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63. The principal rules of this Game are, 1, that the Banker deals with an entire deck
composed of fifty-two cards, 2. That the Banker draws all the cards in order, putting the
ones to his right, & and the others to his left, by commencing at the right. 3. That to each
hand, or to each deal, that is to say of two by two cards, the Punter has the liberty to take
one or many cards, & to venture over a certain sum. 4. That the Banker wins the stake of
the Punter, when the card of the Punter arrives in the right hand in an odd rank, & that he
loses, when the card of the Punter falls to the left hand and in an even rank. 5. That the
Banker takes the half of that which the Punter has staked on his card, when in the same
deal the card of the Punter comes twice, this which makes a portion of the advantage of the
Banker. And finally, that the last card which ought to be for the Punter, is neither for him
nor for the Banker, this which is again an advantage for the Banker.

It is evident that the conditions of this Game are advantageous to the Banker. The
difficulty is to determine this advantage, because it changes, & according to the number of
cards that are held by the Banker, and also according as the card of the Punter either has
not passed, or has passed one or many times.

1. The card of the Punter being only one time in the stock, the difference of the lot of the
Banker and the Punter is founded on this, that among all the diverse possible permutations
of the cards of the Banker, there is of them a greater number which are winning, than there
is of them which are losing, the last card being considered as null, & in this case it is easy
to notice that the advantage of the Banker increases in measure as the number of cards of
the Banker diminishes.

2. The card of the Punter being twice in the stock, the advantage of the Banker is drawn
from the probability that is this, that the card of the Punter will come twice in the same
deal; because then the Banker wins the half of the wager of the Punter, except the sole case
where the card of the Punter would be in doublet in the last deal, this which would give to
the Banker the entire wager of the Punter.

3. The card of the Punter being either three or four times in the hand of the Banker, the
advantage of the Banker is founded on the possibility that is this, that the card of the Punter
is found twice in the same deal, before it has come in pure gain or pure loss for the Banker.
Now this possibility increases or diminishes, & according as there are more or fewer cards
in the hand of the Banker, & according as the card of the Punter is found there more or less
times. Of all this it follows that in order to know the advantage of the Banker with respect
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to the Punters in all the different circumstances of this Game, it is necessary to discover
in all the different possible permutations of the cards that are held by the Banker, & and
under the supposition that the card of the Punter is found, either one, or two, or three or
four times, what are those which make him entirely win, what are those which give to him
the half of the wager of the Punter, what are those which make him lose, & finally what
are the permutations which are neither winning nor losing.

In order to resolve this Problem, it is apropos to begin with the simplest case, & next
pass to the more compound cases, it is necessary to seek some uniform law, & some anal-
ogy which is able to serve to disentangle from all the possible cases, the permutations
which are advantageous to the Banker, those which are indifferent to him, & finally those
which are unfavorable to him.

This way is not always the shortest; but as one employs it frequently with success, &
as it presents itself first to mind, I follow it here in detail in order to render it familiar to
the reader: he may certainly pass it if it is not to his taste. I will give next another method
more sophisticated, more analytic, & of an infinitely more extensive use.

FIRST METHOD.
FIRST CASE.

One supposes that there remain four cards in the hand of the Banker, & that the one of
the Punter is in it a certain number of times. The concern is to determine what is the lot
of the Banker & the one of the Punter: For example, if there is an écu for the card of the
Punter, one demands what portion of the écu the Punter must give to the Banker in order to
buy the right of his withdraw, & to not incur the risk of the Game; or, this which reverts to
the same, what is in this case the disadvantage of the Punter, in playing end to end against
the Banker.1

64. If one wants to express the four cards of the Banker by the letters a, b, c, d, one will
have all the different permutations of four cards represented in the following Table.

abcd bacd cabd dabc

abdc badc cadb dacb

acbd bcad cbad dbac

acdb bcda cbda dbca

adbc bdac cdab dcab

adcb bdca cdba dcba

1. If one supposes that the card of the Punter designated by the letter a, is one time inpage 80
the four cards of the Banker, & that the Punter has wagered on his card a sum of money
expressed by A, one will note in considering the preceding Table, that there are twelve
permutations which give 2A to the Banker, six which make him lose or which give to him
0, & six which are indifferent to him.

1See the letter of Jean Bernoulli to Montmort dated 17 March 1710 and the reply by Montmort dated 15
November 1710.
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Those which are the winning are:

abcd bcad

abdc bdac

acbd cbad

acdb cdab

adbc dbac

adcb dcab

Those which make him lose are:

bacd cabd dabc

badc cadb dacb

Thus expressing the sought lot by the letter s, one will have

s =
12× 2A+ 6× 0 + 6×A

24
=

5

4
A = A+

1

4
A.

2. If one supposes that the card of the Punter is found twice among the four cards of
the Banker, & that the two letters a & b express that of the Punter, one will find that of the
twenty-four permutations of the Table, there are twelve which give 2A to the Banker:

acbd bcad cdba

acdb bcda cdab

adbc bdac dcba

adcb bdca dcab

Four which give to him 3
2A, that is to say, his écu and the half of the one of the Punter:

abcd bacd

abdc badc

Eight which make him lose:
cabd dabc

cadb dacb

cbad dbac

cbda dbca

Thus one will have s =
12×2A+4× 3

2A+8×0

24 = 5
4A = A+ 1

4A.
3. If one supposes that the card of the Punter is found three times among the four cards

of the Banker, & that the three letters a, b, c, express that of the Punter, one will find again
the lot of the Banker= A+ 1

4A; because there are twelve permutations there which give to
him 3

2A.
abcd bacd cabd

abdc badc cadb

acbd bcad cbad

acdb bcda cbda

Six which give to him 2A:
adbc bdac cdab

adcb bdca cdba
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Six which make him lose:
dabc dbac dcba

dacb dbca dcab

One will have therefore s =
12× 3

2A+6×2A+6×0

24 = A+ 1
4A.

4. Finally it is evident that if the card of the Punter is found four times in the four cards
of the Banker, the lot of the Banker will be = A+ 1

2A.

COROLLARY I.

65. It seems by the solution in this first case, that if the stake of the Punter is one écu,
he must give five sols which is the fourth of it to the Banker, in order to buy the right of his
withdraw, this is if his card is one time, or two times, or three times in the four cards of the
Banker.

COROLLARY II.

66. There would be an infinite labor to seek the other cases in the manner that one
has resolved this one in searching in some Tables the favorable & contrary permutations;
because this number becomes immense in a greater number of cards; also I have put the
preceding solution, only in order to make me more easily understood in the following.

In order to resolve the preceding case in a methodical manner, & in order to discover
the chances by the sight of the mind, it is necessary to note,

That if the card of the Punter be one time in two cards, the lot of the Banker will be 3
2A:

Because of two possible permutations of two letters, there is one of them which gives 2A,
& one which gives to him A; & if the card of the Punter be in it more than one time, the
lot of the Banker will be 2A, this which is evident.

It is necessary to observe next that the card of the Punter being one time in four cards, if
one places the twenty-four possible permutations of four letters on four columns, of which
the first all begin with a, the second with b, the third with c, the fourth with d, the first
column will give 2A to the Banker in all its permutations.

And when partitioning each of the three other columns into three columns of two per-
mutations, the one of these last three, namely the one where a occupies the second place,
will give twice zero to the Banker, & each of the two last others will give to the Banker
the same lot as he will have in the case that the Banker holds two cards, that of the Punter
being found one time there, that is to say 3

2A, this which gives the lot of the Banker, as
hereafter

=
1× 6× 2A+ 3× 2× 2× 3

2A

24
=

30

24
A = A+

1

4
A.

One will observe similarly that the card of the Punter expressed by the letters a & b
being twice in the four cards, if one imagines the twenty-four different permutations as
the four cards may be received, put on four columns, as hereafter, the two columns which
commence with the letters a & b, will contain each four permutations which will give 2A
to the Banker, & two permutations which will give 3

2A to him: Because in the one there
are two permutations where a is followed by b, & in the other there are two permutations
where b is followed by a; & partitioning each of the two other columns of six permutations
into three others of two permutations, there will be two of these three which will give two
times zero to the Banker, a & b occupying the second place, & the third will give to the
Banker the same lot as he would have, if the card of the Punter was found twice in the two
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cards; & consequently one would have again, according to this idea, the lot of the Banker,

=
2× 4× 2A+ 2× 3

2A+ 2× 2× 2A

24
= A+

1

4
A.

One will notice again that the card of the Punter expressed by the letters a, b, c, being
three times in the four cards, the three columns which begin with the letters a, b, c, will
contain each two permutations which will give 2A to the Banker, & four permutations
which will give to him 3

2A, some two of the three letters a, b, c, being in sequence, &
when partitioning the last column which commences with d into three columns of two
permutations, each of the three will give twice zero to the Banker, in a way that his lot will
be again

3× 2× 2A+ 4× 3
2A+ 1× 0

24
= A+

1

4
A.

Finally it is evident that the card of the Punter expressed by the letters a, b, c, d, being
four times in the four cards, the four columns which commence with the letters a, b, c, d,
will contain each six permutations, which will give to the Banker 3

2A, since all these dif-
ferent permutations will necessarily produce a doublet; whence it follows that the lot of the
Banker will be A+ 1

2A.
All this is founded on the order of the permutations, & it will be clarified by the appli-

cation that I will make of it in the following.

COROLLARY III.

67. Whatever number of cards that are held by the Banker, if that of the Punter is found
there only one time, the advantage of the Banker will be expressed by a fraction which
will be unity for the numerator, & for denominator the number of cards that the Banker
holds: because six cards, for example, being able to be arranged in 720 different ways,
it is clear that if one imagines all these different permutations put on six columns of one
hundred twenty permutations each, in a way that in the first the letter a is everywhere in
the first place, that in the second it is everywhere in the second place, that in the third it is
everywhere in the third place, and thus in sequence, the first, the third & the fifth columns
will give 2A to the Banker in all their permutations; the second & the fourth will give to
him zero, & the sixth will give to him A. One will have thus

s =
3× 120× 2A+ 2× 120× 0 + 1× 120×A

720
=

840

720
A = A+

1

6
A.

And in general, if one names p the number of cards of the Banker; m the number of
all the possible permutations of these cards, one will have always the lot of the Banker
expressed by this formula

s =

1
2p×

m
p × 2A+ m

p ×A

m
= A+

A

p
.

SECOND CASE.

One supposes that the Banker holds six cards, & that of the Punter is in them a certain
number of times. One requires what is the lot of the Banker in all the variations of this
second case.

68. Let be supposed that the card of the Punter is found twice in the six cards.
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If these six cards are represented by the six letters a, b, c, d, e, f, g, in such a way that
any two, for example, a & g express that of the Punter.

One will remark, 1, that one is able to put the seven hundred twenty different permu-
tations that six cards are able to receive on six columns, of which each will be composed
of one hundred twenty perpendicular ranks; in such a way that the first column begins all
with the letter a, the second with the letter b, the third with the letter c, & thus in sequence.

2. That the two columns which begin with a & with g, are each ninety-six perpendicular
ranks, which give to the Banker 2A, and twenty-four which give to him 3

2A: because each
rank of these two columns give 2A to the Banker, with the exception of those two where
a is followed by g in the first, & where g is followed by a in the last. Now five letters
being able to receive 120 different permutations, & each being found necessarily an equal
number of times after a in the first column, & after g in the last, it is evident that it is
necessary to divide 120 by 5, in order to have all the doublets in each of the two columns
which commence either with a, or with g. This remark is important for the solution of this
Problem, & it is necessary to the solution of it in the following.

The greatest difficulty, this is to discover what the four other columns give to the Banker.
In order to disentangle it, it is necessary to remark first that each of these four columns give
an equal lot to the Banker (this which is evident,) & that thus it suffices to examine one.
Let the column which commences with b, be the one which one wants to examine; & forpage 86
greater facility, I partition it into five columns of twenty-four permutations each.

1 2 3 4 5

bacdfg bcadfg bdacfg bfacdg bgacdf

bacdgf bcadgf bdacgf bfacgd bgacfd

bacfdg bcafdg bdafcg fbadcg bgadfc

bacgdf bcagfd bdagcf bfagcd bgafcd

bacgfd bcagdf bdagfc bfagdc bgafdc

badcfg bcdafg bdcafg bfcadg bgcadf

badcgf bcdagf bdcagf bfcagd bgcafd

badfcg bcdfag bdcfag bfcdag bgcdaf

badfgc bcdfga bdcfga bfcdga bgcdfa

badgfc bcdgaf bdcgaf bfcgad bgcfad

badgcf bcdgfa bdcgfa bfcgda bgcfda

bafcdg bcfadg bdfacg bfdacg bgdacf

bafcgd bcfagd bdfagc bfdagc bgdafc

bafdcg bcfdag bdfcag bfdcag bgdcaf

bafdgc bcfdga bdfcga bfdcga bgdcfa

bafgdc bcfgad bdfgac bfdgac bgdfac

bafgcd bcfgda bdfgca bfdgca bgdfca
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1 2 3 4 5

bagcdf bcgadf bdgacf bfgacd bgfacd

bagcfd bcgafd bdgafc bfgadc bgfadc

bagdcf bcgdaf bdgcaf bfgcad bgfcad

bagdfc bcgdfa bdgcfa bfgcda bgfcda

bagfcd bcgfcd bdgfac bfgdac bgfdac

bagfdc bcgfda bdgfca bfgdca bgfdca

It is easy to see, in consulting this Table, that the first and the fifth columns give zero
to the Banker, since in the first the letter a, & in the fifth the letter g hold the second place
there, & that each of the three other columns contain twelve permutations which give 2A
to the Banker, eight which give to him zero, & four which give to him 3

2A, that is to say,
that each of these three columns give the same chances that one has found for the Banker
in the preceding case, when one has supposed that he would hold four cards, among which
that of the Punter will be found twice, of which the reason is that the first two letters of
the second, third & fourth columns of the Table above being not at all that of the Punter,
there remain four letters, among which that which expresses the card of the Punter is found
twice: this which is reduced manifestly to the second article of the preceding case, where
the card of the Punter is found twice in four cards.

Thus the column which begins with the letter b will give to the Banker 2 × 24 × 0 +

3 × 8× 0 + 12× 2A+ 4× 3
2A = 90A. Now the columns of 120 permutations which

begin with c, with d, & with f , give the same value, & consequently in order to have
all the favorable coups that the four columns give which begin neither with a, nor with
g, it is necessary to multiply 90A by 4, this which makes 360A; to which adding 2 ×
96× 2A+ 14× 3

2A = 456A for the favorable coups that the columns give which begin
with a & with g, one will have 360A+456A

720 = 816
720A = A + 2

15A for the lot of the Banker
in the proposed case.

COROLLARY

69. Whatever number of cards that the Banker holds, if that of the Punter is encountered
there twice, in order to find the lot of the Banker, it is necessary to imagine all the possible
permutations of the cards which he holds put on as many columns as there are cards; &
to note next that the two columns which begin with the letters which express the card of
the Punter, give each 2A to the Banker, with the exception of the ranks, where one of the
letters which expresses the card of the Punter is next to the other, which permutation gives
3
2A.

In order to find how many there are of those ranks in each of the two columns, it is
necessary to divide all the permutations which compose them by the number of the cards
less one; the exponent of this division will express the number of the permutations which
give 3

2A in each of the two columns. In order to determine that which the other columns
gives, one imagines each partitioned into as many columns less one than there are cards;
& observing a permutation parallel to that of the two preceding Tables, one will find that
there are always two of these last columns which give zero to the Banker, the two letters
which express the card of the Punter occupying the second place there; & that each of the
others equal to this will give to the Banker the same lot as he will have in the preceding
case, that is to say in the case where the number of the cards of the Banker being less by
two, that of the Punter would be twice there.
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There is in the Remarks of this Corollary what consists the solution of the Problem for
the case where the card of the Punter is found twice among the cards of the Banker. I would
have had difficulty to well make understood this method, without making application of it
in some particular cases, & without my making use of the Table which is found, art. 68.

GENERALLY.

70. Whatever number of cards that the Banker holds, & whatever number of times that
the card of the Punter be among those of the Banker, one will find always his lot in this
way. 1. One will seek by the method of art. 64, the number of all the different possible
permutations of the cards of the Banker. 2. One will represent these cards by the letters
a, b, c, d, f, &c. & one will suppose that some at will designate that of the Punter. 3. One
will imagine all these different permutations distributed on as many columns as there will
be cards; in such a way that the first begins all with the letter a, the second with the letter b,
the third with the letter c, &c. 4. One will note that the columns which begin with the letters
which designate the card of the Punter, give 2A to the Banker in all their permutations, with
the exception of those where some two of among the letters which express the card of the
Punter, are found in sequence in the first & in the second place; this will give 3

2A.
In order to find the number of those permutations in each of these columns, one will

divide the number of permutations from which each column is composed by the number of
the cards of the Banker less one, & one will multiply the exponent by the number of times
less one that the card of the Punter is found in those of the Banker; this product will give
all the permutations of these columns, which give 3

2A.
In regard to the other columns which begin with some letters different from those which

express the card of the Punter, it is necessary, in order to discover the favorable permu-
tations there, to imagine them each partitioned & subdivided into as many columns less
one, as there are cards, & to have regard to the order marked in the Tables on pages 80 and
86; to observe that of those last columns there are always as many which give zero to the
Banker, as of times the card of the Punter is found in those of the Banker; & as each of the
other small columns give to the Banker the same lot as one has found in the case which has
preceded; that is to say in the case where the number of cards of the Banker being less by
two, the card of the Punter is found there an equal number of times.

Thus one will find among all the different possible permutations of the cards which are
held by the Banker, which are those which give to him either A, or 2A, or 3

2A, or zero;
consequently one will have by this method the lot of the Banker in all the possible cases:
that which is was necessary to find.

In following the spirit of this method, if one names p the number of cards that the Banker
holds, q the number of times that the card of the Punter is in those of the Banker, g the lot
of the Banker in a number of cards expressed by p− 2, S the sought lot: one will have the
lot of the Banker expressed by this formula.

S =
pq − qq × 2A+ qq − q × 3

2A+ g × p− q × p− q − 1

p× p− 1

One is able to find by this formula the lot of the Banker, whatever number of cards
that he have within his hands, & whatever number of times that the card of the Punter is
contained there. But this formula has this very great inconvenience of giving the advantage
of the Banker for a certain number of cards designated by p, only when one knows already
his advantage for a number of cards which are p − 2. Thus this formula is only able to
be useful in order to find all the different cases the one after the other, in beginning with
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the most simple. Thence here is one other, which gives without much calculation all the
different cases in general, & each case in particular independently from one another.

SECOND METHOD.
71. Let B be the advantage of the Banker at the first deal, when the Punter comes to put

a card into play, y his advantage at the second, z his advantage at the third, u his advantage
at the fourth, &c. p & q signifying the same things as in the preceding method, one finds

B =
q.q − 1

p.p− 1
× 1

2
A+

p− q.p− q − 1

p.p− 1
y,

y =
q.q − 1

p− 2.p− 3
× 1

2
A+

p− q − 2.p− q − 3

p− 2.p− 3
z,

z =
q.q − 1

p− 4.p− 5
× 1

2
A+

p− q − 4.p− q − 5

p− 4.p− 5
u,

u =
q.q − 1

p− 6.p− 7
× 1

2
A+

p− q − 6.p− q − 7

p− 6.p− 7
s, &c.

If one substitutes for y, z, u, s their values, one will have this indefinite formula

B = 1 +
p− q.p− q − 1

p− 2.p− 3
+

p− q.p− q − 1.p− q − 2.p− q − 3

p− 2.p− 3.p− 4.p− 5

+
p− q.p− q − 1.p− q − 2.p− q − 3.p− q − 4.p− q − 5

p− 2.p− 3.p− 4.p− 5.p− 6.p− 7

+
p− q.p− q − 1.p− q − 2.p− q − 3.p− q − 4.p− q − 5.p− q − 6.p− q − 7

p− 2.p− 3.p− 4.p− 5.p− 6.p− 7.p− 8.p− 9
&c.

the whole multiplied by q.q−1
p.p−1 ×

1
2A. which gives the advantage of the Banker, whatever

be the value of p & of q. Therefore, for example, if p = 12, & q = 3, the formula gives

B =
10 + 8 + 6 + 4 + 2

12.11.10
× 3× 2× 1

2
A =

3

44
A;

& if p = 12, & q = 4, the formula gives

B =
45 + 28 + 15 + 6 + 1

10.9
× 4.3.2.1

12.11
× 1

2
A =

19

198
A;

& if p = 12, & q = 5, the formula gives

B =
120 + 56 + 20 + 4

10.9.8
× 5.4.3.2.1

12.11
× 1

2
A =

25

198
A.

In examining this formula one finds,
1. That q being = 1, it becomes = 0; but that by the conditions of the Game, because

of the last card which is null, it is necessary to add A
p .

2. That q being = 2, it becomes

1 + 1 + 1 + 1 + 1 &c. × 2× 1

p.p− 1
× 1

2
A.

But that by the conditions of the Game it is necessary to multiply the last of these units for
2.1

p.p−1 by A, & not by 1
2A.

3. That q being = 3, it becomes

p− 2 + p− 4 + p− 6 + p− 10

p− 2
+ &c. × 3× 2

p.p− 1
× 1

2
A.
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4. That q being = 4, it becomes

p− 2.p− 3 + p− 4.p− 5 + p− 6.p− 7 + p− 8.p− 9

p− 2.p− 3
&c.× 4× 3

p.p− 1
× 1

2
A, &c.

5. That q being = 5, it becomes

p− 2.p− 3.p− 4 + p− 4.p− 5.p− 6 + p− 6.p− 7.p− 8 + p− 8.p− 9.p− 10

p− 2.p− 3.p− 4
+&c.× 5× 4

p.p− 1
×1

2
A.

In such a way that in each sequence all the terms are composed of as many products as
there are units in q − 2.

6. That these products provide multiples of the figurate numbers of the order q − 1,
interposed two by two, which correspond to some natural even numbers, beginning with
those which correspond to p− 2: Whence it follows that in order to find the fraction which
expresses the advantage of the Banker, one is able to make this rule.

The denominator will contain as many products of the quantities p.p − 1.p − 2.p − 3,
&c. as there are units in q. In order to have the numerator it will be necessary to take in the
arithmetic triangle, art. 1,2 a horizontal rank, of which the row number is q−1, to add into
a sum all the terms of this rank taken two by two, beginning with that which corresponds to
p− 2; to multiply this sum by as many products of the natural numbers 1, 2, 3, 4, 5, 6, &c.
as there are of units in q, & to multiply it again by 1

2A, having regard to the two exceptions
marked above, the one for the case q = 1, the other for the case q = 2.

In order to reduce this rule to some formulas which determine all at one strike, in sub-
stituting for p its value, the advantage of the Banker for whatever number of cards that this
be, when the card of the Punter is found there a certain number of times expressed by q. It
will suffice in the case of q = 3 to find the sum of an arithmetic progression; in this manner
the first three cases where q = 1 = 2 = 3 are not difficult. In regard to the others, one has
need of the general solution of the Problem which follows.

To find the sum of a progression of which each term is formed of as many products of
quantities which decrease by unity as there are units in q − 2.

72. If q = 5, for example, it is necessary to find the sum of this progression

p− 2.p− 3.p− 4 + p− 4.p− 5.p− 6 + p− 6.p− 7.p− 8 + p− 8.p− 9.p− 10 + &c.

And if q = 6, it is necessary to find the sum of this series

p− 2.p− 3.p− 4.p− 5 + p− 4.p− 5.p− 6.p− 7 + p− 6.p− 7.p− 8.p− 9 + &c.

& thus in sequence, in relation to the different values of q; this which is the same thing as
to find generally the sum of the numbers interposed two by two in the arithmetic triangle.

One could come to the end of it easily enough by the general method of art. 54. I will
employ here a more direct method, founded on a curious property of figurate numbers.

LEMMA.

If one takes an even number at will of figurate numbers of any order whatever, the sum
of those which are found even, that is to say those which in Table 2, Art. 7, are found in
the second, fourth, sixth, eighth, &c. place, is equal to the excess of those which in the

2The Table is placed at the end of this document.
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following rank are found corresponding to the evens of superior rank on those which are
found corresponding to the odds.

73. As this exposition may appear obscure, I am going to illustrate it by an example.
Let be taken the first eight numbers of fourth order 1, 4, 10, 20, 35, 56, 84, 120; I say
that the sum of the four 4, 20, 56, 120, which are taken in the second, fourth, sixth, eighth
place is equal to the excess of these 5.35.126.330, which are taken in the 2nd, 4th, 6th &
8th place of the rank immediately inferior on these, 1, 15, 70, 210, which are in the 1st,
3rd, 5th & 7th place of this same rank.

One is able to demonstrate also in a few words this property.
Let the numbers of any order be represented by the letters a, b, c, d, e, f, g, h. The num-

bers of the order immediately inferior will be by the nature & the formation of these num-
bers a, a + b, a + b + c, a + b + c + d, a + b + c + d + e, a + b + c + d + e + f,
a+ b+ c+ d+ e+ f + g, a+ b+ c+ d+ e+ f + g+h. Now it is evident that subtracting
within this second rank the first from the second, there remains b; & that subtracting the
third from the fourth, there remains d; & that subtracting the fifth from the sixth, there
remains f ; & that subtracting the seventh from the eighth, there remains h; & thus in se-
quence, by the necessity of the relationship which is among any order & the one which
follows it immediately.

In order to make application of this Lemma,
Let be proposed to find the sum of the numbers of the second rank taken two by two

2+ 4+6+8+10, in naming g the number of the terms comprising the evens & the odds:
here is the sequence of the operation.

2 + 4 + 6 + 8 + 10&c. =
g.g + 1

1.2
− 1− 3− 5− 7− 9 &c.

=
g.g + 1

1.2
+

1

2
g − 2− 4− 6− 8− 10 &c.

Therefore in transposing,

2× 2 + 4 + 6 + 8 + 10 + &c. =
1

2
g +

g.g + 1

1.2
.

Therefore

2 + 4 + 6 + 8 + 10&c. =
1

4
g +

1

2
× g.g + 1

1.2
.

Let be again proposed to find the sum of those numbers of the third order 3+10+21+
36 + 55, &c.

One has

3 + 10 + 21 + 36 + 55 &c. =2 + 4 + 6 + 8 + 10 &c.
+ 1 + 6 + 15 + 28 + 45 &c.

=
1

4
g +

1

2
× g.g + 1

1.2
+ 1 + 6 + 15 + 28 + 45 &c.

=
g.g + 1.g + 2

1.2.3
− 1− 6− 15− 28− 45 &c.

=
g.g + 1.g + 2

1.2.3
+

1

2
× g.g + 1

1.2

+
1

4
g − 3− 10− 21− 36− 55 &c.
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Therefore in transposing & dividing by 2. One has

3 + 10 + 21 + 36 + 55 &c. =
1

2
× g.g + 1.g + 2

1.2.3
+

1

4
× g.g + 1

1.2
+

1

8
g.

One will find in the same manner the sum of the numbers of the fourth order corre-
sponding to the even natural numbers

4 + 20 + 56 + 120 + 220 &c. =
1

2
× g.g + 1.g + 2.g + 3

1.2.3.4

+
1

4
× g.g + 1.g + 2

1.2.3
+

1

8
× g.g + 1

1.2
+

1

16
g.

And the sum of the numbers of the fifth order

5 + 35 + 126 + 330 + 715 &c. =
1

2
× g.g + 1.g + 2.g + 3.g + 4

1.2.3.4.5

+
1

4
× g.g + 1.g + 2.g + 3

1.2.3.4

+
1

8
× g.g + 1.g + 2

1.2.3

+
1

16
× g.g + 1

1.2
+

1

32
× g,

& thus the remainder, one sees sufficiently the order of these sequences.
Having put this as above, one will find by that which precedes, that the sum of this

sequence g + g − 2 + g − 4 + g − 6 + g − 8+&c. is

1

2

g × g + 1

1.2
+

1

4
g.

And that the sum of this sequence g.g−1
1.2 + g−2.g−3

1.2 + g−4.g−5
1.2 + g−6.g−7

1.2 +&c.

=
1

2
× g + 1.g.g − 1

1.2.3
+

1

4
× g.g − 1

1.2
+

1

8
g − 1 +

1

8
.

One will find in the same manner that the sum of this sequence g.g−1.g−2
1.2.3 + g−2.g−3.g−4

1.2.3 +
g−4.g−5.g−6

1.2.3 + g−6.g−7.g−8
1.2.3 ,+&c. is

=
1

2
× g + 1.g.g − 1.g − 2

1.2.3.4
+

1

4
× g.g − 1.g − 2

1.2.3

+
1

8
× g − 1.g − 2

1.2
+

1

16
× g − 2.

And again the sum of this sequence g.g−1.g−2.g−3
1.2.3.4 + g−2.g−3.g−4.g−5

1.2.3.4 + g−4.g−5.g−6.g−7
1.2.3.4 +

g−6.g−7.g−8.g−9
1.2.3.4.5 +&c.

=
1

2
× g + 1.g.g − 1.g − 2.g − 3

1.2.3.4.5
+

1

4
× g.g − 1.g − 2.g − 3

1.2.3.4

+
1

8
× g − 1.g − 2.g − 3

1.2.3
+

1

16
× g − 2.g − 3

1.2
+

1

32
× g − 3 +

1

32
.

& thus all the others. One sees without difficulty the order of these sequences.
It is evident by the Lemma above that having the sum of the numbers interrupted two

by two, & corresponding to the even natural numbers, one will have also the sum of those
which correspond to the odds; since having the whole & one of the parts of the whole, one
has the other part.
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But in general, here is the rule in order to have the sum of the figurate numbers taken
two by two, which correspond to the natural numbers either even or odd, & at the same
time the demonstration of the rule.

If one requires the sum of the terms of any order m taken two by two, of which the
first corresponds to g which designates here an even or an odd number at will. One knows
that in the inferior horizontal rank, which is m + 1, the term which corresponds to g + 1
is equal to all the terms of the order m taken in sequence, from the perpendicular column
where is found g, up to zero. Imagining therefore all the terms of the rank m, to begin with
the term which corresponds to g, divided into two unequal parts, of which the greater is
that which one seeks, & of which the first term corresponds to g, one has this greater part
= 1

2 of the term of order m + 1, which corresponds to g + 1 plus 1
2 of the difference of

the two unequal parts; & by the Lemma, this difference is the sum of all the terms of order
m − 1 taken two by two, to begin with the one which corresponds to g − 1. In order to
have the sum of these terms, in making as above, it is necessary to take 1

2 of the term of
order m which corresponds to g, + 1

2 of the difference which is the sum of all the terms of
order m− 2 taken two by two, to begin always with that which is g − 2, or corresponding
to g − 2, in continuing up to the last difference.

As this demonstration may seem a little abstract, I am going to try to clarify it by two
examples which follow.

Let be proposed to find in the fourth rank, Tab. I. the sum of these terms . . . 120 +
56 + 20 + 4 which correspond to the natural numbers . . . 10 + 8 + 6 + 4. I note that this
sequence is greater than the one . . . 84 + 35 + 10 + 1, & that it surpasses it by the sum of
these other numbers . . . 36+21+10+3 which is the difference of them. Now one knows
that the greater of the two quantities is equal to the half of the total, plus to the half of their
difference. Imagining therefore the entire sum . . . 120+84+56+35+20+10+4+1 = 330
partitioned into these two unequal parts. I say that the greater, which is the one of which
one seeks the sum, is

=
1

2
× 330 +

1

2
× 36 + 21 + 10 + 3;

& seeking in the same manner the sum of this sequence 36+21+10+3, which surpasses
that other 28 + 15 + 6 + 1 by the sequence 8 + 6 + 4 + 2.

One will find it

=
1

2
× 120 +

1

2
× 8 + 6 + 4 + 2;

& seeking again the sum of this sequence 8+ 6+4+2 greater than this one 7+ 5+3+1
by the sequence 1 + 1 + 1 + 1, one will find it

=
1

2
× 36 +

1

2
× 1 + 1 + 1 + 1,

& seeking again the sum of this last sequence, one finds it

=
1

2
× 8 +

1

2
× 0,
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because the difference is zero. One will have therefore the sought sum

=
1

2
× 330 +

1

2
× 36 + 21 + 10 + 3

=
1

2
× 330 +

1

4
× 120 +

1

4
× 8 + 6 + 4 + 2

=
1

2
× 330 +

1

4
× 120 +

1

8
× 36 +

1

8
× 1 + 1 + 1 + 1

=
1

2
× 330 +

1

4
× 120 +

1

8
× 36 +

1

16
× 8,

conforming to the formula given above
1

2
× g + 1.g.g − 1.g − 2

1.2.3.4
+

1

4
× g.g − 1.g − 2

1.2.3
+

1

8
× g − 1.g − 2

1.2
+

1

16
× g − 2.

Let there again be proposed to find in the fifth rank the sum of these terms 210 + 70 +
15 + 1, & supposing for brevity of discourse the difference of this sequence to this other
126 + 35 + 5 + 0, which is 84 + 35 + 10 + 1 = b; & the difference of this sequence
84 + 35 + 10 + 1 to this other 56 + 20 + 4 + 0, which is 28 + 15 + 6 + 1 = c. And
the difference of this sequence 28 + 15 + 6 + 1 to this other 21 + 10 + 3 + 0, which
is 7 + 5 + 3 + 1 = d. And the difference of this sequence 7 + 5 + 3 + 1 to this other
6+ 4+ 2+ 0, which is 1+ 1+ 1+ 1 = e; & the difference of this sequence 1+ 1+ 1+ 1
to this other 1 + 1 + 1 + 0 = 1, one will have the sought sum

=
1

2
× 462 +

1

2
b

=
1

2
× 462 +

1

4
× 210 +

1

4
e

=
1

2
× 462 +

1

4
× 210 +

1

8
× 84 +

1

8
d

=
1

2
× 462 +

1

4
× 210 +

1

8
× 84 +

1

16
× 28 +

1

16
e

=
1

2
× 462 +

1

4
× 210 +

1

8
× 84 +

1

16
× 28 +

1

32
× 7 +

1

32
× 1,

conforming to the formula given below
1

2
× g + 1.g.g − 1.g − 2.g − 3

1.2.3.4.5
+

1

4
× g.g − 1.g − 2.g − 3

1.2.3.4

+
1

8
× g − 1.g − 2.g − 3

1.2.3
+

1

16
× g − 2.g − 3

1.2

+
1

32
× g − 3 +

1

32
× 1

It is à propos to observe that all the numbers of these sequences, which are divided
by different powers of 2, are found in the transverse band, of which the row number is
g −m− 2, & that the first which is divided by the smallest power of 2, is found always in
the perpendicular band which corresponds to g+1, that is to say, of which the row number
is g + 2.

THE REST OF THE SOLUTION
74. It is clear by all that which precedes, that in order to have some formulas which

express the advantage of the Banker in Pharaon for all the different values of q. It suffices
to put everywhere p − 2 in the place of g in the formulas of art. 73, to multiply them by
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as many natural numbers 1, 2, 3, 4, 5, 6,&c. as there are units in q, & again by 1
2A, & to

divide them by p.p− 1.p− 2.p− 3, &c.
If one wishes to see, for example, the formula for the case of q = 3, in putting p− 2 in

the place of g in the formula 1
2 ×

g.g+1
1.2 + 1

4g, one will find for the sought formula

1
2
p−2.p−1

1.2 + 1
4p− 2

p.p− 1.p− 2
× 1.2.3.× 1

2
A =

3×A

4× p− 1
,

& likewise if one wants to have the formula for the case of q = 4, in putting p − 2 in the
place of g in the formula

1

2
× g + 1.g.g − 1

1.2.3
+

1

4
× g.g − 1

1.2
+

1

8
× g − 1 +

1

8
× 1,

one will have the sought formula

1
2 ×

p−1.p−2.p−3
1.2.3 + 1

4 ×
p−2.p−3

1.2 + 1
8 × p− 3 + 1

8

p.p− 1.p− 2.p− 3
×1.2.3.4× 1

2
A =

2p− 5×A

2× p.p− 4.p− 3
.

Here are the principal cases that I have put in formula

B
1
=
1

p

C
2
=

p+ 2

2× pp− p

D
3
=

3

4× p− 1

E
4
=

2p− 5

2× pp− 4p+ 3

F
5
=
5

4
× p− 2

pp− 4p+ 3

G
6
=
3

4
× 2pp− 13p+ 16

p3 − 9pp+ 23p− 15

H
7
=
7

8
× 2pp− 12p+ 13

p3 − 9pp+ 23p− 15

K
8
=
1

2
× 4p3 − 50pp+ 176p− 151

p4 − 16p3 + 86pp− 176p+ 105
.

The first of these formulas expresses the advantage of the Banker, when the card of the
Punter is found one time in his hand. The 2nd C expresses his advantage when it is found
twice in it. The 3rd D expresses his advantage when it is found there three times, & thus
the others.

If one wishes to have a sequence which gives the advantage of the Banker, the values of
p & of q being arbitrary, one will have in multiplying the first term of the sequences that I
have given in art. 73, by as many products of natural numbers as there are units in q; or,
this which is the same thing, by q.q − 1.q − 2.q − 3. · · · q − q, & again by 1

2A; & dividing
by as many products of the quantities p.p− 1.p− 2.p− 3.p− 4, &c. as there are units in q,
one will have, I say, in reducing term by term, & canceling that which is found in common
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in the numerator & in the denominator, this general & very simple formula,
1

4
× q

p
+

1

8
× q.q − 1

p.p− 1
+

1

16
× q.q − 1.q − 2

p.p− 1.p− 2
+

1

32
× q.q − 1.q − 2.q − 3

p.p− 1.p− 2.p− 3

+
1

64
× q.q − 1.q − 2.q − 3.q − 4

p.p− 1.p− 2.p− 3.p− 4
+ &c.

in which it is necessary to note that when q is an odd number, it is necessary to take as
many terms as q − 1 expresses in units; but when q being an even number, it is necessary
to take as many terms as there are units in q, & to multiply the last term by 2.

REMARK
75. One is able to observe that in the method that we have followed, we have always

considered the terms taken two by two of which we seek the sum, as knowing the greater
of two unequal parts which compose the total; & consequently it was always necessary to
add to that the half of the difference. Now if one would wish to consider the sought sum as
making the smaller part of the uninterrupted sequence, if would be necessary to imagine
this entire sequence augmented by the term which corresponds to g+1, & thus in sequence
from rank to rank; then one would have always the sum that one seeks equal to the half
of the total, less the half of the difference; & this total would be found in the inferior
horizontal rank, to that which corresponds to p + 2; in continuing always in this manner
instead of the terms of the transverse band of which the row number is g−m+2, one would
have the terms of the perpendicular band g + 3, with the signs plus & minus alternately.
The remark reveals the base of the difference that one finds between my formula above, &
that which follows, of which M. Nicolas Bernoulli3 has made me part in the Letter of 26
February 1711, that one will find at the end of this book.

1

4
× q

p− q + 1
− 1

8
× q.q − 1

p− q + 1.p− q + 2

+
1

16
× q.q − 1.q − 2

p− q + 1.p− q + 2.p− q + 3

− 1

32
× q.q − 1.q − 2.q − 3

p− q + 1.p− q + 2.p− q + 3.p− q + 4
+ &c.

This last seems preferable, in this that one employs only as many terms as there are
units in q − 1, instead as in mine, when q is an even number, it is necessary to take as
many terms in the sequence as there are units in q; & in this case to multiply the last
term by 2: this exception omits in some way the uniformity of the formula. But this
advantage is perhaps compensated by the alternate signs & the q which is found in the
denominator of M. Bernoulli, & principally because one operates there on greater numbers.
In order to make the comparison, let be proposed to find the sum of those numbers, for
example, which are of the fourth order, 120 + 56 + 20 + 4 = 200. One has by my
formula 1

2 × 330 + 1
4 × 120 + 1

8 × 36 + 1
16 × 8. And according to that of M. Bernoulli,

1
2 × 496− 1

4 × 220 + 1
8 × 66− 1

16 × 12.

REMARK II.
76. I have prepared two Tables on the first four formulas, art. 74, in the intent to please

the players, & to satisfy their curiosity. In order to understand the usage, it is necessary

3See the remark by Nicolas Bernoulli.
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to know that in the first the number contained within the cell � expresses the number of
cards that the Banker holds; & that the number which follows, either the cell in the first
column, or two points in the other columns, expresses the number of times that the card of
the Punter is supposed to be found in the hand of the Banker. The usage of the second Table
is to give some expressions less exact to the truth, but more simple & more intelligible to
the players, some fractions which in the first designate with precision the advantage of the
Banker. It is necessary to know in order to understand this Table, that this mark > signifies
excess, & this other <defect; in such a way that I intend by > 1

4 < 1
3 a quantity greater

than 1
4 , & smaller than 1

3 .
One is able to make, with respect to the numbers of the first Table, many rather curious

observations. Here are the most important.

COROLLARY I.
77. In the first Table the advantage of the Banker is expressed in the first column by a

fraction, of which the numerator is always unity, the denominator is the number of cards
which are held by the Banker.

In the second column this advantage is expressed by a fraction, of which the numerator
being according to the sequence of natural numbers 1, 2, 3, 4, &c. the denominator has for
difference among these terms the numbers 18, 26, 34, 42, 50, 58, of which the difference
is 8.

In the third column the numerator is always 3, the difference which rules in the denom-
inator is 8.

In the fourth column the difference is always 4 in the numerator, the denominator has
for difference among its terms the numbers 24, 40, 56, 72, 88,&c. of which the difference
is 16.

One is able again to observe another uniformity rather singular among the last digits of
the denominator of each term of a column.

In the first column the last digits of the denominator are according to this order 4, 6, 8, 0,
2|4, 6, 8, 0, 2|&c. In the second they are according to this order 2, 0, 6, 0, 2|2, 0, 6, 0, 2|&c.
In the third they are according to this order 2, 0, 8, 6, 4|2, 0, 8, 6, 4| &c. In the fourth they
are according to this order 6, 0, 0, 6, 8|6, 0, 0, 6, 8| &c. One will seek with pleasure the
cause of this uniformity.

COROLLARY II
78. One may by means of these Tables find all in one stroke how much a Banker has in

advantage on each card. One may likewise know how much each complete deal will have,
in equal risk, to bring profit to the Banker, if one remembers the number of cards which
have been taken by the Punters, of the diverse circumstances in which one has staked on
them in the Game, & finally of the amount of money that one has ventured upon. One will
find apparently that this advantage is very considerable. One would give to him fair limits
in establishing that the doublets were indifferent for the Banker & for the Punter, or at least
that they are worth solely the third or the fourth of the stake of the Punter. Thus that which
would remain advantage to the Banker, would be sufficient for making preference to the
players who understand their interest, the place of the Banker to that of the Punter, & it
would not be considerable enough, in order that the Punters would suffer by them much
prejudice.
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COROLLARY III.
79. So that the Punter taking a card have the least disadvantage which is possible, it is

necessary that he choose one which has passed twice; because there would be greater dis-
advantage for him, if he would take a card which has passed once; & greater disadvantage
again, if he would take a card which has passed three times; & finally the worst choice that
a Punter is able to make, this is to take a card which has not passed yet.

Thus one will find, for example, that supposing A is equal to one pistole4, the advantage
of the Banker which would be nineteen sols two deniers, under the supposition that the
card of the Punter was four times in twelve cards; & sixteen sols eight deniers, under the
supposition that it was once there, is no more than thirteen sols seven deniers, when in
these twelve cards that of the Punter is found there three times, & ten sols seven deniers
when it is there only twice.

One will note the same thing with respect to all other number of cards.

REMARK I.
80. The persons who have not examined at foundation the Game of Pharaon & of

Bassette, could find to criticize, that I have not spoken of the masses5, of the parolis6, of the
paix, of the sept & the va7, &c. because the majority of the players imagine that there is in
everything that much mystery. I have known of them who believed to have good reasons
to prefer to wager four Louis on a simple card to make the paroli of two Louis, or the sept
& the va of one Louis. I have seen others of them who were persuaded that there would
be much advantage to make frequently of the paix: nevertheless it is evident that, since the
Punter has the liberty to take a new card at each time that he loses or that he wins such as
it is pleasing to him, he must not embarrass himself if this is either a sept & the va, or a
paroli, or a paix, or a double paix, &c. Because to make the paroli of a Louis is nothing
other than to wager two Louis on one card, after having won a Louis; & to make the sept &
the va of a Louis is nothing other than to wager four Louis on one card, after having won
three of them; & similarly to make the paix of one Louis is nothing other than to wager a
Louis on one card, after having one Louis on that same card.

One has apparently invented the parolis, the sept & the va, &c. only in order to spare
the Banker the difficulty of paying those who have intent to wager on their cards the double
of that which they have just won: nonetheless it would be more useful to the Bankers to
take this care, than to be exposed, as they make him, to that which one names Alpiou de
Campagne8.

For me I believe that the Bankers have not abolished the usage making these points, of
which the great number cause in the Game a confusion which is often prejudicial to the
Banker, & and which favors the misdirections of the Punters, it is that the Bankers have
well seen that the majority of men do not judge these things by reason, such Punter who
would make without difficulty the sept & the va of one Louis, believing to risk only one
Louis, could not resolve to wager four Louis on one simple card. Besides for the usual it is

41 pistole= 200 sols, 1 sol= 12 denier.
5The masse is a certain sum of money that one wagers in a Game in order to lose or to win so much according

to the established rules.
6A paroli is the double of that which one has gambled the first time.
7In a Game of cards one calls a sept the card which is marked with seven pips. One says in the Game of

Bassette, of Pharaon, etc. Sept et la va, quinze et le va etc. in order to say, seven times, fifteen times the vade.
This vade is the sum which is controlled by the players of which the first to go in the Game is obligated to leave.

8This seems to be the act of knavery in which a player claims to score without his card having come into gain.
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in the last cards, when the advantage of the Banker is most considerable, that the Punters
are stung & make the parolis, the sept & the va, &c. that which shall compensate them
with usage of the misdirections to which they are that way exposed, but of which they it is
not moreover impossible to guarantee themselves with much application, & with the aid of
a croupier.

REMARK II.
81. It was easy for the players themselves to understand that the advantage of the

Banker increases in proportion as the number of his cards diminish; but it was impossible
to discover without analysis the law of this diminution, & this which is most important, to
know how this advantage varies according as the card of the Punter is found more or less
times in the hand of the Banker. The players have assuredly never been able to imagine
that the advantage of the Banker, in relation to one card which has not passed, is nearly
double of that which he has on one card which has passed twice, & much less again than
his advantage, in relation to one card which has passed three times, is to his advantage in
relation to one card which has passed two times in a ratio greater than three to two. The
players will find all this without difficulty, & possibly with some surprise in the Tables
here joined, they will see there, for example, that the advantage of the Banker which would
only be about twenty-four sols if the Punter would wager six pistoles either to the first deal
of the Game, or on one card which would have passed twice when there would remain of
them no more than twenty-eight in the hand of the Banker (these two cases revert to very
nearly the same thing) will be seven livres two sols, if the Punter puts six pistoles on one
card which has not yet passed, the stock being composed of no more than six cards, &
that his advantage would be precisely six livres, if the card of the Punter was in this last
case passed three times. Thus all the knowledge of the Game is reduced for the Punters to
observing the two rules which follow.

1. Take some cards only in the first deals, & venture on the Game accordingly less as
there are a greater number of deals passed.

2. Regard as the greatest evils those cards which have not passed at all yet, or which
have passed three times, & prefer to all, those which have passed twice.

In following these two rules, the disadvantage of the Punter will be the least that will be
possible.
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page 105
TABLE FOR PHARAON

52 1 =∗ ∗ ∗ : 2 =∗ ∗ ∗ : 3 =∗ ∗ ∗ : 4 =a+ 2295086253
115890841950a

50 1 =∗ ∗ ∗ : 2 =a+ 3117
350350a : 3 =a+ 3

196a : 4 =a+ 8208829
349595300a

48 1 =a+ 1
48a : 2 =a+ 1787

161304a : 3 =a+ 3
188a : 4 =a+ 276199

12842280a

46 1 =a+ 1
46a : 2 =a+ 3431

296010a : 3 =a+ 3
180a : 4 =a+ 11002

489555a

44 1 =a+ 1
44a : 2 =a+ 822

67639a : 3 =a+ 3
172a : 4 =a+ 913

38786a

42 1 =a+ 1
42a : 2 =a+ 3145

246246a : 3 =a+ 3
164a : 4 =a+ 79

3198a

40 1 =a+ 1
40a : 2 =a+ 1501

111540a : 3 =a+ 3
156a : 4 =a+ 25

962a

38 1 =a+ 1
38a : 2 =a+ 2849

201068a : 3 =a+ 3
148a : 4 =a+ 1349

49210a

36 1 =a+ 1
36a : 2 =a+ 679

45045a : 3 =a+ 3
140a : 4 =a+ 1139

39270a

34 1 =a+ 1
34a : 2 =a+ 2573

160446a : 3 =a+ 3
132a : 4 =a+ 357

11594a

32 1 =a+ 1
32a : 2 =a+ 1215

70928a : 3 =a+ 3
124a : 4 =a+ 177

5394a

30 1 =a+ 1
30a : 2 =a+ 2287

124410a : 3 =a+ 3
116a : 4 =a+ 55

1566a

28 1 =a+ 1
28a : 2 =a+ 536

27027a : 3 =a+ 3
108a : 4 =a+ 221

5850a

26 1 =a+ 1
26a : 2 =a+ 2001

92950a : 3 =a+ 3
100a : 4 =a+ 611

14950a

24 1 =a+ 1
24a : 2 =a+ 929

39468a : 3 =a+ 3
92a : 4 =a+ 473

10626a

22 1 =a+ 1
22a : 2 =a+ 1715

66066a : 3 =a+ 3
84a : 4 =a+ 143

2926a

20 1 =a+ 1
20a : 2 =a+ 1572

54340a : 3 =a+ 3
76a : 4 =a+ 35

646a

18 1 =a+ 1
18a : 2 =a+ 1429

43758a : 3 =a+ 3
68a : 4 =a+ 31

510a

16 1 =a+ 1
16a : 2 =a+ 429

11440a : 3 =a+ 3
60a : 4 =a+ 9

130a

14 1 =a+ 1
14a : 2 =a+ 44

1001a : 3 =a+ 3
52a : 4 =a+ 23

286a

12 1 =a+ 1
12a : 2 =a+ 7

132a : 3 =a+ 3
44a : 4 =a+ 19

198a

10 1 =a+ 1
10a : 2 =a+ 1

15a : 3 =a+ 3
36a : 4 =a+ 5

42a

8 1 =a+ 1
8a : 2 =a+ 5

56a : 3 =a+ 3
28a : 4 =a+ 11

70a

6 1 =a+ 1
6a : 2 =a+ 2

15a : 3 =a+ 3
20a : 4 =a+ 7

30a

4 1 =a+ 1
4a : 2 =a+ 1

4a : 3 =a+ 3
12a : 4 =a+ 1

2a



PHARAON 21

page 106
TABLE II. FOR PHARAON

52 1 =∗ ∗ ∗ : 2 =∗ ∗ ∗ : 3 =∗ ∗ ∗ : 4 =a+ > 1
51 < 1

50

50 1 =∗ ∗ ∗ : 2 =a+ > 1
95 < 1

94 : 3 =a+ > 1
66 < 1

65 : 4 =a+ > 1
49 < 1

48

48 1 =a+ 1
48a : 2 =a+ > 1

91 < 1
90 : 3 =a+ > 1

63 < 1
62 : 4 =a+ > 1

47 < 1
46

46 1 =a+ 1
46a : 2 =a+ > 1

87 < 1
86 : 3 =a+ 1

60 : 4 =a+ > 1
45 < 1

44

44 1 =a+ 1
44a : 2 =a+ > 1

83 < 1
82 : 3 =a+ > 1

58 < 1
57 : 4 =a+ > 1

43 < 1
42

42 1 =a+ 1
42a : 2 =a+ > 1

79 < 1
78 : 3 =a+ > 1

55 < 1
54 : 4 =a+ > 1

41 < 1
40

40 1 =a+ 1
40a : 2 =a+ > 1

75 < 1
74 : 3 =a+ 1

52 : 4 =a+ > 1
39 < 1

38

38 1 =a+ 1
38a : 2 =a+ > 1

71 < 1
70 : 3 =a+ > 1

50 < 1
49 : 4 =a+ > 1

37 < 1
36

36 1 =a+ 1
36a : 2 =a+ > 1

67 < 1
66 : 3 =a+ > 1

47 < 1
46 : 4 =a+ > 1

35 < 1
34

34 1 =a+ 1
34a : 2 =a+ > 1

63 < 1
62 : 3 =a+ 1

44 : 4 =a+ > 1
33 < 1

32

32 1 =a+ 1
32a : 2 =a+ > 1

59 < 1
58 : 3 =a+ > 1

42 < 1
41 : 4 =a+ > 1

31 < 1
30

30 1 =a+ 1
30a : 2 =a+ > 1

55 < 1
54 : 3 =a+ > 1

39 < 1
48 : 4 =a+ > 1

29 < 1
28

28 1 =a+ 1
28a : 2 =a+ > 1

51 < 1
50 : 3 =a+ 1

36 : 4 =a+ > 1
27 < 1

26

26 1 =a+ 1
26a : 2 =a+ > 1

47 < 1
46 : 3 =a+ > 1

34 < 1
33 : 4 =a+ > 1

25 < 1
24

24 1 =a+ 1
24a : 2 =a+ > 1

43 < 1
42 : 3 =a+ > 1

31 < 1
30 : 4 =a+ > 1

23 < 1
22

22 1 =a+ 1
22a : 2 =a+ > 1

39 < 1
38 : 3 =a+ 1

28 : 4 =a+ > 1
21 < 1

20

20 1 =a+ 1
20a : 2 =a+ > 1

35 < 1
34 : 3 =a+ > 1

26 < 1
25 : 4 =a+ > 1

19 < 1
18

18 1 =a+ 1
18a : 2 =a+ > 1

31 < 1
30 : 3 =a+ > 1

23 < 1
22 : 4 =a+ > 1

17 < 1
16

16 1 =a+ 1
16a : 2 =a+ > 1

27 < 1
26 : 3 =a+ 1

20 : 4 =a+ > 1
15 < 1

14

14 1 =a+ 1
14a : 2 =a+ > 1

23 < 1
22 : 3 =a+ > 1

18 < 1
17 : 4 =a+ > 1

13 < 1
12

12 1 =a+ 1
12a : 2 =a+ > 1

19 < 1
18 : 3 =a+ > 1

15 < 1
14 : 4 =a+ > 1

11 < 1
10

10 1 =a+ 1
10a : 2 =a+ 1

15 : 3 =a+ 1
12 : 4 =a+ > 1

9 < 1
8

8 1 =a+ 1
8a : 2 =a+ > 1

12 < 1
11 : 3 =a+ > 1

10 < 1
9 : 4 =a+ > 1

7 < 1
6

6 1 =a+ 1
6a : 2 =a+ > 1

8 < 1
7 : 3 =a+ > 1

7 < 1
6 : 4 =a+ > 1

5 < 1
4

4 1 =a+ 1
4a : 2 =a+ 1

4 : 3 =a+ 1
4a : 4 =a+ 1

2a
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Extract of a letter from M. (Jean) Bernoulli to M. de Montmort
From Basel this 17 March 1710 (pg. 284–287)

Page 89 (1st edition) on the Game of Pharaon. In order to seek the lot of the Banker
who holds four cards within his hands, among which the card of the Punter is once, you
make a denumeration of all 24 permutations of four cards, in order to take of them the
favorables to the Banker, without making reflection that this is not appropriately the various
permutations, but only the various situations of the card of the Punter, among the others
which make the diversity of the cases; thus instead of your 24 permutations, I have only
these four variations to consider ( I name a the card of the Punter, & b each of the others)

1. bbba 3. babb

2. bbab 4. abbb

Of these four variations the first is indifferent to the Banker, the 2nd and 4th make him
win, & the 3rd makes him lose, his lot will be therefore

=
1×A+ 2× 2A+ 1× 0

4
=

5

4
A = A+

1

4
A,

entirely as you have found. If the card of the Punter is found twice among the cards of the
Banker, he will have these six variations, instead of 24 permutations,

1. bbaa 3. abba 5. abab

2. baba 4. baab 6. aabb

The first, the third & the fifth make the Banker win, the second & the fourth make him
lose, & the sixth gives to him the half of the stake of the Punter, & therefore the lot of the
Punter will be

=
3× 2A+ 2× 0 + 1× 3

2A

6
=

5

4
A = A+

1

4
A,

again as you. If the card of the Punter is found three times among the cards of the Banker,
one sees clearly that he must have as many variations, as when the card of the Punter is
there only once; because he has only to make a permutation of the letters a to b, & b to a.

1. baaa 3. aaba

2. abaa 4. aaab

Whence one draws anew the lot of the Banker = A + 1
4A. By this manner of distributing

the cases, one sees without difficulty that whatever number of cards which are held by the
Banker expressed by p, if those of the Punter are found there only once, the advantage
of the Banker will be 1

pA. It is hardly otherwise if the card of the Punter is found more
than once among the cards of the Banker; because instead of all the permutations which it
would be necessary to examine, & of which the number is immense for a mediocre number
of cards, here it is only necessary to consider the number of variations of the two letters a
& b, which is always equal to the number of combinations that some things of which the
number is the one of the card of the Punter, are able to be taken differently in the number
of all the cards; & then of those combinations of which the number is always much smaller
than the one of all the permutations, if will be easy to choose those which make the Banker
win either entirely or in part, & thus to determine his lot: for example: We give to the
Banker six cards, among which we suppose that the card of the Punter is twice. Under this

9See §64.
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supposition I have only to examine as you make all the 720 permutations that the six cards
are able to undergo, restricting myself to examine simply those fifteen possible variations
that the letter a taken twice is able to make with the letter b taken four times.

1. bbbbaa 4. babbba 7. bbabab 10. bbaabb 13. baabbb

2. bbbaba 5. abbbba 8. babbab 11. bababb 14. ababbb

3. bbabba 6. bbbaab 9. abbbab 12. abbabb 15. abbbbb

Among these fifteen variations one counts seven which give all to the Banker, two which
give to him his stake with the half of the stake of the Punter, & the six others which make
him lose; in such a way that the lot of the Banker will be

=
7× 2A+ 2× 3

2A+ 6× 0

15
=

17

15
A = A+

2

15
A,

conforming to that which you have found. Thus similarly if the card of the Punter is three
times among the six cards of the Banker, there will be only 20 ways to vary the situation
of two letters a & b taken each three times, which being untangled makes plain that the lot
of the Banker will be = A+ 3

20A. Following this principle, here are the general formulas
that I have found for whatever number of cards that there are among the hands of the
Banker, & whatever number of times that the card of the Punter is found there, without
supposing known the lot of the Banker in a number of cards expressed by p − 2, as you
made in your general formula, that I have also found very easily; here is, I say, mine. Let
1.2.3.4 . . . p− q = m, q+1.q+2.q+3 . . . p = n, p− q+1.p− q+2.p− q+3 . . . p = l,
I say that the advantage of the Banker, if q is an even number, will be expressed by this
sequence

m

2n
× 1 +

q − 1.q

1.2
+

q − 1.q.q + 1.q + 2

1.2.3.4

+
q − 1.q.q + 1 . . . q + 4

1.2.3.4.5.6
+ · · · q − 1.q.q + 1 . . . p− 2

1.2.3.4 . . . p− q
.

Or else by this:

q − 1.q

2l
× 1.2.3 . . . q − 2 + 3.4.5 . . . q

+ 5.6.7 . . . q + 2 + · · · p− q + 1.p− q + 2 . . . p− 2.

But if q is an odd number, one will have the same advantage

q − 1.m

2n
× 1 +

q.q − 1

1.2.3
+

q.q + 1.q + 2.q + 3

2.3.4.5
+ · · · q.q + 1.q + 2 . . . p− 2

2.3.4 . . . p− q
,

or else

q + 1.q

2l
× 2.3.4 . . . q − 1 + 4.5.6 . . . q + 1

+ 6.7.8 . . . q + 3 + p− q + 1.p− q + 2 . . . p− 2;
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whence it is necessary to note that the numbers p & q are able to be anything, provided that
q not be less great than 3. If you wish to take the difficulty, you may examine these general
formulas if they accord with yours that you give for the particular cases, pg.. 24 & 25.10

Extract from the remarks of M. (Nicolas) Bernoulli. (pg. 299)
Pg.. 23, 24, 25.11 In general, if q > 2, the prerogative of the one holding the cards is

=
1

4
× q

p− q + 1
− 1

8
× q.q − 1

p− q + 1.p− q + 2

+
1

16
× q.q − 1.q − 2

p− q + 1.p− q + 2.p− q + 3
− . . .

all the way to ± 1

2q
× q.q − 1.q − 2 . . . 2

p− q + 1.p− q + 2 . . . p− 1

in A.

Extract from a letter from M. de Montmort to M. Bernoulli
At Montmort 15 November 1710. (pg. 303–304)

I agree, Sir, that I had not been able at all to enter into the examination of all the trials
favorable indifferent or contrary to the Banker. I must have without doubt noticed that
there were some cases of which the consideration was not at all necessary. But in the first
Problem I have believed that the longest & most detailed way was the most proper to put
the mind of the Reader into the path of the solution. You have been able to remark that I
have some nicer & shorter methods than those, by looking at the formulas which I given to
pages 24 & 25.12Those which you give, Sir, in order to express the advantage of the Banker

m

2n
× 1 +

q − 1.q

1.2
+

q − 1.q.q + 1.q + 2

1.2.3.4

+
q − 1.q.q + 1 . . . q + 4

1.2.3.4.5.6
+ · · · q − 1.q.q + 1 . . . p− 2

1.2.3.4 . . . p− q
,

if q is an even number. And

q − 1.m

2n
× 1 +

q.q − 1

2.3
+

q.q + 1.q + 2.q + 3

2.3.4.5
+ · · · q.q + 1.q + 2 . . . p− 2

2.3.4 . . . p− q

are very fine. I have one of them a long time since little different from yours, let it be that
q is even or odd. Here it is:

1

p× p− 1
+

p− q.p− q − 1

p.p− 1.p− 2.p− 3
+

p− q.p− q − 1.p− q − 2.p− q − 3

p.p− 1.p− 2.p− 3.p− 4.p− 5

+
p− q.p− q − 1.p− q − 2.p− q − 3.p− q − 4.p− q − 5

p.p− 1.p− 2.p− 3.p− 4.p− 5.p− 6.p− 7
+ &c.

The whole multiplied by q.q − 1. 12A.

10See § 74.
11See § 74.
12See § 74.
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page 105
CORRECTED TABLE FOR PHARAON

52 1 =∗ ∗ ∗ : 2 =∗ ∗ ∗ : 3 =∗ ∗ ∗ : 4 =a+ 2295086253
115890841950a

50 1 =∗ ∗ ∗ : 2 =a+ 13
1225a : 3 =a+ 3

196a : 4 =a+ 95
4606a

48 1 =a+ 1
48a : 2 =a+ 25

2256a : 3 =a+ 3
188a : 4 =a+ 91

4230a

46 1 =a+ 1
46a : 2 =a+ 4

345a : 3 =a+ 3
180a : 4 =a+ 29

1290a

44 1 =a+ 1
44a : 2 =a+ 23

1892a : 3 =a+ 3
172a : 4 =a+ 83

3526a

42 1 =a+ 1
42a : 2 =a+ 11

861a : 3 =a+ 3
164a : 4 =a+ 79

3198a

40 1 =a+ 1
40a : 2 =a+ 7

520a : 3 =a+ 3
156a : 4 =a+ 25

962a

38 1 =a+ 1
38a : 2 =a+ 10

703a : 3 =a+ 3
148a : 4 =a+ 71

2590a

36 1 =a+ 1
36a : 2 =a+ 19

1260a : 3 =a+ 3
140a : 4 =a+ 67

2310a

34 1 =a+ 1
34a : 2 =a+ 3

187a : 3 =a+ 3
132a : 4 =a+ 21

682a

32 1 =a+ 1
32a : 2 =a+ 17

992a : 3 =a+ 3
124a : 4 =a+ 59

1798a

30 1 =a+ 1
30a : 2 =a+ 8

435a : 3 =a+ 3
116a : 4 =a+ 55

1566a

28 1 =a+ 1
28a : 2 =a+ 5

252a : 3 =a+ 3
108a : 4 =a+ 17

450a

26 1 =a+ 1
26a : 2 =a+ 7

325a : 3 =a+ 3
100a : 4 =a+ 47

1150a

24 1 =a+ 1
24a : 2 =a+ 13

552a : 3 =a+ 3
92a : 4 =a+ 43

966a

22 1 =a+ 1
22a : 2 =a+ 2

77a : 3 =a+ 3
84a : 4 =a+ 13

266a

20 1 =a+ 1
20a : 2 =a+ 11

380a : 3 =a+ 3
76a : 4 =a+ 35

646a

18 1 =a+ 1
18a : 2 =a+ 5

153a : 3 =a+ 3
68a : 4 =a+ 31

510a

16 1 =a+ 1
16a : 2 =a+ 3

80a : 3 =a+ 3
60a : 4 =a+ 9

130a

14 1 =a+ 1
14a : 2 =a+ 4

91a : 3 =a+ 3
52a : 4 =a+ 23

286a

12 1 =a+ 1
12a : 2 =a+ 7

132a : 3 =a+ 3
44a : 4 =a+ 19

198a

10 1 =a+ 1
10a : 2 =a+ 1

15a : 3 =a+ 3
36a : 4 =a+ 5

42a

8 1 =a+ 1
8a : 2 =a+ 5

56a : 3 =a+ 3
28a : 4 =a+ 11

70a

6 1 =a+ 1
6a : 2 =a+ 2

15a : 3 =a+ 3
20a : 4 =a+ 7

30a

4 1 =a+ 1
4a : 2 =a+ 1

4a : 3 =a+ 3
12a : 4 =a+ 1

2a


