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If two gamesters B & C compete at the same time, B to be designated the victor, C the
defeated, let BC be written; and in turn C to be designated the victor, B the defeated; let
CB be written: & thus of the remaining.1

Let be put 1 ˚ B to defeat A, and the contest to be concluded in three games

BA

BC

BD

⎫⎬⎭ Thus it is clear B to escape the victor necessarily.

Let be put 2 ˚ B to defeat A, and the contest to be concluded in four games.

BA

CB

CD

CA

⎫⎬⎭ Thus it is clear C to escape the victor necessarily.

Let be put 3 ˚ B to defeat A, and the contest to be concluded in five games.

BA BA

CB∗ BC

DC DB

DA DA

DB DC

⎫⎬⎭
Thus it is clear D to escape the victor necessarily,
and it in two ways.2

Let be put 4 ˚ B the first in turn to defeat A, and the contest to be concluded in six
games.

Date: September 6, 2009.
Translated by Richard J. Pulskamp, Department of Mathematics and Computer Science, Xavier University,

Cincinnati, OH. .
1See also pages 139–150 of the Doctrine of Chances, 3rd Edition.
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BA BA BA

CB CB∗ BC

DC∗ CD∗ DB

AD AC AC

AB AB AD

AC AD AB

⎫⎬⎭
Thus it is clear A to escape the victor necessarily,
and it in three ways.

Let be put 5 ˚ the contest to be concluded in seven games, and let be put always B first
to defeat in turn the one A.

BA BA BA BA BA

CB CB CB∗ BC BC

DC DC∗ CD DB DB

AD∗ DA AC AD∗ DA

BA BD BA CA CD

BC BC∗ BD CB CB

BD BA BC CD CA

⎫⎬⎭

Thus it is clear B or C to escape
the victor necessarily, B in three
ways, and C in two.

Let be put 6 ˚ the contest to be concluded in eight games,

BA BA BA BA BA BA BA BA

CB CB CB CB CB∗ BC BC BC

DC DC DC∗ CD CD DB DB DB

AD AD∗ DA AC AC AD AD∗ DA

BA∗ AB BD BA∗ AB CA∗ AC CD

CB CA CB DB DA BC BA BC

CD CD CA DC DB BD BD BA

CA CB CD DA DC BA BC BD

Thus it is clear C to escape the victor in three, D in two, B in three ways, &c.
Now the letters may be written in order in which the victors are designated.

3 1B

4 1C

5 2D

6 3A

7 3B + 2C

8 3C + 2D + 3B

9 3D + 2A+ 3C + 3D + 2A

10 3A+ 2B + 3D + 3A+ 2B + 3A+ 2C + 2D

&c.
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With the formation of those examined, it will be clear 1 ˚ the letter B to be found in any
row always as many times, as A is found in the last & penultimate row: 2 ˚ C to be found
in any row as many times as B in the last row & D in the penultimate row are found: 3 ˚
D to be found in any row as many times as C in the last & B in the penultimate: 4 ˚ A to
be found in any row always as many times as D in the last row & C in the penultimate are
found.

But the number of variations corresponding to whatever given number of games, is
the double of the number of all variations corresponding to the given number of games
diminished by unity: and precisely the Probability which Gamester B has that he may
defeat in a given number of games, is one-half the probability which A had that he defeated
in the given number of games less one; and furthermore one-fourth the probability which
the same A had, that he defeated in the given number of games less two: & thus with the
others.

The probability C has, that he may defeat in a given number of games, is one-half the
probability which B had, that he defeated in the given number of games less one; and
furthermore one-fourth the probability which D had, that he defeated in the given number
of games less two.

The probability which D has that he may defeat in a given number of games, is one-half
the probability which C had, that he defeated in the given number of games less one; and
furthermore one-fourth the probability which B had, that he defeated in the given number
of games less two.

The probability which A has that he may defeat in a given number of games, is one-half
the probability which D had, that he defeated in the given number of games less one; and
furthermore one-fourth the probability which C had that he defeated in the given number
of games less two.

Now out of the observations it is easy to compose the Table of Probabilities, which
B, C, D, A have that they escape the victorious in a given number of games, and further-
more of those lots or expectations.

Table of Probabilites, &c.

B C D A

i 3 1
4 × 4 + 3p

ii 4 1
8 × 4 + 4p

iii 5 2
16 × 4 + 5p

iiii 6 3
32 × 4 + 6p

v 7 3
64 × 4 + 7p 2

64 × 4 + 7p

vi 8 3
128 × 4 + 8p 3

128 × 4 + 8p 2
128 × 4 + 8p

vii 9 3
256 × 4 + 9p 6

256 × 4 + 9p 4
256 × 4 + 9p

viii 10 4
512 × 4 + 10p 2

512 × 4 + 10p 6
512 × 4 + 10p 9

512 × 4 + 10p

ix 11 13
1024 × 4 + 11p 10

1024 × 4 + 11p 2
1024 × 4 + 11p 9

1024 × 4 + 11p

x 12 18
2048 × 4 + 12p 19

2048 × 4 + 12p 14
2048 × 4 + 12p 4

2048 × 4 + 12p

&c. &c. &c. &c.

Now indeed these series are converging, and they are able to be summed precisely by
common Arithmetic; & either the precise sums if they can be, or at least approximate, if it
should not be permitted, will be obtained to use many terms.
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To discover the sums of the probabilities proceeding all the way to infinity,
which the Gamesters have that they may escape victorious.

Let there be all the Probabilities of the one B to infinity, certainly

B′ +B′′ +B′′′ +B′′′′ +Bv +Bvi &c. = y

The probabilities of the one C

C ′ + C ′′ + C ′′′ + C ′′′′ + Cv + Cvi &c. = z

The probabilities of the one D

D′ +D′′ +D′′′ +D′′′′ +Dv +Dvi &c. = v

The probabilities of the one A

A′ +A′′ +A′′′ +A′′′′ +Av +Avi &c. = x

But they should be written in a descending perpendicular Scale, according to this way.

B′ = B′

B′′ = B′′

B′′′ = 1
2A
′′ + 1

4A
′

B′′′′= 1
2A
′′′ + 1

4A
′′

Bv = 1
2A
′′′′ + 1

4A
′′′ Hence y = 1

4 + 3
4x.

Bvi = 1
2A

v + 1
4A
′′′′

Therefore y = 1
4 + 1

2x+ 1
4x.

Demonstration.

As a matter of fact the first perpendicular column = y, by Hypothesis. It is true A′ +
A′′ +A′′′ +A′′′′ +Av +Avi &c.= x, by hypothesis; Therefore

1

2
A′ +

1

2
A′′ +

1

2
A′′′ +

1

2
A′′′′ +

1

2
Av ,&c. =

1

2
x.

Hence
1

2
A′′ +

1

2
A′′′ +

1

2
A′′′′ +

1

2
Av &c. =

1

2
x− 1

2
A′.

And

B′ +B′′ +
1

2
A′′ +

1

2
A′′′ +

1

2
A′′′′ +

1

2
Av &c. =

1

2
x− 1

2
A′ +B′ +B′′.

But 1
2A
′ = 0, B′′ = 0 & B′ = 1

4 , as it is clear from the Table.
Therefore the second perpendicular column = 1

4 + 1
2x.

But the third perpendicular column = 1
4x.

Therefore there will be y = 1
4 + 3

4x.
In a similar manner there may be written
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C ′ = C ′

C ′′ = C ′′

C ′′′ = 1
2B
′′ + 1

4D
′

C ′′′′ = 1
2B
′′′ + 1

4D
′′ this is z = 1

2y +
1
4v.

Cv = 1
2B
′′′′ + 1

4D
′′′

Cvi = 1
2B

v + 1
4D
′′′′

&c. =

Therefore z = 1
8 + 1

2y −
1
8 + 1

4v.

Furthermore there may be written

D′ = D′

D′′ = D′′

D′′′ = 1
2C
′′ + 1

4B
′

D′′′′ = 1
2C
′′′ + 1

4B
′′ & by a like argument it is clear

Dv = 1
2C
′′′′ + 1

4B
′′′ v = 1

2z +
1
4y.

Dvi = 1
2C

v + 1
4B
′′′′

&c. =

Finally there may be written

A′ = A′

A′′ = A′′

A′′′ = 1
2D
′′ + 1

4C
′

A′′′′ = 1
2D
′′′ + 1

4C
′′

Av = 1
2D
′′′′ + 1

4C
′′′ Whence x = 1

2v +
1
4z will be concluded.

Avi = 1
2D

v + 1
4C
′′′′

&c. =

But with these four equations resolved, it will be discovered

B′ +B′′ +B′′′ +B′′′′ &c. = y = 56
149

C ′ + C ′′ + C ′′′ + C ′′′′ &c. = z = 36
149

D′ +D′′ +D′′′ +D′′′′ &c. = v = 32
149

A′ +A′′ +A′′′ +A′′′′ &c. = x = 25
149

With those values discovered, now let be put 56
149 = b, 36

149 = c, 32
149 = d, 25

149 = a.
Again let there be.

3B′p+ 4B′′p+ 5B′′′p+ 6B′′′′p &c. = py

3C ′p+ 4C ′′p+ 5C ′′′p+ 6C ′′′′p &c. = pz

3D′p+ 4D′′p+ 5D′′′p+ 6D′′′′p &c. = pv

3A′p+ 4A′′p+ 5A′′′p+ 6A′′′′p &c. = px
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3B′ = 3B′

4B′′ = 4B′′

5B′′′ = 5
2A
′′ + 5

4A
′

6B′′′′ = 6
2A
′′′ + 6

4A
′′

7Bv = 7
2A
′′′′ + 7

4A
′′′

8Bvi = 8
2A

v + 8
4A
′′′′

Therefore y = 3
4 + 3

4x+ a.

As a matter of fact the first perpendicular Column = y, by Hypothesis:

3B′ + 4B′′ = 3
4 : For there is B′ = 1

4 , & B′′ = 0.

3A′ + 4A′′ + 5A′′′ &c. = x by Hypothesis.
A′ +A′′ +A′′′ &c. = a, as was discovered.

There is therefore 4A′ + 5A′′ + 6A′′′ + 7A′′′′ &c. = x+ a
And 4

2A
′ + 5

2A
′′ + 6

2A
′′′ + 7

2A
′′′′ &c. = 1

2x+ 1
2a.

But A′ = 0.
Therefore the second perpendicular column = 3

4 + 1
2x+ 1

2a.
3A′ + 4A′′ + 5A′′′ + 6A′′′′ &c. = x
2A′ + 2A′′ + 2A′′′ + 2A′′′′ &c. = 2a

There is therefore 5A′ + 6A′′ + 7A′′′ + 8A′′′′ &c. = x+ 2a
And 5

2A
′ + 6

2A
′′ + 7

2A
′′′ + 8

2A
′′′′ &c. = 1

4x+ 1
2a.

Therefore the third perpendicular column is = 1
4x+ 1

2a.
Therefore there will be y = 3

4 + 1
2x+ 1

2a+ 1
4x+ 1

2a
or y = 3

4 + 3
4x+ a, what was to be proved.

3C ′ = 3C ′

4C ′′ = 4C ′′

C ′′′ = 5
2B
′′ + 5

4D
′

6C ′′′′ = 6
2B
′′′ + 6

4D
′′

7Cv = 7
2B
′′′′ + 7

4D
′′′

8Cvi = 8
2B

v + 8
4D
′′′′

&c. =

Therefore z = 1
2y +

1
2b+

1
4v +

1
2d.

As a matter of fact the first perpendicular Column = z, by Hypothesis.
3C ′ + 4C ′′ = 1

2 .
3B′ + 4B′′ + 5B′′′ + 6B′′′′ &c. = y
B′ +B′′ +B′′′ + 6B′′′′ &c. = b

Therefore there is 4B′ + 5B′′ + 6B′′′ + 7B′′′′ &c. = y + b.
But 4B′ = 1.
Therefore 5B′′ + 6B′′′ + 7B′′′′ &c. = y + b− 1.

5
2B
′′ + 6

2B
′′′ + 7

2B
′′′′ &c. = 1

2y +
1
2b−

1
2 .

Therefore the second perpendicular Column = 1
2 + 1

2y +
1
2b−

1
2 = 1

2y +
1
2b.

Again, 3D′ + 4D′′ + 5D′′′ + 6D′′′′ &c. = v
2D′ + 2D′′ + 2D′′′ + 2D′′′′ &c. = 2d

Therefore there is 5D′ + 6D′′ + 7D′′′ + 8D′′′′ &c. = v + 2d.
And 5

4D
′ + 6

4D
′′ + 7

4D
′′′ + 8

4D
′′′′ &c. = 1

4v +
1
2d.
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Therefore the third perpendicular Column = 1
4v +

1
2d.

Therefore there is z = 1
2y +

1
2b+

1
4v +

1
2d, what was to be proved.

With the same order there may be written.

3D′ = 3D′ 3A′ = 3A′

4D′′ = 4D′′ 4A′′ = 4A′′

5D′′′ = 1
2C
′′ + 5

4B
′ 5A′′′ = 1

2D
′′ + 5

4C
′

6D′′′′ = 6
2C
′′′ + 6

4B
′′ 6A′′′′ = 6

2D
′′′ + 6

4C
′′

7Dv = 7
2C
′′′′ + 8

4B
′′′ 7Av = 7

2D
′′′′ + 7

4C
′′′

8Dvi = 8
2C

v + 8
4B
′′′′ 8Avi = 8

2D
v + 8

4C
′′′′

&c. = &c.
Hence v = 1

2z +
1
2c+

1
4y +

1
2b. And x = 1

2v +
1
2d+

1
4z +

1
2c.

Which Conclusions indeed are demonstrated in the same manner as above.
But with those four equations solved, there will be elicited

y =
45536

1492
, z =

38724

1492
, v =

37600

1492
, x =

33547

1492
=

33547

22201
.

Therefore, if B, C, D, A may wish to sell to a certain Spectator R the sums which they
individually hope to obtain, fairness will be that the buyer R pay out

to the one B 4× 56
149 + 45536

22201p, to the one C 4× 36
149 + 38724

22201p,

to the one D 4× 32
149 + 37600

22201p, to the one A 4× 25
149 + 33547

22201p.

To find the Probabilities which B, C, D, A have, that they must be fined, in a given
number of games.

If there are as many as two Games, they will be in this way.
BA BA

CB BC

}
Whence it

is clear B or C to be fined necessarily.
If there will have been three Games, the thing itself is had in this manner.

BA BA BA BA

CB CB BC BC

DC CD DB BD

⎫⎬⎭ Hence it is clear C, or D or B
to be fined necessarily.

If indeed there will have been four Games.

BA BA BA BA BA BA

CB CB CB CB BC BC

DC DC CD CD DB DB

AD DA AC CA AD DA

⎫⎬⎭
Therefore A must be
fined in three ways,
D in two, C in one.

And thus with the remaining. From which the Composition of the adjoined Table is
manifest of the Probabilities which B, C, D, A have that they be fined, in a given number
of games.
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Number
of Games B C D A

i 2 1
2

1
2

ii 3 1
4

1
4

2
4

iii 4 1
8

2
8

3
8

iiii 5 3
16

2
16

2
16

3
16

v 6 6
32

5
32

2
32

3
32

vi 7 6
64

8
64

8
64

4
64

&c.

But let y, z, v, x be the sums of all Probabilities which B, C, D, A have respectively
that they should be fined.

Let be written in the same order as in the preceding.

B′ = B′ C ′ = C ′

B′′ = B′′ C ′′ = C ′′

B′′′ = 1
2A
′′ + 1

4A
′ C ′′′ = 1

2B
′′ + 1

4D
′

B′′′′ = 1
2A
′′′ + 1

4A
′′ C ′′′′ = 1

2B
′′′ + 1

4D
′′

Bv = 1
2A
′′′′ + 1

4A
′′′ Cv = 1

2B
′′′′ + 1

4D
′′′

Bvi = 1
2A

v + 1
4A
′′′′ Cvi = 1

2B
v + 1

4D
′′′′

&c. = &c. =

Therefore y = 3
4 + 1

2x+ 1
4x. Therefore z = 1

2 + 1
2y +

1
4v.

= = 3
4 + 3

4x.

Let be written finally

D′ = D′ A′ = = A′

D′′ = D′′ A′′ = A′′

D′′′ = 1
2C
′′ + 1

4B
′ A′′′ = 1

2D
′′ + 1

4C
′

D′′′′ = 1
2C
′′′ + 1

4B
′′ A′′′′ = 1

2D
′′′ + 1

4C
′′

Dv = 1
2C
′′′′ + 1

4B
′′′ Av = 1

2D
′′′′ + 1

4C
′′′

Dvi = 1
2C

v + 1
4B
′′′′ Avi = 1

2D
v + 1

4C
′′′′

&c. = &c. =

Therefore y = 1
4 + 1

2z +
1
4y. Therefore x = 1

2v +
1
4z.

But with those four equations resolved, there will be discovered

y =
243

249
z =

252

149
v =

224

149
& x =

175

149
.

Therefore if any Spectator S wishes to sustain all fines, fairness will be that to the one
S

B must hand over 243
149p C 252

149p D 224
149p & A 175

149p.
Therefore with the sums of the probabilities which the Gamesters have individually that

they should be fined removed, from the sums of the expectations which the same have if
they depart victorious, the lots of them will remain respectively: certainly
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B accepts from R 4×56
149 + 45536

22201p

B surrenders to S 243
149p

Therefore there remains to B 224
149 + 9329

22201p

But B had deposited 1 before the game must begin.
Therefore B gains 75

149 + 9329
22201p.

C accepts from R 4×36
149 + 38724

22201p

C surrenders to S 252
149p

Therefore there remains to C 144
149 + 1176

22201p

But C had deposited 1.
Therefore C gains − 5

149 + 1176
22201p.

D accepts from R 4×32
149 + 37600

22201p

D surrenders to S 224
149p

Therefore there remains to D128
149 + 4224

22201p

But D had deposited 1.
Therefore D gains − 21

149 + 4224
22201p.

A accepts from R 4×25
149 + 33547

22201p

A surrenders to S 175
149p

Therefore there remains to A 100
149 + 7472

22201p

But A had deposited 1+p, certainly 1 before the game must begin, & p after he had been defeated by B once:
Therefore A gains − 49

149 − 14729
22201p.

The gain of B = + 75
149 + 9329

22201p

of C = − 5
149 + 1176

22201p

of D = − 21
149 + 4224

22201p

of A = − 49
149 − 14729

22201p

The sum of the gains = 0.
But the sum of the gains of B & A themselves = 26

149 − 5400
22201p;but we had posed B to

have defeated the one A once, before the Gamesters undertook the agreements with R &
S. Before indeed the game may be started, A had equal lot to expect that he must defeat
the one B, and the sum of the gains 26

149 − 5400
22201p should be divided precisely into two

parts, thus each gain should be counted as 13
149 − 2700

22201p.
Let be put 13

149 − 2700
22201p = 0, & there will be p = 1937

2700 .
Therefore if the fine p may be to the sum which they deposit individually as 1937 to

2700, A & B gain nothing, lose nothing. Indeed in this case C gains 1
225 , which D loses.

Corollary 1. Spectator R, before the game may begin, will be able to undertake for
himself, that the sum 4 concerning which the Gamesters contend, & all fines paid out, if
they surrendered to him at the beginning 4 + 7p.

Corollary 2. If the skills of the Gamesters are in given ratio, the lots of the Gamesters
will be determined by the same calculation.

Corollary 3. If any Series be so constituted, that it may decrease continuously, & any
term may have to the preceding any given ratios whatsoever, whether the same or different,
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that series will be summed precisely. In addition if all terms of this Series are multiplied
by the terms of an Arithmetic progression, one by one, the resulting new Series will be
summed precisely.

Corollary 4. If there are several parallel Series, so related that any term of each Series
to any preceding of the other Series has given ratio, whether the same or different, so that
those parallel Series may arrange themselves crosswise by whatever given corresponding
law, that Series will be summed exactly. In addition if all terms of these Series are mul-
tiplied in order by the terms of an Arithmetic Progression, one by one, the new Series
resulting out of this multiplication still will be summed precisely.

Key to the general Problem.
If there are any number of Gamesters for the sake of an example Six, B, C, D, E, F, A

& the Probabilities which they have that they escape victorious, or that they are fined, in a
given number of Games, are denoted respectively B′, C′, D′, E′, F′&A′; & the Probabil-
ities corresponding to these in a given number of Games with the nearest & with the lesser,
by B′′, C′′, D′′, E′′, F′′, A′′; & the Probabilities corresponding to these newest likewise
in a given number of Games with the nearest & with the lesser, by B′′′, C′′′, D′′′, E′′′, F′′′, A′′′,
& thus in order; there will always be

B′ = 1
2A′′ +

1
4A′′′ +

1
8A′′′′ +

1
16Av

C′ = 1
2B′′ +

1
4F′′′ +

1
8E′′′′ +

1
16Dv

D′ = 1
2C′′ +

1
4B′′′ +

1
8F′′′′ +

1
16Ev

E′ = 1
2D′′ +

1
4C′′′ +

1
8B′′′′ +

1
16Fv

F′ = 1
2E′′ +

1
4D′′′ +

1
8C′′′′ +

1
16Bv

A′ = 1
2F′′ +

1
4E′′′ +

1
8D′′′′ +

1
16Cv

And the retrogression in succession may happen always to as many letters less by two
as many as there are Gamesters, and the letter A may always be omitted, with the first
equation excepted, where the letter A occupies all terms except the first.


