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I.

The theory of series is one of the most important objects of Analysis: all problems
which reduce to some approximations, and consequently nearly all the applications of
Mathematics to Nature, depend on this theory; thus we see that it has principally fixed
the attention of the geometers; they have found a great number of beautiful theorems
and ingenious methods, either in order to expand function into series, or in order to sum
series exactly or for approximation; but they have attained them only by some indirect
and particular ways, and we can not doubt that, in this branch of Analysis, as in all
others, there is a general and simple manner to view it, from which the already known
truths derive, and which lead to many new truths. The research of a similar method is
the object of this Memoir; that to which I am come is founded on the consideration of
that which I name generating functions: this is a new kind of calculus which we can
name calculus of generating functions, and which has appeared to me to merit being
cultivated by the geometers. I exhibit first some very simple results on these functions
and I deduce from them a method to interpolate series, not only when the consecutive
differences of the terms are convergent, that which is the sole case which we have
considered until now, but yet when the proposed series converges towards a recurrent
series, the final ratio of its terms being given by a linear equation in finite differences of
which the coefficients are constants. Integration of this kind of equation is a corollary
of this analysis. In passing next from the finite to the infinitely small, I give a general
formula to interpolate the series of which the final ratio of the terms is represented by
a linear equation in infinitely small differences, of which the coefficients are constants;
whence I conclude the integration of these equations. By applying the same method
to the transformation of series, there results from it a quite simple way to transform
them into some others of which the terms follow a given law; finally the relationship
of the generating functions to the corresponding variables leads me immediately to the
singular analogy of the positive powers with the differences and of the negative powers
with the integrals, an analogy observed first by Leibnitz, and since brought to greater
light by Mr de la Grange (Mémoirs de Berlin, 1772); all the theorems of which the

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. August 27, 2010

1



second of these two great geometers is attained in the Memoirs cited after this analogy,
and many others again, are deduced with the greatest ease in this report.

By considering in the same manner series in two variables, I exhibit a general
method to interpolate them, not only in the case where the consecutive differences
of the terms of the series are convergent, but again when the series converges towards
a récurro-récurrente series, the final ratio of its terms being given by a linear equation
in partial finite differences of which the coefficients are constants; whence result the
integration of this kind of equations. This material is of the greatest importance in the
analysis of chances; I believe to be the first who has considered it [see Books VI and
VII of the Savants étrangers]. Mr. de la Grange has since treated it by a very good
and very learned analysis in the Mémoires de Berlin for the year 1775; I dare to hope
that the new manner in which I envision it in this Memoir will not offend the geome-
ters. It follows from my researches that the integration of any linear equation in partial
finite differences, of which the coefficients are constants, can be restored to that of a
linear equation in infinitely small differences, by means of definite integrals taken with
respect to a new variable; I name definite integral an integral taken from one deter-
mined value of the variable to another determined value. This remark, more curious
than useful in the theory of finite differences, becomes very useful when we transport
it to the equations linear in the infinitely small partial differences: it gives a means of
integrating them in an infinity of cases which withstand all the known methods, and,
without it, it had been nearly impossible to foresee the forms of which the integrals are
then susceptible. But, in order to render that which I just said more sensible, it will not
be useless to recall in a few words that which we have discovered on linear equations
in infinitely small partial differences of the second order. The integral of these equa-
tions contain, as we know, two arbitrary functions; we have, moreover, remarked that
these functions can be, in the integral, affected with the differential sign d; and it is, if
I do not deceive myself, to Messrs. Euler and de la Grange that we owe this important
remark to which they have been led by the theory of sound, in the case where the air is
considered with its three dimensions.

These two great geometers have next extended their methods to some equations
more complicated than those of this problem; but there remains to find a method by
means of which we could generally, either integrate any linear equation of the second
order, or be assured that its integral is impossible in finite terms, by having regard only
to the sole variables that they contain: this is the object of a Memoir1 that I have inserted
in the Volume of the Academy for the year 1773. In this Memoir, I have demonstrated:
1 ˚ that the arbitrary functions can exist in the integral only under a linear form; 2 ˚ that
if the integral is possible in finite terms, by considering only the sole variables of the
equation, one of the two arbitrary functions is necessarily delivered with the integral
sign

∫
. I have given next a general method to have in this case the complete integral

of the differential equation, by supposing even that this equation contains a term in-
dependent of the principal variable, and which is any function whatever of two other
variables; whence it follows that, when a proposed equation withstands this method,
we can be assured that its complete integral is impossible in finite terms, by having
regard only to the sole variables of the equation. Now, the remark of which I have

1“Recherches sur le Calcul intégral aux différences partielles,” Oeuvres de Laplace, T. IX, p. 5.
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spoken above has made me see that, in this case, the integral is possible in finite terms,
by means of definite integrals taken with respect to a new variable which it is necessary
necessarily then to introduce into the calculation. We will see after this that these forms
of integrals are of the same use in the solution of the problems as the known forms; I
give in order to obtain them a method which extends to a great number of cases, and
especially to many important physical questions, such as the movement of the vibrating
strings in a medium resistant as the speed, the propagation of the sound in a plane, etc.,
of which we have been able to find yet only some particular solutions.

By transporting to the infinitely small differences the remarks that I make on a
particular equation in partial finite differences, I succeed in assuring myself by an in-
contestable manner that, in the problem of the vibrating strings, we can admit some
discontinuous functions, provided that none of the angles formed by two contiguous
sides of the initial figure of the string is finite; whence it appears to me that these
functions can be generally employed in all the problems which are related to partial
differences, provided that they can subsist with the differential equations and with the
conditions of the problem; thus, the only condition which is necessary in the determi-
nation of the arbitrary functions of a proposed equation in partial differences of order
n is that it have no jump point between two consecutive values of a difference of these
functions, smaller than the nth difference, and, consequently, that, in the curves by
means of which we represent these arbitrary functions, there is no jump point between
two consecutive tangents, if, as in the problem of the vibrating strings, the differential
equation is of the second order, or that it have no jump point between to consecutive os-
culating radii, if the equation is of the third order, etc., that which is conformed to that
which as Mr. le marquis de Condorcet has found, by another method, in the Mémoires
de l’Académie for the year 1771, pages 70 and 71. But it is essential to observe that,
if the integral contains the differences of the arbitrary functions, we must consider the
most elevated differences as the true arbitrary functions of the integral, and to apply
the preceding rule only to these differences. This manner of illuminating the delicate
points of the theory of infinitely small differences by that of the finite differences is,
if I do not deceive myself, the most proper to realize this object, and it seems to me
that, after the theory that I exhibit, there must remain no doubt on the use of discontin-
uous functions in the integral Calculus with the partial differences. Finally, I end this
Memoir with the consideration of equations linear in the partial differences, in finite
parts and in infinitely small parts, and by some theorems on the reduction into series
of the functions in two variables. All these researches being only the expansion of a
very simple consideration on the nature of generating functions, I dare flatter myself
that the analysis of which I have made use could merit, by its generality, the attention
of the Geometers.

II.
On the series in one variable.

Let yx be any function whatever of x; if we form the infinite series

y0 + y1t+ y2t
2 + y3t

3 + · · ·+ yxt
x + yx+1t

x+1 + · · ·+ y∞t
∞,

and if we name u the sum of this series, or, what returns to the same, the function of
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which the expansion forms this series, this function will be that which I name generat-
ing function of the variable yx.

A generating function of any variable yx is thus generally a function of t, which,
expanded according to the powers of t, has this variable yx for the coefficient of tx;
and, reciprocally, the corresponding variable of a generating function is the coefficient
of tx in the expansion of this function according to the powers of t. It follows from
these definitions that, u being the generating function of yx, that of yx−r will be utr;
because it is clear that the coefficient of tx in utr is equal to the one of tx−r in u, and
consequently equal to yx−r.

The coefficient of tx in u
(
1
t − 1

)
is evidently equal to yx+1 − yx, or to 4yx,

4 being the characteristic of finite differences; we will have therefore the generating
function of the finite difference of one quantity by multiplying by 1

t − 1 the generating
function of the quantity itself; the generating function of42yx is thus u

(
1
t − 1

)2
, and,

generally, that of 4iyx is u
(
1
t − 1

)i
; whence we can conclude that the generating

function of4iyx−r is utr
(
1
t − 1

)i
.

Similarly, the coefficient of yx in

u

(
a+

b

t
+

c

t2
+
e

t3
+ · · ·+ q

tn

)
is

ayx + byx+1 + cyx+2 + eyx+3 + · · ·+ qyx+n;

by naming therefore∇yx this quantity, its generating function will be

u

(
a+

b

t
+

c

t2
+
e

t3
+ · · ·+ q

tn

)
If we name ∇2yx the quantity

a∇yx + b∇yx+1 + c∇yx+2 + e∇yx+3 + · · ·+ q∇yx+n;

∇3yx the quantity

a∇2yx + b∇2yx+1 + c∇2yx+2 + · · ·+ q∇2yx+n;

and thus in sequence, their corresponding generating functions will be

u

(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)2

,

u

(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)3

,

· · ·

and, generally, the generating function of4iyx will be

u

(
a+

b

t
+

c

t2
+
e

t3
+ · · ·+ q

tn

)i
;
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hence the generating function of4i∇syx−r will be

utr
(
a+

b

t
+

c

t2
+ · · ·+ q

tn

)s(
1

t
− 1

)i
.

We can generalize again the preceding theorems, by supposing that ∇yx repre-
sents any linear function of yx, yx+1, yx+2, . . . ; that ∇2yx represents a new function
in which∇yx enters in the same manner as yx in∇yx; that∇3yx represents a function
of ∇2yx similar to that of ∇yx in yx, and thus in sequence; because, u being the gen-
erating function of yx, if we name us that of∇yx, us2, us3, . . . will be the generating
functions of ∇2yx, ∇3yx,. . .. By multiplying therefore the function u by the succes-
sive powers of s, we will have the generating functions of the products of yx by the
corresponding powers of ∇, ∇ being at no point a quantity, but a characteristic; and
this will be again true by supposing these powers fractional and even incommensurates.

s being any function whatever of 1
t , if we expand si according to the powers of 1

t ,
and if we designate by K

tm any term of this expansion, the coefficient of tx in Ku
tm will

be Kyx+m; we will have therefore the coefficient of tx in usi, or, what comes to the
same, we will have∇iyx: 1 ˚ by substituting, into s, yx in place of 1

t ; 2 ˚ by expanding
that which si then becomes, according to the powers of yx, and by adding to x, in each
term, the exponent of the power of yx, that is by writing yx in place of (yx)0, yx+1 in
place of (yx)1, yx+2 in place of (yx)2, and thus in sequence.

If, instead of expanding si according to the powers of 1
t , we expand it according to

the powers of 1
t − 1, and if we designate by K

(
1
t − 1

)m
any term of this expansion,

the coefficient of tx in Ku
(
1
t − 1

)m
will be K4myx. We will have therefore ∇iyx:

1 ˚ by substituting into s,4yx in place of 1
t − 1, or, what comes to the same, 1 +4yx

in place of 1
t ; 2 ˚ by expanding that which si then becomes according to the powers

of 4yx, and by applying to the characteristic 4 the exponents of the powers of 4yx,
that is by writing 40yx or yx in place of (4yx)0, 42yx in place of (4yx)2, and thus
in sequence.

In general, if we consider s as a function of r, r being a function of 1
t , such that

the coefficient of tx in ur is yx, we will have ∇iyx by substituting, into s, yx in
place of r; by developing next that which si then becomes according to the powers of
yx, and by applying to the characteristic the exponents of the powers of yx, that

is, by writing 0yx, or yx in place of ( yx)0, 2yx in place of ( yx)2, and thus of the
rest. We will have therefore the values of∇yx,∇2yx,. . .by some simple expansions of
algebraic functions.

Let z be the generating function of Σiyx, Σ being the characteristic of finite inte-
grals; we will have, by that which precedes, z

(
1
t − 1

)i
for the generating function of

yx; but this function must, by having regard only for the positive or null powers of t,
be reduced to u. We will have therefore

z

(
1

t
− 1

)i
= u+

A

t
+
B

t2
+
C

t3
+ · · ·+ F

ti
,

whence we deduce

z =
uti +Ati−1 +Bti−2 + Cti−3 + · · ·+ F

(1− t)i
;
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A,B,C, . . . , F being the i arbitrary constants which the i successive integrations of
yx introduce. By setting aside these constants, the generating function of Σiyx will
be u

(
1
t − 1

)−i
; we will have therefore the generating function of Σiyx by changing i

into −i in the generating function of4iyx; and reciprocally, we will have the variable
corresponding to the function u

(
1
t − 1

)i
, in which we suppose i negative, by chang-

ing i into −i in 4iyx and by supposing that the negative differences represent some
integrals; but, if we have regard to the arbitrary constants, it is necessary, in passing
from the positive powers to the negative powers of 1

t − 1, to increase u by a number
of terms A

t + B
t2 + C

t3 + · · · equal to the exponent of the negative power of 1
t − 1. We

see thence how the generating functions are formed from the law of the correspond-
ing variables, and reciprocally, in what manner these variables are deduced from their
generating functions. We apply now these results to the theory of series.

III.
On the interpolation of the series in one variable, and on the integration

of linear differential equations.

All the theory of the interpolation of series consists in determining, whatever be
i, the value of yx+i by a function of yx and from the terms which precede or which
follow yx. For this, we must observe that yx+i is equal to the coefficient of tx+i in the
expansion of u, and, consequently, equal to the coefficient of tx in the expansion of u

ti ;
now we have

u

ti
=u

(
1 +

1

t
− 1

)i
=u

[
1 + i

(
1

t
− 1

)
+
i(i− 1)

1.2

(
1

t
− 1

)2

+
i(i− 1)(i− 2)

1.2.3

(
1

t
− 1

)3

+ · · ·

]
.

Moreover, the coefficient of tx in the expansion of u is yx; this coefficient in the expan-
sion of u

(
1
t − 1

)
is4yx; in the expansion of u

(
1
t − 1

)2
, it is equal to42yx, and thus

in sequence; we will have therefore, by passing again from the generating functions to
the corresponding variables,

yx+i = yx + i4yx +
i(i− 1)

1.2
42yx +

i(i− 1)(i− 2)

1.2.3
43yx + · · ·

This equation, holding whatever be i, will serve to interpolate the series of which the
differences of the terms go by decreasing.

All the ways of expanding the power 1
ti will give as many different methods to

interpolate the series; let, for example,

1

t
= 1 +

α

tr
;

by expanding 1
ti , according to the powers of α, in a manner of the beautiful theorem of

Mr. de la Grange (see the Mémoires de l’Académie, year 1777, page 115), we will find
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easily

u

ti
= u

[
1 + ia+

i(i+ 2r − 1)

1.2
α2 +

i(i+ 3r − 1)(i+ 3r − 2)

1.2.3
α3

+
i(i+ 4r − 1)(i+ 4r − 2)(i+ 4r − 3)

1.2.3.4
α4 + · · ·

]
.

Now, α being equal to tr
(
1
t − 1

)
, the coefficient of tx in the expansion of uα is, by the

preceding article, 4yx−r; this same coefficient in the expansion of uα2 is 42yx−2r,
and thus in sequence. We will have therefore

yx+i = yx + i4yx−r +
i(i+ 2r − 1)

1.2
42yx−2r +

i(i+ 3r − 1)(i+ 3r − 2)

1.2.3
43yx−3r

+
i(i+ 4r − 1)(i+ 4r − 2)(i+ 4r − 3)

1.2.3.4
44yx−4r + · · ·

IV.

Here is presently a general method of interpolation which has the advantage of
being applicable, not only to the series of which the differences of the terms conclude
by being null, but further to the series of which the last ratio of the terms is that of any
recurrent series.

We suppose first that we have

t

(
1

t
− 1

)2

= z,

and we seek the value of 1
ti in z.

It is clear that 1
ti is equal to the coefficient of θi in the expansion of the fraction

1
1− θt

; if we multiply the numerator and the denominator of this fraction by 1 − θt, we

will have this here 1−θt
1−θ( 1

t+t)+θ2
. The equation

t

(
1

t
− 1

)2

= z gives
1

t
+ t = 2 + z,

that which changes the preceding fraction into the following 1−θt
(1−θ)2−zθ ; now we have

1

(1− θ)2 − zθ
=

1

(1− θ)2
+

zθ

(1− θ)4
+

z2θ2

(1− θ)6
+

z3θ3

(1− θ)8
+ · · ·

Moreover, the coefficient of θr in the expansion of 1
(1−θ)s is equal to 1

1.2.3...r
dr(1−θ)−s

dθr ,
provided that we suppose θ = 0 after the differentiations, that which gives for this
coefficient s(s+1)(s+2)···(s+r−1)

1.2.3...r ; whence it follows that the coefficient of θi is: 1 ˚
i + 1 in the expansion of 1

(1−θ)2 ; 2 ˚ i(i+1)(i+2)
1.2.3 in the expansion of θ

(1−θ)4 ; 3 ˚
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(i−1)i(i+1)(i+2)(i+3)
1.2.3.4.5 in the expansion of θ2

(1−θ)6 , and thus the rest. Therefore, if we
name Z the coefficient of θi in the expansion of the fraction 1

(1−θ)2−zθ , we will have

Z = i+ 1 +
i(i+ 1)(i+ 2)

1.2.3
z +

(i− 1)i(i+ 1)(i+ 2)(i+ 3)

1.2.3.4.5
z2

+
(i− 2)(i− 1)i(i+ 1)(i+ 2)(i+ 3)(i+ 4)

1.2.3.4.5.6.7
z3 + · · ·

or

Z = i+ 1 +
(i+ 1)[(i+ 1)2 − 1]

1.2.3
z +

(i+ 1)[(i+ 1)2 − 1][(i+ 1)2 − 4]

1.2.3.4.5
z2

+
(i+ 1)[(i+ 1)2 − 1][(i+ 1)2 − 4][(i+ 1)2 − 9]

1.2.3.4.5.6.7
z3 + · · ·

If we name next Z ′ the coefficient of θi in the expansion of θ
(1−θ)2−zθ , we will

have Z ′, by changing, in Z, i into i− 1, this which gives

Z ′ = i+
i(i2 − 1)

1.2.3
z +

i(i2 − 1)(i2 − 4)

1.2.3.4.5
z2 +

i(i2 − 1)(i2 − 4)(i2 − 9)

1.2.3.4.5.6.7
z3 + · · ·

We will have thus Z − tZ ′ for the coefficient of θi in the expansion of the fraction
1−θt

(1−θ)2−zθ ; this will be, consequently, the expression of 1
ti ; therefore

u

ti
= u(Z − tZ ′).

This put, the coefficient of tx in u
ti is yx+i; this same coefficient, in any term of uZ,

such as Kuzr or, that which comes to the same, Kutr
(
1
t − 1

)2r
is, by article II, equal

to K42ryx−r; in any term of utZ ′, such as Kutzr, this coefficient is K42ryx−r−1.
We will have therefore, by passing again from the generating functions in the corre-
sponding variables,

yx+i =(i+ 1)yx +
(i+ 1)[(i+ 1)2 − 1]

1.2.3
42yx−1

+
(i+ 1)[(i+ 1)2 − 1][(i+ 1)2 − 4]

1.2.3.4.5
44yx−2 + · · ·

− iyx−1 −
i(i2 − 1)

1.2.3
42yx−2

− i(i2 − 1)(i2 − 4)

1.2.3.4.5
44yx−3 − · · ·

We can vary again the preceding form of yx+i; for that, let Z ′′ be that which Z ′

becomes when we change i into i− 1 and, consequently, that which Z becomes when
we change i into i − 2; the equation 1

ti = Z − tZ ′ will give 1
ti−1 = Z ′ − tZ ′′, hence

1
ti = Z′

t − Z
′′. By adding these two values of 1

ti and taking the half of their sum we
will have

1

ti
=

1

2
Z − 1

2
Z ′′ +

1

2
(1 + t)

(
1

t
− 1

)
Z ′;
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now we have

1

2
Z − 1

2
Z ′′ =

1

2

[
i+ 1 +

i(i+ 1)(i+ 2)

1.2.3
z + · · ·

]
− 1

2

[
i− 1 +

(i− 2)(i− 1)i

1.2.3
z + · · ·

]
=1 +

i2

1.2
z +

i2(i2 − 1)

1.2.3.4
z2 +

i2(i2 − 1)(i2 − 4)

1.2.3.4.5.6
z3 + · · ·

hence
u

ti
= u

[
1 +

i2

1.2
t

(
1

t
− 1

)2

+
i2(i2 − 1)

1.2.3.4
t2
(

1

t
− 1

)2

+
i2(i2 − 1)(i2 − 4)

1.2.3.4.5.6
t3
(

1

t
− 1

)6

+ · · ·

]

+
i

2
u(1 + t)

[
1

t
− 1 +

i2 − 1

1.2.3
t

(
1

t
− 1

)3

+
(i2 − 1)(i2 − 4)

1.2.3.4.5
t2
(

1

t
− 1

)5

+ · · ·

]
,

whence we conclude, by article II, by passing again from the generating functions to
the corresponding variables,

yx+1 = yx +
i2

1.2
42yx−1 +

i2(i2 − 1)

1.2.3.4
44yx−2

+
i2(i2 − 1)(i2 − 4)

1.2.3.4.5.6
46yx−3 + · · ·

+
i

2
4(yx + yx−1) +

i

2

i2 − 1

1.2.3
43(yx−1 + yx−2)

+
i

2

(i2 − 1)(i2 − 4)

1.2.3.4.5
45(yx−2 + yx−3) + · · ·

This formula returns to that which Newton has given in the small work entitled Metho-
dus differentialis, in order to interpolate between an odd number of equidistant quan-
tities; in this case, yx designates the quantity of the mean and i is the distance of this
quantity to that which we seek, which, consequently, is yx+i, unity being supposed the
common interval of the given quantities.

By differentiating in finite differences the preceding formula with respect to i, we
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will have

yx+i+1 − yx+i =
1

2
4(yx + yx−1) +

i(i+ 1)

1.2
43(yx−1 + yx−2)

+
(i− 1)i(i+ 1)(i+ 2)

1.2.3.4

1

2
45(yx−2 + yx−3) + · · ·

+ (2i+ 1)
1

2
42yx−1 +

(2i+ 1)(i+ 1)i

1.2.3

1

2
44yx−2

+
(2i+ 1)(i+ 2)(i+ 1)i(i− 1)

1.2.3.4.5

1

2
46yx−3 + · · ·

Let yx+1 − yx = y′x and i = s−1
2 , we will have

yx+ s−1
2

=
1

2
(y′x + y′x−1) +

s2 − 1

2.4

1

2
42(y′x−1 + y′x−2)

+
(s2 − 1)(s2 − 9)

2.4.6.8

1

2
44(y′x−2 + y′x−3) + · · ·

+
s

2
4y′x−1 +

s(s2 − 1)

2.4.6
43y′x−2

+
s(s2 − 1)(s2 − 9)

2.4.6.8.10
45y′x−3 + · · ·

This formula returns to that which Newton has given in the small work cited, in order to
interpolate between an even number of equidistant quantities; y′x expresses the second
of the two mean quantities, and s−1

2 expresses its distance to that which we seek and
which, consequently, is y′

x+ s−1
2

, unity representing the common interval of the given
quantities.

V.

We suppose generally

(a) z = a+
b

t
+

c

t2
+
e

t3
+ · · ·+ p

tn−1
+

q

tn
,

we will have
1

tn
=
z − a
q
− b

qt
− c

qt2
− · · · − p

qtn−1
,

that which gives
1

tn+1
=
z − a
qt
− b

qt2
− c

qt3
− · · · − p

qtn
;

by eliminating 1
tn from the second member of this equation, by means of the proposed

(a), we will have

1

tn+1
= −p(z − a)

q2
+
pb+ q(z − a)

q2t
+ · · · .

This expression of 1
tn+1 contains only some powers of 1

t of an order inferior to n, and,
by continuing to eliminate thus the power 1

tn , in measure as it is presented, it is clear

10



that we will arrive to an expression of 1
ti , which will contain only some powers of 1

t
less than n, and which, consequently, will have this form

1

ti
= Z +

1

t
Z(1) +

1

t2
Z(2) +

1

t3
Z(3) + · · ·+ 1

tn − 1
Z(n−1),

Z, Z(1), Z(2), . . . , Z(n−1) being some rational and entire functions of z, of which the
first does not surpass the degree i

n , the second does not surpass the degree i
n − 1, the

third the degree i
n − 2, and so the rest.

This manner of determining 1
ti is very laborious when i is a little large; it would

lead besides with difficulty to the general expression of this quantity; we could attain it
directly by the following method.

1
ti being equal to the coefficient of θi in the expansion of the fraction 1

1− θt
, we will

multiply the numerator and the denominator of this fraction by

(a− z)θn + bθn−1 + cθn−2 + · · ·+ pθ + q

and, by substituting into the numerator in place of z its value a+ b
t + c

t2 + · · · , we will
have

bθn−1
(
1− θ

t

)
+ cθn−2

(
1− θ2

t2

)
+ eθn−3

(
1− θ3

t3

)
+ · · ·+ q

(
1− θn

tn

)(
1− θ

t

)
(aθn + bθn−1 + cθn−2 + eθn−3 + · · ·+ pθ + q − zθn)

.

The numerator of this fraction is divisible by a − θ
t ; we can therefore, by making the

division, put it under this form

(A)



bθn−1 + cθn−2 + eθn−3 + · · ·+ pθ + q

+
θ

t
(cθn−2 + eθn−3 + · · ·+ pθ + q)

+
θ2

t2
(eθn−3 + · · ·+ pθ + q)

+ · · ·

+
qθn−1

tn−1


aθn + bθn−1 + cθn−2 + eθn−3 + · · ·+ pθ + q − zθn

The research on the coefficient of θi in the expansion of this fraction is reduced thus to
determine, whatever be r, the coefficient of θr in the expansion of the fraction

1

aθn + bθn−1 + cθn−2 + eθn−3 + · · ·+ pθ + q − zθn
.

For this, we will consider generally the fraction P
Q , P and Q being some rational and

entire functions of θ, the first being of an inferior order to that of the second. We
suppose that Q has a factor θ−α raised to a power s and we make Q = (θ−α)sR; we
can always, as we know, decompose the fraction P

Q into two others A
(θ−α)s + B

R , A and

11



B being some rational and entire functions of θ, the first of order s− 1 and the second
of an order inferior to the one of R; we will have therefore

A

(θ − α)s
+
B

R
=

P

(θ − α)sR
,

that which gives

A =
P

R
− B(θ − α)s

R
.

If we consider A, B, P and R as some rational and entire functions of θ − α, A
will be a function of order s − 1, and, consequently, it will be equal to the expansion
of P

R in a series ordered with respect to the powers of θ − α, provided that we stop at
the power s− 1.

Let therefore
P

R
= y + y1(θ − α) + y2(θ − α)2 + · · · ,

we will have

A

(θ − α)s
=

y

(θ − α)s
+

y1
(θ − α)s−1

+
y2

(θ − α)s−2
+ · · · ,

by rejecting the positive or null powers of θ − α; A
(θ−α)s will be consequently equal to

the coefficient of ts−1 in the expansion of

y + y1t+ y2t
2 + · · ·

θ − α− t
.

Now, if we name P ′ and R′ that which P and R become when we change θ−α into t,
or, that which returns to the same, θ into t+ α, we will have

P ′

R′
= y + y1t+ y2t

2 + · · · ;

hence, A
(θ−α)s will be equal to the coefficient of ts−1 in the expansion of P ′

R′(θ−α−t) ,
and, consequently, it will be equal to

1

1.2.3 . . . (s− 1)

∂s−1

∂ts−1
P ′

R′(θ − α− t)
,

provided that we suppose t = 0 after the differentiations. Now, the coefficient of θr in
P ′

R′(θ−α−t) being equal to− P ′

R′(α+t)r+1 , this same coefficient in 1
1.2.3...(s−1)

∂s−1

∂ts−1
P ′

R′(θ−α−t)
will be

− 1

1.2.3 . . . (s− 1)

∂s−1

∂ts−1
P ′

R′(α+ t)r+1
,

t being supposed null after the differentiations. This last quantity will be therefore the
coefficient of θr in the expansion of A

(θ−α)s ; now, if we restore, in P ′ and R′, θ − α in
place of t, that which changes them into P and R, we will have

∂s−1

∂ts−1
P ′

R′(t+ α)r+1
=

∂s−1

∂θs−1
P

Rθr+1
,

12



provided that we suppose θ = α, after the differentiations in the second member of
this equation; − 1

1.2.3...(s−1)
∂s−1

∂θs−1
P

Rθr+1 will be therefore, with this condition, the co-
efficient of θr in the expansion of the fraction A

(θ−α)s .
It follows thence that, if we suppose

Q = a(θ − α)s(θ − α′)s
′
(θ − α′′)s

′′
. . . ,

the coefficient of θr in the expansion of the fraction P
Q will be

− 1

1.2.3 . . . (s− 1)

∂s−1

∂θs−1
P

aθr+1(θ − α′)s′(θ − α′′)s′′ · · ·
,

− 1

1.2.3 . . . (s′ − 1)

∂s
′−1

∂θs′−1
P

aθr+1(θ − α)s(θ − α′′)s′′ · · ·
,

− 1

1.2.3 . . . (s′′ − 1)

∂s
′′−1

∂θs′′−1
P

aθr+1(θ − α)s(θ − α′)s′ · · ·
,

by making, after the differentiation, θ = α in the first term, θ = α′ in the second term,
θ = α′′ in the third term, and thus in sequence. This put, let

V = aθn + bθn−1 + cθn−2 + · · ·+ pθ + q,

and we suppose that, by putting this quantity under the form of a product, we have

V = a(θ − α)(θ − α′)(θ − α′′) · · · ;

by expanding the fraction 1
V−zθn in a series ordered with respect to the powers of z,

we will have
1

V
+
zθn

V 2
+
z2θ2n

V 3
+
z3θ3n

V 4
+ · · · ,

and the coefficient of θr in the expansion of the fraction 1
V s will be, by that which

precedes, equal to

− 1

1.2.3 . . . (s− 1)as
∂s−1

∂θs−1



1

θr+1(θ − α′)s(θ − α′′)s · · ·

+
1

θr+1(θ − α)s(θ − α′′)s · · ·

+
1

θr+1(θ − α)s(θ − α′)s · · ·
+ · · ·


provided that, after the differentiations, we suppose θ = α in the first term, θ = α′ in
the second term, θ = α′′ in the third term, etc. Let Z(s−1)

r be that which this quantity
becomes then, the coefficient of θi in the expansion of the fraction 1

V−zθn will be

Z
(0)
i + Z

(1)
i−nz + Z

(2)
i−2nz

2 + Z
(3)
i−3nz

3 + · · · ;

13



we will have therefore, for the coefficient of θi in the expansion of the fraction (A) and,
consequently, for the expression of 1

ti ,

(µ)



1

ti
=bZ

(0)
i−n+1 + bzZ

(1)
i−2n+1 + bz2Z

(2)
i−3n+1 + bz3Z

(3)
i−4n+1 + · · ·

+ cZ
(0)
i−n+2 + czZ

(1)
i−2n+2 + cz2Z

(2)
i−3n+2 + cz3Z

(3)
i−4n+2 + · · ·

+ eZ
(0)
i−n+3 + ezZ

(1)
i−2n+3 + ez2Z

(2)
i−3n+3 + ez3Z

(3)
i−4n+3 + · · ·

+ · · ·

+
1

t


cZ

(0)
i−n+1 + czZ

(1)
i−2n+1 + cz2Z

(2)
i−3n+1 + cz3Z

(3)
i−4n+1 + · · ·

+ eZ
(0)
i−n+2 + ezZ

(1)
i−2n+2 + ez2Z

(2)
i−3n+2 + ez3Z

(3)
i−4n+2 + · · ·

+ · · ·


+

1

t2

{
eZ

(0)
i−n+1 + ezZ

(1)
i−2n+1 + ez2Z

(2)
i−3n+1 + ez3Z

(3)
i−4n+1 + · · ·

+ · · ·

}
+ · · ·

+
1

tn−1
(qZ

(0)
i−n+1 + qzZ

(1)
i−2n+1 + qz2Z

(2)
i−3n+1 + · · · ).

Presently, if we designate by ∇yx the quantity

ayx + byx+1 + cyx+2 + · · ·+ qyx+n;

by ∇2yx the quantity

a∇yx + b∇yx+1 + c∇yx+2 + · · ·+ q∇yx+n;

by ∇3yx the quantity

a∇2yx + b∇2yx+1 + c∇2yx+2 + · · ·+ q∇2yx+n;

and thus in sequence, it is clear, by article II, that the coefficient of tx in the expansion
of uzs

tr will be ∇syx+r; by multiplying therefore the preceding equation by u, and by
considering within each term of it only the coefficient of tx, that is by passing again

14



from the generating functions to the corresponding variables, we will have

(B)



yx+1 = yx(bZ
(0)
i−n+1 + cZ

(0)
i−n+2 + eZ

(0)
i−n+3 + · · ·+ qZ

(0)
i )

+∇yx(bZ
(1)
i−2n+1 + cZ

(1)
i−2n+2 + eZ

(1)
i−2n+3 + · · ·+ qZ

(1)
i−n)

+∇2yx(bZ
(2)
i−3n+1 + cZ

(2)
i−3n+2 + eZ

(2)
i−3n+3 + · · ·+ qZ

(2)
i−2n)

+ · · ·

+ yx+1(cZ
(0)
i−n+1 + eZ

(0)
i−n+2 + · · ·+ qZ

(0)
i−1)

+∇yx+1(cZ
(1)
i−2n+1 + eZ

(1)
i−2n+2 + · · ·+ qZ

(1)
i−n−1)

+ · · ·

+ yx+2(eZ
(0)
i−n+1 + · · ·+ qZ

(0)
i−2)

+∇yx+2(eZ
(1)
i−2n+1 + · · ·+ qZ

(1)
i−n−2)

+ · · ·

+ qyx+n−1Z
(0)
i−n+1 + q∇yx+n−1Z(1)

i−2n+1 + q∇2yx+n−1Zi−3n+1 + · · ·
This formula will serve to interpolate the series of which the final ratio of the terms
is that of a recurrent series; because it is clear that, in this case, ∇yx, ∇2yx, ∇3yx,
. . .will always go by diminishing and will end by being null in the infinite.

If one of these quantities is null, for example, if we have ∇ryx = 0, the preceding
formula will give the general expression of yx which satisfies this equation. In order to
show this, we suppose first∇yi = 0, or, that which comes to the same,

0 = ayi + byi+1 + cyi+2 + · · ·+ qyi+n;

if we make in this case x = 0 in the preceding formula, it will become

yi = y0(bZ
(0)
i−n+1 + cZ

(0)
i−n+2 + eZ

(0)
i−n+3 + · · ·+ qZ

(0)
i )

+ y1(cZ
(0)
i−n+1 + eZ

(0)
i−n+2 + · · ·+ qZ

(0)
i−1)

+ y2(eZ
(0)
i−n+1 + · · ·+ qZ

(0)
i−2)

+ · · ·

+ qyx+n−1Z
(0)
i−n+1.

y0, y1, y2, . . . , yn−1 are the first n values of yi; these are the n arbitrary constants that
the integration of equation∇yi = 0 introduces.

If we have∇2yi = 0, the general formula (B) will give, by supposing again x = 0,

yi = y0(bZ
(0)
i−n+1 + cZ

(0)
i−n+2 + · · ·+ qZ

(0)
i )

+∇y0(bZ
(1)
i−2n+1 + cZ

(1)
i−2n+2 + · · ·+ qZ

(1)
i−n)

+ y1(cZ
(0)
i−n+1 + · · ·+ qZ

(0)
i−1)

+∇y1(cZ
(1)
i−2n+1 + · · ·+ qZ

(1)
i−n+1)

+ · · ·

+ qZ
(0)
i−n+1yn−1 + qZ

(1)
i−2n+1∇yn−1,
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y0,∇y0, y1, ∇y1, . . . , yn−1,∇yn−1 being the 2n arbitrary constants which the inte-
gration of the equation ∇2yi = 0 introduces. We will have in the same manner the
value of yi in the case of ∇3yi = 0, ∇4yi = 0,. . ., and we see thus the analogy which
exists between interpolation of series and the integration of equations linear in the finite
differences.

VI.

Let yx = y′x + y′′x , and we suppose that u′ is the generating function of y′x, and u′′

of y′′x ; we will have
u = u′ + u′′.

Let further u′′zs = λ or u′′ = λ
zs ; if we designate by Xx+i the coefficient of tx+i in

the expansion of λ, we will have, by article II,

Xx+i = ∇sy′′x+i;

presently, we have

1

zs
=

tns

(atn + btn−1 + ctn−2 + · · ·+ q)s
.

Now the coefficient of tx+i, in the expansion of the second member of this equation, is
equal to the one of θx+i−ns in the expansion of 1

(θn+bθn−1+cθn−2+···+q)s , and, by the

preceding article, this last coefficient is equal to Z(s−1)
x+i−ns; therefore the coefficient of

tx+i, in the expansion of λ
zs , will be

Xx+i−nsZ
(s−1)
0 +Xx+i−ns−1Z

(s−1)
1 + · · ·+X0Z

(s−1)
x+i−ns or ΣXrZ

(s+1)
x+i−ns−r,

the integral being taken relatively to r and from r = 0 to r = x+ i− ns; this integral
will be the expression of y′′x+i.

In the present case, it is easy to reduce it to some integrals relative to i, because
it results from the expression which we have given of Z(s−1)

i in the preceding article,
as that of Z(i−1)

x+i−ns−r is reducible to some terms of this form Kβrr
µ, so that the term

corresponding to ΣXrZ
(s−1)
x+i−ns−r will beKΣβrrµXr,K being a function of x+i−ns;

now, if we designate by the characteristic Σ′ the integral relative to i, we will have

KΣβrrµXr = KΣ′βx+i−ns(x+ i− ns)µXx+i−ns,

provided that we terminate the integral relative to r, when r equals x + i − ns; we
will reduce thus the integral ΣXrZ

(s−1)
x+i−ns−r to some integrals uniquely relative to the
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variable i. This put, if in formula (B) we make x = 0 and ∇syi = 0, it will become

y′i+ΣXrZ
(s−1)
i−ns−r =



y0(bZ
(0)
i−n+1 + cZ

(0)
i−n+2 + · · ·+ qZ

(0)
i )

+∇y0(bZ
(1)
i−2n+1 + cZ

(1)
i−2n+2 + · · ·+ qZ

(1)
i−n)

+ · · ·

+∇s−1y0(bZ
(s−1)
i−sn+1 + cZ

(s−1)
i−sn+2 + · · ·+ qZ

(s−1)
i−sn+n)


+

y1(cZ
(0)
i−n+1 + · · ·+ qZ

(0)
i−1)

+ · · ·

+∇s−1y1(cZ
(s−1)
i−sn+1 + · · ·+ qZ

(s−1)
i−sn+n−1)


+ · · ·

+ qZ
(0)
i−n+1yn−1 + qZ

(1)
i−2n+1∇yn−1 + · · ·+ qZ

(s−1)
i−sn+1∇

s−1yn−1,

y0, ∇y0, . . .∇s−1y0, y1, . . .∇y1, . . .∇s−1y1, yn−1,∇yn−1, . . .∇s−1yn−1 being the
sn arbitraries of the integral of the equation

∇syi = 0 or ∇sy′i +∇sy′′i = 0;

now, ∇sy′′i being equal to Xi, this equation becomes

0 = ∇sy′i +Xi.

We will have therefore, by the preceding formula, the integral of all the equations linear
in the finite differences of which the coefficients are constants, in the case where they
have a last term which is a function of i.

VII.

We can give to the expression of 1
ti an infinity of other forms among which there is

found what can be utile in many cases. Here is how we can attain it.
For this, we suppose that, instead of giving, as above, to 1

ti this form

1

ti
= Z +

1

t
Z(1) +

1

t2
Z(2) + · · ·+ 1

tn − 1
Z(n−1),

we give it this one

1

ti
= Z +

(
1

t
− 1

)
Z(1) +

(
1

t
− 1

)2

Z(2) + · · ·+
(

1

t
− 1

)n
Z(n−1),

the question is reduced to determining Z, Z(1), Z(2), . . ..
We put first the equation

z = a+
b

t
+

c

t2
+ · · ·+ p

tn−1
+

q

tn
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under this form

z = a′ + b′
(

1

t
− 1

)
+ c′

(
1

t
− 1

)2

+ · · ·+ p′
(

1

t
− 1

)n−1
+ q′

(
1

t
− 1

)n
,

and one will have
a = a′ − b′ + c′ − · · · ∓ p′ ± q′,

the upper signs having place if n is even and the lower signs if n is odd. We will
multiply next, as previously, the numerator and the denominator of the fraction 1

1− θt
by

(a− z)θn + bθn−1 + cθn−2 + · · ·+ pθ + q,

by observing to substitute into the numerator: 1 ˚ in place of z,

a′ + b′
(

1

t
− 1

)
+ c′

(
1

t
− 1

)2

+ · · · ;

2 ˚ in place of aθn + bθn−1 + cθn−2 + · · · the quantity

θn

[
a′ + b′

(
1

t
− 1

)
+ c′

(
1

t
− 1

)2

+ · · ·

]
.

If moreover we make, for brevity, 1
t − 1 = 1

ti , we will have

b′θn−1
(
1− θ − θ

t′

)
+ c′θn−2

[
(1− θ)2 − θ2

t′2

]
+ · · ·+ q

[
(1− θ)n − θn

t′n

](
1− θ

t

)
(aθn + bθn−1 + cθn−2 + · · ·+ pθ + q − zθn)

;

now we have
1− θ

t
= 1− θ − θ

t′
.

By dividing therefore the numerator of the preceding fraction by this quantity, it will
be reduced to this one

b′θn−1 + c′θn−2
(

1− θ +
θ

t′

)
+ e′θn−3

[
(1− θ)2 + (1− θ) θ

t′
+
θ2

t′2

]
+ · · ·

+ q

[
(1− θ)n−1 + (1− θ)n−2 θ

t′
+ (1− θ)n−3 θ

2

t′2
+ · · ·

]


aθn + bθn−1 + cθn−2 + · · ·+ pθ + q − zθn
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whence, that which returns to the same, to

b′θn−1 + c′θn−1
(

1

θ
− 1

)
+ e′θn−1

(
1

θ
− 1

)2

+ · · ·+ qθn−1
(

1

θ
− 1

)n−1
+
θn−1

t′

[
c′ + e′

(
1

θ
− 1

)
+ · · ·+ q

(
1

θ
− 1

)n−2]

+
θn−1

t′2

[
e′ + · · ·+ q

(
1

θ
− 1

)n−3]
+ · · ·

+
qθn−1

t′n−1


aθn + bθn−1 + cθn−2 + · · ·+ pθ + q − zθn

Thence is easy to conclude that, if we conserve to Z(s−1)
r the same signification that we

have given to it in article V and if we consider that, by designating by qi the coefficient
of θi in the expansion of any function of θ, this same coefficient in the expansion of
this function multiplied by

(
1
θ − 1

)µ
will be, by article II,4µqi; we will have

(µ′)



1

ti
=b′Z

(0)
i−n+1 + b′zZ

(1)
i−2n+1 + b′z2Z

(2)
i−3n+1 + · · ·

+ c′4Z(0)
i−n+1 + c′z4Z(1)

i−2n+1 + c′z24Z(2)
i−3n+1 + · · ·

+ e′42Z
(0)
i−n+1 + e′z42Z

(1)
i−2n+1 + e′z242Z

(2)
i−3n+1 + · · ·

+ · · ·

+ q4n−1Z(0)
i−n+1 + qz4n−1Z(1)

i−2n+1 + qz24n−1Z(2)
i−3n+1 + · · ·

+
1

t′


c′Z

(0)
i−n+1 + c′zZ

(1)
i−2n+1 + · · ·

+e′4Z(0)
i−n+1 + e′z4Z(1)

i−2n+1 + · · ·
+ · · ·


+

1

t′2

{
e′Z

(0)
i−n+1 + e′zZ

(1)
i−2n+1 + · · ·

+ · · ·

}
+ · · ·

+
q

t′n−1
(Z

(0)
i−n+1 + zZ

(1)
i−2n+1 + · · · ).

Presently, it is clear, by article II, that the coefficient of tx in the expansion of the
function uzs

t′µ is4µ∇syx; the preceding equation will give therefore, by multiplying it
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by u and by passing again from the generating functions to the corresponding variables,

yx+i =y
x
(b′Z

(0)
i−n+1 + c′4Z(0)

i−n+1 + e′42Z
(0)
i−n+1 + · · ·+ q4n−1Z(0)

i−n+1)

+∇yx(b′Z
(1)
i−2n+1 + c′4Z(1)

i−2n+1 + e′42Z
(1)
i−2n+1 + · · ·+ q4n−1Z(1)

i−2n+1)

+∇2y
x
(b′Z

(2)
i−3n+1 + c′4Z(2)

i−3n+1 + e′42Z
(2)
i−3n+1 + · · ·+ q4n−1Z(2)

i−3n+1)

+ · · ·

+4y
x
(c′Z

(0)
i−n+1 + e′4Z(0)

i−n+1 + · · ·+ q4n−2Z(0)
i−n+1)

+4∇yx(c′Z
(1)
i−2n+1 + e′4Z(1)

i−2n+1 + · · ·+ q4n−2Z(1)
i−2n+1)

+4∇2yx(c′Z
(2)
i−3n+1 + e′4Z(2)

i−3n+1 + · · ·+ q4n−2Z(2)
i−3n+1)

+ · · ·

+42yx(e′Z
(0)
i−n+1 + · · ·+ q4n−3Z(0)

i−n+1)

+42∇y
x
(e′Z

(1)
i−2n+1 + · · ·+ q4n−3Z(1)

i−2n+1)

+ · · ·

+ qZ
(0)
i−n+14

n−1yx + qZ
(1)
i−2n+14

n−1∇yx + qZ
(2)
i−3n+14

n−1∇2yx + · · ·

VIII.

We suppose, in the preceding formula, x and i infinitely great, in a way that we
have

i =
x1
dx1

and x =
$

dx1
;

yx+i becomes a function of $ + x1, which we will designate by φ($ + x1). We
suppose moreover

a1 = a2, b1 =
b2
dx1

, c1 =
c2
dx21

, . . . , q =
q2
dxn1

,

the equation

0 = a1 + b1

(
1

θ
− 1

)
+ c1

(
1

θ
− 1

)2

+ · · ·+ q

(
1

θ
− 1

)n
will give, for θ, n roots of this form

θ = 1 + fdx1, θ = 1 + f1dx1, θ = 1 + f2dx1, . . . ;

these will be the quantities which we have named α, α′,α′′,. . . in the expression Z(s−1)
r

of article V, and the values of f, f1, f2, . . . ,will be given by the n roots of the equation

0 = a2 − b2f + c2f
2 + · · · ± q2fn.

Now, if we make θ = 1 + hdx1, we will have

1

θi
=

1

(1 + hdx1)i
;
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the hyperbolic logarithm of this last quantity is

−i log(1 + hdx1) = −ihdx1 = −hx1,

whence we deduce 1
θi = e−hx1 , e being here the number of which the hyperbolic

logarithm is unity; we have besides

a = a1 − b1 + c1 − · · · ± q = a2 −
b2
dx1

+
c2
dx21

+ · · · ± q2
dxn1

,

and this value of a is reduced to the term ± q2
dxn1

, because it is infinitely greater than

the others; the expression of Z(s−1)
r of article V will give therefore, by changing r into

i− 1,

Z
(s−1)
i−1 = − dx1

1.2.3 · · · (s− 1)(±q2)s
∂s−1

∂hs−1



e−hx1

(h− f1)s(h− f2)s · · ·

+
e−hx1

(h− f)s(h− f2)s · · ·

+
e−hx1

(h− f)s(h− f1)s · · ·
+ · · ·


,

the difference ∂s−1 being taken by making h vary only and by substituting, after the
differentiations, f in place of h in the first term, f1 in place of h in the second term,
and thus in sequence. We nameX(s−1)dx1 the preceding quantity, we will have, to the
infinitely small nearly,

Z
(s−1)
i±µ = Z

(s−1)
i−1 = X(s−1)dx1;

moreover we have yx = φ($), and the characteristic 4 of the finite differences must
be changed here into the characteristic ∂ of the infinitely small differences, so that the
equation

∇yx = ayx + byx+1 + cyx+2 + · · ·

or, that which returns to the same, this here

∇yx = a2 +
b2
dx1
4yx +

c2
dx21
42yx + · · ·

becomes, by changing dx1 into d$,

∇yx = a2 + b2
dφ($)

d$
+ c2

d2φ($)

d$2
+ e2

d3φ($)

d$3
+ · · ·+ q2

dnφ($)

d$n
;
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the expression of yx+i, found in the preceding article, will become therefore

(C)



φ($ + x1) =φ($)

(
b2X

(0) + c2
dX(0)

dx1
+ e2

d2X(0)

dx21
+ · · ·

)
+∇φ($)

(
b2X

(1) + c2
dX(1)

dx1
+ e2

d2X(1)

dx21
+ · · ·

)
+∇2φ($)

(
b2X

(2) + c2
dX(2)

dx1
+ e2

d2X(2)

dx21
+ · · ·

)
+ · · ·

+
dφ($)

d$

(
c2X

(0) + e2
dX(0)

dx1
+ · · ·

)
+
d∇φ($)

d$

(
c2X

(1) + e2
dX(1)

dx1
+ · · ·

)
+
d∇2φ($)

d$

(
c2X

(2) + e2
dX(2)

dx1
+ · · ·

)
+ · · ·

+
d2φ($)

d$2
(e2X

(0) + · · · )

+
d2∇φ($)

d$2
(e2X

(1) + · · · )

+ · · ·

+ q2
dn−1φ($)

d$n−1 X(0) + q2
dn−1∇φ($)

d$n−1 X(1)

+ q2
dn−1∇2φ($)

d$n−1 X(2) + · · ·

This formula will serve to interpolate the series, of which the last ratio of the terms is
that of a linear equation in the infinitely small differences of which the coefficients are
constants.

If we have

∇φ($) = a2φ($) + b2
dφ($)

d$
,

we will have
f =

a2
b2

and

∇φ($) = b2e
−f$ d[ef$φ($)]

d$
;

the expression of X(s−1) becomes, in this particular case,

1

1.2.3 . . . (s− 1)bs2
xs−1e−fx1 ;
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we will have therefore

φ($ + x1) = e−f$−fx1

{
ef$φ($) +

x1
b2

d[ef$φ($)]

d$
+
x21
b22

d2[ef$φ($)]

d$2
+ · · ·

}
.

By supposing b2 = 1 and f = 0, consequently a2 = 0, we will have the known formula
of Taylor.

Formula (C) will be terminated anytime we have ∇sφ($) = 0; if, for example,
∇φ($) = 0, we will have

φ($ + x1) =φ($)

(
b2X

(0) + c2
dX(0)

dx1
+ · · ·+ q2

dn−1X(0)

dxn−11

)
+
dφ($)

d$

(
c2X

(0) + e2
dX(0)

dx1
+ · · ·+ q2

dn−2X(0)

dxn−21

)
+ · · ·

+ q2X
(0) d

n−1φ($)

d$n−1 ;

this will be the integral of the equation 0 = ∇φ($ + x1) or, that which returns to the
same, of this

0 = a2φ($ + x1) + b2
dφ($ + x1)

dx1
+ c2

d2φ($ + x1)

dx21
+ · · ·+ q2

dnφ($ + x1)

dxn1
,

φ($), dφ($)
d$ , d

2φ($)
d$2 , . . . , d

n−1φ($)
d$n−1 being the n arbitrary constants which the inte-

gration introduces. We will have, by the same formula, the integrals of the equations

∇2φ($ + x1) = 0, ∇3φ($ + x1) = 0, . . .

If we make
φ($ + x1) = y1x1 + y2x1

and if we suppose ∇sy2x1 = V , V being a given function of x1, we will find easily,
by article VI, that if we change, in the expression of X(s−1), x1 into $ + x1 − r and,
in V , x1 into r − $, and if we name R that which the first of these two quantities
becomes and S that which the second becomes, we will have y2x1 =

∫
RS dr, the

integral being taken from r = 0 to r = $ + x1; if we suppose, moreover, in formula
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(C), ∇sφ($ + x1) = 0, it will become

y1x1 +

∫
RS dr =y0

(
b2X

(0) + c2
dX(0)

dx1
+ · · ·

)
+∇y0

(
b2X

(1) + c2
dX(1)

dx1
+ · · ·

)
+ · · ·

+∇(s−1)y0

(
b2X

(s−1) + c2
dX(s−1)

dx1
+ · · ·

)
+
dy0
d$

(c2X
(0) + · · · )

+∇
(
dy0
d$

)
(c2X

(1) + · · · )

+ · · ·

+∇(s−1)
(
dy0
d$

)
(c2X

(s−1) + · · · )

+ · · ·

+ q2
dn−1y0
d$n−1X

(0) + q2∇
(
dn−1y0
d$n−1

)
X(1) + · · ·

+ q2∇s−1
(
dn−1y0
d$n−1

)
X(s−1),

y0,
dy0
d$ , . . . , ∇y0, ∇

(
dy0
d$

)
, . . . being the sn arbitrary constants of the integral of the

equation
0 = ∇sφ($ + x1) or ∇sy1x1 + V = 0;

the preceding formula will serve therefore to integrate all the equations linear in the
infinitely small finite differences, of which the coefficients are constants, when they
have a last term which is a function of x1 alone.

IX.
On the transformation of the series.

We see, by that which precedes, with what facility all theory of the recurrent series
results by consideration of generating functions; this consideration can yet serve to
transform, in a more general and more simple manner than by known methods, a series
into another of which the terms follow a known law.

For this, we will consider the series

(γ) y0 + y1 + y2 + y3 + · · ·+ yx + yx+1 + · · ·+ y∞,

and we name, as above, u the sum of the series

y0 + y1t+ y2t
2 + y3t

3 + · · ·+ yxt
x + yx+1t

x+1 + · · ·+ y∞t
∞,
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it is clear that the coefficient of tx, in the expansion of the fraction u
1− 1

t

, will be equal
to the sum of the proposed series (γ), from the term yx to infinity; now, if we multiply
the numerator and the denominator of this fraction by

a+ b+ c+ e+ · · · −
(
a+

b

t
+

c

t2
+
e

t3
+ · · ·

)
,

the numerator will be divisible by 1− 1
t and the quotient of the division will be

u

[
b+ c+ e+ · · ·+ 1

t
(c+ e+ · · · ) +

1

t2
(e+ · · · ) + · · ·

]
;

therefore, if we make, for brevity,

a+ b+ c+ e+ · · · = K,

a+
b

t
+

c

t2
+
e

t3
+ · · · = z,

we will have

u

1− 1
t

=
u

K − z

[
b+ c+ e+ · · ·+ 1

t
(c+ e+ · · · ) +

1

t2
(e+ · · · ) + · · ·

]
;

by expanding the second member of this equation with respect to the powers of z, we
will have

u

[
b+ c+ e+ · · ·+ 1

t
(c+ e+ · · · ) +

1

t2
(e+ · · · ) + · · ·

](
1

K
+

z

K2
+

z2

K3
+

z3

K4
+ · · ·

)
.

Now, the coefficient of tx, in any term such as uzs

tr , is, by article II, equal to ∇syx+r;
this coefficient will be therefore, in the preceding quantity, equal to

(b+c+ e+ · · · )
(
yx
K

+
∇yx
K2

+
∇2yx
K3

+
∇3yx
K4

+ · · ·
)

+(c+ e+ · · · )
(
yx+1

K
+
∇yx+1

K2
+
∇2yx+1

K3
+
∇3yx+1

K4
+ · · ·

)
+(e+ · · · )

(
yx+2

K
+
∇yx+2

K2
+
∇2yx+2

K3
+
∇3yx+2

K4
+ · · ·

)
+ · · ·

this will be the value of the proposed series (γ) from the term yx to infinity.
If we make x = 0, we will have a new series equal to the proposed, but in which the

terms follow another law; and, if the quantities ∇yx, ∇2yx, . . . go by decreasing, this
new series will be convergent; it will terminate itself anytime that we have ∇syx = 0,
that which will take place when the proposed series will be recurrent; we will have in
this manner the sum of the recurrent series.

The transformation of the series is reduced to determining the integral Σyx, taken
from x = 0 to x = ∞, and all the ways to express this integral will give as many dif-
ferent transformations; that which consists, by that which precedes, in determining the
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coefficient of tx in the expansion of u
1− 1

t

. For that, let generally z be any function of 1
t ,

and we name∇yx the coefficient of tx in uz; the coefficients of tx in uz2, uz3, uz4, . . .
will be ∇2yx, ∇3yx,∇4yx, . . .. This put, we will multiply the numerator and the de-
nominator of the fraction u

1− 1
t

by K − z, and we will take K in a way that it will be
equal to z, when we make t equal to 1 in this last quantity; K − z will thus be divisible
by 1− 1

t . Let q+ q(1)

t + q(2)

t2 + q(3)

t3 + · · · be the quotient of the division; we will have

u

1− 1
t

=
uq

K

(
1 +

z

K
+

z2

K2
+

z3

K3
+ · · ·

)
+
uq(1)

Kt

(
1 +

z

K
+

z2

K2
+

z3

K3
+ · · ·

)
+ · · ·

that which gives, by passing from the generating functions to their corresponding vari-
ables,

Σyx =
qyx
K

+
q∇yx
K2

+
q∇2yx
K3

+ · · ·

+
q(1)yx+1

K
+
q(1)∇yx+1

K2
+
q(1)∇2yx+1

K3
+ · · ·

+
q(2)yx+2

K
+
q(2)∇yx+2

K2
+
q(2)∇2yx+2

K3
+ · · ·

+ · · ·

the integral Σyx being taken from yx to y∞; and, if we make in the preceding equation
x = 0, we will have a new series equal to the proposed and which will be, consequently,
its transformed.

X.
Theorems on the expansion of functions and of their differences in series.

By applying to some particular cases the results which we have given in article II,
we have an infinity of theorems on the expansion of functions in series; we are going
to present here the most remarkable.

We have generally

u

(
1

ti
− 1

)n
= u

[(
1 +

1

t
− 1

)i
− 1

]n
;

now it is clear that the coefficient of tx, in the first member of this equation, is the nth

difference of yx, x varying with i; because this coefficient in u
(
1
ti − 1

)
is yx+i − yx

or 14yx, by designating by the characteristic 14 the finite differences, when x varies
from the quantity i; whence it is easy to conclude that this same coefficient in the

expansion of u
(
1
ti − 1

)n
is 14nyx. Moreover, if we expand u

[(
1 + 1

t − 1
)i − 1

]n
according to the powers of 1

t − 1, the coefficients of tx in the expansions of u
(
1
t − 1

)
,
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u
(
1
t − 1

)2
, u
(
1
t − 1

)3
, . . . will be, by article II, 4yx, 42yx, 43yx, . . . ; so that this

coefficient in u
[(

1 + 1
t − 1

)i − 1
]n

will be [(1 + 4yx)i − 1], provided that, in the
expansion of this quantity, we apply to the characteristic4 the exponents of the powers
of 4yx, and that thus, in place of any power (4yx)m, we write 4myx; we will have
therefore

(1) 14nyx = [(1 +4yx)i − 1]n.

If we designate by the characteristic 1Σ the finite integral when x varies from i,
1Σnyx will be clearly equal, by article II, to the coefficient of tx in the expansion of
the function u

(
1
ti − 1

)−n
, by setting aside here some arbitrary constants which the

integration must introduce; now we have

u

(
1

ti
− 1

)−n
= u

[(
1 +

1

t

)i
− 1

]−n
;

moreover, the coefficient of tx in u
(
1
t − 1

)−m
is, whatever be m, Σmyx, by setting

aside some arbitrary constants, and this coefficient in u
(
1
t − 1

)m
is 4myx; we will

have therefore, by always setting aside some arbitrary constants,

(2) 1Σnyx = [(1 +4yx)i − 1]−n,

provided that, in the expansion of the second member of this equation, we apply to the
characteristic 4 the exponents of the powers of 4yx and that we change the negative
differences to integrals; and, as, in this expansion, the integral Σnyx is encountered,
and as this integral can be counted to contain n arbitrary constants, equation (2) is again
true by having regard to the arbitrary constants.

We can observe here that this equation is deduced from equation (1), by making n
negative and by changing the negative differences to integrals, that is by writing 1Σnyx
in place of 14−nyx and Σmyx in place of4−myx.

Equations (1) and (2) would equally hold if x, instead of varying from unity in4yx,
varied from any quantity $; but then the variation of x in 14yx, instead of being i,
would be i$. Indeed, it is clear that, if in yx we make x = x1

$ , x1 will vary from $
when x will vary from unity;4yx will be changed thus into4yx1 , the variation of x1
being $, and 14yx will be changed into 14yx1 , the variation of x1 being i$. This
put, if we suppose in these equations that the variation of x is infinitely small and equal
to dx in4yx, this difference will be changed into the infinitely small differential dyx;
if, moreover, we make i infinite and idx = α, α being a finite quantity, the variation of
x in 14yx will be α. We will have therefore

14nyx =
[
(1 + dyx)i − 1

]n
,

1Σnyx =
1

[(1 + dyx)i − 1]
n ;

now we have

log(1 + dyx)i = i log(1 + dyx) = i dyx = i dx
dyx
dx

= α
dyx
dx

,
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that which gives
(1 + dyx)i = eα

dyx
dx ,

e being the number of which the hyperbolic logarithm is unity; therefore

(3) 14nyx =
(
eα

dyx
dx − 1

)n
,

(4) 1Σnyx =
1(

eα
dyx
dx − 1

)n ,
by taking care to apply to the characteristic d the exponents of the powers of dyx and
to change the negative differences to integrals.

If, in equations (1) and (2), we suppose further i infinitely small and equal to dx,
we will have

14nyx = dnyx and 1Σnyx =
1

dxn

∫ n

y dxn.

We have besides

(1 +4yx)i = edx log(1+4yx) = 1 + dx log(1 +4yx);

these equations will become thus

(5)
dnyx
dxn

= [log(1 +4yx)]n,

(6)
∫ n

yxdx
n =

1

[log(1 +4yx)]n
.

We can remark here a singular analogy between the positive powers and the differences;
the equation

14yx = (1 +4yx)i − 1

holds yet in raising its two members to the power n, provided that we apply to the
characteristics 4 and 14 the powers of 4yx and of 14yx, because it is clear that in
this case we will have equation (1).

The same analogy subsists between the negative powers and the integrals, and the
preceding equation holds still in raising its two members to the power −n, provided
that we change to integrals of the same order the negative powers of4yx and of 14yx;
we will form thus equation (2).

It is likewise in the equation

14yx = eα
dyx
dx − 1;

in raising its two members to the powers n and −n, it will still be true and it will
be changed into equations (3) and (4), provided that we change the positive powers
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of 14yx and of dyx into differences of the same order, and the negative powers into
integrals of the same order. We see, besides, that these analogies hold to that which the
products of the function u, generator of yx, with the successive powers of 1

t − 1, are
the generating functions of the successive finite differences of yx, while the quotients
of u with these same powers are the generating functions of the finite integrals of yx.

XI.

The preceding formulas are able to be of use only in the case where the finite and
infinitely small differences of yx proceed by decreasing; but there is an infinity of cases
in which this does not take place and where it is however useful to have the expression
of the differences and of the integrals in convergent series; the simplest of all is that in
which the terms of one series, of which the differences are convergent, are multiplied
by the terms of a geometric progression: we are going to occupy ourselves with it first.

The general term of the series thus formed can be represented by hxyx, yx being
the general term of a series of which the differences are convergent. This put, we name
u the sum of the infinite series

y0 + y1ht+ y2h
2t2 + y3h

3t3 + · · ·+ y∞h∞t∞;

we have

u

(
1

ti
− 1

)n
= u

[
hi
(

1 +
1

ht
− 1

)i
− 1

]n
.

The coefficient of tx, in the first member of this equation, is the nth finite difference
of hxyx, x varying with the quantity i; besides, if we expand the second member with
respect to the powers of 1

ht − 1, the coefficient of tx, in u
(

1
ht − 1

)r
, will be, whatever

be r, hx4ryx. The preceding equation will give therefore, by passing again by article
II, from the generating functions to their corresponding variables

(7) 14nhxyx = hx[hi(1 +4yx)i − 1]n,

provided that, in the expansion of the second member of this equation, we apply to the
characteristic4 the exponents of the powers of4yx and that thus, in place of (4yx)

0,
we write40yx, that is yx.

By changing n into −n, we will have, as in the preceding article

(8) 1Σn(hxyx) =
hx

[hi(1 +4yx)i − 1]n
+ axn−1 + bxn−2 + · · ·+ f,

a, b, . . . , f being the n arbitrary constants of the integral of the first member, of which
the addition becomes useless in the case where h = 1, because then the second member
contains the integral Σnyx, which it no longer contains when h differs from unity.

If we suppose yx equal to a function y1 of x1, x1 being equal to x
r and r being

supposed infinite, we will have 4yx = dy1, the difference dx1 being equal to 1
r ;

moreover, if we make hr = p, we will have hx = px, and the function hxyx will be
changed into px1y1; now, if we suppose i infinitely great and i

r = α, it is clear that, x
varying with i, x1 will vary with α, in a way that 14n(px1y1) and 1Σn(px1y1) will
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be the difference and the nth finite integral of px1y1, x1 varying with the quantity α.
We have besides hi = pα; equations (7) and (8) will become consequently

14n(px1y1) = px1 [pα(1 + dy1)i − 1]n,

1Σn(px1y1) =
px1

[pα(1 + dy1)i − 1]n
+ axn−11 + bxn−21 + · · · ;

now we have
(1 + dy1)i = eα

dy1
dx1 ,

therefore

(9) 14n(px1y1) = px1

(
pαeα

dy1
dx1 − 1

)n
,

(10) 1Σn(px1y1) =
px1(

pαeα
dy1
dx1 − 1

)n + axn−11 + bxn−21 + · · ·+ f,

by taking care, in the expansion of these equations, to write y1 instead of
(
dy1
dx1

)0
and

dµy1
dxµ1

instead of
(
dy1
dx1

)µ
, µ being any whatsoever.

If, in formulas (7) and (8), we suppose i infinitely small and equal to dx, 14n(hxyx)

will be changed into dn(hxyx) and 1Σn(hxyx) into
∫ n

(hxyx); we have besides

hi(1 +4yx)i = 1 + dx log[h(1 +4yx)];

hence, we will have

(11)
dn(hxyx)

dxn
= hx[log(1 +4yx)]n,

(12)
∫ n

hxyx dx
n =

hx

[log h(1 +4yx)]n
+ axn−1 + bxn−2 + · · ·+ f.

I must observe here that equations (1), (2), (3), (4), (5) and (6) of the preceding article
have been found by Mr. de la Grange, in the Mémoires de Berlin for the year 1771,
by means of the analogy which exists between the positive powers and the differences,
and between the negative powers and the integrals; but this illustrious author is content
to suppose it without giving the demonstration of it, which he regards as very difficult.
As for equations (7), (8), (9), (10), (11) and (12), they are new, with the exception of
equation (10), of which Mr. Euler has given the particular case where n = 1 in his
Institutions de Calcul différentiel.
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XII.

We will have an infinity of analogous theorems to those of the preceding articles if,
instead of considering the differences and the integrals of yx, we considered any other
function of this variable; it will be easy to deduce them from the general solution of the
following problem:

Γ(yx) representing any linear function of yx, yx+1, yx+2, . . . , and ∇yx another
linear function of these same variables, we propose to find the expression of Γ(yx) in
a series ordered according to the quantities∇yx,∇2yx, ∇3yx, . . ..

For this, let u be the generating function of yx, us that of Γ(yx) and uz that of
∇yx, s and z being functions of 1

t ; we will begin by drawing from the equation which
expresses the relation of 1

t and of z the value of 1
t in z, and, by substituting it into s,

we will have the value of s in z, but, as it can happen that we have many values of 1
t

in z, we will have as many different expressions of s. In order to have one which can
belong indifferently to all these values of s, we will suppose that the number of values
of 1

t in z be n, and we will give to the expression of s the following form

s = Z +
1

t
Z(1) +

1

t2
Z(2) + · · ·+ 1

tn−1
Z(n−1),

Z, Z(1), Z(2), . . . being some functions of z which the question is to determine; now,
if we substitute successively into this equation, in place of 1

t , its n values in z, we will
form n equations by means of which we will determine the n quantitiesZ, Z(1), Z(2), . . .;
there will no longer be a question next but to reduce these quantities to a series ordered
with respect to the powers of z and to substitute them into the preceding equation. This
put, if we multiply this equation by u, the coefficient of tx, in us, will be Γ(yx); this
same coefficient, in any term such as uzs

tr , will be, by article II, equal to ∇syx+r. The
preceding equation will give therefore, by passing again from the generating functions
to the corresponding variables, an expression for Γ(yx) by a series ordered according
to the quantities∇yx,∇2yx, ∇3yx, . . . ,∇yx+1,∇2yx+1, . . . ,∇yx+n−1, . . ..

We can suppose next, for more generality, that the quantities Z(1), Z(2), Z(3),
. . . , instead of being multiplied by 1

t ,
1
t2 ,

1
t3 , . . . , are multiplied by some functions

whatever of 1
t , and we will have by this means an infinity of different expressions of

Γ(yx).
If we suppose

s =
1

ti
, z = a+

b

t
+

c

t2
+ · · ·+ q

tn
,

Γ(yx) will be changed into yx+i; we will have therefore, by this process, the value of
yx+i in a function of∇yx,∇2yx, . . .; but the method that we have given for this object
in article V is of a much more easy use.
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XIII.
Of series of two variables.

We consider a function yx,x1 of two variables x and x1, and we name u the infinite
series

y0,0 + y1,0t+ y2,0t
2+y3,0t

3 + · · ·+ yx,0t
x + yx+1,0t

x+1 + · · ·+ y∞,0t
∞

+y0,1t1 + y1,1t1t+y2,1t1t
2 + · · ·+ yx−1,1t1t

x−1 + yx,1t1t
x + · · · · · ·+ y∞,1t1t

∞

+y0,2t
2
1+y1,2t

2
1t+ · · ·+ yx−2,2t

2
1t
x−2 + · · · · · · · · · · · · · · ·+ y∞,2t

2
1t
∞

+ · · · ,

the coefficient of txtx1
1 will be yx,x1

; thus u will be the generating function of yx,x1
,

and, if we designate by the characteristic 4 the finite differences when x alone varies
and by the characteristic 41 those differences when x1 alone varies, the generat-
ing function of 4yx,x1 will be, by article II, u

(
1
t − 1

)
and that of 41yx,x1will be

u
(

1
t1
− 1
)

: hence the generating function of 441yx,x1
will be u

(
1
t − 1

) (
1
t1
− 1
)

,

whence it is easy to conclude that that of4i4i11 yx,x1
will be u

(
1
t − 1

)i ( 1
t1
− 1
)i1

.
In general, if we designate by∇yx,x1 the quantity

Ayx,x1 +Byx+1,x1 + Cyx+2,x1+ · · ·
+B1yx,x1+1 + C1yx+1,x1+1+ · · ·

+C2yx,x1+2+ · · ·
+ · · · ;

if we designate similarly by ∇2yx,x1 a function in which ∇yx,x1 enters in the same
manner as yx,x1

enters in ∇yx,x1
; if we designate further by ∇3yx,x1

a function in
which∇2yx,x1

enters in the same manner as yx,x1
in∇yx,x1

and thus in sequence, the
generating function of∇nyx,x1

will be

u

(
A+

B

t
+
C

t2
+ · · ·+ B1

t1
+
C1

tt1
+ · · ·+ C2

t21
+ · · ·

)n
;

hence

utrtr11

(
1

t
− 1

)i(
1

t1
− 1

)i1 (
A+

B

t
+ · · ·+ B1

t1
+ · · ·

)n
is the generating function of4i4i11 ∇nyx−r,x1−r1 .

s being supposed any function of 1
t and of 1

t 1
, if we expand si according to the

powers of these variables and if we designate by K
tmt

m1
1

any term of this expansion,

the coefficient of txtr11 in Ku
tmt

m1
1

will be Kyx+m,x1+m1 ; we will have therefore the

coefficient of txtr11 in usi or, that which returns to the same, we will have∇iyx,x1
: 1 ˚

by substituting, in s, yx in place of 1
t and yx1

in place of 1
t1

; 2 ˚ by expanding that
which usi then becomes according to the powers of yx and of yx1 and by writing in it
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in the place of any term, such as K(yx)m(yx1)m1 , Kyx+m,x1+m1 and, consequently,
by substituting Kyx,x1 in the place of entirely constant term K or K(yx)0(yx1)0.

If, instead of expanding si according to the powers of 1
t and 1

t1
, we expand it ac-

cording to the powers of 1
t−1 and 1

t1
−1, and if we designate byK

(
1
t − 1

)m ( 1
t1
− 1
)m1

any term of this expansion, the coefficient of txtx1
1 in Ku

(
1
t − 1

)m ( 1
t1
− 1
)m1

will

beK4m4m1
1 yx,x1 ; we will have therefore∇iyx,x1 : 1 ˚ by substituting, in s,4yx,x1 in

place of 1
t − 1 and 41yx,x1

in place of 1
t1
− 1; 2 ˚ by expanding that which si then

becomes according to the powers of 4yx,x1
and of 41yx,x1

and by applying to the
characteristics4 and41 the exponents of these powers, that is by writing, in the place
of any term such as K(4yx,x1

)m(41yx,x1
)m1 , this one K4m4m1

1 yx,x1
.

Let Σ be the characteristic of the finite integrals relative to x and Σ1 that of the
integrals relative to x1; let moreover z be the generating function of ΣiΣi11 yx,x1 ; we

will have z
(
1
t − 1

)i ( 1
t1
− 1
)i1

for the generating function of yx,x1
; this generating

function must, by having regard only to the positive or null powers of t and t1, be
reduced to u; we will have thus

z

(
1

t
− 1

)i(
1

t1
− 1

)i1
= u+

a

t
+

b

t2
+

c

t3
+ · · ·+ q

ti

+
a1
t1

+
b1
t21

+
c1
t31

+ · · ·+ q1
ti1
,

a, b, c, . . . , q being some arbitrary functions of t1 and a1, b1, c1, . . . , q1 being some
arbitrary functions of t, hence

z =
utiti11 + ati−1ti11 + bti−1ti11 + · · ·+ qti11 + a1t

iti1−11 + b1t
iti1−21 + · · ·+ q1t

i

(1− t)i(1− t1)i
.

XIV.
On the interpolation of series in two variables and on the integration of equations

linear in finite and infinitely small partial differences.

yx+i,x1+i1 is evidently equal to the coefficient of txtx1
1 in the expansion of u

tit
i1
1

;

now we have

u

titi11
= u

(
1 +

1− t
t

)i(
1 +

1− t1
t1

)i1

= u



1 + i
1− t
t

+
i(i− 1)

1.2

(
1− t
t

)2

+
i(i− 1)(i− 2)

1.2.3

(
1− t
t

)3

+ · · ·

+ i1
1− t1
t1

+ i1i
1− t1
t1

1− t
t

+ i1
i(i− 1)

1.2

1− t1
t1

(
1− t
t

)2

+ · · ·

+
i1(i1 − 1)

1.2

(
1− t1
t1

)2

+
i1(i1 − 1)

1.2

(
1− t1
t1

)2
1− t
t

+ · · ·

+ · · ·


,
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the coefficient of u
(
1
t − 1

)r ( 1
t1
− 1
)r1

being equal to

i(i− 1)(i− 2) · · · (i− r + 1)

1.2.3 . . . r

i1(i1 − 1)(i1 − 2) · · · (i1 − r1 + 1)

1.2.3 . . . r1
.

Now, the coefficient of txtx1
1 , in the expansion of u

(
1
t − 1

)r ( 1
t1
− 1
)r1

, is4r4r11 yx,x1 ;
we will have therefore, by passing from the generating functions to the corresponding
variables,

yx+i,x1+i1 = yx,x1
+ i4yx,x1

+
i(i− 1)

1.2
42yx,x1

+ · · ·

+ i141yx,x1 + i1i414yx,x1 + · · ·

+
i1(i1 − 1)

1.2
42

1yx,x1
+ · · ·

+ · · ·
an equation which can be put under this very simple form

yx+i,x1+i1 = (1 +4yx,x1
)i(1 +41yx,x1

)i1 ,

provided that, in the expansion of the second member of this last equation, we apply to
the characteristics 4 and 41 the exponents of the powers of 4yx,x1

and of 41yx,x1

and, consequently, that in the place of the entirely constant term or the term multiplied
by (4yx,x1

)0(41yx,x1
)0, we write yx,x1

.

XV.

We suppose now that, instead of interpolating according to the differences of the
function yx,x1 , we wish to interpolate according to other laws; for that, let

z = A+
B

t
+
C

t2
+
D

t3
+ · · ·+ p

tn−1
+

q

tn

+
B1

t1
+
C1

t1t
+
D1

t1t2
+ · · ·

+
C2

t21
+
D2

t21t
+ · · ·

+ · · ·

+
1

tn1
1

If we make
A+

B1

t1
+
C2

t21
+ · · ·+ 1

tn1
1

= a,

B +
C1

t1
+
D2

t21
+ · · · = b,

C +
D1

t1
+ · · · = c,

· · · ,
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we will have
z = a+

b

t
+

c

t2
+ · · ·+ q

tn
.

It is easy to conclude from it, as in article V, the successive values of 1
tn+1 ,

1
tn+2 ,

1
tn+3 , . . .

as functions of a, b, c, . . . and z, and it is clear that, in any term of the expression of
1
ti , the sum of the powers of 1

t and 1
t1

will not surpass i when i will be a positive whole
number, n1 being supposed equal or less than n.

We consider now formula (µ) of article V and we suppose that by expanding it
according to the powers of 1

t1
the quantity

bZ
(0)
i−n+1 + bzZ

(1)
i−2n+1 + · · ·

+cZ
(0)
i−n+2 + czZ

(1)
i−2n+2 + · · ·

+ · · ·

we have

M +Nz+ · · ·+ 1

t1
(M (1) +N (1)z+ · · · ) +

1

t21
(M (2) +N (2)z+ · · · ) + · · ·+ 1

ti1
M (i),

the ulterior powers of 1
ti are destroyed reciprocally, since the expression of 1

ti must not
contain them at all. We suppose similarly that by expanding the quantity

cZ
(0)
i−n+1 + czZ

(1)
i−2n+1 + · · ·+ eZ

(0)
i−n+2 + ezZ

(1)
i−2n+2 + · · ·

we have

M1+N1z+· · ·+ 1

t1
(M

(1)
1 +N

(1)
1 z+· · · )+ 1

t21
(M

(2)
1 +N

(2)
1 z+· · · )+· · ·+ 1

ti−11

M
(i−1)
1 ;

which by expanding the quantity

eZ
(1)
i−n+1+ · · ·

+ · · ·

we have

M2 +N2z + · · ·+ 1

t1
(M

(1)
2 +N

(1)
2 z + · · · ) + · · ·+ 1

ti−21

M
(i−2)
2 ,

and thus in sequence; we will have

1

ti
= M +Nz + · · ·+ 1

t1
(M (1) +N (1)z + · · · ) +

1

t21
(M (2) +N (2)z + · · ·+ 1

ti1
M (i)

+
1

t

[
M1 +N1z + · · ·+ 1

t1
(M

(1)
1 +N

(1)
1 z + · · · ) +

1

t21
(M

(2)
1 +N

(2)
1 z + · · · ) + · · ·+ 1

ti−11

M
(i−1)
1

]
+

1

t2

[
M2 +N2z + · · ·+ 1

t1
(M

(1)
2 +N

(1)
2 z + · · · ) + · · ·+ 1

ti−21

M
(i−2)
2

]
+ · · ·

+
1

tn−1

[
Mn−1 +Nn−1z + · · ·+ 1

t1
(M

(1)
n−1 +N

(1)
n−1z + · · · ) + · · ·+ 1

ti−n+1
1

M
(i−n+1)
n−1

]
.
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This put, if we name∇yx,x1 the quantity

Ayx,x1 +Byx+1,x1 + Cyx+2,x1+ · · ·
+B1yx,x1+1 + C1yx+1,x1+1+ · · ·

+C2yx,x1+2+ · · ·
+ · · · ;

the coefficient of txtx1
1 in the expansion of the quantity uzµ

trt
r1
1

will be, by article XIII,
∇µyx+r,x1+r1 ; the preceding equation will give consequently, by multiplying it by u
and by passing from the generating functions to the corresponding variables,

yx+i,x1
=Myx,x1

+N∇yx,x1
+ · · ·

+M (1)yx,x1+1 +N (1)∇yx,x1+1 + · · ·
+M (2)yx,x1+2 +N (2)∇yx,x1+2 + · · ·
+ · · ·
+M (i)yx,x1+i

+M1yx+1,x1 +N1∇yx+1,x1 + · · ·

+M
(1)
1 yx+1,x1+1 +N

(1)
1 ∇yx+1,x1+1 + · · ·

+ · · ·

+M
(i−1)
1 yx+1,x1+i−1

+ · · ·
+Mn−1yx+n−1,x1 +Nn−1∇yx+n−1,x1 + · · ·

+M
(1)
n−1yx+n−1,x1+1 +N

(1)
n−1∇yx+n−1,x1+1 + · · ·

+ · · ·

+M
(i−n+1)
n−1 yx+n−1,x1+i−n+1.

XVI.

If we suppose ∇yi,x1
= 0, we will have, by making x = 0 in the preceding

equation,

yi,x1
=My0,x1

+M (1)y0,x1+1 +M (2)y0,x1+2 + · · ·+M (i)y0,x1+i

+M1y1,x1
+M

(1)
1 y1,x1+1 +M

(2)
1 y1,x1+2 + · · ·+M

(i−1)
1 y1,x1+i−1

+ · · ·

+Mn−1yn−1,x1
+M

(1)
n−1yn−1,x1+1 + · · ·+M

(i−n+1)
n−1 yn−1,x1+i−n+1

M (r), M
(r)
1 ,M

(r)
2 , . . . being some functions of i and of r, the preceding expression of

yi,x1 can be taken under this very simple form

(λ) yi,x1
= Σ(M (r)y0,x1+r+M

(r−1)
1 y1,x1+r−1+M

(r−2)
2 y1,x1+r−2+· · ·+M (r−n+1)

n−1 yn−1,x1+r−n+1,
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the integral being taken with respect to r, from r = 0 to r = i+ 1, with respect to the
first term; from r = 1 to r = i+1 with respect to the second term, and thus in sequence.
This expression for yi,x1

will be the complete integral of the equation ∇yx,x1
= 0, or,

that which returns to the same, of this

0 = Ayi,x1
+Byi+1,x1

+ Cyi+2,x1
+ · · ·+ Pyi+n−1,x1

+ qyi+n,x1

+B1yi,x1+1
+ C1yi+1,x1+1 + · · ·

+C2yi,x1+2 + · · ·
+ · · ·
+ yi,x1+n.

It is clear that in this integral the quantities y0,x1
, y1,x1

, y2,x1
,. . ., yn−1,x1

are the n
arbitrary functions which the integration of the equations ∇yi,x1

= 0 introduces, it is
necessary to know immediately, or at least to be able to conclude from conditions of
the problem the first n vertical ranks of the following Table:

(Q)



y0,0, y1,0, y2,0, y3,0, . . . , yx,0, yx+1,0, . . . , y∞,0,
y0,1, y1,1, y2,1, y3,1, . . . , yx,1, yx+1,1, . . . , y∞,1,
y0,2, y1,2, y2,2, y3,2, . . . , yx,2, yx+1,2, . . . , y∞,2,
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . ,
y0,x1

, y1,x1
, y2,x1

, y3,x1
, . . . , yx,x1

, yx+1,x1
, . . . , y∞,x1

,
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . ,

Remark.— In a great number of problems, and principally in those which concern
the analysis of chances, the first n vertical ranks are recurrent series of which the law
is known; in this case y0,x1

, y1,x1
, . . . are given by some terms of the form Apx1 . We

suppose consequently that the expression of y0,x1 contains the term Apx1 , the corre-
sponding part of ΣM (r)y0,x1+r will be

Apx1(M (0) +M (1)p+M (2)p2 +M (3)p3 + · · ·+M (i)pi);

but

M (0) +
M (1)

t
+
M (2)

t1
+
M (3)

t21
+ · · ·+ M (i)

ti1

is the expansion of
bZ

(0)
i−n+1 + cZ

(0)
i−n+2 + · · ·

according to the powers of 1
t1

. By changing therefore 1
t1

in this last quantity into
p and naming P that which it then becomes, we will have APpx1 for the part of
ΣM (r)y0,x1+r which corresponds to the term Apx1 . It follows thence that, if the value
of y0,x1

is equal to Apx1 +A1p
x1
1 +A2p

x1
2 + · · · and if we name P1, P2, . . . that which

P becomes, by changing successively p into p1, p2, . . ., we will have

ΣM (r)y0,x1+r = APpx1 +A1P1p
x1
1 +A2P2p

x1
2 + · · ·

We will find similarly that, if the value of y1,x1
is expressed byBqx1+B1q

x1
1 +B2q

x1
2 +

· · · , and if we nameQ, Q1, Q2, . . . that which the quantities cZ(0)
i−n+1+eZ

(0)
i−n+2+· · ·
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become when we change successively 1
t1

into q, q1, q2, . . . , we will have

ΣM (r−1)y1,x1+r−1 = BQqx1 +B1Q1q
x1
1 +B2Q2q

x1
2 + · · ·

and thus in sequence; we will have thus the most simple expression of yi,x1
to which

we can arrive.
If we have ∇2yx,x1

= 0, we will have, by making x = 0 in the general expression
of yx+i,x1 of the preceding article,

yi,x1 =My0,x1 +M (1)y0,x1+1 + · · ·+M (i)y0,x1+i

+N∇y0,x1
+N (1)∇y0,x1+1 + · · ·

+M1y1,x1
+M

(1)
1 y1,x1+1 + · · ·+M

(i−1)
1 y1,x1+i−1

+N1∇y1,x1
+N

(1)
1 ∇y1,x1+1 + · · ·

+ · · ·

+Mn−1yn−1,x1
+M

(1)
n−1yn−1,x1+1 + · · ·+M

(i−n+1)
n−1 yn−1,x1+i−n+1

+Nn−1∇yn−1,x1
+ · · · ,

y0,x1 , y1,x1 , . . . , yn−1,x1 ,∇y0,x1 , ∇y1,x1 , . . . ,∇yn−1,x1 being the 2n arbitrary func-
tions of the integral of the equation ∇2yi,x1 = 0; we will have, in the same manner,
the integrals of the equations ∇3yi,x1

= 0, ∇4yi,x1
= 0, . . ..

I have named elsewhere (see Volumes VI and VII of the Mémoires des Savants
étrangers2) the series formed according to the equation∇ryi,x = 0 récurro-récurrentes
series; they differ from recurrent series, in that in those the terms are functions only one
variable alone: thus, all their terms in Table (Q) are either in one same vertical rank,
or in one same horizontal rank, or on one same straight line inclined to the horizon
in any manner, instead that the terms of a récurro-récurrente series, being functions of
two variables, fill all the extent of Table (Q) and form a surface, such that the arbitrary
quantities, which, in the case of recurrent series, are determined by as many points of
the line on which their terms are disposed, are determined here by the straight lines
or by some polygons placed arbitrarily in the preceding Table. The equation which
expresses the law of a recurrent series is in finite differences; that which expresses the
law of a récurro-récurrente series is in partial finite differences, and its integral contains
a number of arbitrary functions equal to the degree of that equation.

XVII.

The value of yi,x1 in formula (λ) of the preceding article, depending on the knowl-
edge of M (r), M

(r)
1 , . . . , it is clear that these quantities will be known when we have

the coefficient of 1
tr1

in the expansion of Z(0)
i−n+1; all is reduced therefore to determining

2Oeuvres de Laplace, T. VIII, p. 5 and p. 69, “Mémoire sur les suites récurro-récurrentes et sur
leurs usages dans la théorie des hasards” and “Recherches sur l’intégration des équations différentelles aux
différences finies, et sur leur usage dans la théorie des hasards.”

38



this coefficient; now we have, by article V,

Z
(0)
i =− 1

aαi+1(α− α1)(α− α2) · · ·

− 1

aαi+1
1 (α1 − α1)(α1 − α2) · · ·

− 1

aαi+1
2 (α2 − α1)(α2 − α1) · · ·

− · · ·

α,α1, α2, . . . being functions of 1
t1

. If we make 1
t1

= s, and if we differentiate the

preceding expression of Z(0)
i , n times in sequence with respect to s, we will have n+1

equations, by means of which, by eliminating the n quantities αi, αi1, α
i
2, . . ., we will

arrive to an equation among Z(0)
i , dZ

(0)
i

ds ,
d2Z

(0)
i

ds2 , . . ., of which the coefficients will be
functions of α1, α2, . . . and of their differences; now it is clear that α,α1, α2, . . . must
enter in the same manner in these coefficients; we can therefore, by the known methods,
determine them as rational functions of the coefficients of the equation which gives the
values of α,α1, . . . and of the differences of these coefficients, and, consequently, as
rational functions of s; by making next the denominators of these functions disappear,
we will have a linear equation between Z(0)

i and its differentials, of which the coeffi-
cients will be some rational and entire functions of s, or, that which returns to the same,

of 1
t1

. This put, we will consider any term of this equation, such as K
tm1

dµZ
(0)
i

dsµ , and name

λr the coefficient of 1
tr1

in the expansion of Z(0)
i ; this coefficient in the expansion of

K
tm1

dµZ
(0)
i

dsµ will be

K(r −m+ µ)(r −m+ µ− 1)(r −m+ µ− 2) · · · (r −m)λr−m+µ.

By thus passing thus from the generating functions to their corresponding variables, the
preceding equation between Z(0)

i−n+1 and its differences will give an equation among
λr, λr+1, . . . of which the coefficients are variables, and, by integrating it, we will
have the value of λr.

It follows thence that integration of every linear equation in finite partial differ-
ences, of which the coefficients are constants, depend: 1 ˚ on the integration of a linear
equation in finite differences of which the coefficients are variables; 2 ˚ of a definite
integral; I name thus any integral taken from one determined value of the variable to
another determined value of the variable. The definite integral on which the value of
yi,x1 in formula (λ) depends is relative to r and must be extended from r = 0 to r = i.
Relatively to the differential equations of the first order, we have

Z
(0)
i = − 1

aαi+1
;

we have, moreover
a = A+B1s,

α = −B
a
,
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that which gives

Z
(0)
i = − (A+B1s)

i

(−B)i+1
,

whence we deduce this differential equation

0 =
dZ

(0)
i

ds
(A+B1s)

i − iB1Z
(0)
i ,

that which gives the equation in finite differences

0 = A(r + 1)λr+1 +B1rλr − iB1λr.

We have next, in this case,
M (r) = Bλr;

formula (λ) of the preceding article will become therefore

yi,x1 = BΣλry0,x1+r;

this will be the complete integral of the equation in partial differences

0 = Ayi,x1
+Byi+1,x1

+B1yi,x1+1,

provided that the integral be taken from r = 0 to r = i + 1, and that the arbitrary
constant of the value of λr be such that

λ0 = − Ai

(−B)i+1
.

In passing from the finite to the infinitely small, the preceding method will give the
integral of the equations linear in infinitely small partial differences of which the coeffi-
cients are constants: 1 ˚ by integrating a linear equation in infinitely small differences;
2 ˚ by means of definite integrals, that which give the integration of these equations
in an infinity of cases which resist the known methods; but, as the passage from the
finite to the infinitely small can offer here some difficulties, I have preferred to seek
a method directly applicable to equations linear in infinitely small partial differences,
and I have found the following, which has the advantage of extending itself to the lin-
ear equations of which the coefficients are variables. I will limit myself to consider the
differential equations of the second order as being those which present themselves the
most frequently in the application of analysis to physical questions.

XVIII.

All equations linear in the infinitely small partial differences of the second order
can be put under this form

(S) 0 =
∂2u

∂s∂s1
+m

∂u

∂s
+ n

∂u

∂s1
+ lu,
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m, n and l being any given functions of s and of s1, and, if we name φ1(s) the integral∫
ds φ(s), φ2(s) the integral

∫
ds φ1(s), φ3(s) the integral

∫
ds φ2(s), and thus in

sequence; if we name similarly ψ1(s1) the integral
∫
ds1 ψ(s1), ψ2(s1) the integral∫

ds1 ψ1(s1), and thus in sequence, the value of u can be expressed by a series of this
form

u = Aφ1(s) +A(1)φ2(s) +A(2)φ3(s) +A(3)φ4(s) + · · ·
+Bψ1(s1) +B(1)ψ2(s1) +B(2)ψ3(s1) +B(3)ψ4(s1) + · · ·

φ(s) and ψ(s1) being two arbitrary functions, the one of s and the other of s1 (see on
this the Mémoires de l’Académie for the year 1773, p. 355 and following.3) This put, if
we substitute this value of u into equation (S) and if we compare separately the terms
multiplied by φ(s), φ1(s), φ2(s),. . ., ψ(s1), ψ1(s1), ψ2(s1), . . ., we will have, in order
to determine A, A(1), A(2), . . . , B,B(1), B(2), . . . , the following equations:

(γ)



0 =
∂A

∂s1
+mA,

0 =
∂A(1)

∂s1
+mA(1) +

∂2A

∂s∂s1
+m

∂A

∂s
+ n

∂A

∂s1
+ lA,

0 =
∂A(2)

∂s1
+mA(2) +

∂2A(1)

∂s∂s1
+m

∂A(1)

∂s
+ n

∂A(1)

∂s1
+ lA(1),

· · ·

(γ′)



0 =
∂B

∂s
+ nB,

0 =
∂B(1)

∂s
+ nB(1) +

∂2B

∂s∂s1
+m

∂B

∂s
+ n

∂B

∂s1
+ lB,

0 =
∂B(2)

∂s
+ nB(2) +

∂2B(1)

∂s∂s1
+m

∂B(1)

∂s
+ n

∂B(1)

∂s1
+ lB(1),

· · ·

When, in satisfying these equations, we succeed to find A(µ) = 0 or B(µ) = 0, µ
being a positive whole number, then u can always be expressed in finite terms, by
having regard only to the variables s and s1 alone of the equation. I have given in the
Mémoires cited a general and quite simple method to have in this case the complete
integral of this equation; but, if one or the other of the two equations A(µ) = 0 and
B(µ) = 0 cannot hold, there must be necessarily, in order to have the expression of u
in finite terms, introduced a new variable in the following manner.

For this, we will observe that, if we make the integral
∫
ds φ(s) begin when s = 0,

we will have∫
ds φ(s) = ds{φ(0) + φ(ds) + φ(2ds) + φ(3ds) + · · ·

+ φ(r ds) + φ[(r + 1) ds] + · · ·+ φ(s)};
3Oeuvres de Laplace, T. IX, p. 21
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therefore, if we name T the series

φ(0) + tφ(ds) + t2φ(2ds) + t3φ(3ds) + · · ·
+ trφ(r ds) + tr+1φ[(r + 1) ds] + · · ·+ t

s
dsφ(s),∫

ds φ(s) or φ1(s) will be equal to the coefficient of t
s
ds in the expansion of the function

T ds
1−t . It is easy to conclude that φ2(s) will be equal to the coefficient of t

s
ds in the

expansion of T ds2

(1−t)2 , and, generally, that φµ(s) will be equal to the coefficient of t
s
ds in

the expansion of T dsµ

(1−t)µ ; moreover, it is clear that the coefficient of φ(r ds) in φµ(s) is
equal to the coefficient of t

s
ds−r in the expansion of dsµ

(1−t)µ , and consequently equal to(
s
ds − r + 1

) (
s
ds − r + 2

) (
s
ds − r + 3

)
· · ·
(
s
ds − r + µ− 1

)
dsµ

1.2.3 . . . (µ− 1)
.

We suppose r infinite and equal to z
ds , we will have (s−z)µ−1ds

1.2.3...(µ−1) for this coefficient;
whence it follows that the coefficient of φ(r ds) or φ(z) in the expression of u will be

ds

[
A+A(1)(s− z) +

A(2)

1.2
(s− z)2 +

A(3)

1.2.3
(s− z)3 +

A(4)

1.2.3.4
(s− z)4 + · · ·

]
;

therefore, if we name Γ(s− z) the sum of the series

A+A(1)(s− z) +
A(2)

1.2
(s− z)2 +

A(3)

1.2.3
(s− z)3 + · · ·

and if we suppose ds = dz, we will have
∫
dz Γ(s− z)φ(z) equal to the series

Aφ1(s) +A(1)φ2(s) +A(2)φ3(s) +A(3)φ4(s) + · · · ,

provided that the integral is taken from z = 0 to z = s.
If we name similarly Π(s1 − z) the sum of the series

B +B(1)(s1 − z) +
B(2)

1.2
(s1 − z)2 +

B(3)

1.2.3
(s1 − z)3 + · · ·

we will find, by the same process, that
∫
dzΠ(s1 − z)ψ(z) is equal to the series

Bψ1(s1) +B(1)ψ2(s1) +B(2)ψ3(s1) + · · · ,

provided that the integral be taken from z = 0 to z = s1; we will have therefore

u =

∫
dz Γ(s− z)φ(z) +

∫
dzΠ(s1 − z)ψ(z),

the integral of the first term being taken from z = 0 to z = s, and that of the sec-
ond term being taken from z = 0 to z = s1. We can observe here that the functions
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Γ(s − z) and Π(s1 − z) are as well particular values which satisfy for u in the pro-
posed equation in partial differences. Indeed, it is clear, by the nature of the values of
A, A(1), A(2), . . ., that, if we substitute into this equation, in place of u, the series

A+A(1)(s− z) +
A(2)

1.2
(s− z)2 + · · · ,

z being regarded as constant, it will be satisfied. But, among all the particular values of
u which contain an arbitrary constant z, we must choose for Γ(s− z) that which gives
0 = ∂u

∂s1
+ mu when z = s, because then u is reduced to A, and that we must have

0 = ∂A
∂s1

+mA; it is necessary similarly to choose for Π(s1 − z) a particular value of
u which contains an arbitrary constant z, and in which we have 0 = ∂u

∂s + nu when
z = s′, because in this case u is reduced to B and that we must have 0 = ∂B

∂s + nB.
We can arrive directly to these results in the following manner:

We suppose that the integral
∫
pdz φ(z), taken from z equal to any constant to

z = s, is a particular value of u; we will have, in this case,

∂u

∂s1
=

∫
∂p

∂s1
dz φ(z),

∂u

∂s
=

∫
∂p

∂s
dz φ(z) + Pφ(s),

P being that which p becomes when we make z = s; thence we will deduce

∂2u

∂s∂s1
=

∫
∂2p

∂s∂s1
dz φ(z) +

∂P

∂s1
φ(s).

By substituting these values into equation (S) in partial differences, we will have

0 =

(
∂P

∂s1
+mP

)
φ(s) +

∫
dz φ(z)

(
∂2p

∂s∂s1
+m

∂p

∂s
+ n

∂p

∂s1
+ lp

)
,

that which gives, by equating separately to zero the terms affected by the integral sign,

0 =
∂P

∂s1
+mP,

0 =
∂2p

∂s∂s1
+m

∂p

∂s
+ n

∂p

∂s1
+ lp.

We see thus that, if we have two particular values of u represented by p and p1, which
contains an arbitrary constant z, and which are such that we have

0 =
∂P

∂s1
+mP,

0 =
∂P1

∂s
+ nP1,

P being that which p becomes when we make z = s, and P1 being that which p1
becomes when we make z = s1, we will have, for the complete expression of u,

u =

∫
p dz φ(z) +

∫
p1 dz ψ(z),
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φ(z) and ψ(z) being two arbitrary functions of z, and the integral of the first term being
taken from z equal to any constant, which we will suppose zero, to z = s, that of the
second term being taken from z = 0 to z = s, that of the second term being taken from
z = 0 to z = s1.

If we change z into st in the term
∫
p dz φ(z), and if we name q that which p

becomes by this change, we will have∫
p dz φ(z) =

∫
qs dt φ(st),

and, as the integral relative to z must be taken from z = 0 to z = s, it is clear that the
integral relative to t must be taken from t = 0 to t = 1. If we name similarly q1 that
which p1 becomes when we change z into s1t, we will have∫

p 1dz ψ(z) =

∫
q1s1 dt ψ(s1t),

the integral relative to t being taken again from t = 0 to t = 1; we can consequently
give to u this form

u =

∫
dt [sq φ(st) + s1q1 ψ(s1t)] ,

the integral being taken from t = 0 to t = 1.
If we name K the integral

∫
p dz φ(z) taken from z = 0 to z = ∞; this integral,

taken from z = 0 to z = s, will be clearly equal to K −
∫
p dz φ(z), this last integral

being taken from z = s to z =∞; therefore, if we make z = s+ z, and if we name r
that which p becomes by this change, we will have∫

p dz φ(z) = K −
∫
r dz1 φ(s+ z1),

the integral relative to z being taken from z = 0 to z = s, and the integral relative to z1
being taken from z1 = 0 to z1 =∞. If we name similarly K1 the integral

∫
p 1dz φ(z)

taken from z = 0 to z =∞, if we make z = s1 + z1, and if we name r1 that which p1
becomes by this change, we will have∫

p 1dz ψ(z) = K1 −
∫
r1 dz1 ψ(s1 + z1),

the integral relative to z being taken from z = 0 to z = s1, and the integral relative to
z1 being taken from z1 = 0 to z1 =∞; we will have therefore

u = K +K1 −
∫
dz1[r φ(s+ z1) + r1ψ(s1 + z1)].

The functions φ(s + z1) and ψ(s1 + z1) being arbitrary and even being able to be
supposed discontinuous, we can, without harm to the generality of this value of u,
suppose them so that we have K + K1 = 0; we will have therefore, by changing the
sign of these functions,

u =

∫
dz1[r φ(s+ z1) + r1ψ(s1 + z1)],
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the integral being taken from z1 = 0 to z1 =∞.
These different forms which we can give to u have each some particular advantages,

according to the different problems which we are proposed to solve. We will see below
(art. XX) a use of the last in the theory of sound; but we must observe that they are all
dependent on definite integrals and that they can be restored to some indefinite integrals
only in the case where one or the other of the quantities p and p1 is a rational and entire
function of z.

Every difficulty of the integration of equations linear in the partial differences of the
second order is reduced thus to determine these quantities; it is that which seems very
difficult in general: we will limit ourselves to consider some particular cases which are
relative to many interesting problems which we have been able to solve yet only in a
particular manner.

XIX.

We suppose first m, n constants in equation (S); we will satisfy equations (γ) and
(γ′) of the preceding article by making

A = e−ms1−ns,

A(1) = e−ms1−ns(mn− l)s1,

A(2) = e−ms1−ns
(mn− l)2

1.2
s21,

· · · ,

A(µ) = e−ms1−ns
(mn− l)µ

1.2.3 . . . µ
sµ1 ,

. . . ,

B = e−ms1−ns,

B(1) = e−ms1−ns(mn− l)s,

B(2) = e−ms1−ns
(mn− l)2

1.2
s2,

· · · ,

B(µ) = e−ms1−ns
(mn− l)µ

1.2.3 . . . µ
sµ,

. . . ,

e being the number of which the hyperbolic logarithm is unity; we will have thus

Γ(s− z) = e−ms1−ns
[
1 + (mn− l)s1(s− z) +

(mn− l)2

1.2
s21(s− z)2

+
(mn− l)3

1.2.3
s31(s− z)3 + · · ·

]
,

so that Γ(s − z) is equal to a function of s1(s − z) multiplied by e−ms1−ns. Let y be
this function and we name θ the quantity s1(s− z); e−ms1−nsy will be, by that which
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precedes, a particular integral of the proposed equation in partial differences. We will
substitute it therefore for u in this equation and we will observe that, in this case,

∂u

∂s
= −ne−ms1−nsy + e−ms1−ns

∂y

∂θ

∂θ

∂s
;

now we have
∂θ

∂s
= s1,

hence
∂u

∂s
= e−ms1−ns

(
−ny + s1

∂y

∂θ

)
.

We will have similarly

∂u

∂s1
= e−ms1−ns

[
−my + (s− z)∂y

∂θ

]
,

∂2u

∂s∂s1
= e−ms1−ns

[
mny − n(s− z)∂y

∂θ
−ms1

∂y

∂θ
+
∂y

∂θ
+ θ

∂2y

∂θ2

]
.

If we substitute these values into equation (S), we will have this in the ordinary differ-
ences

0 = (l −mn)y +
∂y

∂θ
+ θ

∂2y

∂θ2
,

and it will be necessary to determine the two arbitrary constants of its integral in a
manner that we have y = 1 and ∂y

∂θ = mn− l when θ = 0. Let

Γ

(θ) be that which this
integral becomes, we will have

Γ(s− z) = e−ms1−ns

Γ

[s1(s− z)];

it is easy to see that we will have similarly

Π(s1 − z) = e−ms1−ns

Γ

[s(s1 − z)],

hence

u = e−ms1−ns
{∫

dz

Γ

[s1(s− z)]φ(z) +

∫
dz

Γ

[s(s1 − z)]ψ(z)

}
,

the integral of the first term being taken from z = 0 to z = s, and the integral of the
second term being taken from z = 0 to z = s1. Indeed, if we substitute this value
of u into the proposed equation in partial differences, we will be assured easily that it
satisfies it; but, in order to make this substitution, we must observe in general that, the
integral

∫
u dz must be taken from z = 0 to z = s, its difference taken with respect to

s is ds
∫
du
ds dz + U ds, U being that which u becomes when we suppose z = s.

If, l, m and n being always supposed constants, we have l−mn = 0, we will have
y = 1, and the expression of u will become

u = e−ms1−ns
[∫

dz φ(z) +

∫
dz ψ(z)

]
= e−ms1−ns[φ1(s1) + ψ1(s1),

46



so that the value of u is then independent of any definite integral. But this case is the
sole where this can take place, and it is that which results similarly from that which has
been demonstrated in the Mémoires de l’Académie, year 1773, page 369.4

The equation of the vibrating strings in a medium resistant as the speed is

a2
∂2u

∂x2
=
∂2u

∂t2
+ b

∂u

∂t
,

u being the ordinate of the vibrating string of which the abscissa is x, t representing the
time, and a and b being two dependent constants, the one of the size and of the tension
of the string, and the other of the intensity of the resistance. If we make at + x = s
and at− x = s1, the preceding equation will become

0 = a2
∂2u

∂s∂s1
+

b

4a

∂u

∂s
+

b

4a

∂u

∂s1
;

the preceding expression of u will become then, by substituting in the place of s and of
s1, their values at+ x and at− x,

u = e
bt
2


∫
dz

Γ

[(at− x)(at+ x− z)]φ(z)

+

∫
dz

Γ

[(at+ x)(at− x− z)]ψ(z)

 ,

the first integral being taken from z = 0 to z = at + x, and the second integral being
taken from z = 0 to z = at−x. We see thence that the problem of the vibrating strings
depends then on the integration of the differential equation

0 = − b2

16a2
y +

dy

dθ
+ θ

∂2y

∂θ2
;

we see moreover that, because of the factor e−
bt
2 , the ordinate u of the vibrating string

diminishes without ceasing and becomes null after an infinite time, that which besides
is clear a priori.

XX.

We suppose next, in the general equation (S) of article XVIII, m = f
s+s1

, n =
g

s+s1
, and l = h

(s+s1)2
, so that we have to integrate this equation in partial differences

(T) 0 =
∂2u

∂s∂s1
+

f

s+ s1

∂u

∂s
+

g

s+ s1

∂u

∂s1
+

hu

(s+ s1)2
;

we will be assured easily that the following values satisfy equations (γ) and (γ′), of the

4Oeuvres de Laplace, T. IX, p. 35.
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article cited
A = (s+ s1)−f ,

A(1) = [f(1− g) + h]
A

s+ s1
,

2A(2) = [(f + 1)(2− g) + h]
A(1)

s+ s1
,

3A(3) = [(f + 2)(3− g) + h]
A(2)

s+ s1
,

· · ·

µA(µ) = [(f + µ− 1)(µ− g) + h]
A(µ−1)

s+ s1
,

· · ·
B = (s+ s1)−g,

B(1) = [g(1− f) + h]
B

s+ s1
,

2B(2) = [(g + 1)(2− f) + h]
B(1)

s+ s1
,

3B(3) = [(g + 2)(3− f) + h]
B(2)

s+ s1
,

· · ·

µB(µ) = [(g + µ− 1)(µ− f) + h]
B(µ−1)

s+ s1
,

· · ·
We will have thus

Γ(s− z) = (s+ s1)−f


1 + [f(1− g) = h]

s− z
s+ s1

+[(f + 1)(2− g) + h]

(
s− z
s+ s1

)2

+ · · ·

 ;

therefore, if we make s−z
s+s1

= θ, Γ(s − z) will be equal to a function of θ, multiplied
by (s+ s1)−f . We name this function y, so that

Γ(s− z) = (s+ s1)−fy,

(s+ s1)−fy will be a particular value of u, and we will have in this case

∂u

∂s
= −f(s+ s1)−f−1y + (s+ s1)−f

dy

dθ

∂θ

∂s
;

now we will have

∂θ

∂s
=

1

s+ s1
− s− z

(s+ s1)2
=

1

s+ s1
(1− θ),
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hence
∂u

∂s
= (s+ s1)−f−1

[
dy

dθ
(1− θ)− fy

]
;

we will find similarly

∂u

∂s1
= −(s+ s1)−f−1

(
fy + θ

dy

dθ

)
,

∂2u

∂s∂s1
= (s+ s1)−f−2

[
f(f + 1)y +

dy

dθ
(2fθ + 2θ − f − 1)− θ(1− θ)d

2y

dθ2

]
.

By substituting these values into the proposed equation in partial differences, we will
have the following equation in ordinary differences

(a1) 0 = θ(1− θ)d
2y

dθ2
+ [θ(g − f − 2) + 1]

dy

dθ
+ (fg − f − h)y;

it will be necessary to determine the two arbitrary constants of its integral, in a way so
that we have y = 1 and dy

dθ = f(1− g) +h when θ = 0; by naming therefore

Γ

(θ) that
which y becomes then, we will have

Γ(s− z) =

Γ( s−z
s+s1

)
(s+ s1)f

.

If we change g into f , and reciprocally f into g in equation (a1), we will have

(b1) 0 = θ(1− θ)d
2y

dθ2
+ [θ(f − g − 2) + 1]

dy

dθ
+ (fg − g − h)y;

and if we determine the two arbitrary constants, in a way that we have y = 1 and
dy
dθ = g(1− f) + h when θ = 0, by naming (θ) that which y becomes then, we will
have

Π(s1 − z) =

(
s1−z
s+s1

)
(s+ s1)g

.

The two functions

Γ

(θ) and (θ) have between them a very simple relation, by means
of which, when the one of the two will be known, the other will be similarly: indeed,
if, in equation (b1), we make

y1 = (1− θ)f−gy,

we will have

0 = θ(1− θ)d
2y1
dθ2

+ [θ(g − f − 2) + 1]
dy1
dθ

+ (fg − f − h)y1;

an equation which is the same as equation (a1). Moreover, as we must have, relatively
to equation (b1), y = 1 and dy

dθ = g − fg + h when θ = 0, we will have, in this same
case, y1 = 1 and

dy

dθ
=
dy1
dθ
− (f − g)y1 = g − fg + h,
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that which gives
dy1
dθ

= f − fg + h;

thus the two arbitrary constants of the integral of the equation in y1 are the same as
those of the integral of equation (a1), that which gives

y1 =

Γ

(θ),

hence
(θ) = (1− θ)f−g

Γ

(θ).

We have besides, relatively to equation (b1),

θ =
s1 − z
s+ s1

;

therefore (
s1 − z
s+ s1

)
=

(s+ z)f−g

Γ( s1−z
s+s1

)
(s+ s1)f−g

and

Π (s1 − z) =
(s+ z)f−g

Γ( s1−z
s+s1

)
(s+ s1)f

.

We will have consequently, by article XVIII,
(V)

u =
1

(s+ s1)f

[∫
dz

Γ

(
s− z
s+ s1

)
φ(z) +

∫
dz (s+ s1)f−g

Γ

(
s1 − z
s+ s1

)
ψ(z)

]
;

the first integral being taken from z = 0 to z = s, and the second being taken from
z = 0 to z = s1.

If either of these two quantities

Γ( s−z
s+s1

)
and

(
s1−z
s+s1

)
, this one for example,

Γ( s−z
s+s1

)
, is a rational and entire function of z, then the expression of u, considered

relatively to the corresponding arbitrary function which, in this case, is φ(z), will be
expressed by a finite series of terms multiplied by the successive integrals of φ(s);
because it is clear that then

∫
dz

Γ( s−z
s+s1

)
φ(z) will be composed of terms of the

form H
∫
zµdz φ(z), µ being a positive whole number; now we have, by integrating

by parts,∫
zµdz φ(z) =zµφ1(z)− µzµ−1φ2(z)

+ µ(µ− 1)zµ−2φ3(z)− · · · ± 1.2.3 . . . µ φµ+1(z) + C,

an expression delivered with the
∫

sign, and in which we must make z = s. We see thus
that the part of the expression of u relative to the arbitrary function φ(z) is independent,
not only of every definite integral, but further of every kind of integral; now there results
from this what I have demonstrated, in the Mémoires cited in 1773, that the complete
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expression of u is then entirely independent of every definite integral, that is that it can
be expressed by some indefinite integrals, uniquely relative to the variables s and s1,
of the proposed equation. We can be assured of it yet very easily by means of formula
(V), because it is clear that the integral∫

dz (s+ z)f−g

Γ

(
s1 − z
s+ s1

)
ψ(z)

will be in this case reducible to some terms of this form

H

∫
zµdz (s+ z)f−gψ(z)

µ being a positive whole number or zero; now we can, by some integrations by parts,
reduce the integral ∫

zµdz (s+ z)f−gψ(z)

to some terms delivered with the
∫

sign and to some integrals of this form∫
dz (s+ z)rψi(z);

this last integral, necessarily being taken from z = 0 to z = s1, is evidently equal to
this one ∫

ds1 (s+ s1)rψi(z)

and, consequently, independent of every definite integral; we see thence how the inte-
gral ∫

dz (s+ z)f−g

Γ

(
s1 − z
s+ s1

)
ψ(z)

can be reduced to some indefinite integrals, although the factor

(s+ z)f−g

Γ

(
s1 − z
s+ s1

)
may not be a rational and entire function of z.

Now, the condition necessary in order that the expression of

Γ( s1−z
s+s1

)
, reduced to

series, is terminated, is that we have A(µ) = 0, µ being a positive number, that which
gives

0 = (f + µ− 1)(µ− g) + h,

whence we deduce

µ =
1 + g − f ±

√
(f + g − 1)2 − 4h

2
.

When either of these two values of µ is zero or a positive whole number, then

Γ( s−z
s+s1

)
is a rational and entire function of z; by changing f into g and reciprocally, we will
have

µ =
1 + f − g ±

√
(f + g − 1)2 − 4h

2
,
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and, if one or the other of these values of µ is zero or a positive whole number, the value
of

(
s1−z
s+s1

)
will be a rational and entire function of z; in all these cases, the expression

of uwill not depend on any definite integral; otherwise it will be necessarily dependent.
If we name x the distance from one molecule of air to the origin of the sound in a

state of equilibrium; x+ u its distance after time t, we will have

∂2u

∂t2
= a2

∂2u

∂x2
+
ma2

x

∂u

∂x
− ma2u

x2
,

a2 being a constant coefficient depending on the elasticity and on the density of the air,
and m being 0, or 1, or 2, according as we consider the air either with one alone, or
with two, or with three dimensions (see, on this object, the learned researches of Mr. de
la Grange on sound, inserted in Volume II of Mémoires de la Société royale de Turin).
Let x+ at = s, x− at = s1; the preceding equation will become

0 =
∂2u

∂s∂s1
+

m

2(s+ s1)

(
∂u

∂s
+
∂u

∂s1

)
− mu

(s+ s1)2
;

formula (V) will become therefore

u =
1

2
m
2 x

m
2

[∫
dz

Γ

(
x+ at− z

2x

)
φ(z) +

∫
dz

Γ

(
x− at− z

2x

)
ψ(z)

]
,

the first integral being taken from z = 0 to z = x + at, and the second being taken
from z = 0 to z = x−at. The function

Γ(x±at−z
2x

)
is the value of y in the differential

equation

0 = θ(1− θ)d
2y

dθ2
+ θ(1− 2θ)

dy

dθ
+
m2 + 2m

4
y,

in which θ = x±at−z
2x , the two arbitrary constants of its integral being necessary to

determine, so that we have

y = 1 and
dy

dθ
= −m

4
(2 +m).

If we have m = 0 or m = 2, the value of y ordered according to the powers of
θ is terminated, and then the value of u is independent of every definite integral; but,
when m = 1, that which takes place when we have considered the air only with two
dimensions, the expression of u is necessarily dependent on a definite integral.

If we change in

Γ(x±at−z
2x

)
, z into x± at− z1, we will have, by article XVIII,

u =
1

2
m
2 x

m
2

∫
dz1

Γ(
− z1

2x

)
[φ(z + at+ z1) + ψ(z − at+ z1)],

the integral being taken from z1 = 0 to z1 = ∞. There results evidently from this
value of u that the molecule of air of which it expresses the derangement begins to
be shaken only when x − at + z1 is equal or less than the radius of the small sphere
agitated at the beginning; whence it follows that, in the three cases where the air has
one, or two, or three dimensions, the speed of the sound is the same and is determined
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by the equation t = x
a ; we see thus that the preceding forms of the integrals of the

equations in partial differences have the same advantage in the physical questions as
the forms known at present.

We could still apply the preceding method to the research on the vibrations of
unequally thick strings, to the theory of sound in some tubes of any figure and to many
other important questions; but these discussions would divert us too much from our
principal object.

XXI.

We return presently to the equations linear in the partial differences; although the
formulas which we have given in article XVI, in order to integrate them, have the
greatest generality, there are however some cases where they cannot serve: these cases
have place when the equation z = 0 gives the expression of 1

ti in 1
t1

by an infinite
series, that which arrives every time that, in the function z, the highest power of 1

t is
multiplied by a rational and entire function of 1

t1
. In order to have then the expression

of yx,x1
in finite terms, it is necessary to resort to some artifices of analysis which we

are going to exhibit, by applying them to the following equation

1

tt1
− 1

t1
− b

t
− c = 0;

this equation gives
1

t
=
c+ a

t1
1
t1
− b

,

hence

1

txtx1
1

=

(
c+ a

t1

)x
tx1
1

(
1
t1
− b
)x .

By expanding, with respect to the powers of 1
t1

the second member of this equation,
we will have an infinite series, that which will give yx,x1

in an infinite series; in order
to prevent this disadvantage, we will put the preceding equation under this form

1

txtx1
1

=

(
1
t1
− b+ b

)x1
[
c+ ab+ a

(
1
t1
− b
)]x

(
1
t1
− b
)x .

If we expand the second member of this equation, with respect to the powers of 1
t1
− b,

we will have

1

txtx1
1

=

[(
1

t1
− b
)x1

+ x1b

(
1

t1
− b
)x1−1

+
x1(x1 − 1)

1.2
b2
(

1

t1
− b
)x1−2

+ · · ·

]

×

ax + x(c+ ab)
ax−1

1
t1
− b

+
x(x− 1)

1.2
(c+ ab)2

ax−2(
1
t1
− b
)2 + · · ·


53



Let

V = ax,

V (1) = x1ba
x + x(c+ ab)ax−1,

V (2) =
x1(x1 − 1)

1.2
b2ax + x1xb(c+ ab)ax−1 +

x(x− 1)

1.2
(c+ ab)2ax−2,

V (3) =
x1(x1 − 1)(x1 − 2)

1.2.3
b3ax +

x1(x1 − 1)

1.2
xb2(c+ ab)ax−1

+ x1
x(x− 1)

1.2
b(c+ ab)2ax−2 +

x(x− 1)(x− 2)

1.2.3
(c+ ab)3ax−3,

· · ·

we will have

u

txtx1
1

= u


V

(
1

t1
− b
)x1

+ V (1)

(
1

t1
− b
)x1−1

+ V (2)

(
1

t1
− b
)x1−2

+ · · ·

+V (x1) +
V (x1+1)

1
t1
− b

+
V (x1+2)(
1
t1
− b
)2 + · · ·+ V (x+x1)(

1
t1
− b
)x

 ;

now the equation

1

tt1
− 1

t1
− b

t
− c = 0 gives

1
1
t1
− b

=
1
t − a
c+ ab

,

hence

u

txtx1
1

= u



V

(
1

t1
− b
)x1

+ V (1)

(
1

t1
− b
)x1−1

+ · · ·

+ V (x1) +
V (x1+1)

c+ ab

(
1

t
− a
)

+
V (x1+2)

(c+ ab)2

(
1

t
− a
)2

+ · · ·

+
V (x+x1)

(c+ ab)x

(
1

t
− a
)x


.

In order to pass again now from the generating functions to their corresponding vari-
ables, we will observe: 1 ˚ that the coefficient of t0t01 in u

txt
x1
1

is yx,x1
; 2 ˚ that this

same coefficient in any term such as u
(

1
t1
− b
)r

or ubr
(

1
bt1
− 1
)r

is equal to

br
[
y0,r
br
− r y0,r−1

br−1
+
r(r − 1)

1.2

y0,r−2
br−2

− · · ·
]

and, consequently, equal to br 14r y0,x1bx1 , the differential characteristic 14 correspond-
ing to the variability of x1, and this variable being necessarily supposed null after the
differentiations; 3 ˚ that this coefficient, in u

(
1
t − a

)r
, is ar4r yx,0ax , the characteristic
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4 corresponding to the variability of x, and this variable being necessarily supposed
null after the differentiations; we will have therefore with this condition

yx,x1 = V bx1 14x1
y0,x1

bx1
+ V (1)bx1−1 14x1−1 y0,x1

bx1
+ V (2)bx1−2 14x1−2 y0,x1

bx1
+ · · ·

+ V (x1)y0,0 +
V (x1+1)

c+ ab
a4yx,0

ax
+

V (x1+2)

(c+ ab)2
a242 yx,0

ax
+ · · ·

+
V (x+x1)

(c+ ab)x
ax4x yx,0

ax
;

this will be the complete integral of the equation

yx+1,x1+1 − ayx,x1+1 − byx+1,x1
− cyx,x1

= 0,

and it is clear that this integral supposes that we know the first horizontal rank and the
first vertical rank of Table (Q) of article XVI.

XXII.

In order to clarify by an example the method which we have given previously in
order to integrate the equations in finite partial differences, we suppose that we have
the equation

0 = t

(
1

t
− 1

)2

− t1
(

1

t1
− 1

)2

,

we will have
1

t
=

1

2
t1 +

1

2t1
± 1

2

(
1

t1
− t1

)
.

Let
1

tx
= Z +

1

t
Z(1),

Z and Z(1) being some function of t1 and of x; we will determine these functions by
substituting successively into the preceding equation, in the place of 1

t , its two values;
that which gives[

1

2
t1 +

1

2t1
+

1

2

(
1

t1
− t1

)]x
= Z + Z(1)

[
1

2t1
+

1

2
t1 +

1

2

(
1

t1
− t1

)]
,[

1

2
t1 +

1

2t1
− 1

2

(
1

t1
− t1

)]x
= Z + Z(1)

[
1

2t1
+

1

2
t1 −

1

2

(
1

t1
− t1

)]
,

whence it is easy to conclude

Z =

1
tx−2
1

− tx1
t21 − 1

,

Z(1) =

1
tx1
− tx1

1
t1
− t1

,
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hence
u

tx
= u

1
tx−2
1

− tx1
t21 − 1

+
u

t

1
tx1
− tx1

1
t1
− t1

.

Presently, the coefficient of t0tr11 in u
tx is yx,x1

, and, if we designate by Γλx and Πλx
the coefficients of tx in the expansion of the functions ν

t2−1 and ν
1
t−1

, ν being equal to

the infinite series λ0 + λ1t+ λ2t
2 + · · · , we will have

1 ˚ Γy0,x+x1−2 for the coefficient of t0tr11 in
u

tx−21 (t21 − 1)
;

2 ˚ Γy0,x+x1
for this coefficient in

utx1
t21 − 1

;

3 ˚ Πy1,x+x1 ”
u
t

1
tx1

1
t1
− t1

;

4 ˚ Πy1,x1−x ”
u
t t
x
1

1
t1
− t1

.

We will have therefore

yx,x1
= Γy0,x+x1−2 − Γy0,x1−x + Πy1,x+x1

−Πy1,x1−x,

and, if we represent

Γy0,x+x1−2 + Πy1,x+x1
by φ(x+ x1)

and
− Γy0,x1−x −Πy1,x1−x by ψ(x− x1).

φ(x) and ψ(x) being two arbitrary functions of x, we will have

yx,x1
= φ(x+ x1) + ψ(x1 − x).

This put, if we multiply the equation

0 = t

(
1

t
− 1

)2

− t1
(

1

t1
− 1

)2

by u and if we pass again from the generating functions to their corresponding vari-
ables, we will have the equation in partial differences

yx+1,x1
− 2yx,x1

+ yx−1,x1
= yx,x1+1 − 2yx,x1

+ yx,x1−1;

its complete integral will be consequently

yx,x1
= φ(x+ x1) + ψ(x1 − x),

that which is clear moreover by the simple substitution, but I have belief that one would
not be angry to see how this integral is deduced from the preceding methods.
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We suppose now that, in the following Table

(Z)



y0,0, y1,0, y2,0, y3,0, y4,0, . . . , yn−1,0, yn,0,
y0,1, y1,1, y2,1, y3,1, y4,1, . . . , yn−1,1, yn,1,
y0,2, y1,2, y2,2, y3,2, y4,2, . . . , yn−1,2, yn,2,
y0,3, y1,3, y2,3, y3,3, y4,3, . . . , yn−1,3, yn,3,
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . ,
y0,∞, y1,∞, y2,∞, y3,∞, y4,∞, . . . , yn−1,∞, yn,∞,

we know the first two horizontal ranks contained between the two extreme vertical
columns

y0,0, y0,1, y0,2, . . . , y0,∞,
yn,0, yn,1, yn,2, . . . , yn,∞,

and that we know moreover all the terms of these two columns; we could determine all
the values of yx,x1

which fall between these two columns, because, if we wish to form
the third horizontal rank, we will resume the equation

yx+1,x1
− 2yx,x1

+ yx−1,x1
= yx,x1+1 − 2yx,x1

+ yx,x1−1,,

which is reduced to

yx,x1+1 = yx+1,x1 + yx−1,x1 − yx,x1−1;

by making x1 = 1, and successively x = 1, x = 2, x = 3, . . . , x = n − 1, we will
have

y1,2 = y2,1 + y0,1 − y1,0,
y2,2 = y3,1 + y1,1 − y2,0,
y3,2 = y4,1 + y2,1 − y3,0,
· · ·

yn−1,2 = yn,1 + yn−2,1 − yn−1,0.

We will form in the same manner the fourth horizontal rank, and thus in sequence to
infinity; but, if we wished to determine the values of yx,x1

which fall outside of Table
(Z), the preceding conditions would not suffice, and it would be necessary to join them
to others.

We seek presently the expression of yx,x1
; for this, we resume the integral

yx,x1 = φ(x+ x1) + ψ(x1 − x);

and we suppose that the second horizontal rank which determines one of the two arbi-
trary functions is such that we have ψ(x1 − x) = φ(x− x1), we will have

yx,x1
= φ(x1 + x) + φ(x− x1);

by making x1 = 0, we will have φ(x) = 1
2yx,0, hence

yx,x1 =
1

2
yx+x1,0 +

1

2
yx−x1,0.
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It is easy to see that this equation satisfies the proposed equation in partial differences;
but it is only a particular integral which corresponds to the case where the second
horizontal rank is formed from the first, by means of the equation

yx,1 =
1

2
yx+1,0 +

1

2
yx−1,0.

As much as x + x1 will be equal or less than n, and as x − x1 will be positive or
null, we will have the value of yx,x1

, by means of the first horizontal rank; but, when x1
increasing, x+ x1 will become greater than n and if x− x1 will become negative, we
must determine the values of yx+x1,0 and of yx−x1,0 by means of the extreme vertical
columns. We suppose that all the terms of these two columns are zero and that if we
have y0,x1

= 0 and yn,x1
= 0; by making x = 0 in the equation

yx,x1 =
1

2
yx+x1,0 +

1

2
yx−x1,0.

we will have
y−x1,0 = −yx1,0;

by making next x = n, we will have

yn+x1,0 = −yn−x1,0.

If we change, in this last equation, x1 into n+ x1, we will have

y2n+x1,0 = −y−x1,0 = yx1,0;

by changing next x1 into n+ x1, we will have

y3n+x1,0 = yn+x1,0 = −yn−x1,0,

whence we deduce generally
y2rn+x1,0 = yx1,0

and
y(2r+1)n+x1,0 = −yn−x1,0.

We may thus, by means of these two equations, continue the values of yx,0 to infinity,
on the side of the positive values of x, and we will conclude from it those which cor-
respond to x negative, by means of the equation y−x1,0 = −yx1,0; thence results the
following construction.

If we represent the values of yx,0 from x = 0 to x = n, by the ordinates of the
angles of a polygon of which the abscissa is x and of which the two extremities A and
B lead to the points where x = 0 and x = n, we will carry this polygon from x = n to
x = 2n, giving a position to it contrary to the one which it had from x = 0 to x = n,
that is a position such that the parts which were above the axis of the abscissas is found
below, the point B of the polygon remaining moreover, in this second position, in the
same place as in the first, and the point A corresponding thus to the abscissa x = 2n;
we will place next this same polygon from x = 2n to x = 3n, by giving it a position
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contrary to the second and consequently like the first, in a manner that the point A
conserves, in this third position, the same place as in the second, and that thus the
point B corresponds to the abscissa x = 3n. By continuing to place thus this polygon
alternately above and below the axis of the abscissas, the ordinates drawn at the angles
of these polygons will be the values of yx,0 which correspond to x positive.

Similarly, we will place this polygon from x = 0 to x = −n, by giving it a position
contrary to that which it had from x = 0 to x = n, the point A remaining moreover, in
this second position, in the same place as in the first; we will place next this polygon
from x = −n to x = −2n, by giving it a position contrary to the second, the point B
remaining moreover in the same place, and thus in sequence to infinity. The ordinates
of these polygons will represent the values of yx,0 which correspond to x negative; we
will have next the value of yx,x1by taking the mean of the sum of the two ordinates
which correspond to the abscissas x+ x1 and x− x1.

This geometric construction is general, whatever be the nature of the polygon which
we just considered; it will serve to determine all the values of yx,x1

contained from
x = 0 to x = n and from x1 = 0 to x1 = ∞, provided that we have y0,x1

= 0 and
yn,x1

= 0, and that moreover the second horizontal rank of Table (Z) is such that we
have

yx,1 =
1

2
yx+1,0 +

1

2
yx−1,0

or, that which returns to the same,

yx,1 − yx,0 =
1

2
(yx+1,0 − 2yx,0 + yx−1,0).

We can, besides, be assured easily of the truth of the preceding results in some par-
ticular examples, by giving to n some particular values, by taking next some numbers
at will to form the first horizontal rank of Table (Z) and by forming the second rank by
means of the equation

yx,1 =
1

2
yx+x1,0 +

1

2
yx−x1,0;

finally by supposing generally y0,x1
= 0 and yn,x1

= 0; because, if by means of these
conditions and from the proposed equation in partial differences

yx,x1+1 = yx+1,x1
+ yx−1,x1

− yx,x1−1,

we form the other horizontal ranks of Table (Z), we will find that they will be the same
as those which result from the preceding construction.

We have, by that which precedes,

yx,x1+n =
1

2
yx+x1+n,0 +

1

2
yx−n−x1,0;

moreover,
yx+x1+n,0 = −yx−n−x1,0

and
yx−n−x1,0 = −yn+x1−x,0;
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therefore
yx,x1+n = −1

2
yx−n−x1,0 −

1

2
yn−x+x1,0 = −yn−x,x1 .

It follows thence that, in Table (Z), the (x1 + n)thth horizontal rank is the xst
1 hori-

zontal rank taken with a contrary sign and in a reverse order, that is that the rth term of
the (x1 + n)th rank is the (n− r)th term of the xth

1 rank taken with a contrary sign.
We have next

yx,x1+2n =
1

2
y2n+x+x1,0 +

1

2
yx−x1−2n,0;

we have besides
y2n+x+x1,0 = yx+x1,0

and
yx−x1−2n,0 = −y2n+x1−x,0 = −yx1−x,0 = yx−x1,0,

hence
yx,x1+2n =

1

2
yx+x1,0 +

1

2
yx−x1,0 = yx,x1 ;

whence it follows that the (x1 + 2n)th horizontal rank is exactly equal to the xst
1 rank.

We will consider presently the vibrations of a string of which the initial figure
is anything, but very little elongated from the axis of the abscissas; we name x the
abscissa, t the time, yx,t the ordinate of any point of the cord after time t; we imagine
moreover the abscissa x divided into an infinity of small parts equal to dx and which
we take for unity. This put, we will have, by the known principles of Dynamics,

∂2yx,t
∂t2

=
a2

dx2
(yx+1,t − 2yx,t + yx−1,t),

a being a constant coefficient depending on the tension and on the thickness of the
string. If we make t = x1

a , we will have dt = dx1

a , and yx,t will become a function
of x and of x1, which we will designate by yx,x1

; now, the magnitude of dt being
arbitrary, we can suppose it such that the variation of x1 is equal to that of x, which we
have taken for unity. The preceding equation will become thus

yx,x1+1 − 2yx,x1 + yx,x1−1 = yx+1,x1 − 2yx,x1 + yx−1,x1 ;

x and x1 being some infinite numbers. This equation is the same as we just considered;
thus the geometric construction which we have given, by means of the polygon which
represents the value of yx,0 from x = 0 to x = n, can be used in this case: the polygon
will be here the initial curve of the string; but, for this, we must suppose n equal to the
length of the string and to imagine it divided into an infinity of parts; it is necessary,
moreover, that the string be fixed at its two extremities, finally that we have y0,x1

= 0
and yn,x1

= 0; moreover the equation of condition

yx,1 − yx,0 =
1

2
(yx+1,0 − 2yx,0 + yx−1,0)
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is changed into this one

dt
∂yx,0
∂t

=
1

2
dx2

∂2yx,0
∂x2

,

that which gives
∂yx,0
∂t

= 0;

now ∂yx,0
∂t is the initial velocity of the string; this velocity must therefore be null at

the origin of the movement. Every time that these conditions will hold, the preceding
construction will give always the movement of the string, whatever be moreover its
initial figure, provided however that, in all its points, yx+2,0−2yx+1,0+yx,0 is infinitely
small of the second order, that is that two contiguous sides of the curve do not form at
all between them a finite angle. This condition is necessary in order that the differential
equation of the problem can subsist, and in order that this

∂yx,0
∂t

dt =
1

2
(yx+1,0 − 2yx,0 + yx−1,0)

gives
∂yx,0
∂t

= 0;

but besides it is evident, by that which precedes, that the initial figure of the string
can be discontinuous and composed of any number of arcs of a circle or of portions of
string which touch themselves.

We see easily that all the different situations of the string correspond to the hori-
zontal ranks of Table (Z), and, as the ranks which correspond to the values of x1, x1 +
2n, x1 + 4n, . . . are the same, by that which precedes, there results from it that the
string will return to the same situation after time t, t+ 2n

a , t+ 4n
a , . . ., n being always

the total length of the string.
This analysis of the vibrating strings establishes, if I do not deceive myself, in an

incontestable manner the possibility of admitting some discontinuous functions into
this problem, and it seems to me that we can generally conclude that these functions
can be employed in all the problems which correspond to the partial differences, pro-
vided that they can subsist with the differential equations and with the conditions of the
problem. We can consider, indeed, any equation in infinitely small partial differences
as a particular case of an equation in partial finite differences, in which we suppose that
the variables become infinities: now, nothing being neglected in the theory of equations
in the finite differences, it is clear that the arbitrary functions of their integrals are not
at all subject to the law of continuity, and that the constructions of these equations by
means of the polygons have place whatever be the nature of these polygons. Now, when
we pass from the finite to the infinitely small, these polygons change themselves into
curves which, consequently, can be discontinuous: thus the law of continuity appears
unnecessary, neither in the arbitrary functions of the integrals of the equations in the
infinitely small partial differences, nor in the geometric constructions which represent
these integrals; we must observe only that, if the differential equation is of order n,
and if we name u its principal variable, x and t being the two other variables, we must
not at all have a jump between two consecutive values of ∂n−ru

∂xs∂tn−r−s , that is that the
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difference of this quantity must be infinitely small with respect to this quantity itself.
This condition is necessary in order that the proposed differential equation can subsist,
because every differential equation supposes that the differences of u of which it is
composed, divided by the respective powers of dx and of dt, are some finite quantities
and comparables among themselves; but nothing obliges to admit the preceding con-
dition relatively to the differences of u of the order n or of a superior order; we must
therefore subject the arbitrary functions of the integral to this that there is no jump
between two consecutive values of a difference of these functions less than n, and the
curves which represent them must be subject to a similar condition, such that it must
not at all have a jump between two consecutive tangents if the equation is differentiable
of second order, or between two consecutive osculating radii if it is differentiable of the
third order, and thus in sequence. For example, in the problem of the vibrating strings
which we just analyzed, and which lead to a differential equation of the second order,
it is necessary that the curves of which we make use in order to construct it are such
that two contiguous sides do not form between them a finite angle: now, this is that
which will take place in the construction which we have given if the initial figure of the
string is such that this condition is fulfilled; because, by putting it alternately above and
below the axis of the abscissas, as we have prescribed, the infinite curve which results
from it satisfies in all its extent the same condition.

The sole case which seems to make exception to that which we just said is the
one in which the integral contains arbitrary functions and their differences; because,
by substituting it into the differential equation in order to satisfy it, we introduce the
differences of the arbitrary functions of an order superior to n, that which supposes that
the law of continuity extends beyond the differences of order n− 1; but we must then
consider as the true arbitrary functions of the integral the most elevated differences of
these functions, and to regard all the inferior differences as their successive integrals,
in consideration of which the previously given rule on the continuity of some arbitrary
functions and of their differences will subsist in its entirety. We can even present it in
a simpler manner, by observing that there is no jump at all between two consecutive
values of the integral of any arbitrary and discontinuous function; because, by naming
φ(s) this function, two consecutive values of its integral

∫
ds φ(s) differs between

them only by the quantity dsφ(s), which could be always infinitely small, when even
there could be a jump between two consecutive values of φ(s). The preceding rule can
therefore be reduced to the following:

If the integral of an equation in partial differences of order n contains the rth dif-
ference of an arbitrary function of s, we can, in place of the (n+ r)th difference of this
function, divided by dsn+r, employ any function discontinuous in s.

When, in the problem of the vibrating strings, the initial figure of the string is such
that two of these contiguous sides form a finite angle, for example when it is formed
by the joining of two straight lines, it seems to me that geometrically the preceding
solution cannot be admitted; but, if we consider physically this problem and all others
of this type, such as that of the sound, it appears that we can apply the construction
which we have given, even in the case where the string would be formed by a system
of many straight lines: because we see, a priori, that its movement must differ very
little from the one which it takes by supposing that, at the points where these lines
meet themselves, there were some small curves which permit using this construction.
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XXIII.

We can still apply the calculus of the generating functions to the integration of
equations in partial differences, by finite parts and by infinitely small parts; for this, we
will consider the equation

0 = ayx,x1
+ b4yx,x1

− ∂yx,x1

∂x1
,

the finite characteristic 4 corresponding to the variable x, of which the difference is
unity, and the characteristic d corresponding to the variable x1, of which the difference
is consequently dx1.

The generating equation of the preceding is

0 = a+ b

(
1

t
− 1

)
− 1

dx1

(
1

tdx1
1

− 1

)
,

whence we deduce, to the infinitely small nearly,

1

tx
=

1

(b dx1)x

[
1

tdx1
1 (1 + a dx1 − bdx1)

− 1

]x
.

Now, if we name yx,x1
the coefficient of txtx1 in u, the coefficient of t0tx1

1 in u
tx will be

yx,x1 ; this same coefficient in

u

[
1

tdx1
1 (1 + a dx1 − bdx1)

− 1

]x
will be

(1+a dx1 − b dx1)
x1
dx1


y0,x1

+ xdx1

(1 + a dx1 − b dx1)
x1
dx1

+x
− x y0,x1

+ (x− 1)dx1

(1 + a dx1 − b dx1)
x1
dx1

+x−1

+
x(x− 1)

1.2

y0,x1 + (x− 2)dx1

(1 + a dx1 − b dx1)
x1
dx1

+x−2
− · · ·


= (1 + a dx1 − b dx1)

x1
dx1 dx

y0,x1

(1 + a dx1 − b dx1)
x1
dx1

.

Now we have
(1 + a dx1 − b dx1)

x1
dx1 = e(a−b)x1 ,

e being the number of which the hyperbolic logarithm is unity; the coefficient of t0tx1

in u
[

1

t
dx1
1 (1+a dx1−b dx1)

− 1

]x
will be therefore

e(a−b)x1dx
(
y0,x1e

(a−b)x1

)
;
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hence, we will have

yx,x1
=
e(a−b)x1

bx
dx
(
e(a−b)x1y0,x1

)
dxx1

or, more simply,

yx,x1 =
e(a−b)x1

bx
dxφ(x1)

dxx1

φ(x1) being an arbitrary function of x1.
We can integrate, by the same process, the general equation

0 = 4nyx,x1
+ a4n−1 ∂yx,x1

∂x1
+ b∂n−2

∂2yx,x1

∂x21
+ · · · ;

its generating equation is

0 =

(
1

t
− 1

)n
+

a

dx1

(
1

t
− 1

)n−1(
1

tdx1
1

− 1

)
+

b

dx21

(
1

t
− 1

)n−2(
1

tdx1
1

− 1

)2

+· · ·

By naming therefore α, α1, α2 the n roots of the equation

0 = vn + avn−1 + bvn−2 + cvn−3 + · · · ,

we will have the n partial equations

1

t
= 1 +

α

dx1

(
1

tdx1
1

− 1

)
,

1

t
= 1 +

α1

dx1

(
1

tdx1
1

− 1

)
,

· · · ;

the first gives
1

tx
=

αx

(dx1)x

[
1

tdx1
1

(
1− dx1

α

) − 1

]x
.

Now the coefficient of t0tdx1
1 in u

tx is yx,x1
; this same coefficient in u

[
1

t
dx1
1 (1− dx1α )

− 1

]x
is

(
1− dx1

α

) x1
dx1


y0,x1

+ x dx1(
1− dx1

α

) x1
dx1

+x
− xy0,x1

+ (x− 1) dx1(
1− dx1

α

) x1
dx1

+x−1

+
x(x− 1)

1.2

y0,x1
+ (x− 2) dx1(

1− dx1

α

) x1
dx1

+x−2
− · · ·


=

(
1− dx1

α

) x1
dx1

dx
y0,x1(

1− dx1

α

) x1
dx1

= e−
x1
α dxy0,x1

e
x1
α ,
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since (
1− dx1

α

) x1
dx1

= e−
x1
α ;

we will have therefore

yx,x1 = αxe−
x1
α

dx
(
y0,x1e

x1
α

)
dxx1

,

or, more simply,

yx,x1
= αxe−

x1
α
dxφ(x1)

dxx1
,

φ(x1) being an arbitrary function of x1.
It follows thence that, if we designate by φ1(x1), φ2(x1), φ3(x1), . . . some other

arbitrary functions of x1, the complete expression yx will be

yx,x1 = αxe−
x1
α
dxφ(x1)

dxx1
+ αx1e

− x1α1
dxφ1(x1)

dxx1
+ αx2e

− x1α2
dxφ2(x1)

dxx1
+ · · ·

XXIV.
Theorems on the expansion of functions in two variables into series.

If we apply to the functions in two variables the method exhibited in articles X
and XI, we will have, in the expansion of these functions into series, some theorems
analogous to those in which we are arrived in these two articles. We suppose that u is
equal to the infinite series

y0,0 + y1,0t+ y2,0t
2 + y3,0t

3 + · · ·
+ y0,1t1 + y1,1t1t+ y2,1t1t

2 + · · ·
+ · · ·

and if we designate by the characteristic 4 the finite difference of yx,x1
, taken by

making x and x1 vary at the same time, the generating function of 4yx,x1 will be

u
(

1
tt1
− 1
)

; whence it follows that the function4nyx,x1
will be u

(
1
tt1
− 1
)n

. Now
we have

1

tt1
− 1 =

(
1 +

1

t
− 1

)(
1 +

1

t1
− 1

)
− 1,

that which gives

u

(
1

tt1
− 1

)n
= u

[(
1 +

1

t
− 1

)(
1 +

1

t1
− 1

)
− 1

]n
;

hence, if we designate by the characteristic 41 the finite difference of yx,x1
, taken

by making only x vary, and by the characteristic 42 that difference taken by making
only x1 vary, we will have, by passing again from the generating functions to the
corresponding variables,

4nyx,x1
= [(1 +41yx,x1

)(1 +42yx,x1
)− 1]n,
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provided that, in the expansion of the second member of this equation, we apply to the
characteristics41 and42 the exponents of the powers of41yx,x1 and42yx,x1 .

By changing n into −n, we will be assured easily, by reasoning analogous to that
of article X, that the preceding equation will become

Σnyx,x1 =
1

[(1 +41yx,x1
)(1 +42yx,x1

)− 1]n
,

provided that, in the expansion of the second member of this equation, we change the
negative differences into integrals.

It is clear that u
(

1

tit
i1
1

− 1

)n
is the generating function of the nth finite difference

of yx,x1
, when x varies with i, and when x1 varies with i1; now we have

u

(
1

titi11
− 1

)n
= u

[(
1 +

1

t
− 1

)i(
1 +

1

t1
− 1

)i1
− 1

]n
;

therefore, if we designate by the characteristic 14 the finite differences, and by the
characteristic 1Σ the finite integrals, when x varies with i and when x1 varies with
i1, we will have, by passing again from the generating functions to the corresponding
variables,

14nyx,x1
= [(1 +41yx,x1

)i(1 +42yx,x1
)i1 − 1]n,

1Σnyx,x1
=

1

[(1 +41yx,x1
)i(1 +42yx,x1

)i1 − 1]n
,

provided that, in the expansion of the second members of these equations, we apply to
the characteristics 41 and 42 the exponents of the powers of 41yx,x1

and 42yx,x1
,

and that we change the negative differences into integrals.
The two preceding equations yet hold, by supposing that, in the differences41yx,x1

and 42yx,x1
, x and x1 instead of varying from unity, vary from any quantity $; we

must solely observe that, in the difference 14yx,x1
, x will vary from i$ and x1 will

vary from i1$; now, if we suppose $ infinitely small, the differences 41yx,x1
and

42yx,x1
will be changed: the first into dx∂yx,x1∂x and the second into dx1

∂yx,x1
∂x1

. More-
over, if we make i and i1 infinitely great and if we suppose i dx = α and i 1dx1 = α1,
we will have

(1 +41yx,x1
)i =

(
1 + dx

∂yx,x1

∂x

) α
dx

= eα
∂yx,x1
∂x ,

e being the number of which the hyperbolic logarithm is unity; we will have similarly

(1 +42yx,x1)i1 = eα1
∂yx,x1
∂x1 ,

hence

4nyx,x1
=

(
eα

∂yx,x1
∂x +α1

∂yx,x1
∂x1 − 1

)n
,

Σnyx,x1
=

1(
eα

∂yx,x1
∂x +α1

∂yx,x1
∂x1 − 1

)n ,
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x varying from α and x1 varying from α1 in the two first members of these equations.
If, instead of supposing$ infinitely small, we suppose it finite and i infinitely small

and equal to dx; if we suppose, moreover, i1 infinitely small and equal to dx1, we will
have

(1 +41yx,x1
)i = (1 +41yx,x1

)dx = 1 + dx log(1 +41yx,x1
).

We will have similarly

(1 +42yx,x1
)i1 = 1 + dx1 log(1 +42yx,x1

);

moreover4nyx,x1 is changed into dnyx,x1 ; hence

dnyx,x1 = {[1 + dx log(1 +41yx,x1)][1 + dx1 log(1 +42yx,x1)]− 1}n

or, more simply,

dnyx,x1
= [dx log(1 +41yx,x1

) + dx1 log(1 +42yx,x1
)]n.

We can obtain in this manner an infinity of other similar formulas; but it suffices to
have exhibited the method for arriving to them.

All that which we have said on the functions of two variables can be applied equally
to those of three or of a greater number of variables, we will not insist further on this
object.
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