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I.
On the calculus of generating functions.

The object of this calculus is to restore to the simple development of the functions
all the operations relative to the differences; and especially the integration of the equa-
tions in the ordinary or the partial differences: here is the principal idea of it. Let u be
any function of t, and we suppose that by developing it with respect to the powers of t,
we have

u = y0 + y1t+ y2t
2 + · · ·+ yxt

x + · · ·+ y∞t
∞;

u is that which we name generating function of yx or of the coefficient of tx in its
development. It is clear that yx+1 − yx, or ∆yx, will be the coefficient of tx in the
development of u

(
1
t − 1

)
; so that, in order to have the generating function of the finite

difference of a variable, it suffices to multiply by 1
t − 1 the generating function of this

variable; u
(
1
t − 1

)2
will be therefore the generating function of ∆2yx, and, generally,

the generating function of ∆nyx will be u
(
1
t − 1

)n
. Now we have

u

(
1

t
− 1

)n
= u

[
1

tn
− n

tn−1
+
n(n− 1)

1.2tn−2
− · · ·

]
;

the coefficient of tx in u
tn is evidently yx+n, the one of tx in u

tn−1 is yx+n−1 and thus
in sequence; by equating therefore the coefficients of tx in the two members of the
preceding equation, that is to say by passing again from the generating functions to
their coefficients, we will have

∆nyx = yx+n − nyx+n−1 +
n(n− 1)

1.2
yx+n−2 − · · · .

If, instead of multiplying the function u by 1
t − 1, we multiply it by every other

quantity, we would have some analogous results. Let, for example, a + b
t + c

t2 + · · ·
be this new multiplier; the coefficient of tx in the development of the function

u

(
a+

b

t
+

c

t2
+ · · ·

)
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will be ayx + byx+1 + cyx+2 + · · · ; let ∇yx be this coefficient, and we designate by
∇2yx the quantity a∇yx + b∇yx+1 + c∇yx+2 + · · · , by∇3yx the quantity a∇2yx +
b∇2yx+1 + · · · , and thus in sequence; the generating function of∇nyx will be

u

(
a+

b

t
+

c

t2
+ · · ·

)n
;

and, by developing
(
a+ b

t + c
t2 + · · ·

)n
into series, we will have an equation of this

form

u

(
a+

b

t
+

c

t2
+ · · ·

)n
= u

(
A+

B

t
+
C

t2
+ · · ·

)
.

This equation will give, by passing again from the generating functions to the co-
efficients,

∇nyx = Ayx +Byx+1 + Cyx+2 + · · · .

I refer, for the development of this calculus of the generating functions, to the
Mémoires de l’Académie des Sciences for the year 1779.1 I will limit myself here to
presenting some new theorems which result from it.

Let u be a function of t, and we suppose that yx is the coefficient of tx in its
development; let likewise u′ be a function of t′, and we designate by y′x the coefficient
of t′x in its development; let still u′′ be a function of t′′, and we designate by y′′x the
coefficient of t′′x in its development, and thus in sequence. It is clear that yxy′xy

′′
x . . .

will be the coefficient of txt′xt′′x . . ., in the development of uu′u′′ . . .; uu
′u′′...

tt′t′′... will be
the generating function of yx+1y

′
x+1y

′′
x+1 . . .; that of ∆(yxy

′
xy
′′
x . . .) will be therefore

uu′u′′ . . .

(
1

tt′t′′ . . .
− 1

)
,

and, consequently, the generating function of ∆n(yxy
′
xy
′′
x . . .) will be

uu′u′′ . . .

(
1

tt′t′′ . . .
− 1

)n
;

by changing n into −n, we will have, by the principles exposed in the Mémoires cited
of the Académie des Sciences, the generating function of Σn(yxy

′
xy
′′
x . . .), Σ being the

characteristic of the finite integrals; in such a way that we can change n into −n in the
generating function, provided that we change ∆n into Σn in its coefficient.

We consider two functions yx and y′x; the generating function of ∆nyxy
′
x will be

uu′
(

1

tt′
− 1

)n
.

We can put it under this form:

uu′
[

1

t
− 1 +

1

t

(
1

t′
− 1

)]n
.

1Oeuvres de Laplace, T. X. p. 1, “Mémoire sur les suites.”
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By developing it, it becomes

uu′

[(
1

t
− 1

)n
+
n

t

(
1

t
− 1

)n−1(
1

t′
− 1

)
+
n(n− 1)

1.2 t2

(
1

t
− 1

)n−2(
1

t′
− 1

)2

+ · · ·

]
.

The functions

uu′
(

1

t
− 1

)n
,

uu′

t

(
1

t
− 1

)n−1(
1

t′
− 1

)
,

uu′

t2

(
1

t
− 1

)n−2(
1

t′
− 1

)2

, · · ·

are respectively generators of the variables

y′x∆nyx, ∆y′x∆n−1yx+1, ∆2y′x∆n−2yx+2, . . . ;

the identical equation

uu′
(

1

tt′
− 1

)n
= uu′

[(
1

t
− 1

)n
+
n

t

(
1

t
− 1

)n−1(
1

t′
− 1

)
+ · · ·

]
.

will give therefore, by passing again from the generating functions to the coefficients,

∆nyxy
′
x = y′x∆nyx + n∆y′x∆n−1yx+1 +

n(n− 1)

1.2
∆2y′x∆n−2yx+2 . . . ;

by changing n to −n in it, we will have

Σnyxy
′
x = y′xΣnyx + n∆y′xΣn+1yx+1 +

n(n+1)

1.2
∆2y′xΣn+2yx+2 . . . .

In the place of the multiplier 1
tt′ − 1, we consider generally the multiplier

a+
bz

tt′
+

cz2

t2t′2
+ · · · ,

and we designate by∇yxy′x the function

ayxy
′
x + bzyx+1y

′
x+1 + cz2yx+2y

′
x+2 + · · · ;

uu′
(
a+ bz

tt′ + cz2

t2t′2 + · · ·
)n

will be the generating function of∇nyxy′x; we designate

by φn
(
z
tt′

)
the function (

a+
bz

tt′
+

cz2

t2t′2
+ · · ·

)n
;

we will have

uu′φn
( z
tt′

)
= uu′φn

[
z

t
+
z

t

(
1

t′
− 1

)]
= uu′

[
φn
(z
t

)
+
z

t

(
1

t′
− 1

)
∂φn

(
z
t

)
∂z

+
z2

t2

(
1

t′
− 1

)2 ∂2φn
(
z
t

)
1.2 ∂z2

]
;
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now, uu′φn
(
z
t

)
is the generating function of y′x∆nyx;

z

t

(
1

t′
− 1

)
∂φn

(
1
t

)
∂z

is the generating function of z∆y′x
d∇nyx+1

dz , and thus in sequence; we will have there-
fore, by passing again from the generating functions to the coefficients,

∇n(yxy
′
x) = y′x∇nyx + z∆y′x

d∇nyx+1

dz
+ z2∆2y′x

d2∇nyx+2

1.2 dz2
+ · · ·

We have equally

uu′u′′ · · ·
(

1

tt′t′′ · · ·
− 1

)n
= uu′u′′ · · ·

[(
1 +

1

t
− 1

)(
1 +

1

t′
− 1

)(
1 +

1

t′′
− 1

)
· · · − 1

]n
;

by passing again therefore from the generating functions to the coefficients, we will
have

∆n(yxy
′
xy
′′
x · · · ) = [(1 + ∆)(1 + ∆′)(1 + ∆′′) · · · − 1]n,

provided that, in each term of the development of the second member of this equation,
we place immediately after the power of each characteristic the corresponding variable,
and that next we multiply this term by the product of the variables of which it contains
the characteristic not at all: thus, in the case of three variables, we will write, instead
of ∆r, y′xy

′′
x∆ryx; instead of ∆r∆′r

′
, we will write y′′x∆ryx∆r′y′x; and instead of

∆r∆′r
′
∆′′r

′′
, we will write ∆ryx∆r′y′x∆r′′y′′x ; and thus of the rest.

In the case of the infinitely small differences, the characteristics ∆, ∆′, ∆′′, . . .
are changed into d, d′, d′′, . . .; and the preceding equation gives, by neglecting the
superior differences, relatively to the inferiors,

dnyxy
′
xy
′′
x · · · = (d+ d′ + d′′ + · · · )n;

thus, in the case of two variables, we have

dnyxy
′
x = dn + ndn−1d′ +

n(n− 1)

1.2
dn−2d′2 + · · · ,

and, consequently,

dnyxy
′
x = y′xd

nyx + ndy′xd
n−1yx +

n(n− 1)

1.2
d′2y′xd

n−2yx + · · · ;

by making n negative, dn is changed into
∫ n
, and we have∫ n

yxy
′
x dx

n =y′x

∫ n

yx dx
n + n

dy′x
dx

∫ n+1

yx dx
n+1

+
n(n− 1)

1.2

d′2y′x
dx2

∫ n+2

yx dx
n+2 + · · · .
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We have again

uu′u′′ · · ·
(

1

tit′it′′i
− 1

)n
= uu′u′′ · · ·

[(
1 +

1

t
− 1

)i(
1 +

1

t′
− 1

)i
· · · − 1

]n
:

by designating therefore by ′∆n(yxy
′
xy
′′
x · · · ) the finite difference of the product yxy′xy

′′
x · · ·

when x varies with i, the preceding equation will give, by passing again from the gen-
erating functions to the coefficients,

(a) ′∆n(yxy
′
xy
′′
x · · · ) = [(1 + ∆)i(1 + ∆′)i(1 + ∆′′)i · · · − 1]n,

by observing the conditions prescribed above, relatively to the characteristics ∆, ∆′, . . .
and to their powers. We suppose x = x′

dx′ , i = α
dx′ ; yx, y′x, . . . will become some func-

tions of x′, which we will designate by yx′ , y′x′ , . . .; x varying from unity in yx, x′

will vary only from dx′ in ∆yx′ ; thus the characteristic ∆ will be changed into the
differential characteristic d; but in ′∆yx, x varying from i or from α

dx′ , x
′ will vary

from the finite quantity α; now we have

(1 + d)i = (1 + d)
α
dx′ ;

the hyperbolic logarithm of this second member is αd
dx′ , this which gives, by passing

again from the logarithms to the numbers,

(1 + d)
α
dx′ = e

αd
dx′ ,

e being the number of which the hyperbolic logarithm is unity; equation (a) will give
therefore

′∆n(yx′y
′
x′y
′′
x′ · · · ) = (eαdyx′+αdy

′
x′+αdy

′′
x′+··· − 1)n,

provided that, in the development of the second member of this equation, we apply to
the characteristic d the exponents of the powers of dyx′ , dy′x′ , . . ..

If, in equation (a), we suppose i infinitely small and equal to dx, x will increase
from dx in ′∆yx; thus ′∆ will be changed into the differential characteristic d; more-
over, we have (1 + ∆)dx = 1 + dx log(1 + ∆); equation (a) will become therefore

dnyxy
′
xy
′′
x · · ·

dxn
= [log(1 + ∆)(1 + ∆′)(1 + ∆′′) · · · ]n,

by observing always the conditions prescribed above, relatively to the characteristics
∆, ∆′, . . .. We can suppose in all these equations n negative, provided that the differ-
ential characteristics corresponding to the negative exponents are changed into integral
characteristics.

On the definite integrals of the equations in partial differences.

I have given, in the Memoirs2 already cited in the Académie des Sciences of the
year 1779, a method to integrate in a great number of cases the equations linear in the

2Oeuvres de Laplace, T. X, p. 54 ff., “Mémoire sur les suites.” Section XVIII.
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finite or infinitely small partial differences, by means of definite integrals, when the
integration is not possible in finite terms. Many geometers have occupied themselves
since on this object, but without being subject to the condition that the expression in
the definite integrals becomes the integral in finite terms, when it is possible. This
condition is that which renders useful this kind of integrals, and there results from it
that they have often the same advantages as the finite integrals, as I have shown in the
Mémoires cited, relatively to the propagation of sound in a plane, and as Mr. Poisson
has remarked on it next in the solution of the problem of the vibrating chain.

Among the equations that I have considered, is the equation in the partial differ-
ences of the second order, with constant coefficients; but it offers a particular case
which is found not at all in the general solution, and which, giving place to many inter-
esting remarks on the nature of the integrals of the equations in the partial differences,
has seemed to me to merit attention of the geometers.

Let

0 =
∂2z

∂x2
+ a

∂2z

∂x∂y
+ b

∂2z

∂y2
+ c

∂z

∂x
+ h

∂z

∂y
+ lz,

a, b, c, h, and l being some constant coefficients; if we make

s = y + fx,

s′ = y + f ′x;

the proposed equation becomes

(b)



0 =(f2 + af + b)
∂2z

∂s2

+ [2ff ′ + a(f + f ′) + 2b]
∂2z

∂s∂s′
+ (f ′2 + af ′ + b)

∂2z

∂s′2

+ (cf + h)
∂z

∂s
+ (cf ′ + h)

∂z

∂s′
+ lz;

we will make the partial differences ∂2z
∂s2 and ∂2z

∂s′2 vanish, if we take for f and f ′ the
two roots of the equation

0 = u2 + au+ b;

then we have f + f ′ = −a and ff ′ = b; the preceding equation becomes thus

0 =
∂2z

∂s∂s′
+
cf + h

4b− a2
∂z

∂s
+
cf ′ + h

4b− a2
∂z

∂s′
+

lz

4b− a2
.

It results from the Mémoirs cited3 that, if we integrate the differential of second
order,

0 =
(4b− a2)l − bc2 + ahc− h2

(4b− a2)2
µ+

dµ

dθ
+ θ

d2µ

dθ2
;

in a way that we have µ = 1,

dµ

dθ
=
bc2 − ahc+ h2 − (rb− a2)l

(4b− a2)2
,

3Oeuvres de Laplace T. X, p. 61, “Mémoire sur les suites.” Section XIX.
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when θ is null, and if we designate by r =

Γ

(θ) this integral, we have

z = e
(ac−2h)y+(ah−2bc)x

4b−a2
{∫

dt

Γ

[(y + f ′x)(y + fx− t)]φ(t)

+

∫
dt

Γ

[(y + fx)(y + f ′x− t)]ψ(t)
}
,

e being the number of which the hyperbolic logarithm is unity. φ(t) and ψ(t) are two
arbitrary functions of t: the first integral must be taken from t = 0 to t = y + fx, and
the second, from t = 0 to t = y + f ′x.

If we have
(4b− a2)l − bc2 + ach+ h2 = 0;

then

Γ

(θ) is reduced to unity, and we have

z = e(ac−2h)y+(ah−2bc)x[φ′(y + fx) + ψ′(y + f ′x)],

by designating by φ′(t) and ψ′(t) the integrals
∫
dt φ(t) and

∫
dt ψ(t); we will have

then also, under finite form of indefinite integrals, the expression of z; but this is the
only case in which this is possible: in all other cases the integral is possible, in finite
terms, only by means of definite integrals.

The preceding analysis supposes that the two roots f and f ′ of the equation 0 =
u2 + au + b are unequal. If they are equals, then s is equal to s′, and the preceding
transformation of the variables x and y, into s and s′, cannot take place. In this case,
we suppose f null in equation (b), and f ′ the root of the equation 0 = u2 +au+b. The
condition of equality of the roots of this equation gives a2 = 4b, f ′ = − 1

2a; equation
(b) becomes thus

0 = b
∂2z

∂s2
+ (cf ′ + h)

∂z

∂s′
+ h

∂z

∂s
+ lz.

If we make next

z = ue
−hs
2b −

(4bl−h2)x′

4b2(cf′+h) , s′ =

(
cf ′ + h

b

)
x′,

we will have this very simple equation

∂2u

∂s2
=

∂u

∂x′
.

I have shown, in the Mémoires de l’Académie des Sciences for the year 1773, page
360,4 that its integral is impossible in finite terms, by means of indefinite integrals, and
that the expression of u cannot be given by an ascendant series of indefinite integrals
of an arbitrary function. We have observed since it can be by an ascendant series of
differences of this kind of functions; and that which is worthy of remark, Mr. Poisson
has shown that the expression of u depends only on a single arbitrary function, although
the equation in the partial differences be of the second order.

4Oeuvres de Laplace, T. IX, p. 26, “Recherches sur le calcul intégral aux differences partielles.”
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In the delicate questions of the infinitesimal Analysis, it is very useful to consider
the things relatively to the finite differences, and to see the modifications that they
undergo in the passage from finite to infinitely small. This is thus what I have shown,
in the Mémoires cited of the Académie des Sciences for the year 1779,5 the necessity
of introducing the discontinuous functions, in the integrals of the equations in partial
differences, and the conditions to which these functions must be subject. I am going
to employ the same method to determine the number of the arbitrary functions that the
integral of the preceding equation must include.

Let u be a function of two quantities t and t′, and we imagine that in the develop-
ment into a series ordered with respect to the powers of t and of t′, yx,x′ is the coeffi-

cient of txtx
′

in this series; uwill be the generating function of yx,x′ ; u
[(

1
t − 1

)2 − ( 1
t′ − 1

)]
will be the generating function of ∆2yx,x′−∆′yx,x′ , the characteristic ∆ being relative
to the variable x, and the characteristic ∆′ to the variable x′. Let(

1

t
− 1

)2

−
(

1

t′
− 1

)
= z;

we will have
1

t′
= 1 +

(
1

t
− 1

)2

− z,

that which gives

u

t′x′
= u

[
1 +

(
1

t
− 1

)2

− z

]x′

= u

{
1 + x′

(
1

t
− 1

)2

+
x′(x′ − 1)

1.2

(
1

t
− 1

)4

+ · · ·

− x′z

[
1 + (x′ − 1)

(
1

t
− 1

)2

+ · · ·

]
+ · · ·

}
,

if we have
∆2yx,x′=∆′yx,x′ ,

the preceding equation will give, by passing again from the generating functions to the
coefficients,

yx,x′ = yx,0 + x′∆2yx,0 +
x′(x′ − 1)

1.2
∆4yx,0 + · · · ;

thus the expression of yx,x′ depends only on the sole arbitrary function yx,0; in such
a way that, if we have all the values of yx,0 for all the positive and negative values of
x, we will have those of yx,x′ relative to all the values of x and x′. The integrations
of equations in the finite differences are, properly speaking, only some eliminations of

5Oeuvres de Laplace, T. X, p. 80 ff., “Mémoire sur le suites”. Section XXII.
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the variables given by a sequence of equations formed according to one same law. The
preceding equation in the partial differences gives

yx,x′+1 = yx,x′ + ∆2yx,x′,

by making x′ = 0, we will have first

yx,1 = yx,0 + ∆2yx,0,

by making next x′ = 1, we will have

yx,2 = yx,1 + ∆2yx,1,

by substituting for yx,1 its value in yx,0 given by the preceding equation, we will have

yx,2 = yx,0 + 2∆2yx,0 + ∆4yx,0,

and by continuing thus, we will arrive to the preceding general expression of yx,x′ in
yx,0. We see thence that the integral calculus in the finite differences is at base only a
calculus of elimination, that which we can extend to the integral calculus of infinitely
small differences, by observing in the successive eliminations, to reject the infinitely
small of an order superior to the one that we conserve.

The equation in the finite differences,

∆2yx,x′ = ∆′yx,x′ ,

is changed into an equation in the infinitely small differences, by substituting in it ∂
∂x

and ∂
∂x′ , in the place of the characteristics ∆ and ∆′ (Mémoires de l’Académie des

Sciences, 1779),6 and by changing y′x,x′ into y in it, we have

∂2y

∂x2
=

∂y

∂x′
.

In order to have then that which the preceding expression of yx,x′ becomes, it is
necessary, as we have seen in the Mémoires cited, to make x′, x′ − 1, . . . equal among
them and to infinity; this which gives, by designating yx,0 by φ(x),

y = φ(x) + x′
d2φ(x)

dx
+
x′2

1.2

d4φ(x)

dx
+ · · ·

It is moreover easy to be assured by the differentiation, that this value satisfies the
proposed equation in the partial differences; but the preceding analysis indicates with
evidence that the complete integral of this equation depends only on a single arbitrary
function.

In order to have, under finite form, this expression, by means of definite integrals,
we will observe that

∫
dz e−z

2

=
√
π, the integral being taken from z = −∞ to

6Oeuvres de Laplace, T. X, p. 35, “Mémoire sur le suites.” Section X.

9



z = ∞; π being the ratio of the semi-circumference to the radius. We will observe
next that in these limits we have∫

z2r−1dz e−z
2

= 0,∫
z2r dz e−z

2

=
1.3.5 . . . (2r − 1)

2r
√
π;

the preceding expression of y can be put therefore under this finite form,

y =
1√
π

∫
dz e−z

2

φ(x+ 2z
√
x′),

because it is clear that by developing into series, with respect to the powers of z, the
function φ(x + 2z

√
x′), and by integrating it, we will have the preceding expression

of y; this integral satisfies thus the condition to represent exactly the series of the
differences, as those that I have given in the Mémoires cited represent the series of
indefinite integrals. It is easy moreover to assure ourselves by differentiation, that the
equation

y =

∫
dz e−z

2

φ(x+ 2z
√
x′)

satisfies the equation in the partial differences

∂2y

∂x2
=
∂y

∂x
,

because we have
∂2y

∂x2
=

∫
dz e−z

2

φ′′(x+ 2z
√
x′),

φ′(x) being equal to dφ(x)
dx and φ′′(x) to dφ′(x)

dx , we have next

∂y

∂x′
=

∫
zdz√
x′
e−z

2

φ′(x+ 2z
√
x′);

now, by integrating by parts, we have

∂y

∂x′
= − 1

2
√
x′
e−z

2

φ′(x+ 2z
√
x′) +

∫
dz e−z

2

φ′′(x+ 2z
√
x′),

the integral being taken from z = −∞ to z = ∞, e−z
2

φ′(x + 2z
√
x′) is null at these

limits; because we suppose the function φ′(x + 2z
√
x′) such that its product by e−z

2

remains null when z is infinity; we have therefore then

∂y

∂x′
=

∫
dz e−z

2

φ′′(x+ 2z
√
x′) =

∂2y

∂x2
.

The preceding expression of y, by means of a definite integral, is complete, al-
though it contains only one arbitrary function; however, by developing y with respect
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to the powers of x, we find that we satisfy the proposed equation in the partial differ-
ences, by making

y = φ(x′) +
x2

1.2

dφ(x′)

dx′
+

x4

1.2.3.4

d2φ(x′)

dx′2
+ · · ·

+ xψ(x′) +
x3

1.2.3

dψ(x′)

dx′
+

x5

1.2.3.4.5

d3ψ(x′)

dx′3
+ · · · ;

φ(x′) and ψ(x′) being two arbitrary functions of x′. This expression appears therefore,
at first glance, more general than the preceding, which contains only one arbitrary
function; but we are going to show that it derives from it.

We suppose that Γ(x + 2z
√
x′) is an arbitrary function which contains only some

even powers of x+ 2z
√
x′, we will satisfy by that which precedes, the proposed equa-

tion in the partial differences, by making

y =

∫
dz e−z

2

Γ(x+ 2z
√
x′).

By developing this expression of y with respect to the powers of x, we will have

y =

∫
dz e−z

2

[
Γ(2z

√
x′) + xΓ′(2z

√
x′) +

x2

1.2
Γ′′(2z

√
x′) + · · ·

]
,

Γ(2z
√
x′) containing only some even powers of 2z

√
x′, Γ′(2z

√
x′) will contain only

some odd powers of the same quantity; in such a way that we will have

Γ′(−2z
√
x′) = −Γ′(2z

√
x′),

and, consequently,
∫
dz e−z

2

Γ′(2z
√
x′) is null in the limits z = −∞ and z = ∞.

Moreover, we have∫
dz e−z

2

Γ(2r)(2z
√
x′) =

e−z
2

2
√
x′

Γ(2r−1)(2z
√
x′) +

∫
e−z

2

zdz√
x′

Γ(2r−1)(2z
√
x′).

The first of these two terms is null in the limits z = −∞ and z = ∞, because we
suppose generally Γ(2r−1)(2z

√
x′) such that its product by e−z

2

vanishes when z is

infinity. The term
∫
e−z

2
zdx√
x′

Γ(2r−1)(2z
√
x′) is equal to

∂

∂x′
=

∫
e−z

2

dzΓ(2r−2)(2z
√
x′),

we will have generally∫
dz e−z

2

Γ(2r)(2z
√
x′) =

dr

dx′r

∫
e−z

2

dzΓ(2z
√
x′);

by designating therefore by φ(x′) the integral
∫
dz e−z

2

Γ(2z
√
x′), we will have

y = φ(x′) +
x2

1.2

dφ(x′)

dx′
+

x4

1.2.3.4

d2φ(x′)

dx′2
+ · · · =

∫
dz e−z

2

Γ(x+ 2z
√
x′).

11



If we designate now by Π(x + 2z
√
x′) a function which contains only the odd

powers of x+ 2z
√
x′, we will have

y =

∫
dz e−z

2

[
xΠ′(2z

√
x′) +

x3

1.2.3
Γ′′′(2z

√
x′) + · · ·

]
,

a function which we will reduce, as above, to the following, by making
∫
dz e−z

2

xΠ′(2z
√
x′) =

ψ(x′),

y = xψ(x′) +
x3

1.2.3

dψ(x′)

dx′
+ · · · =

∫
dz e−z

2

Π(x+ 2z
√
x′).

By reuniting these two expressions of y, as we may, the proposed equation in the
partial differences being linear, we will have

y = φ(x′) +
x2

1.2

dφ(x′)

dx′
+

x4

1.2.3.4

d2φ(x′)

dx′2
+ · · ·

+ xψ(x′) +
x3

1.2.3

dψ(x′)

dx′
+ · · ·

=

∫
dz e−z

2
[
Γ(x+ 2z

√
x′) + Π(x+ 2z

√
x′)
]

=

∫
dz e−z

2

φ(x+ 2z
√
x′),

by making
φ(x+ 2z

√
x′) = Γ(x+ 2z

√
x′) + Π(x+ 2z

√
x′).

We see therefore with evidence how the expression of y, which seems to contain
two arbitrary functions φ(x′) and ψ(x′), depends however only on one arbitrary func-
tion.

On the reciprocal passage of real results to imaginary results.

When the results are expressed in indeterminate quantities, the generality of the
notation embraces all the cases, either reals, or imaginaries. Analysis has deduced a
great part from this extension, chiefly in the calculus of the sines and cosines, which
can, as we know, be represented by some imaginary exponentials. I have shown, in my
Theorie des approximations des formules qui sont fonctions de très grands nombres,
inserted into the Mémoires de l’Académie des Sciences for the year 1782,7 that this
passage from the real to the imaginary can yet take place, even when the results are
expressed by determined quantities; and I have concluded from it the values of some
definite integrals, which it would be difficult to obtain by other means. I am going to
give here some new applications of this remarkable artifice.

I consider generally the integral
∫
dx ex

√
−1

xα , α being positive and less than unity.
Let x = t

1
1−α
√
−1; this integral will become

1

1− α
(−1)

1−α
2

∫
dt e−t

1
1−α

.

7Oeuvres de Laplace T. X., p. 209, “Mémoire sur les approximations des formules qui sont fonctions de
très-grands nombres.”

12



By taking the first integral from x = 0 to x infinity; the second integral should be
taken from t = 0 to t infinity.

We name k the integral
∫
dt e−t

1
1−α , taken within this interval; we will have∫

dx ex
√
−1

xα
=

1

1− α
(−1)

1−α
2 k;

(−1)
1−α
2 can be represented by cosφ+

√
−1 sinφ, and then we have

−1 = (cosφ+
√
−1 sinφ)

2
1−α = cos

2

1− α
φ+
√
−1 sin

2

1− α
φ;

this equation gives 2
1−αφ = (2r + 1)π, r being a positive or negative whole number,

and π being the semi-circumference; we have therefore

φ = (2r + 1)(1− α)
π

2
,

and, consequently,

(−1)
1−α
2 = cos(2r + 1)(1− α)

π

2
+
√
−1 sin(2r + 1)(1− α)

π

2
;

we have therefore∫
dx ex

√
−1

xα
=

∫
dx cosx

xα
+
√
−1

∫
dx sinx

xα

=
[
cos(2r + 1)(1− α)

π

2
+
√
−1 sin(2r + 1)(1− α)

π

2

] k

1− α
;

by comparing the real quantities to the reals and the imaginaries to the imaginaries, we
will have

(1)
∫
dx cosx

xα
=

k

1− α
cos(2r + 1)(1− α)

π

2
,

(2)
∫
dx sinx

xα
=

k

1− α
sin(2r + 1)(1− α)

π

2
,

the integrals being taken from x null to x infinity. Within this interval,
∫
dx sin x
xα

is a positive and finite quantity, when α is less than 2. In fact, in the first semi-
circumference, all the elements of the integral being positives, the entire integral is
positive. In the second semi-circumference, all the elements are negatives; but the
element which corresponds to sinx, in the first, is dx sin x

xα , and the element which cor-
responds to the same sine, in the second, is − dx sin x

(π+x)α ; the sum of these two elements
is evidently positive; thus the sum of their integrals, taken from x = 0 to x = π, is
positive: now, this sum is the integral

∫
dx sin x
xα taken from x = 0 to x = 2π; this in-

tegral, taken in the extent of the circumference, is therefore positive. We will prove in

13



the same manner that it is positive in the extent of the second, in the third, etc. circum-
ference; and it is the sum of all these positive quantities which form the entire integral∫
dx sin x
xα , taken from x = 0 to x infinity.

This integral, taken to infinity, is smaller than its value taken in the extent of the
first semi-circumference. In fact, if we suppose x = π + x′, it becomes −

∫
dx′ sin x′

(π+x′)α ,
and we will prove, as above, that this last integral taken from x′ null to x′ infinity
is a negative quantity and, as it must be added to the integral

∫
dx sin x
xα taken within

the extent of the first semi-circumference, there results from it that this last integral
surpasses the entire integral taken to x infinity.

The integral
∫
dx cos x
xα is equal to sin x

xα +α
∫
dx sin x
xα+1 , and this last quantity is reduced

to its second term, when the integrals are taken from x = 0 to x infinity: now, we just
showed that the second integral is always positive and finite, when α is less than unity.
The integral

∫
dx cos x
xα is therefore also positive and finite. All the elements of this

integral are positive from x = 0 to x = π
2 . By making next x = π

2 + x′, the integral
is reduced to −

∫
dx′ sin x′

(π2 +x′)α , and we see by that which precedes, that this last integral,

taken from x′ null to x′ infinity, is a negative quantity; the partial integral
∫
dx cos x
xα ,

taken from x null to x = π
2 , surpasses therefore the entire integral taken to infinity.

We resume now equations (1) and (2) and we suppose first 1 − α infinitely small,
equation (2) will give ∫

dx sinx

xα
= (2r+)

π

2
k,

k is equal to the integral
∫
dt e−t

1
1−α , and this integral becomes here

∫
dt e−t

∞
. So

much as t is less than unity, e−t
∞

is equal to unity; and it becomes null, when t sur-
passes unity; k is therefore equal to unity. Now, the integral

∫
dx sin x
xα is less than this

same integral, taken from x = 0 to x = π; and this last integral is smaller than the
integral

∫
x dx
x , taken within the same interval, and, consequently, smaller than π; it is

necessary therefore here to make r = 0 and k = 1, that which gives∫
dx sinx

x
=
π

2
,

equation (1) gives then
∫
dx cos x

x infinity, as this must be.
If we suppose α = 1

2 , we will have k =
∫
dt e−t

2

, and this last quantity is 1
2

√
π, as

I have shown in the Mémoires de l’Académie des Sciences for the year 1782;8 equations
(1) and (2) become therefore∫

dx cosx√
x

=
√
π cos

2r + 1

4
π,∫

dx sinx√
x

=
√
π sin

2r + 1

4
π,

the sine and the cosine of (2r+1)π
4 must therefore be positives, that which supposes r

8Oeuvres de Laplace, T. X., p. 223. “Mémoire sur les approximations des formules qui sont fonctions
de très-grands nombres.” Section IV.
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null or a multiple of 4; then, we have

sin
(2r + 1)π

4
= cos

(2r + 1)π

4
=

1√
2
,

hence ∫
dx sinx√

x
=

∫
dx cosx√

x
=

√
π

2
.

Mascheroni, in a work entitled Annotations in Calculum integralem Euleri, has
found

∫
dx cos x√

x
=
√

2π; but this value is evidently too great, because we have seen

that
∫
dx cos x√

x
is less than the partial integral, taken from x = 0 to x = π

2 , and this

partial integral is smaller itself than the integral
∫

dx√
x

, taken in the same interval: now,

this last integral is
√

2π; therefore
∫
dx cos x√

x
is less than

√
2π.

If α = 3
4 , we will have

k =

∫
dt e−t

4

.

By naming π′ the integral
∫

du

(1−u4)
1
2
, taken from u = 0 to u = 1, we have

π′ = 1.311 028 777 246 059 87

and

k =
1

2

√
π′
√

2π = 0.906 402

(Mémoires de l’Académie des Sciences, 1782, p. 21)9; we have next∫
dx cosx

x
3
4

= 4k cos
(2r + 1)

4

π

2
,∫

dx sinx

x
3
4

= 4k sin
(2r + 1)

4

π

2
.

Here, we can suppose again r null; because the integral
∫
dx sin x

x
3
4

must be contained

between the integrals
∫
dx sin x

x
1
2

and
∫
dx sin x

x , and this is that which holds by supposing
r null, because then these three integrals are 1.2533; 1.3875; 1.5708: the value of the
integral

∫
dx cos x

x
3
4

is 3.34963.

If α is infinitely small, then k =
∫
dt e−t

1
1−α

=
∫
dt e−t = 1, next we have∫

dx sinx

xα
= sin(2r + 1)

π

2
= 1,∫

dx cosx

xα
= sin(2r + 1)α

π

2
= (2r + 1)

απ

2
;

9Oeuvres de Laplace, T. X, p. 226. “Mémoire sur les approximations des formules qui sont fonctions de
très-grands nombres.” Section V.
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now we have, for that which precedes,∫
dx cosx

xα
= α

∫
dx sinx

xα+1
,

and, in the case of α infinitely small,∫
dx sinx

xα+1
=

∫
dx sinx

x
=
π

2
,

therefore ∫
dx cosx

xα
=
απ

2
.

By comparing this value to the preceding, we see that r must be supposed null.
We consider again the case of α = 1

4 . In this case, we have

k =

∫
dt e−t

4
3 ;

by making t = t′3, we will have

k = 3

∫
dt′ t′2 e−t

′4
;

now we have (page cited in the Mémoires de l’Académie des Sciences)

16

∫
dt e−t

4

∫
dt′t′2 e−t

′4
= π
√

2,

we will have therefore

k =
3π
√

2

16
∫
dt e−t4

= 0.919 062.

We can again here suppose r = 0, because
∫
dx sin x

x
1
4

must be contained between∫
dx sin x
xα , α being infinitely small, and

∫
dx sin x

x
1
2

; we have thus10

∫
dx sinx

x
1
4

= 1.1321,

∫
dx cosx

x
1
4

= 0.4689.

10 Translator’s note: It may be observed that the value of these integrals are respectively
√
π 2

3
4 Γ

(
7
8

)
/2Γ

(
5
8

)
≈ 1.132 137 and

√
π 2

3
4 csc

(
3π
8

)
sin

(
π
8

)
Γ
(
7
8

)
/2Γ

(
5
8

)
≈ 0.468 947. Like-

wise, the other values appearing in the table have closed-form representations.
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If we assemble these diverse results, we will form the following Table from them:

α
∫
dx sin x
xα

∫
dx cos x
xα

0 1.0000 0.0000

1
4 1.1321 0.4689

2
4 1.2533 1.2533

3
4 1.3875 3.34963

4
4 1.5708 ∞
5
4 1.8756 ∞
6
4 2.2507 ∞
7
4 4.4662 ∞
8
4 ∞ ∞

Thence we can generally conclude that, in equations (1) and (2), r can be supposed
null, and then they become

(3)
∫
dx cosx

xα
=

k

1− α
sin

απ

2
,

(4)
∫
dx sinx

xα
=

k

1− α
cos

απ

2
,

we must join the equation

(5)
∫
dx sinx

xα+1
=

k

α(1− α)
sin

απ

2
.

In order to give an application of this analysis, we consider an elastic blade folded
naturally onto itself in form of a spiral. We imagine that its interior extremity is fixed,
and that the blade can be developed into a horizontal line, by a weight p suspended at
its other extremity. In this state, the action of the weight on an element of the blade,
placed at the distance s from the extremity, will be ps; and the elasticity of the element
must make equilibrium to it. This elasticity is reciprocal to the osculating radius of the
blade in its natural state. By naming therefore r this radius relative to the part s of the
blade, taken from its exterior extremity, we will have

ps =
g

r
,

g being a constant depending on the elasticity proper to the blade. We will make
g
p = a2, a being a right, in order to conserve the homogeneity of the dimensions; we
will have therefore, in the natural state of the blade,

s =
a2

r
.
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Now we imagine in this state, and by the exterior extremity of the blade, two or-
thogonal coordinates x and y of which the first is, at this origin, tangent to the blade;
we will have

ds

r
=

ddyds√
1− dy2

ds2

,

this which gives
dy

ds
= sin

(∫
ds

r

)
,

and, consequently,
dx

ds
= cos

(∫
ds

r

)
;

substituting for 1
r its value s

2a2 , we will have

x =

∫
ds cos

s2

2a2
, y =

∫
ds sin

s2

2a2
.

Euler arrived to the same equations, in this beautiful work Sur les isopérimètres,11

page 276; but he adds: “Curva ergo erit ex spiralium genere, ita ut infinitis peractis
spiris, in certo quodam puncto tanquam centro convolvatur, quod punctum ex hâc con-
structione invenire difficillimum videtur.” The determination of this point is deduced
easily from the preceding analysis; because, by making s2

2a2 = φ, we will have

ds = a
dφ√
2φ

and x = a

∫
dφ√
2φ

cosφ, y = a

∫
dφ sinφ√

2φ
,

the integrals being taken from φ null to φ infinity; then, we have, by that which pre-
cedes,

x = y =
1

2
a
√
π.

We can generalize the preceding analysis, by applying to the integral∫
dx

xα
e−fx+gx

√
−1.

If we make
fx− gx

√
−1 = t

1
1−α ,

the integral becomes ∫
dt e−t

1
1−α

(1− α)(f − g
√
−1)1−α

;

11Translator’s note: This is E65: Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici latissimo sensu accepti, Additamentum I, 1744. Euler derives
the integrals but is unable to evaluate them.
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by naming therefore, as above, k the integral
∫
dt e−t

1
1−α taken from t null to t infinity,

and substituting, in the place of egx
√
−1, cos gx+

√
−1 sin gx, we will have

(6)
∫
dx e−fx

xα
(cos gx+

√
−1 sin gx) =

k

(1− α)(f − g
√
−1)1−α

,

the integral being taken from x null to x infinity.
We represent the fraction 1

(f−g
√
−1)1−α , by h(cosφ+

√
−1 sinφ); we will have

f − g
√
−1 = h

1
α−1

(
cos

φ

1− α
−
√
−1 sin

φ

1− α

)
,

that which gives

h
1

α−1 cos
φ

1− α
= f,

h
1

α−1 sin
φ

1− α
= g,

whence we deduce
tan

φ

1− α
=
g

f
,

h = (f2 + g2)
α−1
2 .

The first equation gives

φ = (A+ rπ)(1− α),

A being the first small positive angle of which g
f is the tangent, and r being a whole

number, which we must suppose null, according to that which precedes. This put,
equation (6) will give the following two

(7)
∫
dx e−fx cos gx

xα
=

k cosA

(1− α)(f2 + g2)
1−α
2

,

(8)
∫
dx e−fx sin gx

xα
=

k sinA

(1− α)(f2 + g2)
1−α
2

.

We have, by taking the integrals from x null to x infinity,∫
dx e−fx cos gx

xα
=

∫
f

g

dx e−fx sin gx

xα
+

∫
α

g

dx e−fx sin gx

xα+1
;

we will have therefore

(9)
∫
dx e−fx sin gx

xα+1
=

k

α(1− α)(f2 + g2)
α−1
2

(g cosA− f sinA);
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by supposing f null and g = 1, we have

tan
φ

1− α
=

1

0
=∞,

that which gives
φ

1− α
=
π

2
,

and, consequently,
A =

π

2
(1− α);

then it is clear that equations (7), (8), (9) coincide with equations (3), (4), (5).

On the integration of equations in finite differences, non-linear.

Until the present, the geometers have occupied themselves principally with equa-
tions in finite differences, linears; these are, in fact, those which present themselves
most frequently in this kind of analysis: but the consideration of the non-linear equa-
tions can be useful, I am going to expose here a method to integrate them in many
cases.

I have already observed that the integration of the equations in the finite differences
is, at base, only an elimination among any number of similar equations. By designating
therefore by x(n) and x(n+1) the two variables of an equation given among them, this
equation will be changed into an equation in the finite differences. In order to integrate
it, we differentiate this equation with respect to the infinitely small differences dx(n)

and dx(n+1); we could, by means of the proposed equation and of its differential, arrive
to an equation of this form,

dx(n) φ(x(n)) = dx(n+1) ψ(x(n+1)),

and, consequently, to the equation∫
dx(n+1) ψ(x(n+1))−

∫
dx(n) φ(x(n)) = a.

This equation is only a transformed from the proposed, but in which the two vari-
ables are separated.

If, in the proposed, the two variables x(n) and x(n+1) enter in a manner that we
have ψ(x(n+1)) = φ(x(n+1)), the transformed will become∫

dx(n+1) ψ(x(n+1))−
∫
dx(n) φ(x(n)) = a,

and, by integrating ∫
dx(n) φ(x(n)) = an+ b,

b being the arbitrary constant introduced by the integration; we will have thus x(n) a
function of an+ b. We apply this method to some examples.
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We consider first the equation

0 = 1− β(x− y) + xy,

that which gives

β =
1 + xy

x− y
;

by differentiating, we will have

dx

1 + x2
− dy

1 + y2
= 0,

and, consequently, ∫
dx

1 + x2
−
∫

dy

1 + y2
= a,

a being a constant which must be a function of β; because this last equation is only a
transformed of the proposed. Now, if we make x = x(n+1), y = x(n), this proposed is
changed into the equation in the finite differences,

0 = 1− β(x(n+1) − x(n)) + x(n+1)x(n),

or
0 = 1 + (x(n) − β)∆x(n) + x(n)

2

.

Its transformed becomes

a =

∫
dx(n+1)

1 + x(n+1)2
−
∫

dx(n)

1 + x(n)2
,

or

∆

∫
dx(n)

1 + x(n)2
= a;

by integrating it, we will have ∫
dx(n)

1 + x(n)2
= an+ b,

b being the arbitrary constant introduced by the integration in the finite differences.
The integral

∫
dx(n)

1+x(n)2
is, as we know, arctanx(n); thus we have

x(n) = tan(an+ b).

In order to determine a, we suppose n and b such that an+ b is null; we will have
x(n) null, and x(n+1) = tan a: now, the preceding equation in the finite differences
gives, when x(n) is null,

x(n+1) =
1

β
= tan a;
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a is therefore the angle of which the tangent is 1
β . The arbitrary b is the angle of which

the tangent is x(0).
We consider now the equation

0 = 1− β(x2 + y2) + 2γxy + x2y2,

it gives, by differentiating it,

dx2

dy2
=

(x2y − βy + γx)2

(xy2 − βx+ γy)2
=
y2(x2 − β)2 + 2γxy(x2 − β) + γ2x2

x2(y2 − β)2 + 2γxy(y2 − β) + γ2y2
.

Substituting into the numerator, for x2 its value 1−βy2+2γxy
β−y2 , and into the denomi-

nator, for y2 its value 1−βx2+2γxy
β−x2 , we will have

dx2

dy2
=

1− 1+β2−γ2

β x2 + x4

1− 1+β2−γ2

β y2 + y4
,

by making therefore

2α =
1 + β2 − γ2

β
,

we will have
dx√

1− 2αx2 + x4
− dy√

1− 2αy2 + y4
= 0,

and by integrating it, we will have the following equation, which is only a transformed
of the proposed equation,∫

dx√
1− 2αx2 + x4

−
∫

dy√
1− 2αy2 + y4

= a,

If we make now x = x(n+1), y = x(n); the proposed will be changed into the
equation in the finite differences,

0 = 1− β(x(n+1)2 + x(n)
2

) + 2γx(n+1)x(n) + x(n+1)2x(n)
2

,

and its transformed will become

∆

∫
dx(n)√

1− 2αx(n)2 + x(n)4
= a,

whence we deduce, by integrating in the finite differences,∫
dx(n)√

1− 2αx(n)2 + x(n)4
= an+ b,

b being an arbitrary constant, which is equal to∫
dx(0)√

1− 2αx(0)2 + x(0)4
.
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In order to determine a, we will designate by ψ(x(n)) the integral∫
dx(n)√

1− 2αx(n)2 + x(n)4
,

and a by ψ(q); we will have

ψ(x(n+1))− ψ(x(n)) = ψ(q).

We suppose that ψ(x) is null, when x is null; we will have, by making x(0) null,

ψ(x(1)) = ψ(q) or q = x(1);

now, the proposed gives then x(1) = 1√
β

, therefore

q =
1√
β
,

hence

ψ(x(n)) = nψ

(
1√
β

)
+ ψ(x(0)).

In deducing from this equation the value of x(n), we will have the integral of the
proposed. The value of ψ(x(n)), in algebraic, circular or logarithmic quantities, is im-
possible in finite terms: it is therefore impossible to represent alternately than by a
characteristic the expression of x(n); but it is remarkable that it depends on the rectifi-
cation of the conic sections.

We can similarly integrate by a transcendent quadrature the general equation in the
finite differences,

0 = a+ b(x(n+1) + x(n)) + c(x(n+1)2 + x(n)
2

) + fx(n+1)x(n)

+ gx(n+1)x(n)(x(n+1) + x(n)) + hx(n+1)2x(n)
2

,

because, if we make

x(n) =
lx′(n) + p

x′(n) + q
,

we will have a differential equation in x′(n) in the same form as the preceding; and, by
determining conveniently the three arbitraries l, p and q, we could make the coefficients
of (x′(n+1) + x′(n)) and of x′(n+1)x′(n)(x′(n+1) + x′(n)) vanish, and render equal the
constant coefficient and the one of x′(n)

2

x′(n+1)2 . The differential equation is then
reduced to the form of that which we just integrated.

On the reduction of functions into Tables.

In order to reduce to Tables the values of a function in one variable alone, we give
to this variable some successive numeric values, and such that its increments are very
small and equal among themselves. We place next beside each increment the corre-
sponding value of the function. A Table thus formed is named Table in simple entry. It

23



gives not only the values of the function, corresponding to the indicated increments of
the variable, but again those which correspond to the intermediate increments: a simple
proportion, or, if we wish more exactitude, the method of the differences make known
the intermediate values of the function.

If the function contains two variables x and y, then, by giving to x a determined
value, we make y increment successively, and we will place the corresponding value of
the function beside each increment. We will form thus, for each value of x, a Table in
simple entry, and the union of these Tables corresponding to the successive increments
of x, will form a Table in double entry, which will represent the proposed function, in
x and y.

The Table of Pythagoras, which gives the product xy of the two numbers x and y, is
the simplest case of this kind of Tables; and by prolonging it to a considerable number,
it will give the products of the large numbers; but then it would be encumbering by its
excessive extent: we would facilitate therefore extremely the numerical calculus, by
reducing it to a Table in simple entry.

In order to arrive to it, it would be necessary to be able to reduce xy to one or many
functions of the from φ(X + Y ), X being a function of x and Y being a function of
y. Then we would have X , by means of the value of x, by a Table in simple entry; the
same Table would give again Y , by means of the values of y; because, in the present
case, Y is a function of y, entirely similar to that of X in x. Finally, a Table in simple
entry would give again xy, by means of the values of X + Y .

We see now if this reduction of xy is possible. We suppose

xy = φ(X + Y ).

By differentiating this equation with respect to x, we will have

y
dx

dX
= φ′(X + Y ),

by designating d φ(x)
dz by φ′ (z). We will have similarly, by differentiating with respect

to y,

x
dy

dY
= φ′ (X + Y ).

The comparison of these two equations give

dx

x dX
=

dy

y dY
,

the first member of this equation being a function of x alone, and the second member
being a function of y alone; it is clear that the two variables x and y being independents,
each of these members must be equal to one same constant which we will indicate by
q; we will have therefore

dx

x dX
= q =

dy

y dY
.

The integrals of these equations are evidently

x = AeqX , y = BeqY .
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A and B being two arbitrary constants, because it is clear that we have

dx = AeqX(eqdX − 1) = x(eqdX − 1),

that which gives
dx

x dX
= q,

if we have
eqdX − 1 = q dX or e = (1 + q dX)

1
q dX .

By developing the second member into series, by the known theorem of the bino-
mial, and neglecting unity, having regard to 1

q dX , we will have

e = 2 +
1

1.2
+

1

1.2.3
+

1

1.2.3.4
+ · · · = 2.71821;

we will have thus the three equations

x = AeqX , y = BeqY , xy = ABeq(X+Y );

and it is clear that the Tables in simple entry, of which we have spoken above, will be
reduced to one alone, if we make A = B = 1; and then X and Y are nulls, when x
and y are equal to unity.

The Table in simple entry, which we obtain in this manner, is a Table of logarithms,
X being the logarithm of x. The logarithms are hyperbolic, if q is equal to unity, that
is to say if the infinitely small increment of the logarithm X is equal to the one of the
number x, when x is equal to unity. The logarithms are those which we name tabular,
if q is such that we have eq = 10. This value of q offers the advantage of giving the
logarithms of the numbers ten, one hundred, one thousand, etc. times greater or lesser,
by adding or subtracting from these logarithms 1, or 2, or 3, . . ..

If we employ two functions to represent xy, if, for example, we suppose

xy = φ(X + Y )− φ(X − Y ),

we will have

y
d2x

dX2
= x

d2y

dY 2
= φ′′(X + Y )− φ′′(X − Y ),

φ′′(z) being equal to dφ′(z)
dz . We will have therefore

d2x

dX2
+ a2x = 0,

d2y

dY 2
+ a2y = 0;

a being any constant. The simplest case is the one of a null, and then we can suppose
x = X, y = Y ; that which gives

0 = φ′′(X + Y )− φ′′(X − Y ).
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Thus, φ′′(X + Y ) is equal to a constant and, consequently, φ(X + Y ) is of the
form b(X + Y )2 + p(X + Y ) + q; b, p and q being some constants. The preceding
expression of xy will determine these constants, and it will give

xy =
1

2
[(x+ y)2 − (x− y)2].

By forming a Table in simple entry, of the function 1
2 t

2, the difference of the two
numbers which correspond in this Table to t = x+y and t = x−y or y−x, according
as X will be greater or lesser than Y ; this difference, I say, will be the product xy.

By making a = 1, the equations

d2x

dX2
+ x = 0,

d2y

dY 2
+ y = 0

will be satisfied, by making x = sinX, y = sinY ; and then we will have

xy =
1

2
[cos(X − Y )− cos(X + Y )];

we can therefore, by means of a Table of sines and of cosines, determine the product
of the two numbers x and y; we will determine the angles X and Y by means of their
sines x and y, and by taking in the Table the cosines of the angles X − Y and X + Y ,
their semi-difference will be the product xy. This ingenious manner to make the Tables
of sines serve to the multiplication of numbers was imagined and employed around a
century before the invention of the logarithms, which, as we have just seen, depends
only on a single function φ(X+Y ), is much simpler and renders very easy the division
of numbers, their elevation to the powers and the extraction of their roots; because we
have

x

y
= eq(X−Y ) and xn = eqnX ;

thus division is reduced to a subtraction; the elevation to the powers is reduced to a
multiplication and the extraction of the roots to a division.

The facility of all these calculations renders the logarithms one of the most powerful
instruments of the human mind and, when the metric system will be generally adopted,
they will become of common usage in the Society, to which they will be as useful as our
arithmetic scale, of which this system is the complement. We must therefore multiply,
as much as is possible, the uses of logarithms and by their means reduce to Tables
in simple entry the Tables in double entry. This is that which I have done in regard
to the Table of the astronomic refractions, published by the Bureau of Longitudes,
and in which the formula of the refractions, which I have given in the tenth Book
of the Mécanique céleste, is reduced in this manner to some Tables of simple entry.
Mr. Oltmans has made next the same thing in regard to the formula of the elevations
concluded from the barometric observations.

We can generalize the preceding analysis, by considering any function φ(X + Y ).
We suppose that we have generally

u = φ(X + Y ),
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by differentiating, we will have

∂u

∂x

dx

dX
= φ′(X + Y ),

∂u

∂y

dy

dY
= φ′(X + Y ),

hence
dx
dX
dy
dY

=

∂u
∂y

∂u
∂x

.

It is necessary, therefore, in order that the reduction be possible, that the quotient
of ∂u∂x , divided by ∂u

∂y , be of the form S
T , S being a function of x, and T a function of y.

The differential equation
0 = S dx+ T dy

has for integral

const. =

∫
S dx+

∫
T dy,

it has therefore also for integral u =const.; thus every finite equation in x and y, which,
moreover, containing an arbitrary, satisfies the preceding equation, gives for the expres-
sion of this constant a function of x and y, of which we can determine the values by
means of a Table in simple entry.

We have seen previously that the equation

0 = 1− β(x2 + y2) + 2γxy + x2y2

gives the following,

0 =
dx√

1− 2αx2 + x4
− dy√

1− 2αy2 + y4
,

in which

α =
1 + β2 − γ2

2β
,

and as α is given as function of the two constants β and γ, the finite preceding equa-
tion contains an arbitrary constant and, consequently, it is the complete integral of the
differential equation. In fact, if we suppose 1

β = a2, the finite equation becomes

0 = a2 − (x2 + y2) + 2xy
√

1− 2αa2 + a4 + a2s2y2,

a being an arbitrary constant which is met not at all in the differential equation. This
equation gives

a =
x
√
Y − y

√
X

1− x2y2
,

Y being equal to 1− 2αy2 + y4, and X being 1− 2αx2 + x4. We have moreover, by
that which precedes,

ψ(x) = ψ(y) + ψ(a),
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ψ(x) being the integral
∫

dx√
X

, this integral commencing with x; by forming therefore a

Table in simple entry of the values of ψ(x), this Table will give the values of x
√
Y−y

√
X

1−x2y2

or of a; because the difference ψ(x) − ψ(y) being equal to ψ(a), this Table will give
the value of a. We can likewise, by means of a second Table in simple entry, which
gives the values of any function Γ(x) of x, have that of Γ

(
x
√
Y−y

√
X

1−x2y2

)
.

If we make A = 1− 2αa2 + a4, the preceding algebraic equation will give

x =
y
√
A+ a

√
Y

1− a2y2
,

by changing x into x(n) and y into x(n−1), we will have

x(n) =
x(n−1)

√
A+ a

√
X(n−1)

1− a2x(n−1)2
.

X(n) being that which X becomes when we change x into x(n) in it. We will have, by
means of this equation, the value of x(n) in x(0) and a; because it will give the value
of x(1) as a function of these two quantities; next it gives x(2) as a function of x(1) and
of a, and, consequently, as function of x(0) and of a, by substituting for x(1) its value,
and thus in sequence. We will have therefore x(n) as a function of x(0), a and n; now
we have, by that which we have seen above,

ψ(x(n)) = nψ(a) + ψ(x(0));

by designating therefore the reverse sign ψthe value of x(n) in ψ(x(n)), such that we
have

x(n) = ψ[ψ(x(n))];

we will have
x(n) = ψ[nψ(a) + ψ(x(0))].

The Table in simple entry which gives ψ(x) in x will give therefore the value of
x(n).

We suppose α = −1; we will have

X = (1 + x2)2, x(n) =
x(n−1) + a

1− ax(n−1)
, ψ(x) =

∫
dx

1 + x2
= arctanx;

ψ(x) will be therefore arctanx and, consequently, ψ

(x) will be tanx; we will have
therefore

x(n) = tan(n arctan a+ arctanx(0)),

thus the Table of tangents will give generally the value of x(n) or the value of the
integral of the equation in finite differences,

0 = a− (x(n+1) − x(n)) + ax(n+1)x(n).
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