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I give in this Memoir the solution of many questions concerning the probability
that there is to bring forth a given sum, when one casts at random any number of poly-
hedrons of which the faces are marked by some positive and negative numbers. One
knows that the theory of combinations offers a direct solution of the problems of this
kind, by reducing them to the research of a certain term resulting from the develop-
ment of a polynomial raised to a power. This research becomes so much more painful
as the number of the dice that one considers is greater, so that if this number surpasses
certain limits, the reduction of the formulas in numbers required some calculations of
an excessive length. It is therefore principally in the case where the number of the
polyhedra is very great that it is important to give some formulas susceptible of an easy
application. The most general method for fulfilling this object is without doubt that
which Mr. LAPLACE has given in the Mémoires de l’Académie de Paris (year 1782):
It brings back the question of seeking a definite integral that one tries next to evaluate
by a convergent series, by profiting from the circumstance of the great numbers that it
contains.

By arresting oneself at the first enunciation of the problems of which there is ques-
tion in this Memoir, one was able to believe that there are more curious than useful; but
by examining the thing more closely, one does not delay to recognize that my principal
object is the one to demonstrate in a manner at once simple and rigorous the princi-
ples relative to the mean that one must choose among the results of many observations,
and it is without doubt under this relation that they must excite the attention of the
Astronomer and the Physician. When one wishes to submit this theory to the analysis
of hazards, it is first necessary, in order to better fix the ideas, to remove that which it
appears to have vague, and it is for this reason that it has appeared to me simpler to
present it under the form of problems concerning polyhedra. The mind is found thence
habituated to reason on some simple and clear objects, that it knows with more quick-
ness and clearness and passes next without efforts to the consequences of a greater
utility.

One finds in the last Memoirs published by Mr. LAPLACE, very scholarly re-
searches on this matter; my end will be fulfilled if the Academy comes to recognize
that I have given some development to the ideas of this great man.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. April 18, 2014
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ANALYSIS OF THE PROBLEMS

Let us imagine a die composed of an even number of faces, expressed by 2n. Let us
suppose the first n faces respectively marked by the sequence of numbers 1, 2, 3,. . .n;
and the n remaining faces marked with the same numbers taken negatively, that is, by
the sequence −1, −2, −3, . . .−n. One demands the probability that there is to bring
forth a sum equal to zero, by casting at random a number P of similar polyhedras.

It is easy to see, by the theory of combinations, that the sought probability is found
by raising to the power P the polynomial

x−n + x−(n−1) · · ·+ x−2 + x−1 + x1 + x2 · · ·+ xn−1 + xn = X;

and by taking in the development the term independent of x. One would determine this
coefficient by the method that LAGRANGE has given on page 206 of Volume V of the
Mémoires de l’Académie de Turin; but the formula that one would find by operating
thus would be so complicated for a considerable value of P that it would be nearly
impossible to be able to reduce it to numbers. And in order to be convinced of it it
suffices to note that in the very simple case where n = 1 and P = 2q, one has for the
value of the sought coefficient

(q + 1)(q + 2)(q + 3) · · · 2q
1.2.3 . . . q

;

a formula of which the reduction into numbers is very painful, when q has a consider-
able value. One knows that STIRLING has crossed first this difficulty by reducing this
formula into a descending series with respect to q, in a manner that one has, by naming
π the semi-circumference of which the radius is unity,

x−n+x−(n−1) · · ·+x−2+x−1+x1+x2 · · ·+xn−1+xn =
22q
√
qπ

(
1− 1

8q
+

1

128q2
− etc.

)
with so much more exactitude as q is a greater number.

2. By following the example of STIRLING we are going to attempt to reduce into a
descending series, with respect to P , the term independent of x of the polynomial XP .
For these sorts of reduction, LAPLACE has given a general principle in the Mémoires
de l’Académie de Paris. According to this principle, it is necessary to begin by ex-
pressing the function that there is concern to evaluate by a definite integral, and next it
is necessary to develop this integral into a convergent series.

In order to know well the force of this principle it is necessary to apply it to many
examples.

In order to find in our case the definite integral which is equal to the sought quantity,
let us note first that since this is independent of the value of x, nothing prevents putting
x = e$

√
−1 and considering the polynomial,

XP = (2 cos$ + 2 cos 2$ + 2 cos 3$ · · ·+ 2 cosn$)P (1)

Let us suppose for an instant the second member of this equation developed; it is
easy to comprehend that one will have a series of the form

2P (A+A′ cos$ +A′′ cos 2$ + etc.) :
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Now by multiplying this series by d$, and integrating from$ = 0 to$ = π, it is clear
that 2PAπ will be the result of the integration; therefore if one names Y the coefficient
independent of $ in formula (1), one will have

Y =
2P

π

∫
d$(cos$ + cos 2$ + cos 3$ · · ·+ cosn$)P (2)

the limits of the integral being $ = 0, $ = 180◦.
3. Now it is necessary to occupy ourselves with integrating this expression by a

series descending with respect to P . As the greatest value of the function

cos$ + cos 2$ + cos 3$ · · ·+ cosn$

corresponds to $ = 0, in which case it is reduced to n, we will put

(cos$ + cos 2$ + cos 3$ · · ·+ cosn$)P = nP .e−t
2

(3)

e designating the base of the hyperbolic logarithms. We will have therefore

Y =
(2n)P

π

∫
d$.e−t

2

where it is necessary to consider $ as a function of t which must be given by equation
(3). In order to find the limits of t, let us note that by making $ = 180◦, equation (3)
gives

0 = nP .e−t
2

if n is even; and
(−1)P = nP .e−t

2

when n is odd. It follows thence that if n is even one will satisfy the equation 0 =

nP .e−t
2

by taking t =∞, and that will be true, either by supposing P an even number,
or by supposing P and odd number: But when n is odd, it is impossible to satisfy the
equation (−1)P = nP .e−t

2

by the real values of t at least unless P is an even number:
Under this hypothesis one has 1

nP = e−t
2

, and as P is counted very great, and n greater
than unity, it is evident that one will satisfy this equation by taking again t =∞.

The limits of integration with respect to t are therefore t = 0, t =∞. If one makes
1
P = α, equation (3) will give

cos$ + cos 2$ + cos 3$ · · ·+ cosn$) = n.e−αt
2

,

and by developing the first member according to the powers of $ one will have

n− $2

1.2
· S′ + $4

1.2.3.4
· S′′ − $6

1.2.3.4.5.6
· S′′′ + etc. = n.e−αt

2

by putting

S′ = 12 + 22 + 32 + 42 · · ·+ n2;

S′′ = 14 + 24 + 34 + 44 · · ·+ n4;

S′ = 16 + 26 + 36 + 46 · · ·+ n6;

etc.
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In order to give to this equation a simpler form, we will make

a =
1

1.2

S′

n
; b =

1

1.2.3.4

S′′

n
; c =

1

1.2.3.4.5.6

S′′′

n
; etc.

so that one will have

$2(a− b$2 + c$4 − etc.) = 1− e−αt
2

whence one draws

$
√
a

{
1− b

2a
$2 +$4

(
c

2a
− b2

8a2

)
+ etc.

}
= t
√
α

(
1− 1

4
+

s

96
α2t4 etc.

)
.αt2

By applying to this equation the formula of NEWTON in order to return from the
series one finds

$ =

√
α

a
.t

(
1− αt2

(
1

4
− b

2a2

))
by neglecting the following terms. By drawing from this equation the value of d$ one
will conclude from it

y =
(2n)P

π

√
α

a

∫
dt.e−t

2

+
(2n)P

π

3α
√
α√
a

(
1

4
− b

2a2

)∫
dt.t2e−t

2

;

Now between the prescribed limits one knows that∫
dt.e−t

2

=
1

2

√
π;

∫
t2dt.e−t

2

=
1

4

√
π,

therefore

y = (2n)P
√

α

aπ

{
1

2
− 3α

4

(
1

4
− b

2a2

)}
.

One will have the values of a and of b by aid of the known formulas

S′ =
n(n+ 1)(2n+ 1)

1.2.3
;

S′′ =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

2.3.5
,

and by substituting them into that of y there will come

y =
(2n)P

√
3√

πP (n+ 1)(2n+ 1)

{
1− 3

8P
· 4n2 + 9n+ 7

5(n+ 1)(2n+ 1)

}
.

It is not necessary to neglect that this formula is true for all the positive integer
values of n, when P is an even number; but if P is odd, it is necessary that n be an odd
number.
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By retaining only the first term of the preceding formula, that which suffices for the
very great values of P , the sought probability will be equal to

√
3√

πP (n+ 1)(2n+ 1)

If one supposes the number n considerable, this formula is reduced to

1

n
·
√

3

2πP
.

4. It is not more difficult to resolve the same problem in the case where each die
is composed of an odd number of faces expressed by 2n + 1, of which one is marked
with zero. In fact, let y be the term independent of x resulting from the development
of the polynomial.

(x−n + x−(n−1) · · ·+ x−2 + x−1 + 1 + x1 + x2 · · ·+ xn−1 + xn)P

one will have here, by that which has been said previously,

y =
1

π

∫
d$(1 + 2 cos$ + 2 cos 2$ + cdots+ 2 cosn$)P

by integrating from $ = 0 to $ = 180◦.
Now if one puts

(1 + 2 cos$ + 2 cos 2$ + cdots+ 2 cosn$)P = (2n+ 1)P .e−t
2

(4)

one will have

y =
(2n+ 1)P

π

∫
d$.e−t

2

the limits of t being, whatever be n, t = 0 and t =∞.
By developing equation (4) as we have done in the preceding No., one will find,

1− e−αt
2

=
$2

1.2
− 2S′

1 + 2n
− $4

1.2.3.4
− 2S′′

1 + 2n
+ etc.

and thence it is quite easy to conclude from it, by aid of the preceding formulas,

y =
(1 + 2n)P ·

√
3√

2Pπn(n+ 1)

(
1− 3

8P
· (17n2 + 17n+ 1)

20n(n+ 1)

)
.

By conserving only the first term of this formula one will have
√

3√
2Pπn(n+ 1)

for the demanded probability: And if n is a very great number one will have

1

n
·
√

3

2Pπ
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as in the preceding case.
5. One is able to render the enunciation of the problem of No. 1 more general, by

demanding the probability that there is in order that the sum of the numbers marked
on the face of each die be equal to a given quantity q. It is clear that this problem
is reduced to determining the coefficient of xq which is found in the development of
the function XP , or that which reverts to the same, to determining the coefficient of
cos q$ of the function

(2 cos$ + 2 cos 2$ + cdots+ 2 cosn$)P ;

But cos q$ = cos(−q$); moreover it is evident that cos q$, and cos(−q$) have the
same coefficient, therefore it will be necessary to take only the half of the coefficient
of cos q$ in order to have exactly the coefficient of xq , or that which is yet simpler, it
will suffice to take the term independent of $ of the function

cos q$(cos$ + 2 cos 2$ + cdots+ 2 cosn$)P .

It follows thence that if one names y the sought coefficient, one will have

y =
2P

π

∫
d$. cos q$(cos$ + 2 cos 2$ + cdots+ 2 cosn$)P (5)

the limiits of the integral being $ = 0, $ = 180◦.
By substituting into this equation in place of

(cos$ + 2 cos 2$ + cdots+ 2 cosn$)P

its value found in No. 3, one will have

y =
(2n)P

π
· 1√

qP

∫
dt. cos q$.e−t

2

(
1− 3

P

(
1

4
− b

2q2

)
t2
)
.

Now we have

q$ =
qt√
qP
− q

P

t3√
aP

(
1

4
− b

2q2

)
+ etc.

therefore all the time that q is very small with respect to P , and that P is a very great
number, one will have by a sufficient approximation $ = qt√

aP
, and

y =
(2n)P

π
· 1√

aP

∫
dt. cos

qt√
aP
· e−t

2

the limits of t being t = 0, t = ∞. But between the limits x = 0, x = ∞ it is
demonstrate (See Exercices de Calcul intégral de LEGENDRE p. 362), that∫

dx.e−x
2

cos ax =

√
π

2
· e− a2

4
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therefore one will have

y =
(2n)P

2
√
πaP

· e−
q2

4aP ,

or else

y =
(2n)P

√
3√

πP (n+ 1)(2n+ 2)
· e

−3q2

P (n+1)(2n+1)

by substituting for a its value.
This formula shows us that the probability of bringing forth the sum q diminishes

in measure as q increases. Besides, if one supposes q = 0, the value of y agrees with
that found in No. 3 fo rthe same case.

Relatively to the case where n is also a very great number the probability of the
sum q will be

1

n
·
√

3

2πP
· e−

3q2

2n2P .

6. We have supposed in the solution of the preceding probability q < P , but
nothing prevents supposing q > P . In order to find under this hypothesis a convergent
result, it is necessary to vary the process of integration in a manner to that which one is
able to avoid the reduction into series of the factor cos q$.

By substituting into formula (5) in the place of

(cos$ + 2 cos 2$ + cdots+ 2 cosn$)P

its value
nP (1− a$2 + b$4 − etc.)P

found in No. 3, we will have

y =
(2n)P

π

∫
d$. cos q$(1− a$2 + b$4 − etc.)P .

In order to avoid the elevation to the power P of the polynomial, we note that one
has

(1− a$2 + b$4 − etc.)P = eP log(1−a$2+b$4−etc.).

and by developing the logarithmic function

(1− a$2 + b$4 − etc.)P = e−Pa$
2

e
P$4

(
2b−a2

2

)

or else

(1− a$2 + b$4 − etc.)P = e−Pa$
2

(
1 + P

(2b− a2)

2
$4 + etc.

)
It follows thence that by making x = $

√
aP , one will have

y =
(2n)P

π
√
aP

∫
dx. cos

qx√
aP
· e−x

2

(
1 +

(2b− a2)

2

x4

a2P
+ etc.

)
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and since P is supposed very great, one will be able to take x = 0, x = ∞ for the
limits of the integral, that which will give (See Exercices de Calcul Intégral p. 363)

y =
(2n)P

2
√
πaP

· e−
q2

4aP ·
{

1 +
(2b− a2)

8Pa2

(
3− 3q2

aP
+

q4

4a2P 2

)}
If one conserves only the first term of this formula one will have for y the same

value that we have found previously.
7. An analogous reasoning to that which we have done in No. 7, proves that one

has
y =

1

π

∫
d$ cos q$(cos$ + 2 cos 2$ + cdots+ 2 cosn$)

when the die is composed of 2n+ 1 faces among which there is one marked with zero;
the limits of the integral being always $ = 0, $ = 180◦.

By an analysis exactly conformed to that of the preceding No. one finds

y =
(1 + 2n)P

2
√
πPa′

· e−
q2

4a′P ·
{

1 +
(2b′ − a′2)

8Pa′2

(
3− 3q2

a′P
+

q4

4a′2P 2

)}

a′ =
1

1.2

2S′

1 + 2n
; b′ =

1

1.2.3.4
− 2S′′

1 + 2n
.

The first term of this formula gives
√

3√
2πPn(n+ 1)

· e−
3q2

2Pn(n+1)

for the demanded probability: And if n is a very great number, it is reduced to

1

n

√
3

2πP
· e
−3q2

2Pn2 (A)

as in the case of No. 5.
8. In order to make an application of this formula, let us imagine a center of at-

traction placed in a fixed point which acts on a number P of bodies of which each
has received an impulse. One knows that these bodies will describe some plane curves
differently inclined with respect to a plane of determined position, and by supposing
the impulses given at random, all the inclinations will be equally probable. Under this
hypothesis it is curious to seek the probability that there is in order that the sum of the
inclinations of the orbits are contained between the given limits −ψ and +ψ.

If one takes the supplement of the inclinations which are greater than a right angle,
all the orbits would be able to be considered as contained between two planes which
are cut at right angle: Let us imagine now this right angle divided into tow equal parts,
and let us fix the origin of the numeration of the angles at the point which corresponds
to 50g; thence an inclination of 57g , for example, will become 7g , according to this
manner of counting, and an inclination of 40g will be expressed by −10g . Whence it
follows that all the inclinations will be comprehended between −50g and +50g . Now,
if one supposes the 50g positive as well as the 50g negative divided into an infinitely
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great number of equal parts expressed by n, it is clear that formula (A) of the preceding
No. will give the probability in order that the sum of the inclinations is q, since the
problem of which we speak returns to the one of a number P of dice having 2n + 1
faces.

The probability in order that the sum of the inclinations are contained between zero
and +ψ will be therefore

1

n
·
√

3√
2πP

S · e−
3q2

2Pn2 .

The sign S of the finite integrals extending to all the values of q from q = 0 to
q = +ψ: And as this sum remains the same for the negative values of q comprehended
between zero and −ψ one will have

2

n

√
3√

2πP
S · e−

3q2

2Pn2

for the probability that the sum of the inclinations is comprehended between −ψ + ψ.
Let q

n = x and ψ
n = B: The change of the successive values of x being the infinitely

small fraction 1
n , one will be able to suppose 1

n = dx, and to change the sing S of the
finite integrals into the one of the infinitely small integrals, so that one will have√

6

πP
·
∫
dx.e−

3x2

2P (b)

for the probability demanded, the limits of integration with respect to x being x = 0 to
x = B.

Let us apply this formula to the Comets. The number of those that one has observed
to 1807 inclusively is 97. The sum of the inclinations of all these orbits each counted
from 0q to 100q , is raised to 5032.033g: And this same sum counted, as we have said,
will be

5032.033g − 97× 50 = 182.033g.

We have therefore P = 97; ψ = 182.033g; B = ψ
n = 182.033

50 = 3.6406. With
these numbers formula (b) becomes

2√
π

∫
dx′.e−x

′2

by putting x′ = x ·
√

3
2P . The limits of x′ are x′ = 0, x′ = 0.45273; Substituting this

value of x′ into the series∫
dx′.e−x

′2
= x− 1

1.2
· x

3

3
+

1

2.3
· x

5

5
− etc.

one will find
2√
π

∫
dx′.e−x

′2
= 0.4934.

The division of 182.033 by 97 gives 1.87663◦. The fraction 9.4934 expresses there-
fore the probability that the mean inclination of the 97 observed Comets will be com-
prehended between the limes 50g ± 1.87663g , by admitting all the inclinations equally
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probable. It is therefore very likely that the hypothesis of an equal facility of inclination
for these stars is that of nature, since the fraction 0.4934 is not small enough in order
to reject it. The preceding result agrees with the one that LAPLACE has given in the
Mémoires de l’Institut, year 1809, pag. 374.

9. Let us pass actually to the solution of a much more general problem than the
preceding. Let 2n be the number of faces of each die, and p the number of those dice
that one has cast at random. Let us name

E ′; E ′′; E ′′′; . . . E(p)

the numbers marked on the respective faces of these dice, and let us suppose each of
these numbers multiplied by the one which corresponds in the sequence

q′; q′′; q′′′; . . . q(p);

one demands the probability that there is in order that the sum

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) (B)

of these products is equal to a given quantity q.
Let us suppose q′, q′′, q′′′. . . q(p) whole numbers.
Let us designate by X ′ that which the polynomial X put into No. 1 becomes when

one raises each of these terms to the power q′, one will have

X ′ = x−q
′n + x−q

′(n−1) · · ·+ x−2q
′
+ x−q

′
+ xq

′
+ x2q

′
· · ·

+ xq
′(n−1) + xq

′n.

Let X ′′, X ′′′. . .X(p) be the successive values that this polygon takes by changing
from q′ to q′′; q′′ to q′′′ and so forth until q(p). It is clear, by the theory of combinations,
that the problem of which there is concern is reduced to determining the coefficient of
xq which is found in the development of the function X ′.X ′′.X ′′′ . . . X(p). Now by
putting x = e$

√
−1 one has

X ′ = 2 cos q′$ + 2 cos 2q′$ · · ·+ 2 cosnq′$,

or else
X ′ = 2S. cosnq′$

by extending the sign S of the finite integrals to all the values of n from 1 to n in-
clusively; therefore the coefficient of xq will be equal to the half of the coefficient of
cos q$ resulting from the development of the function

2p.S cosnq′$.S cosnq′′$ . . . S cosnq(p)$,

or, that which reverts to the same, it will be equal to the term independent of $ of the
function

2p.S cos q$.S cosnq′$.S cosnq′′$ . . . S cosnq(p)$.
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It follows thence that by naming y the coefficient of xq , one will have

y =
2p

π

∫
d$ cos q$.S cosnq′$.S cosnq′′$ . . . S cos aq(p)$

by integrating from $ = 0 to $ = π.
This posed, if one develops the function subjected to the sign S according to the

powers of $, one will have

S cosnq′ = n.{1− aq′2$2 + bq′4 − etc.};
S cosnq′′ = n.{1− aq′′2$2 + bq′′4 − etc.};

· · · · · ·
S cosnq(p) = n.{1− aq(p)2$2 + bq(p)4 − etc.};

where the values of a, b, etc. are known by No. 3.
Now, if one forms the sum of the logarithms of the second members of these equa-

tions, one will have

logS cosnq′$ + logX cosnq′′$ · · ·+ logS cosnq(p)$

= log np − a$2P +
(2b− a2)

2
$4P ′ − etc. e

by making

P = q′2 + q′′2 + q′′′2 · · ·+ q(p)2;

P ′ = q′4 + q′′4 + q′′′4 · · ·+ q(p)4.

The value of y will be able therefore to be set under this form

y =
(2n)p

π

∫
d$ cos q$.e−a$

2P .e
(2b−a2)

2 P ′$4

or else, under this here,

y =
(2n)p

π

∫
d$ cos q$.e−a$

2P

{
1 +

(2b− a2)

2
P ′$4 + etc.

}
.

This value of y is similar to that which we have found in No. 6, consequently one
will be able to integrate by the same process, that which will give

y =
(2n)p

2
√
aπP

.e
−q2

4aP

{
1 +

(2b− a2)

8a2
· P
′

P 2

(
3− 3q2

aP
+

q4

4a2P 2

)}
,

or simply

y =
(2n)p

√
3√

πP (n+ 1)(2n+ 1)
· e

3q2

P (n+1)(2n+1)

by taking only the first term of this formula. By changing arbitrarily the signs of the
multipliers q′, q′′, etc. the preceding value of y will remain always the same, since P ,
P ′ are formed by the even powers of these multipliers.
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According to that which one has seen in the preceding cases, one will comprehend
without difficulty that if the number of faces is odd, one must have

y =
(2n)p

2
√
a′πP

.e
−q2

4a′P

{
1 +

(2b′ − a′2)

8a2
· P
′

P 2

(
3− 3q2

a′P
+

q4

4a′2P 2

)}
,

the values of a′ and b′ being those that one finds in No. 7. The first term of this formula
gives √

3√
2πPn(n+ 1)

· e
−3q2

2n(n+1)P

for the demanded probability, which is reduced to

1

n
·
√

3

2πP
· e
−3q2

2Pn2

under the very great hypothesis. Here, if one makes q
n = x; 1

n = dx; ψn = k one will
have √

6

πP

∫
dx.e

−3x2

2P

for the probability that the value of the function (B) will be comprehended between the
limits ∓ψ. The limits of the integral being x = −k; x = +k.

10. The problem that we just resolved is able to be rendered more general by
demanding the probability that there is in order to satisfy at the same time the two
equations

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) = Q;

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) = Q;

Let

X ′ = x−nq
′
· y−nq′ + x−(n−1)q

′
· y−(n−1)q′ · · ·

+ x−2q
′
· y−2q′ + x−q

′
· y−q′ + xq

′
· yq′ + x2q

′
· y2q′ · · ·

+ x(n−1)q
′
· y(n−1)q′ + xnq

′
· ynq′ ;

X ′′ = x−nq
′′
· y−nq′′ · · ·+ x−2q

′′
· y−2q′′ + x−q

′′
· y−q′′ + x+q

′′
· y+q′′

+ x2q
′′
· y2q′′ · · ·+ xnq

′′
· ynq′′ ;

etc.

If one supposes the function X ′.X ′′.X ′′′ . . . X(p) developed it is clear that the
probability demanded will be given by the coefficient of xQ.yQ

′
, which is found in

the development. But if one makes

x = e$
√
−1; y = e$

√
−1

one has

X ′ = 2S cosn(q′$ + q′$
′); X ′′ = 2S cosn(q′′$ + q′′$

′); etc.

12



therefore the coefficient of xQ.yQ
′

is equal to the term independent of $ and of $′

which is found in the product

cos(Q$ +Q′$′)X ′.X ′′.X ′′′ . . . X(p).

To the exclusion of the term independent of $ and of $′ it is evident that any one
term of this product must have one or the other of these three forms

A cos(α$ + β$′), B cosM$, C cosN$′.

Now, by multiplying the first two of these functions by d$ and integrating them
from $ = −π to $ = π one has zero for result; likewise by multiplying the third by
d$′ and integrating between the same limits one has again zero; therefore if one names
z the coefficient of xQ.yQ

′
one will have between the prescribed limits

z =
1

4π2

∫
d$′

∫
d$ cos(Q$ +Q′$′).X ′.X ′′.X ′′′ . . . X(p),

since by this double integration all the terms vanish, except the one which is indepen-
dent of $ and of $′. Now by a calculation analogous to the one of the preceding No.,
one will find

X ′.X ′′.X ′′′ . . . X(p) = (2n)p.e−aP .e
(2b2−a2)P

2

by putting

P = (q′$ + q′$
′)2 + (q′′$ + q′′$

′)2 · · ·+ (q(p)$ + q(p)$
′)2;

P ′ = (q′$ + q′$
′)4 + (q′′$ + q′′$

′)4 · · ·+ (q(p)$ + q(p)$
′)4;

etc.

And if one makes

A = q′2 + q′′2 + q′′′2 · · ·+ q(p)2;

B = q′q′ + q′′q′′ + q′′′q′′′ · · ·+ q(p)2q(p);

C = q2′ + q2′′ + q2′′′ · · ·+ q2(p),

one will have

z =
(2n)p

4π2

∫
d$′

∫
d$ cos(Q$ +Q′$′).e−(A$

2+2aB$$′+Ca′$′2)

by omitting the factor (2b2−a2)
2 P ′ which produce only some very small terms in the

result of the integration.
If one makes

x = $
√
ap; x′ = $′

√
ap

the preceding value of z becomes

z =
(2n)p

4aπ2

∫
dx′
∫
dx cos

(
Qx
√
ap

+
Q′x
√
ap

)
.e−

Ax2

p −
2aBxx′

p −Ca′x′2
p

13



the limits of x and of x′ being −∞ and +∞ since one supposes p very great.
In order to render possible the double integration by known methods, let us substi-

tute in place of the cosine it exponential value, we will have

z =
(2n)p

2.4apπ2

∫
dx′
∫
dx.e−(αx

2+βx′2+γxx′+δx+Ex2

)

+
(2n)p

2.4apπ2

∫
dx′
∫
dx.e−(αx

2+βx′2−γxx′−δx−Ex2

)

by making, for more simplicity,

α =
A

p
; β =

C

p
; γ =

2B

p
; δ =

Q
√
−1

√
ap

; =
Q′
√
−1

√
ap

.

Now it is necessary to transform the exponent

αx2 + βx′2 + γxx′ + δx+ Ex2 = Y

of the number e into another containing only the squares of the two variables. For that
one will put

x = u− γ

2a
u′ + f ; x′ = u′ − h;

f =
γE − 2βδ

4αβ − γ2
; h =

2αE − γδ
4αβ − γ2

;

and one will have

Y = αu2 +

(
4αβ − γ2

4α

)
.u′2 +H;

H =
αE2γ2 + βγ2δ2 − Eδγ3 − 4αβ2δ2 − 4α2E2 + rαβγδE

(4αβ − γ2)2
.

Substituting in the place of α, β, γ, δ, E their values one will find, after the reductions,

Y =
A

p
· u2 +

(
AC −B2

pA

)
· u′2 +H;

H =
CQ2 − 2BQQ′ +AQ′2

4a(AC −B2)
.

It follows thence that by putting

E = AC −B2

one will have ∫
dx′
∫
dx.e−Y =

∫
du′
∫
du.e

−A.u2

p .e
−E.u′2

Ap .e−H

14



the limits of u and of u′ being the same as those of x and of x′. Now one knows that
from x = −∞ to x = +∞, one has∫

dx.e−x
2

=
√
π,

therefore ∫
dx′
∫
dx.e−Y = e−H · πp√

E
.

If one examines in the least the first transformation of Y one will comprehend that
in regard to the function

αx2 + βx′2 − γxx′ − δx− Ex2 = Y ′

one must yet have ∫
dx′
∫
dx.e−Y

′
= e−H · πp√

E
.

By reuniting these two integrals, one will have finally

z =
(2n)p

4aπ
√
E
· e
−1
4aE (CQ2−2BQQ′+AQ′2) (α′)

or else

z =
3(2n)p

π(n+ 1)(2n+ 1)
√
E
· e
−3(CQ2−BQQ′+AQ′2)

E(n+1)(2n+1)

by substituting for a its value (No. 3).
Relative to the case where the number of faces of each die would be equal to equal

to 2n+ 1 one would have

z =
3(1 + 2n)p

πn(n+ 1)
√
E
· e
−3(CQ2−BQQ′+AQ′2)

En(n+1)

11. The same method is applied to the case where the concern is to determine the
probability that there is to satisfy at the same time the three following equations,

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) = Q;

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) = Q;

r′E ′ + r′′E ′′ + r′′′E ′′′ · · ·+ r(p)E(p) = Q′′.

By some considerations absolutely similar to those of the preceding No., one would
find that in this case one must have

z =
1

8π3

∫
d$′′

∫
d$′

∫
d$ cos(Q$ +Q′$′ +Q′′$′′)X ′X ′′ . . . X(p).

X ′ = 2S cosn(q′$ + q′$
′ + r′$′′);

X ′′ = 2S cosn(q′′$ + q′′$
′ + r′′$′′);

etc.
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the limits of these integrals being always$ = $′ = $′′ = −π;$ = $′ = $′′ = +π.
Now if one transforms the product X ′X ′′X ′′′ . . . X(p) in the ordinary manner one will
have, by retaining only the first term,

z =
(2n)p

8π3

∫
d$′′

∫
d$′

∫
d$ cos(Q$ +Q′$′ +Q′′$′′).e−aP

P = (a′$ + q′$
′ + r′$′′)2 + (q′′$ + q′′$

′ + r′′$′′)2 · · ·
· · · · · ·+ (q(p)$ + q(p)$

′ + r(p)$′′)2.

Let us make

x = $
√
ap; x′ = $′

√
ap; x′′ = $′′

√
ap

A = q′2 + q′′2 + q′′′2 · · ·+ q(p)2;

B = q2′ + q2′′ + q2′′′ · · ·+ q2(p);

C = r′2 + r′′2 + r′′′2 · · ·+ r(p)2

D = q′q′ + q′′q′′ + q′′′q′′′ · · ·+ q(p)q(p);

E = q′r′ + q′′r′′ + q′′′r′′′ · · ·+ q(p)r(p);

F = q′r
′ + q′′r

′′ + q′′′r
′′′ · · · q(p)r(p);

one will have

P = Ax2 +Bx′2 + Cx′2 + 2Dxx′ + 2Exx′′ + 2Fx′x′′;

z =
(2n)p

8π3

∫
dx′′

∫
dx′
∫
dx cos

(
Qx
√
ap

+
Q′x
√
ap

)
.e−

P
p

If one makes α = A
p ; β = B

p ; γ = C
p ; δ = 2D

p ; C = 2E
p ; ζ = 2F

p ; ς = Q
√
−1√
ap ;

θ = Q′
√
−1√
ap ; τ = Q′′

√
−1√
ap ;

X = αx2 + βx′2 + γx′′2 + δxx′ + Exx′′ + ζx′x′′ + ςx

+ θx′ + τx′′;

Y = αx2 + βx′2 + γx′′2 + δxx′ + Exx′′ + ζx′x′′ − ςx
− θx′ − τx′′;

and if in the place of the cosine one substitutes its exponential value, one will have

z =
(2n)p

2.8π3

∫
dx′′

∫
dx′
∫
dx.e−X +

(2n)p

2.8π3

∫
dx′′

∫
dx′
∫
dx.e−Y .

In order to render possible these integrations, it is necessary to transform the func-
tions X , Y into some others which contain only the squares of the variables. Here is
the indication of this calculation for X . One will put

x = u+Ku′ + gu′′ + h;

x′ = u′ +mu′′ + f ;

x′′ = u′′ − b
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and one will have in order to determine the coefficients k, g, h, m, f , b the following
equations;

2αk + δ = 0

g =
δζ − 2βE
4αβ − δ2

;

m =
Eδ − 2αζ

4βα− δ2
;

b =
ςδζ + θEδ − τδ2 − 2βςE − 2αζθ + 4αβτ

2Eδζ − 2γδ2 − 2βE2 − 2αζ2 + 8αβγ
;

f(4αβ − δ2)− b(2αζ − δE) + 2αθ − ςδ = 0; (I)

2αh+ δf − bE + ς = 0 (II)

according to which the value of X is reduced to

X = αu2 +Gu′2 +Hu′′2 +N

by putting

G =
4αβ − δ2

4α
;

H =

{
Eζδ3 + γδ4 − βEδ2 − αδ2ζ2− 8αβγδ2 − 4αβδEζ
+rβα2ζ2 + 4αβ2E2 + 16γα2β2 − 2αζ2 − 2βE2

}
(4αβ − δ2)2

N = αh2 + βf2 + γb2 + δfh− Ebh− ζbf + ςh+ θf − τh.

By transforming Y in the same manner one will have the same result that we just
obtained for X; thus by effecting the integrations from negative infinity to positive
infinity, one will have

z =
(2n)p · e−N

8π
√
π
√
αGH

.

In order to better understand the form of the function N we develop further the
preceding equations.

By substituting into the value of b in the place of α, β, etc. their values one finds

b =
1

2
·
√
p

a
·
√
−1 ·

{
IQ′′ + I ′Q′ + I ′′Q

IC + I ′F + I ′′E

}
by making

I = AB −D2; I ′ = DE −AF ; I ′′ = DF −BE.

The same substitutions change equations (I) and (II) into these here;

If + I ′b+
1

2

√
p

a
·
√
−1 · (AQ′ −DQ) = 0

17



Ah+Df − Eb+
1

2

√
p

a
·
√
−1Q = 0.

If follows thence that if one puts

M =
IQ′′ + I ′Q” + I ′′Q

IC + I ′F + I ′′E
;

M ′ = AQ′ −DQ+MI ′;

M ′′ = BQ−Q′D +MI ′′

one will have

b =
1

2

√
p

a
·
√
−1 ·M ; f = −1

2

√
p

a
·
√
−1 · M

′

1
;

h = −1

2

√
p

a
·
√
−1 · M

′′

1
.

Now we have

PN = Ah2 +Bf2 + Cb2 − 2Fbf

+

√
p

a
·
√
−1 ·Q′f −

√
p

a
·
√
−1 ·Q′′h

therefore by the substitution of the values of b, f , h, one will have

4aIN = AQ′2 +BQ2 − 2DQQ′ + 2DQ′Q′′ − 2BQQ′′

= 2M(QI ′ −Q′′I ′′ +QI ′′)−M2(CI + FI ′ + EI ′′)

or else

raIN = AQ′2 +BQ2− 2DQQ′ + 2DQ′Q′′ −BQQ′′

+
2Q′Q′′I ′′ − 2QQ′′I ′′2 + 2QQ′′ +Q′2I ′2 +Q2I ′′2 −Q′′2(I2 + 2I ′′ + I ′′2)

IC + I ′F + I ′′E

by replacing M with its value.
One sees by this equation that the value fo N is a homogeneous function of the

second dimension with respect to Q, Q′, Q′′, this which is analogous to that which
holds for H in the problem of the preceding No.

12. In all the problems resolved until now we have supposed that the polyhedron
which has served us as example has a number of faces marked with each of the numbers
of the sequence 0; ±1; ±2; ±3. . .±n. But one is able to generalize the question by
enunciating it thus: Let h be the total number of faces of the polyhedron; let us name
a the number of thes faces marked with a zero; 2a′ the number of those marked, half
with positive unity, and half with negative unity; 2a′′ the number of those marked half
+2, and half −2; by continuing in the same manner one will form the equation

a+ 2a′ + 2a′′ + 2a′′′ · · ·+ 2a(n) = h (I)
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This put, let us propose to resolve with this change of circumstances the same problem
that we have enunciated at the beginning of No. 9.

It is clear that here it will be necessary to consider the polynomial

X ′ = a(n).x−nq
′
+ a(n−1).x−(n−1)q

′
· · ·+ a′′x−2q

′
+ a′x−q

′
+ ax0

+a′xq
′
+ a′′x2q

′
· · ·+ a(n)xnq

′

and to determine the coefficient of xq resulting from the development of the function
X ′.X ′′.X ′′′ . . . X(p); X ′′; X ′′′ . . . X(p) being the successive values, that take X ′ with
the change from q′ into q′′, q′′′ . . . q(p). By making, as in the preceding case, x =

eπ
√
−1, one will have

X ′ = a+ 2a′. cos q′$ + 2a′′. cos 2q′$ · · ·+ 2a(n). cosnq′$.

It is not necessary to repeat here the reasoning that we have already made in order
to comprehend that by naming y the sought coefficient one must have

y =
1

π

∫
d$ cos q$.X ′.X ′′.X ′′′ . . . X(p)

by integrating from $ = 0 to $ = π.
Developing X ′ according to the powers of $ one will have

X ′ = h

(
1− h′

k
$2 +

h′′

k
$4 + etc.

)
by putting

a′ + a′′.22 + a′′′.32 · · ·+ a(n).n2 = h′ (II)
1

12

(
a′ + a′′.24 + a′′′.34 · · ·+ a(n).n4

)
= h′′.

Now the transformation used will give us

X ′.X ′′.X ′′′ . . . X(p) = hpe
−h′
h P$2

1 +

(
2h′′

h −
h′2

h2

)
2

P ′$4


by putting

P = q′2 + q′′2 + q′′′2 · · ·+ q(p)2;

P ′ = q′4 + q′′4 + q′′′2 · · ·+ q(p)4.

If one retains only the first term of this series, one will have

y =
hp

π

∫
d$. cos q$.e−

h′
h P$

2

;

whence one concludes by the preceding formulas

y =
hp

2
√
πP · h′h

· e−
hq2

4Ph′ .
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This value of y divided by hp, which expresses the total number of combinations
of a number p of polyhedra such as the one that we have described, will give

y =
1

2
√
πP h′

h

· e−
hq2

4h′P (α)

for the probability of satisfying the equation

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) = q.

The quantities h and h′ are counted known by equations (I) and (II).
Before going further I would make here a remark which will be useful for us in the

following. If one takes only the first term of the value of y found in No. 9 one has

1

2
√
πaP

.e
−q2

4aP

for the expression of the probability. This function is of the same form as that desig-
nated by (α) and differs from it only by the value of the constant a which in that one is
expressed by h′

h . By departing from that consideration, one would have obtained first
the solution of the problem.

In the case where the law of the probability of each of the numbers of the sequence
0; ±1; ±2; ±3. . .±n will be expressed by a function of one variable, one would be
able to obtain the values of h and of h′ by the calculation of the finite differences. In
fact, let F

(
x
2n

)
be a function such that one has

F
( x

2n

)
= F

(
−x
2n

)
,

and that by making successively x = 0, 1, 2, 3, 4,. . .n one had for result a
h , a′

h ,
a′′

h . . . a
(n)

h . The equations (I) and (II) would become

1 =
a

h
+ 4n

1

2n
SF

( x
2n

)
;

h′

h
= 8n3

cdot
1

2n
S
( x

2n

)
2F
( x

2n

)
,

the sign S of the finite integral extending to all the values from x = 1 to x = n.
But if the number n is very great, then one is able to suppose x

2n = x′

b ; 1
2n =

dx′

b , and to change the sign S into the one of the infinitely small integrals, so that by
neglecting the very small fraction a

h the two preceding equations will give

1 =
4n

b

∫
dx′.F

(
x′

b

)
h′

h
=

8n3

b

∫
dx′.

x′2

b2
F

(
x′

b

)
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by integrating from x′ = 0 to x = 1
2b.

Let there be, for more simplicity,

2

∫
dx′.F

(
x′

b

)
= K;

∫
dx′.

x′2

b2
.F

(
x′

b

)
= K ′,

one will have
hp

h
= 4n2 · K

′

K

and formula (α) will become, by multiplyin it by 2 and putting q
2n = d

b ,

1

1
2n

√
πP · K′K

.e
−K

4K′P ·
a′2
b2 (β)

Such is the probability for satisfying the equation

q′E ′ + q′′E ′′ + q′′′E ′′′ · · ·+ q(p)E(p) = ±q.

when n is infinitely great, and when p is a considerable number.
13. Let us replace in formula (β) a

′

b by q
2n ; we will have

1

2n
· 1√

πP · K′K
.e
−K

4K′P ·
q2

4n2 .

Let E; E′; E′′; E′′′, etc. be the values that this formula takes by making succes-
sively q = 0, 1, 2, 3, etc. This put, let us imagine a player subject to the following
condition: If the sum designated by q is equal to zero, the player will pay nothing; if
the value qis ±1, the player will pay a certain sum; but he will pay the double, the
triple, the quadruple, etc.; if the value brought forth from q is ±2; ±3; ±4 etc. One
demands the sum that this player must pay in supposing that he not wish to be exposed
to such a game.

The only probability favorable to the player is E; all the others E′; E′′; E′′′; etc.
are contrary to him; and although the probabilities are decreasing, they do not permit
from increasing the disadvantage of the player by reason of the greatest sum that he
must pay. Because it is clear that the probability E′′ is equivalent to the probability
2E′ provided that the sum to pay is the same as that which corresponds to E′; likewise
the probability E′′′ is equivalent to 3E′′ if the sum to pay remains the same as for E′;
and so forth. Thence one concludes that the state of the player is the same as if he had
against him the probabilities E′, 2E′′, 3E′′′ etc., and in his favor the sole probability
E, with the condition of always losing the same sum, whatever be the value of q that
he will bring forth. Therefore the lot of the player, or that which reverts to the same,
the mean value of q, will be given by the sum

E′ + 2E′′ + 3E′′′ + 4E′′′′ + etc. =
1

2n
√
πP · K′K

Sq.e
−K

4K′P ·
q2

4n2 . (γ)
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14. This formula gives the solution of the problem concerning the mean that it is
necessary to choose among the observations. Let us suppose that one has a number
p of observations in order to correct an element already very nearly known. Let u be
the correction of this element and α′ the quantity given by observation: This quantity
must be considered as the result of a function of the element, in which one would have
substituted in the place of the element its approximate value increased by u, so that, by
neglecting the powers of u superior to the first, one will have the equation

α′ = β′ + δ′.u

β′ and δ′ being some quantities that one knows to determine.
This equation would be exact if the observation were, and it would suffice to know

u; but because of the inevitable errors of the observations, one would have exactly

E ′ = δ′.u− γ′

by making γ′ = α′ − β′, and naming E the error of the observation. Each observation
will furnish a similar equation, and one will form thus the following equations:

E ′ = δ′ . u− γ′;
E ′′ = δ′′ . u− γ′′;
E(p)= δ(p) . u− γ(p);

 (C)

In order to determine the most advantageous combination of these equations, mul-
tiply them respectively by q′, q′′, q′′′. . . q(p), and taking their sum there will come,

S.q(p)E(p) = u.Sq(p).δ(p) − Sq(p).γ(p) (δ)

If it were possible to choose the multipliers q′, q′′, etc., in a manner to render
S.q(p)E(p) = 0, this equation would give exactly

u =
Sq(p).γ(p)

S.q(p)gamma(p)
,

but as this is impractical, we try to make so that this value of u differs from the truth as
little as is possible.

Let us name u′ the error of this result, we will have

u = u′ +
Sq(p).γ(p)

S.q(p)δ(p)
,

substituting this value in equation (δ) one will find

S.q(p)E(p) = u′.Sq(p).δ(p).

Now, if one adopts the rather natural hypothesis that the positive errors are equally
probable as the negative errors of like value, and if one imagines that the interval com-
prehended among the extreme errors are divided into an infinitely great number of equal
parts, represented by 2n; it is clear that one will be able to apply here all that which

22



has been said in No. 12 in order to determine the probability relative to any value of
S.q(p)E(p). Moreover, if one adapts to the case that we treat the considerations made
in No. 13, one will understand that, if one makes

q = u′.S.q(p)δ(p) = u′Q

in formula (γ), the function

Q
√
K

2n
√
πPK ′

.Su′e
−K

4K′P ·
Q2u′2
4n2

which results from it, expresses the most probable value of the error u′, whence it
follows that if one makes u′

2n = x′

b ; 1
2n = dx′

b one will have

2nQ
√
K√

πK ′P

∫
x′dx′

b2
.e
−Q2K.a′2

4K′P.b2

for the most probable correction of u. To rigor it would be necessary to take for limits
of this integral the value of x′ corresponding to the greatest value of the error u′, and
that corresponding to u′ = 0; but the rapidity with which the exponential function
decreases, permits taking x′ = 0, x′ =∞ for limits of the integral, that which gives

4n

Q
·
√
PK ′

πK

for the correction of u relative to any system of multipliers q′, q′′, q′′′. . . q(p). We have
supposed the interval 2n, which comprehends the positive and negative errors, equal to
b, thus by replacing 4n by 2b, one will have

2b

Q
·
√
K ′P

πK
(B)

for the correction of u expressed by some units of same kind as those which measure
the interval b.

It is clear actually that the better system of multipliers is the one which renders
minimum formula (B). Now we have

√
P

Q
=

√
q′2 + q′′2 + q′′′2 · · ·+ q(p)2

q′δ′ + q′′δ′′ + q′′′δ′′′ · · ·+ q(p)δ(p)
;

therefore, if we suppose 1 = q′ + q′′ = · · · q(p), it will be necessary, in order that the
correction of u be smaller, to prepare the equations (C), in a manner that in each of them
the coefficient of u has the positive sign. One knows that the celebrated astronomer
Tobie MAYER is the first who has invented this rule, and the he has made use of it in
order to perfect the tables of the Moon. Following this method one would have

u =
S.γ(p)

S.δ(p)
,
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and formula (B) gives
2b
√
PK ′

S.δ(p)
√
πK

for the correction of this value. But this correction is not the smallest possible. In order
to find that here it is necessary to determine the multipliers q′, q′′. . . q(p), by equating
to zero the partial differential of the function

√
P
Q taken with respect to all the variables

q′, q′′, q′′′ . . . q(p), this which will give

q(p)

δ(p)
=

q′2 + q′′2 + q′′′2 · · ·+ q(p)2

q′δ′ + q′′δ′′ + q′′′δ′′′ · · ·+ q(p)δ(p)
,

where the first member must take successively all the values q′

δ′ ;
q′′

δ′′ ; . . . q
(p)

δ(p)
, and the

second remains invariable. It is clear that one satisfies the preceding equation by taking

q′ = µδ′; q′′ = µδ′′; q′′′ = µδ′′′; . . . q(p) = µδ(p),

this which gives µ = P
Q .

It follows thence that one has

u =
γ′δ′ + γ′′δ′′ + γ′′′δ′′′ · · ·+ γ(p)δ(p)

δ′2 + δ′′2 + δ′′′2 · · ·+ δ(p)2
,

and formula (B) gives

2b
√
K ′√

πK(δ′2 + δ′′2 + δ′′′2 · · ·+ δ(p)2)

for the correction of this value, which is effectively smaller than that which takes place
by supposing

1 = q′ = q′′ = · · · q(p).

The comparison of the preceding value of u with the equations (C) show that that
here enjoys the remarkable property of rendering minimum the function

(δ′.u′ − γ′)2 + (δ′′.u− γ′′)2 · · ·+ (δ(p).u− γ(p))2

which is equal to the sum of the squares of the errors E ′, E ′′, E ′′′. . .E(p). The calcu-
lus of the probabilities establishes thence the principle of least squares, discovered by
LEGENDRE and GAUSS in these last times.

The value of the correction depends on the ratio of K ′ to K, which is not able to be
determined a priori because one does not know nearly always the form of the function
F
(
x′

b

)
, whence depends the law of probability of errors, but LAPLACE demonstrates

that one is able in all cases to suppose K
K′ > 6.

15. Let us take the formula

1

2n
·
√
K√

πK ′P
.e
−Kq2

4K′P4n2
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found in No. 13. We have seen (No. 14) that q = u′Q, therefore if one names c the
interval which comprehends the positive and negative errors of q, by making q

2n = u′Q
c ;

1
2n = Qdu′

c , the integral
2Q
√
K√

ıPK ′

∫
du′

2c
.e
−Ku′2Q2

4K′Pc2

taken from u′ = 0 to u′ = u′ will give the probability in order that the error of u is
comprehended between ±u′. In order to express this integral more simply, it suffices
to put

u′ =
2ct
√
K ′P

Q
√
K

,

that which will change into
2√
π

∫
dt.e−t

2

. (E)

Following the method of least squares of the errors of the observations we have
seen in the preceding No. that one has

Q = µ(δ′2 + δ′′2 · · ·+ δ(p)2)

P = µ2(δ′2 + δ′′2 · · ·+ δ(p)2)

therefore one will have

u′ =
2ct
√
K ′√

K(δ′2 + δ′′2 · · ·+ δ(p)2)
(θ)

According to the method of MAYER one has P = p;

Q = δ′ + δ′′ + δ′′′ · · ·+ δ(p),

whence one concludes

u′ =
2ct
√
K ′P

(δ′ + δ′′ · · ·+ δ(p))
√
K
. (θ′)

Now, if one observes that the coefficient of t, which enters into equation (θ), is
precisely of the same form as the expression of the correction relative to the method
of least squares, and if the coefficient of t of formula (θ′) is of the same form as the
expression of the correction relative to the method of MAYER, one will conclude from
it that for one same value of t the value of u′ given by equation (θ′) must be greater
than that given by equation (θ). But the integral (E) remains the same for these two
values of u′, therefore with equal probability the limits of the errors are more narrow
by following the principle of least squares than by following the ordinary method.

16. If one had to determine more than one unknown, according to a system of
equations of which the number would exceed by much the one of the unknowns, the
method of least squares of errors of the observations would be yet that which it would
be necessary to follow in order to diminish as much as possible the most probable the
most probable correction relative to each unknown. In order to establish this principle,
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let us consider first the case where one would have to correct two elements already very
nearly known.

In naming u and z the corrections of the two elements, it would be easy to form the
following system of equations

E ′ = δ′.u+ β′.z − γ′;
E ′′ = δ′′.u+ β′′.z − γ′′;
· · · · · ·
E(p) = δ(p).u+ β(p).z − γ(p)

 (C′)

by some considerations analogous to those which we have employed in No. 14.
In order to determine the most advantageous combination of these equations. Mul-

tiply them respectively by q′; q′′′; q′′′. . . q(p); their sum, after having thus multiplied
them, will be

Q = Mu+Nz − L (1)

by making

Q = Sq(p)E(p); M = Sq(p)I(p); N = Sq(p)β(p); L = Sq(p)γ(p).

The same equations multiplied respectively by q′; q′′; q′′′;. . . q(p) give

Q′ = M +N ′z − L′ (2)

by making

Q′ = Sq(p)E(p); M ′ = Sq(p)δ
(p); N ′ = Sq(p)β

(p); L′ = Sq(p)γ
(p).

By admitting the possibility of choosing the multipliers such that one has Q = 0,
Q′ = 0, equations (1) and (2) would give exactly

(NM ′ −MN ′).z = LM ′ − L′M ;
(NM ′ −MN ′).u = NL′ − LN ′;

}
(B)

But, if the conditions Q = 0, Q′ = 0 do not hold, the values of z and of u given by
these equations will have need each of correction, so that if one names z′ the correction
of z, u′ that of u, equations (1) and (2) give

Q = Mu′ +Nz′; Q′ = M ′u+N ′z′.

Now, if one supposes the positive errors equally probable as the negative errors, it
is clear that one would have the probability relative to any values of Q and of Q′ by re-
solving a problem analogous to the one that we have resolved in No. 10. But one is able
to dispense of undertaking the solution of this problem by being aided of the remark
made in No. 12, in the similar case, where one has seen that the unequal probability of
errors does not change the form of the function that one seeks. In consequence of this,
it will suffice to divide by (2n)p the formula (α′) put in No. 10, and one will have

1

4πa
√
E
.e−

1
4aE (CQ2−2BQQ′+AQ′2)
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for the expression of the probability that Q and Q′ are the values of the sums Q =
Sq(p)E(p), Q = Sq(p)E(p). There is no need to avert that the constant a which enters
into this formula, must have a different value from that which it had in No. 10. In the
analogous problem treated in No. 12, we have seen that the constant a was of the form
2nK, but in the actual case, where there is concern to satisfy a double condition, the
probability must be infinitely smaller, thus it will be necessary to suppose a = 4n2K,
that which changes the preceding probability into this here:

1

4πK.4n2
√
E
.e−

1
4EK.4n2 (CQ

2−2BQQ′+AQ′2)

We name c the interval 2n, which comprehends the positive and negative values of
Q and of Q′. One will be able to suppose Q

2n = x
c ; Q

′

2a = y
c ; 1

2n = dx
c ; 1

2a = dy
c , this

which changes the preceding formula into this one here,

dxdy

4πKc2
√
E
.e−

1
4c2E

(Cx2−2Bxy+Ay2) (3)

Now one will have

x = Mu′ +Nz′

y = M ′ +N ′z

therefore one will have, in accordance with a known theorem of the Integral Calculus,

dxdy = (MN ′ −M ′N)du′dz′.

Let for more simplicity,

F = CM2 − 2BMM ′ +AM ′2;

G = CMN −B(M ′N +MN ′) +AM ′N ′;

H = CN2 − 2BNN ′ +AN ′2;

I = MN ′ −M ′N

formula (3) will become

Idu′dz

4πKc2
√
E
.e−

1
4Kc2E

(Fu′2+2Gu′z′+Hz′2)

This expression gives the probability that the errors of u and of z will be u′ and
z′; thus by supposing z′ constant and given to u′ all the values that it is able to receive
between its limits, one will have a sequence of probabilities of which the sum will be
evidently equal to the probability that there is in order that the error of z is z′; therefore
the integral

Idz

4πKc2
√
E
.e−

1
4Kc2E

(Fu′2+2Gu′z′+Hz′2)

will be the probability of the error z′. In regard to the limits of this integral one would
be able to take u′ = −∞, u′ = +∞, because the exponential function decreases
rapidly.
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It is easy to see that the preceding integral is able to be put under this form

Idz′

4πKc2
√
E
.e−

(HG−G2)z′2

4Kc2EF

∫
du′.e

− F
4c2KE

(
u′+Gz′

F

)2

and by taking it from negative to positive infinity, the result will be

Idz′

2c
√
πKF

.e−
(FG−G2)z′2

4Kc2KEF .

Now we have

HF −G2 = (AC −B2)(M ′N −MN ′)2,

but E = AC −B2. . . (No. 10), therefore

HF −G2

E
= I2.

It follows thence that the probability of the error z′ will be expressed by

Idz′

2c
√
πKF

.e−
I2z′2
4c2KF . (β)

It is not useless to observe that this function, like that which in No. 14 gave the
probability of the error u′ are each of the form

hdx√
π
.e−h

2x2

.

This function does not change by changing the sign of x: Its greatest value cor-
responds to x = 0, and it diminishes rapidly in measure as x increases; moreover its
integral taken from negative infinity, to positive infinity, is equal to unity. These prop-
erties are precisely those that each proper function must have to represent the law of
errors of observations.

If one multiplies the expression (β) by z′, the integral

Idz′

2c
√
πKF

.e−
I2z′2
4c2KF

will give the most probable correction of z′. . . (13).
Conformably to that which has been said in No. 14, one will be able to take z′ = 0,

z′ =∞ for the limits of this integral; that which will give

c

1

√
KF

π
(4)

for the correction of z relative to any system of multipliers q′, q′′. . . q(p); q′; q′′. . . q(p).
It is clear that it suffices to change F into H in order to have the corresponding

corresponding to u which will be consequently

c

1

√
KH

π
(5)
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Actually it is clear that the better system of multipliers is the one which will render
minimum the functions (4) and (5). Now it is easy to prove by the known rules of the
differential Calculus that one fulfills this double condition by taking

q′ = µδ′; q′′ = µδ′′; q′′′ = µδ′′′; . . . q(p) = µδ(p);
q′ = µβ′; q′′ = µβ′′; q′′′ = µβ′′′; . . . q(p) = µβ(p).

Substituting these values into equations (D) there will result from it for u and z the
following values:

z =
S.γ(p).δ(p).Sβ(p).δ(p) − S.β(p).γ(p).Sδ(p)2

(S.δ(p).β(p))2 − Sδ(p)2.Sβ(p)2
;

u =
S.δ(p).β(p).Sβ(p).γ(p) − S.β(p).γ(p).Sδ(p)2

(S.δ(p).β(p))2 − Sδ(p)2.Sβ(p)2
.

By comparing these values with equations (C′) one recognized that they coincide
with those which one would find in order to render minimum the function

(δ′.u+ β′z − γ′)2 + (δ′′.u+ β′′z − γ′′)2 · · ·
+ (δ(p).u+ β(p)z − γ(p))2

that is the sum of the squares of the errors of the observations.
17. In one had to determine three or a greater number of unknowns according

to a number of equations superior to the one of the unknowns one would find, by
following the preceding analysis that the principle of least squares always holds. But
it is necessary to swear that the calculation of it would be extremely long, even for the
case where there are three unknowns alone.

However, if one adopts the function

hdx√
π
.e−h

2x2

in order to express the law of probability of any error ±x, it becomes quite easy to
demonstrate the principle of least squares for any number of unknowns. In fact, let us
name x′, x′′, x′′′,. . .x(p) the errors of any number p of observations; the probability
that this system of errors is the one which will take place, is equal, as one knows, to
the product of the probabilities relative to each error, that is the function

hp

(π)
p
2

dx′ dx′′ dx′′′ . . . dx(p).e−h
2(x′2+x′′2+x′′′2···+x(p)2)

.

Now it is clear that the better system of errors that one is able to choose is the one
which is the most probable.

But the maximum of the preceding probability corresponds to the minimum of the
sum of squares

x′2 + x′′2 + x′′′2 · · ·+ x(p)2

of the errors of observations, therefore it will be necessary to determine the unknowns
in accordance with this principle. It is in this manner that the celebrated GAUSS has
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established the principle of least squares in his excellent work entitled: (Theoria motus
corpourm cælestium).

If one pays attention that the function

hdx√
π
.e−h

2x2

is presented in the solution of all the problems that we have traversed, one will en-
counter that it is rather natural to suppose that the probability of the errors of observa-
tions is represented by this function.
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