i) 1

αi′

]
+

(−1)i
′+1si

′+1
∫
dx e−sx

1

x2f

1
2f

(
1
2f + 1

)
· · · (n− i)

We have generally

∆n e
−sα

αn−c
= 0,

when we suppose α infinitely small; because, if we develop e−sα into a series ordered
with respect to the powers of sα, all the powers of s inferior to n become null in the
function ∆n e−sα

αn−c , and all the powers equal to n or superior are null by the supposition
of α infinitely small. It follows thence that ∆n

∫
e−sxdx
xn−i+1 is equal to

(−1)i
′+1∆n

(
si
′+1
∫

e−sxdx
1

x2f

)
1
2f

(
1
2f + 1

)
· · · (n− i)

,

the integral being taken from x null to x infinity; now we have

∆n

∫
e−sxdx

xn−i+1
=

∫
e−sx(e−x − 1)ndx

xn−i+1
;

by making next x = x′

s , we have∫
e−sxdx

x
1
2f

= s
1
2f−1

∫
e−x

′
dx′

x′
1
2f

,

the two integrals being taken from x and x′ nulls to their values infinities; we have
therefore ∫

e−sx(e−x − 1)ndx

xn−i+1
=

(−1)i
′+1∆nsn−i

∫
e−x
′
dx′

1

x′2f

1
2f

(
1
2f + 1

)
· · · (n− i)

,

this which gives

∆nsn−i =
1

2f

(
1

2f
+ 1

)
· · · (n− i)(−1)i

′+1

∫ e−sx(e−x−1)ndx
xn−i+1∫
e−x′dx′

x′
1
2f

,
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an equation which is the same as formula (µ′′′) of Mémoires de l’Académie des Sci-
ences, for the year 1782,14 as it is easy to convince ourselves.

We suppose i′ = n−1 and f a positive whole number. If we make s = −n2 −
r
√
n

2 ,

the integral
∫ e−sx(e−x−1)ndx

xn−i+1 will become∫
e

1
2 rx
√
ndx

x
1
2f

(
e−

x
2 − e x2
x

)n
.

We make x = 2x′
√
−1, and then this last integral is transformed into the following

(−1)n2
√
−1

(2
√
−1)

1
2f

∫
1

x′
1
2f

(cos rx′
√
n+
√
−1 sin rx′

√
n)

(
sinx′

x′

)n
dx′;

we have therefore

(x)



∆nsn−i =
1

2f

(
1

2f
+ 1

)
· · · (n− i) 2

√
−1

(2
√
−1)

1
2f

×

∫
1

x
′ 1
2f

(cos rx′
√
n+
√
−1 sin rx′

√
n)
(

sin x′

x′

)n
dx′∫

e−x′dx′

x′ 1
2f

,

the integrals being taken from x′ null to x′ = ±∞.
We suppose first f infinity; we have generally 1

k2f
= 1 by neglecting the terms of

order 1
2f ; because if we make 1

k2f
= 1 + q, by taking the logarithms, we will have

1

2f
log k = log(1 + q),

that which gives

q =
1

2f
log k.

This put, the preceding equation becomes

(z)


2n−1+

1
2f ∆nsn−1+

1
2f

=
1.2.3 . . . (n− 1)

2f
2n
∫

(
√
−1 cos rx′

√
n− sin rx′

√
n)

(
sinx′

x′

)n
dx′;

now we have, with the exclusion of the powers of the negative quantities,

2n−1+
1
2f ∆nsn−1+

1
2f =1

1
2f

[
(n+ r

√
n)n−1+

1
2f − n(n+ r

√
n− 2)n−1+

1
2f + · · ·

]
− (−1)

1
2f

[
(n+ r

√
n)n−1+

1
2f − n(n+ r

√
n− 2)n−1+

1
2f + · · ·

]
.

14“Mémoire sur les approximations des formules qui sont fonctions de très grands nombres”, §XXIX.
Oeuvres de Laplace, T. X, p. 287.
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1
1
2f is susceptible of 2f values of which a single one is real and equal to unity. We

obtain these values by observing that

1 = cos 2lπ +
√
−1 sin 2lπ,

and that thus

1
1
2f = (cos 2lπ +

√
−1 sin 2lπ)

1
2f = cos

2lπ

2f
+
√
−1 sin

2lπ

2f
,

l being a positive whole number which can be extended from l = 1 to l = 2f . In
order to have the real value of 1

1
2f , it is necessary to give to l its greatest value 2f .

Then the imaginary part of the preceding expression of ∆nsn−1+
1
2f is produced by

the parts affected of (−1)
1
2f . This last quantity has likewise 2f values represented

by cos (2l−1)π
2f +

√
−1 sin (2l−π)

2f , l can again be extended from l = 1 to l = 2f .

But, having chosen l = 2f in order to have 1
1
2f , we must likewise choose this value

of l in order to determine (−1)
1
2f , and then the imaginary part of (−1)

1
2f becomes√

−1 sin (4f−1)π
2f ; and, in the case of f infinity, it becomes −

√
−1 π

2f ; this which
gives, by neglecting the terms of order 1

f2 ,

π
√
−1

2f

[
(n+ r

√
n)n−1 − n(n+ r

√
n− 2)n−1 + · · ·

]
,

for the imaginary part of the preceding expression of

2n−1+
1
2f ∆nsn−1+

1
2f .

By equating to the imaginary part of the expression given by equation (z), we will have

(n+ r
√
n)n−1 − n(n+ r

√
n− 2)n−1 + · · ·

1.2.3 . . . (n− 1)2n
=

1

π

∫
cos rx′

√
n

(
sinx′

x′

)
dx′.

The second member of this equation being integrated by the method of article III, will
have the same results as those above.

We suppose now, in equation (x), f = 1, we will have, by changing in it x to −x′′
in the numerator of the second member, and observing that the integral

∫
1√
x′
e−x

′
dx′

of the numerator is equal to
√
π,

∆nsn−
1
2 =

1.3.5 . . . (2n− 1)

2n−1
√

2π
(−1)

3
4

∫
1√
x′′

(cos rx′′
√
n−
√
−1 sin rx′′

√
n)

(
sinx′′

x′′

)n
dx′′.

Here the integrals must be taken from x′′ null to x′′ infinity. We have, by excluding the
powers of the negative quantities,

2n−
1
2 ∆nsn−

1
2 =(n− r

√
n)n−

1
2 − n(n− r

√
n− 2)n−

1
2 + · · ·

−
√
−1
[
(n+ r

√
n)n−

1
2 − n(n+ r

√
n− 2)n−

1
2 + · · ·

]
.
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By substituting this value into the preceding equation and taking 1−
√
−1√
2

in the place of

(−1)
3
4 , we will have, by comparing the real quantities to the reals and the imaginaries

to the imaginaries, the double equation

(n± r
√
n)n−

1
2 − n(n± r

√
n− 2)n−

1
2 + · · ·

1.3.5 . . . (2n− 1)

=
1√
2π

∫
1√
x′′

(cos rx′′
√
n± sin rx′′

√
n)

(
sinx′′

x′′

)n
dx′′.

If we reduce into series sin x′′

x′′ , and if we make x′′ = t√
n

, we will have

1− t2

6n
+ · · · ;

we could therefore substitute e−
t2

6 in the place of
(

sin x′′

x′′

)n
, and then the second

member of the preceding equation becomes

1

n
1
4

√
2π

∫
1√
t
(cos rt± sin rt) e

−t2
6 dt,

that which coincides with the results of the preceding article.
By generalizing this analysis, we will arrive easily to this rigorous expression, i

being less than unity and the powers of the negative quantities being excluded,

1

(1− i)(2− i) · · · (n− i)2n−i
[
(n+ r

√
n)n−i − n(n+ r

√
n− 2)n−i

+
n(n− 1)(n− 2)

1.2
(n+ r

√
n− 4)n−i − · · ·

]
=

i.2i

k sin iπ

∫
1

x1−i
sin

(
rx
√
n+

iπ

2

)(
sinx

x

)n
dx,

the integral being taken from x null to x infinity, and k being the integral
∫
e−x

1
i dx

taken within the same limits. We will have, by some successive differentiations, the
values relative to i greater than unity.
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Supplement to the Memoir
pp. 559–565

On the approximations of the formulas, which are functions of very large numbers.

I have shown in article VI of this Memoir, that if one supposes in each observation,
the errors positive and negative equally facile; the probability that the mean error of a
number n of observations will be comprehended within the limits ± rhn , is equal to

2√
π

√
k

2k′

∫
dr.c−

k
2k′ r2

h is the interval in which the errors of each observation are able to be extended. If one
designates next by φ(xh ) the probability of the error ±x, k is the integral

∫
dx.φ(xh )

extended from x = − 1
2h, to x = 1

2h; k′ is the integral
∫
x2

h2 .dxφ(xh ), taken in the same
interval: π is the semi-circumference of which the radius is unity, and c is the number
of which the hyperbolic logarithm is unity.

We suppose now that on same element is given by n observations of a first kind, in
which the law of facility of errors is the same for each observation; and that it is found
equal to A through a mean among all these observations. We suppose next that it is
found equal to A + q, through n′ observations of a second kind, in which the law of
facility of errors is not the same as in the first kind; that it is found equal to A + q′ by
n′′ observations of a third kind, and so forth; one demands the mean that it is necessary
to choose among these diverse results.

If one supposes that A + x is the true result; the error of the mean result of the
observations n, will be −x, and the probability of this error will be, by that which
precedes,

1√
π

√
k

2k′
· dr
dx
· c− k

2k′ r2

one has here,

x =
rh√
n
,

that which transforms the preceding function into this here,

1√
π
a
√
nc−na

2x2

a being equal to
1

h

√
k

2k′

The error of the mean result of the observations n′, is±(q−x), the + sign holding,
if q surpasses x, and the − sign, if it is surpassed. The probability of this error is

1√
π
a′
√
n′c−n

′a′2(q−x)2
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a′ expressing with respect to these observations, that which a expresses relative to the
observations n.

Similarly the error of the mean result of the observations n′′ is ±(q′ − x), and the
probability of this error is

1√
π
a′′
√
n′′c−n

′′a′′2(q′−x)2

a′′ being that which a becomes relative to these observations, and so forth.
Now, if one designates generally by ψ(−x), ψ′(q−x), ψ′′(q′−x), etc. these diverse

probabilities; the probability that the error of the first result will be −x, and that the
other results will deviate from the first, respectively by q, q′, etc., will be by the theory
of probabilities, equal to the product ψ(−x)ψ′(q− x)ψ′′(q′− x), etc.; therefore if one
constructs a curve of which the ordinate y is equal to this product, the ordinates of this
curve will be proportionals to the probabilities of the abscissas, and by this reason we
will name it curve of the probabilities.

In order to determine the point of the axis of the abscissas where one must fix the
mean among the results of many observations n, n′, n′′, etc.; we will observe that this
point is the one where the deviation from the truth, that one is able to fear, is a minimum;
now likewise in the theory of probabilities, one evaluates the loss to fear, by multiplying
each loss that one is able to experience, by its probability, and by making a sum of all
these products; likewise one will have the value of the deviation to fear, by multiplying
each deviation from the truth, or each error setting aside the sign, by its probability,
and by making a sum of all these products. Let therefore l be the distance from the
point that it is necessary to choose, to the origin of the curve of the probabilities, and z
the abscissa corresponding to y, and counted from the same origin; the product of each
error by its probability, setting aside the sign, will be (l − z)y, from z = 0, to z = l,
and this product will be (z − l)y, from z = l, to the extremity of the curve; one will
have therefore ∫

(l − z)y dz +

∫
(z − l)y dz

for the sum of all these products, the first integral being taken from z null to z = l, and
the second being taken from z = l to the last value of z. By differencing the preceding
sum with respect to l, it is easy to be assured that one will have

dl

∫
y dz − dl

∫
y dz

for this differential, which must be null in the case of the minimum; one has therefore
then ∫

y dz =

∫
y dz;

that is that the area of the curve, comprehended from z null to the abscissa that it is
necessary to choose, is equal to the area comprehended from z equal to this abscissa,
to the last value of z; the ordinate corresponding to the abscissa that it is necessary to
choose, divides therefore the area of the curve of the probabilities, into two equal parts.
(See the Mémoires de l’Académie des Sciences, year 1778, page 324).
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Daniel Bernoulli, next Euler and Mr. Gauss, have taken for this ordinate, the great-
est of all. Their result coincides with the preceding, when this greatest ordinate divides
the area of the curve into two equal parts, that which, as one just saw, holds in the
present question; but in the general case, it appears to me that the manner of which I
just envisioned the thing, results from the same theory of the probabilities.

In the present case one has, by making x = X + z,

y = p.p′.p′′.etc..c−p
2π(X+z)2−p′2π(q−X−z)2−p′′2π(q′−X−z)2−etc.

p being equal to a
√
n√
π

, and consequently, expressing the greatest probability of the result
given by the observations n; p′ expresses similarly the greatest ordinate relative to the
observations n′, and so forth. r being without sensible error, extends from−∞ to +∞,
as one has seen in article VII of the Memoir cited; one is able to take z within the same
limits, and then if one chooses X in a manner that the first power of z vanishes from
the exponent of c; the ordinate y corresponding to z null, will divide the area of the
curve into two equal parts, and will be at the same time the greatest ordinate. In fact,
one has in this case

X =
p′2q + p′′2q′ + etc.
p2 + p′2 + p′′2 + etc.

;

and then y takes this form

y = p.p′.p′′.etc. c−M−N.z
2

whence it follows that the ordinate which corresponds to z null is the greatest, and
divides the entire area of the curve, into equal parts. Thus A + X is the mean result
that it is necessary to take among the results A, A+ q, A+ q′, etc. The preceding value
of X is that which renders a minimum, the function

(p.X2) + (p′.a−X)2 + (p′′.q′ −X)2 + etc.;

that is the sum of the squares of the errors of each result, multiplied respectively by the
greatest ordinate of the curve of facility of its errors. Thus this property which is only
hypothetical, when one considers only some results given by single observation or by a
small number of observations, becomes necessary, when the results among which one
must take the mean, are given each by a very great number of observations, whatever
be besides the laws of facility of the errors of these observations. This is the reason to
employ it in all cases.

One will have the probability that the error of the result A + X will be compre-
hended within the limits ±Z, by taking in these limits the integral

∫
dz c−Nz

2

, and by
dividing it by the same integral taken from z = −∞, to z =∞.

The last integral is
√
π√
N

; by making therefore z
√
N = T ; the probability that the

error of the chosen result A+X will be comprehended within the limits± T√
N

, will be

2
∫
dt.c−t

2

√
π

the integral being taken from t null, to t = T . The value ofN is, by that which precedes

π(p2 + p′2 + p′′2 + &c.).
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