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The question that I myself propose to treat in this Memoir has already been the
object of the works of many geometers, and particularly of Mr. Laplace, of whom
the researches on this interesting matter are reunited in the Théorie analytique des
Probabilités (Book II, Chapter IV), and in the three supplements to this great work. The
generality of the analysis of Mr. Laplace, the variety and the importance of the objects
to which he has made application of it, leave without doubt nothing to desire; but it
has seemed to me that some points of this theory were able further to be developed;
and I have thought that the remarks that I have had the occasion to make in studying it,
would be proper to clarify the difficulties of it, and would be able also to not be without
use in practice.

(1) Let s be the number of observations that one considers; we designate by i a
whole and positive number, and we suppose that each of these observations are suscep-
tible to 2i+1 errors expressed by

−i,−i+1, . . . ,−2,−1, 0, 1, 2, . . . , i−1, i;

we suppose moreover that the probability of a similar error is the same in all this series
of observations; let n be one of these numbers, positive, negative or null, and we repre-
sent by N the probability of the error n: the sum of the probabilities of all the possible
errors being certitude, one will have

∑N = 1;

the sum ∑ extending to all the values of n from n = −i to n = i. We name M the
probability that the sum of the errors of the s observations will be equal to m: this
probability is the same as that of bringing forth a sum m in projecting a number s of
perfectly similar dice, of which each would have 2i+1 faces, marked with the numbers
−i, . . . ,+i, and having different degrees of probability, N being the probability of the
face which carries the number n; consequently the value of M will be the coefficient of
the power m of t in the development of the power s of the polynomial

∑(Ntn),

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
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composed of 2i+ 1 terms, or, that which is the same thing, the term independent of t
in the development of

t−m
[
∑(Ntn)

]
,

according to the powers of this variable. It is this which results from the first rules of
the calculus of the probabilities and of the theory of combinations.

In order to obtain this term, we designate, as ordinarily, by e the base of the Nape-
rian logarithms, and by π the ratio of the circumference to the diameter; we observe
that one has ∫

π

−π

ent θ
√
−1dθ = 0, or = 2π;

the first value taking place when n′ is a whole number, positive or negative, and the
second when n′ = 0: one will conclude from it easily that by putting eθ

√
−1 in the place

of t in the preceding quantity, the demanded term, or the value of M will be

M =
1

2π

∫
π

−π

(
∑Nenθ

√
−1
)s

e−mθ
√
−1dθ .

Let now p be the probability that the sum of the s errors will be contained between
two numbers µ and µ ′; it is evident that the value of p will be the sum of the values
of M, taken from m = µ to m = µ ′; but between these limits, the sum of the values of
e−mθ

√
−1 is

e−(µ−
1
2 )θ
√
−1− e−(µ

′+ 1
2 )θ
√
−1

2
√
−1sin 1

2 θ
;

one will have therefore

p =
1

4π
√
−1

∫
π

−π

(
∑Nenθ

√
−1
)s
(

e−(µ−
1
4 )θ
√
−1− e−(µ

′+ 1
2 )θ
√
−1

sin 1
2 θ

)
dθ .

As the mean error is the sum of the errors divided by their number, this probability
p is also the one that the mean error is contained between µ

s and µ ′

s .
(2) In order to give to this last expression a form a little different which will permit

next to make the errors increase by insensible degrees, we designate by 2a the interval
in which they are all contained, or the positive excess of the greatest over the smallest;
we partition this interval into a number 2i+1 equal parts; let ω be one of these parts,
so that one has 2a = (2i+1)ω; we make at the same time

nω = x, µω = b− c, µ
′
ω = b+ c,

(2i+1)θ
2a

= α:

N will be a function of x, which we will be able to represent by ω f x; and the value of
p will become

p =
a
π

∫ (
∑ω f xexα

√
−1
)s

e−bα
√
−1 sin

(
c+ a

2i+1

)
α

sin aα

2i+1

dα

2i+1
;

the values of x to which the sum ∑ relates increasing by some differences equal to α ,
and extending from x = −a to x = a, and the integral relative to α being taken from
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α =− (2i+1)π
2a to α = (2i+1)π

2a . The errors of the observations will no longer be expressed
by some whole numbers; and p will be the probability that the sum of the errors x of
the s observations will fall between the given quantities b− c and b+ c. Unless a, b
and c cease to be finite and given quantities, we imagine that i becomes infinite, in
which case we will have (2i+ 1)sin aα

2i+1 = ax; the limits relative to α will become
±∞, and the difference α will be infinitely small: by taking it for the differential of x,
and changing the sum ∑ into a definite integral, the value of p will take the form

p =
1
π

∫
∞

−∞

(
f xexα

√
−1dx

)s
e−bα

√
−1 sincα

dα

α
. (1)

This probability is related now to the case where the errors of the observations are
able to be all the quantities contained between −a and +a; their number being infinite,
the probability f xdx of any error x is infinitely small. The function f x will have such
form as one will wish: it will be able to continue or discontinue, provided that all its
values from x =−a to x =+a are positive and do not surpass unity at all, and that their
sum, or the integral

∫ a
−a f xdx, is equal to unity, a condition which expresses that each

error falls certainly between ±a. When this function will be given, one will have by
two successive integrations, the value corresponding to p.

(3) By making s = 1 in equation (1), one will have the probability that the error of
a single observation is contained between b− c and b+ c, which will be

p =
1
π

∫
∞

−∞

(∫ a

−a
f xexα

√
−1dx

)
e−bα

√
−1 sincα

dα

α
.

Now, when the interval contained from b− c to b+ c will fall outside the limits ±a of
the possible errors, that is to say when b−c and b+c will be one and the other, or > a,
or < a, setting aside the sign, it is evident that this value of p will have to be null; on
the contrary, this probability will be certitude, or equal to unity, when this interval of
b− c to b+ c will contain the whole entire interval of −a to +a; and generally, if we
regard f x as null, for all the values of x not contained between the limits ±a, we will
have to have

p =
∫ b+c

b−c
f xdx.

In order to verify on this point our analysis, we observe that by changing the order
of integrations relative to x and α , the value of p is able to be written thus:

p =
1
π

∫ a

−a

(∫
∞

0

sin(b+ c− x)α
α

dα−
∫

∞

0

sin(b− c− x)α
α

dα

)
f xdx.

But one has ∫
∞

0

sinkα

α
dα =

1
2

π, or =−1
2

π,

according as the constant k is positive or negative; the difference of the two integrals
relative to α will be therefore null or equal to π , according as the two quantities b+c−x
and b−c−x will be of like signs or of contrary signs; consequently the integral relative
to x will be null for all the values of this variable, which will be, either > b+ c and
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> b− c, or < b+ c and < b− c, and will have to be extended only to the values of x
contained at the same time between ±a and between b− c and b+ c. Therefore, by
regarding f x as null for the values of x which fall beyond the limits ±a, one will have

p =
∫ b+c

b−c
f xdx;

this which it was the concern to verify.
(4) Before going further, it will not be useless to apply formula (1) to some partic-

ular examples.
The simplest case is the one where all the errors contained between ±a are equally

possible; the function f x is then a constant equal to 1
2a ; there results∫ a

−a
f xexα

√
−1dx =

sinaα

aα
,

and consequently

p =
1
π

∫
∞

−∞

(
sinaα

aα

)s sincα

α
cosbα dα;

an integral that one will obtain under finite form by the known formulas, for all the
values of s in whole numbers.

Suppose in second place that one has

f x =
1√
π

e−xs
,

and that the limits ±a are ±∞. The condition
∫ a
−a f xdx = 1 will be satisfied; one will

have ∫ a

−a
f xexα

√
−1dx = e−

α2
4 ,

and hence
p =

2
π

∫
∞

0
e−

α2s
4 cosbα sincα

dα

α
;

an expression that one is able to write under this other form:

p =
2
π

∫ (∫
∞

0
e−

α2s
4 cosbα sincα

dα

α

)
dc,

the integral relative to c being taken in a manner that it vanishes when c = 0. The
integral relative to α is obtained by the known formulas; and the integration made, one
has

p =
1√
πs

∫ (
e−

(b−c)2
s + e−

(b+c)2
s

)
dc.

If one makes b = b′
√

s, c = c′
√

s, one will have

p =
1√
π

∫ c′

−c′
e−(b

′+z)2
dz;
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where one sees that when the limits b±c between which the sum of the errors must fall,
are proportionals to the square root of the number s of the observations, the probability
p, for which that takes place, is independent of this number, under the hypothesis that
we have made on the form of the function f . Under this same hypothesis, the maximum
of p, with respect to b, corresponds to b = 0, this which was evident a priori.

For last example, we take

f x =
1

π(1+ x2)
, a = ∞.

The condition
∫ a
−a f xdx = 1 will be fulfilled. Moreover one will have∫ a

−a
f xexα

√
−1dx = e−α , = eα ,

according as the quantity α will be positive or negative; whence one concludes

p =
2
π

∫
∞

0
e−αz cosbα

sincα

α
dα,

or else

p =
2
π

∫ (∫
∞

0
e−αs cosbα sincα dα

)
dc

the integral relative to c vanishing when c = 0. In doing, by the ordinary rules, the
integration relative to α , there comes

p =
1
π

∫ ( s
s2 +(b− c)2 +

s
s2 +(b+ c)2

)
dc,

and finally

p =
1
π

arc
(

tan =
2cs

s2 +b2− c2

)
.

By making b = b′s, c = c′s, the mean error will be contained between the limits b′±c′,
and the probability p which corresponds to them will be found independently from the
number s of the observations; whence there results that in this particular example, in
measure as this number would increase, the mean error would not converge toward zero
or another fixed term; and, however great that the number of observations were, there
would always be the same probability that the mean error to fear would be contained
between the given limits.

(5) The imaginaries enter only in appearance in the second member of equation (1),
and one is able easily to make them disappear.

Let first (∫ a

−a
f xcosαxdx

)2

+

(∫ a

−a
f xsinαxdx

)2

= ρ
2

and next
1
ρ

∫ a

−a
f xcosαxdx = cosφ ,

1
ρ

∫ a

−a
f xsinαxdx = sinφ :
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by reuniting in formula (1) the elements of the integral relative to α , which correspond
to the values of this variable, equals and of contrary signs, this formula will become

p =
2
π

∫
∞

0
ρ

s cos(sφ −bα)
sincα

α
dα. (2)

The quantity ρ is equal to unity when α = 0; for each other value of α , it is less
than 1. In fact, the expression ρ2 is able to be written thus:

ρ
2 =

∫ a

−a
f xcosαxdx

∫ a

−a
f x′ cosαx′ dx′

+
∫ a

−a
f xsinαxdx

∫ a

−a
f x′ sinαx′ dx′;

changing each of these two products of simple integrals into one double integral, next
the sum of the two double integrals into one alone, one will have

ρ
2 =

∫ a

−a

∫ a

−a
f x f x′ cos(x− x′)α dxdx′,

a quantity smaller than ∫ a

−a

∫ a

−a
f x f x′dxdx′, or < 1;

because by subtracting the first double integral from the second, there comes∫ a

−a

∫ a

−a
[1− cos(x− x′)α] f x f x′ dxdx′;

an integral of which all the elements are positive by hypothesis, and which is conse-
quently a positive quantity.

This remark is important, and goes to serve us by reducing the value of p to a
simpler form, in the case where the observations are in very great number.

(6) We will treat the number s as infinite, so that the following formulas will be
rigorous to this limit, and so much the more approximate as s will be more considerable.
Now, the quantity ρ being < 1 when the variable a is not null, it follows that in the
limit s = ∞, the power ρs will have finite values only for some infinitely small values
of this variable, and will become infinitely small as soon as α will have a finite value.
Therefore, by developing the quantity ρ according to the powers of α , one will be able
to limit its value to the first two terms of this series; and if one makes∫ a

−a
f xxdx = k,

∫ a

−a
f xx2dx = k′,

one will have, in this manner,

ρ = 1− 1
2
(k′− k2)α2.

This form of the value ρ admits however an exception in the case where the limits
±a are infinities: it is possible then that the second term of the development of ρ ,
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according to the powers of α , contain only the first power of this variable, which power
would be subject to not change sign with α , or would represent, if one wishes, +

√
α2:

it is that which arrives effectively when one has

f x =
1

π(1+ x2)
,

thus as one has seen it in the last example of no 4. But you do not take account of this
particular case, which it will suffice us to have remarked because of its singularity, and
which is encountered without doubt in practice.

One would be able thus to fear that the coefficient k′− k2 of the second term of ρ

being null, it was not necessary to conserve the term following its development, which
would contain a power of α superior to the second; but it is easy to prove that this
quantity k′− k2 is always positive, this which is necessary in order that one has ρ < 1,
and, moreover, that it is never able to be equal to zero. In fact, because

∫ a
−a f x′ x′dx = 1,

one has
k′− k2 =

∫ a

−a
f xx2dx

∫ a

−a
f x′ x′dx−

∫ a

−a
f xxdx

∫ a

−a
f x′ x′dx,

or, that which is the same thing,

k′− k2 =
∫ a

−a

∫ a

−a
(x2− xx′) f x f x′ dxdx′;

one is able also to write

k′− k2 =
∫ a

−a

∫ a

−a
(x′2− xx′) f x f x′ dxdx′;

and by taking for k′− k2 the half sum of these two values, there comes

k′− k2 =
1
2

∫ a

−a

∫ a

−a
(x− x′)2 f x f x′ dxdx′,

a positive quantity, and which will never be null, since all the elements of this double
integral are necessarily positive.

This put, we make, for brevity,

1
2
(k′− k2) = h2,

and we set y√
s in place of α; we will have

ρ
t =

(
1− h2y2

s

)′
:

the new variable y will be able to receive some finite values; but, whatever these values
be, one will have always

ρ
s = e−h2y2

,
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in the limit s = ∞. After the value of sinφ , we have, at the same time, φ = kα; equation
(2) will become therefore

p =
2
π

∫
∞

0
e−h2y2

cos(ks−b)
y√
s

sin
cy√

s
dy
y

;

or, that which is the same thing,

p =
1

π
√

s

∫ (∫
∞

0
e−h2y2

cos(ks−b+ z)
y√
s

dy
)

dz;

the integral relative to z being taken from z = −c to z = +c. One must give to the
variable y only some finite values; but one extends without fear of sensible error, the
integral which is carried back to infinity, because of the factor e−h2y2

, which becomes
insensible for the very great values of y. This integral is obtained then by the known
formulas, and one has definitely

p =
1

2h
√

πs

∫ c

−c
e−

(ks−b+z)2

4h2s dz. (3)

In the case where f x is constant and equal to 1
2a , one will have

k = 0, k′ =
a2

3
, h2 =

a2

6
,

and consequently

p =

√
3

a
√

2πs

∫ c

−c
e−

3(b−z)2

2a2s dz.

The limits ±a being infinite, in the case of

f x =
1√
π

e−x2
,

one will have
k = 0, h2 =

1
2
√

π

∫
∞

−∞

e−x2
x2dx =

1
4

;

whence there will result

p =
1√
πs

∫ c

−c
e−

(b−z)2
s dz,

this which coincides with the second value of p from no 3, which subsists for all the
values of s.

(7) For one same value of c, the maximum of p with respect to b, will be given by
the equation ∫ c

−c
e−

(ks−b+z)2

4h2s (ks−b+ z)dz = 0;

or else, by doing the integration, by this here:

e−
(ks−b+c)2

4h2s − e−
(ks−b−c)2

4h2s = 0,
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which is reduced to
e−

c(ks−b)
2h2s = e

c(ks−b)
2h2s ,

and give b = ks. If one makes at the same time c = 2hr
√

s, formula (3) will become

p =
2√
π

∫
e−r2

dr,

the integral being taken in a manner that it vanishes when r = 0. This will be the
probability that the sum of the errors of a very great number s of observations will have
for limits ks± 2hr

√
s, or that the mean error will fall between k− 2hr√

s and en k+ 2hr√
s ;

so that the quantity r and the probability which depends on it, remain the same, these
limits will be tightened indefinitely in measure as s will increase, and one will be able
always to take this number large enough for which it has a given probability, that the
mean error will differ also as little as one will wish from the quantity k. Departing from
its maximum, the value of p given by equation (3) will diminish very rapidly; and for
little that b differs from ks, a quantity which is not of the order of smallness of 1√

s , this
value of p will be insensible; the number s being always supposed very great.

All the time that the positive errors and the negative errors will be equally possible,
that is to say when the function f x will be the same for the values of x equal and of
contrary sign, the quantity k will be null, and the mean error will hold continually to
become it in measure as the number of observations will become greater. But when
some constant cause will render the errors preponderant, in one sense or in the another,
the quantity k will no longer be null, and it will be necessary that its value be known, in
order that one be able to assign the fixed term toward which the mean error converges
indefinitely. It is evident that k, setting aside its sign, is not able to be> a; because the
mean error would not know how to pass the limit of the possible errors. It is necessary,
for that, that one has k2 < a2; and in fact, one has

a2− k2 = a2
∫ a

−a
f xdx

∫ a

−a
f x′dx′−

∫ a

−a
x f xdx

∫ a

−a
x′ f x′dx′

=
∫ a

−a

∫ a

−a
(a2− xx′) f x f x′dxdx′;

a positive quantity, since all the elements of this double integral are positive.
(8) The preceding analysis is applied without difficulty to the solution of the follow-

ing problem, which comprehends, as particular case, the one that we come to resolve.
Let E be the sum of the errors of the s observations, each multiplied by a given

coefficient; we represent by ε, ε1, ε2, . . . ,εs−1 the errors of the 1st, 2nd, 3rd, . . ., (s−
1)st observation, and by γ , γ1, γ2, . . . ,γs−1, the coefficients which must multiply them
respectively; so that one has

E = γε + γ1ε1 + γ2ε2 + · · ·+ γs−1εs−1:

the concern is to find the probability that the sum E is contained between the given
limits.

We suppose first, as in no 1, that all the possible errors are expressed by the whole
numbers or zero, comprehended from −i to +i; but in order to give to the question all
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the generality of which it is susceptible, the probability of one same error will not be
supposed the same in all the observations; we will designate therefore the probability
of any error n, by N in the first observation, by N1 in the second, . . ., by Ns−1 in the
last. Let moreover β be a factor such, that all the products βγ , βγ1,βγ2,βγ3, . . .βγs−1
are some whole numbers; this which will be always possible exactly, or to such degree
of approximation as one will wish. We make finally, for brevity,(

∑Ntβγn
)(

∑N1tβγ1n
)(

∑N2tβγ2n
)
· · ·
(
∑Ns−1tβγs−1n

)
= T ;

the sums ∑ which enter into this product extending to all the values of n, from n =−i
to n+ i. The probability that βE is equal to a whole number m, will be the coefficient
of tm in the development of T according to the powers of t, or the term independent
of t in the product Tt−m. In designating by M this probability, and by P that which T
becomes when one puts eθ

√
−1 in the place of t, we will have

M =
1

2π

∫
π

−π

Pe−mθ
√
−1dθ .

Calling next p the probability that βE is contained between two whole numbers µ and
µ ′, or equal to one of these numbers, p will be the sum of the values of M, from m = µ

to m = µ ′, and its value will be

p =
1

4π
√
−1

∫
π

−π

P

[
e−(µ− 1

2 )θ
√
−1− e−(µ ′+ 1

2 )θ
√
−1

sin 1
2 θ

]
dθ .

In order to establish the continuity among the possible errors of each observation,
we divide the given interval in which they are all contained, into 2i+1 equal parts; let
2a be this interval and ω one of these parts; we make besides

nω = x, µω = (b− c)β , µ
′
ω = (b+ c)β ,

(2i+1)βθ

2a
= α:

there will remain no more next but to suppose ω infinitely small and i infinite, so that
the errors vary by insensible degrees. To this limit, the integrals relative to α will be
taken from α =−∞ to α = ∞; the sums ∑ will be changed into some definite integrals,
taken from x = −a to x = a, ω being the differential dx; and if one makes N = ω f x,
one will have, for example,

∑Neβγnθ
√
−1 =

∫ a

−a
f xeγxα

√
−1dx.

The other sums ∑ will be transformed in the same manner, so that by assuming

N1 = ω f1x, N2 = ω f2x, . . . , Ns−1 = fs−1x,

the value of P will become(∫ a

−a
f xeγxα

√
−1dx

)(∫ a

−a
f1xeγ1xα

√
−1dx

)
· · ·
(∫ a

−a
fs−1xeγs−1xα

√
−1dx

)
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and all the reductions made, that of p will be

p =
1
π

∫
∞

−∞

Pebα
√
−1 sincα

dα

α
.

The quantity β has disappeared in this formula; and, in fact, p is the probability
for which βE is contained between (b− c)β and (b+ c)β , or that which is the same
thing, for which the sum E is contained between b− c and b+ c, that which no longer
depends on β . One will make the imaginaries vanish, by putting(∫ a

−a
f xcosγxα dx

)2

+

(∫ a

−a
f xsinγxα dx

)2

= ρ
2,

1
ρ

∫ a

−a
f xcosγxα dx = cosφ ,

1
ρ

∫ a

−a
f xsinγxα dx = sinφ ;

designating by ρ1 and φ1, ρ2 and φ2, etc., that which ρ and φ become when one replaces
γ and f x successively, by γ1 and f1x, γ2 and f2x, etc.; and making next

ρρ1ρ2 · · ·ρs−1 = R,

φ +φ1 +φ2 + · · ·+φs−1 = ψ.

The expression p is changed into that here:

p =
2
π

∫
∞

0
Rcos(ψ−bα)sincα

dα

α
,

or, that which reverts to the same,

p =
1
π

∫ c

−c

(∫
∞

0
Rcos(ψ−b+ zα)dα

)
dz, (4)

All the factors of R are reduced to unity, when α = 0; one will prove, as in no 5,
that they are all < 1 for each other value of α .

(9) In order to deduce from this formula, some results useful to practice, we are
going to consider especially the case where the number s is very great, and is able to
be treated as infinite. In this case, if one designates by r those of the quantities ρ ,
ρ1, ρ2, . . . , ρs−1 which, for the same value of α , differs least from unity, one will have
R < rs, and, consequently, the product R will have finite values only for some infinitely
small values of α . However this conclusion will be able to be with defect, in the case
where the coefficientsγ , γ1, γ2, etc., will form a continually decreasing series; it will be
able to arrive then that the factors ρ , ρ1, ρ2, etc., converge indefinitely toward unity, so
that one is not able to assign among them, the factor r which approaches most to be
equal to one; and after that it will be possible that the product of these factors in infinite
number, be a finite quantity for all the values of α . We will give in the no following an
example of this singular case; in the one here, we will consider the general case where
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the product R, for the limit relative to infinite s, becomes infinitely small, as soon as
one gives to α a finite value.

Let there be for any index i,∫ a

−a
x fixdx = ki,

∫ a

−a
x2 fixdx = k′i,

1
2
(k′i− k2

i ) = h2
i ;

we observe besides that one has ∫ a

−a
fixdx = 1,

and we develop each of the factors of R according to the powers of α: by conserving
only the first two terms of each series, we will have

R = (1− γ
2h2

α
2)(1− γ

2
1 h2

1α
2) · · ·(1− γ

2
s−1h2

s−1α
2).

We make α = y√
s , in a manner that the new variable y is able to be a finite quantity. If

one develops the logarithm of R according to the powers of this variable, one will have

logR =−y2 ∑γ2
i h2

i
s
− 1

2
y4 ∑γ4

i h4
i

s2 − 1
3

y6 ∑γ6
i h6

i
s3 − etc.;

the sums ∑ extending from i = 0 to i = s− 1. By supposing that the quantities γ2h2,
γ2

1 h2
1, γ2

2 h2
2, etc., do not increase indefinitely, and designating by H2 the greatest among

them, these sums ∑ will be respectively less than sH2, sH4, sH6, etc.; consequently all
the terms of the development of logR, the first excepted, will vanish at the limit s = ∞,
and one will have simply

logR =−1
s

y2
∑γ

2
i h2

i and R = e−
1
s y2

∑γ2
i h2

.

At the same time the quantities φ , φ1, φ2, etc., will be reduced to αγk, αγ1k1, αγ2k2,
etc.; one will have therefore ψ = α ∑γiki, and formula (4) will become

p =
1

π
√

s

∫ c

−c

[
e−

1
s y2

∑γ2
i h2

i cos(∑γiki−b+ z)
y√
s

dy
]

dz.

Because of the rapid increase of its elements, one will extend, without fear of error, the
integral relative to y from y = 0 to y = ∞, this which will permit to obtain it under finite
form, and will give

p =
1

2
√

π ∑γ2
i h2

i

∫ c

−c
e
− (∑γiki−b+z)2

4
√

∑γ2
i h2

i dz. (5)

For one same value of c, the maximum of p with respect to b will correspond to
b = ∑γiki; and this probability will increase very rapidly on both sides of its greater
value, so that it will be completely insensible, as soon as b will be separated from

12



∑γiki, by a quantity comparable to 1√
∑γ2

i h2
i
, which is of the same order as 1√

s . By

making b = ∑γiki, c = 2r
√

∑γ2
i h2

i , one will have

p =
2√
π

∫
e−r2

dr,

the integral commencing with r. This will be the probability that the sum E has for

limits ∑γiki±2r
√

∑γ2
i h2

i , or that 1
s E is contained between

1
s ∑γiki−

2r
s

√
∑γ2

i h2
i and

1
s ∑γiki +

2r
s

√
∑γ2

i h2
i .

As one has
√

∑γ2
i h2

i < H2s, there results from it that one will be able always to take s

great enough so that it has a given probability that 1
s E differs as little as one will wish

from 1
s ∑γiki, which would be consequently the value of 1

s E resulting from an infinite
number of observations.

(10) In order to give an example of the exception that we have indicated at the
commencement of the no preceding, we make a = ∞; we suppose that the law of prob-
ability is the same in all the observations, and also the same for the errors equal and of
contrary signs, this which will render null the angles φ , φ1, φ2, etc., of the no 8; and we
take γ = 1, γ1 =

1
2 , γ2 =

1
3 , . . . and generally γi =

1
i+1 ; whence there will result

ρ1 = 2
∫

∞

0
f xcos

αx
i+1

dx.

Let besides
f x = e∓2x;

the superior sign having place when the variable x is positive, and the inferior when it
is negative. This expression of f x gives∫

∞

0
f xdx =

∫ −∞

0
f xdx =

1
2
,

and satisfies consequently the condition
∫ a
−a f xdx = 1. The corresponding value of ρi

will be
ρi = 2

∫
∞

0
e−2x cos

αx
i+1

dx =
1

1+ α2

4(i+1)2

;

by means of what one will have

R =
1(

1+ α2

4

)(
1+ α2

4·4

)(
1+ α2

4·9

)
· · ·
(

1+ α2

4·s2

) ;

now, the number of the factors of the denominator being infinite, this denominator will
be equal to

e
πα
2 − e−

πα
2

πα
,
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after the known decomposition of the exponentials into products of this nature; one
will have therefore, under finite form,

R =
πα

e
πα
2 − e−

πα
2

;

and if one substitutes this value into formula (4), if one makes ψ = 0, and if one effects
the integration with respect to z, there will result from it

p =
∫

∞

0

sin(b+ c)α

e
1
2 πα − e−

1
2 πα

dα−
∫

∞

0

sin(b− c)α

e
1
2 πα − e−

1
2 πα

dα.

The exact values of these integrals is deduced from a known formula,1 and the value of
p becomes finally

p =
e2(b+c)−1

2(e2(b+c)+1)
− e2(b−c)−1

2(e2(b−c)+1)
.

Such is therefore the probability that the value of E, or of the series

1+
1
2

ε1 +
1
3

ε2 +
1
4

ε3 + etc.,

prolonged to infinity, will be contained between b− c and b+ c. If one makes b = 0,
this probability will be reduced to

p =
1− e−2c

1+ e−2c ;

whence one concludes that, without being obliged to take for c a very great number, by
taking for example c > 5, there will be a probability very close to certitude, that the
sum E will be contained between ±c. By making b = c, one will have

p =
1− e−2c

2(1+ e−2c)
,

for the probability that E is contained between c and 2c, which is, as one sees, the mean
of the preceding.

The law of probability being the same as in the case that we just took for example,
if one takes for the coefficients γ , γ1, γ2, etc., the series 1, 1

3 ,
1
5 , etc., one will find that

formula (4) becomes

p =
2
π

∫ c

−c

(∫
∞

0

cos(b− z)α

e
1
4 πα + e−

1
4 πα

)
dz.

But one has2, ∫
∞

0

cos(b− z)α

e
1
4 πα + e−

1
4 πα

dα =
2

e2(b−z)+ e−2(b−z)
;

1Journal de l’École Polytechnique, 18e cahier, page 297.
2Journal de l’École Polytechnique, 18e cahier, page 298.
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this which permits to effect the integration relative to z, and gives

p =
2
π

[
arc( tan = e−2(b−c))− arc( tan = e−2(b+c))

]
,

for the probability that the value of the series

1+
1
3

ε1 +
1
5

ε2 +
1
7

ε3 + etc.,

prolonged to infinity, is contained between b− c and b+ c.
In the case of b = 0, this value of p becomes

p =
2
π

[
arc( tan = e2c)− arc( tan = e−2c)

]
= 1− 4

π
arc(tan = e−2c);

a quantity which will differ very little from unity, when c, without being a very great
number, will surpass however five or six units. The value of p will be half of that one,
or equal to

1
2
− 2

π
arc(tan = e−2c),

in the case of b = c.
By comparing these results to the one of the preceding no, one sees that the prob-

abilities of the values of E are very different according as the coefficients γ , γ1, γ2,
etc. form a series decreasing to infinity, or that they have all a finite value, as we will
suppose it in that which is going to follow.

(11) Most frequently the quantity which is given immediately by the observations,
is not the same unknown that one wishes to determine, but a function of this unknown,
which changes the value of an observation to another. In order that the calculations are
not impractical, especially in the case of a great number of observations, it is necessary
that this function be linear, or that the unknown be already rather well determined so
that the correction that one must make it subject, is very small, and that one is able
to neglect in it the powers superior to the first, this which renders the function linear
with respect to this correction, which is then the true unknown of the problem. We
will represent it by u; by Ai, the approximate value of the function corresponding to
the (i+ 1)st observation; by Ai + uqi, its corrected value; by Bi, the value of the same
function given by this observation; by εi, as previously, the unknown error of which it
is susceptible. We will have, in this manner,

Bi + εi = Ai +uqi;

and if we make
Bi−Ai = δi,

so that δi is the excess of the value observed on the approximate value, this equation,
will become

εi = uqi−δi.
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One will have similarly of it for each of the s observations that one considers. The coef-
ficients q, q1, q2, etc., and the quantities δ , δ1, δ2, etc., will be given in each particular
case; and the concern is to draw from this system of equations, the most independent
value of the errors of the observations.

For that, we make the sum of all these equations, multiplied respectively by the
coefficients γ , γ1, γ2, etc., we will have

E = u∑γiqi−∑γiδi;

the sums ∑ extending, as previously, from i = 0 to i = s−1. In measure as s increases,
the value of 1

s E approaches to be equal to 1
s ∑γiki; the value of which u will approach

at the same time will be therefore

u =
∑γiδi

∑γiqi
+

∑γiki

∑γiqi
; (6)

and by taking for u this value, it will have a probability expressed by 2√
π

∫
e−r2

dr (no

9), that the error to fear, or the difference from u to its true value, will be contained
between the limits

±
2r
√

∑γ2
i h2

i

∑γiqi
.

The probability remaining the same, the error to fear will be therefore so much less
as the coefficient of r in this expression will be smaller; thus one will have to choose
the system of factors γ , γ1, γ2, etc., for which the value of this coefficient will be a
minimum; now, by equating to zero its differential with respect to any coefficient, there
comes

γih2
i ∑γiδi−qi ∑γ

2
i h2

i = 0;

whence one concludes
γi =

µqi

h2
i

;

µ being a constant coefficient, or common to all the factors γ , γ1, γ2, etc., which remain
entirely arbitrary, as one sees by substituting this expression of γi into the preceding
equation. The value of u will become then

u =
∑

qiδi
h2

i

∑
q2

i
h2

i

+
∑

qiki
h2

i

∑
q2

i
h2

i

, (7)

and the limits of the error to fear will be

± 2r√
∑

q2
i

h2
i

(12) In the particular case where the probability of the errors is the same in all the
observations, and where consequently all the quantities h, h1, h2, etc., are equals, in the
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same way the quantities k, k1, k2, etc., one will have simply

u =
∑qiδi

∑q2
i
+

k ∑qi

∑q2
i
, (8)

and for the limits of the error to fear

± 2r√
∑q2

i

If the coefficients q, q1, q2, etc., formed a series decreasing to infinity, such as
1, 1

2 ,
1
3 , etc., for example, one would have

∑q2
i = 1+

1
4
+

1
9
+

1
25

+ etc. =
π2

6
;

these limits would have therefore a value finite and equal to ± 2rh
√

6
π

, instead of being
tightened more and more, in measure as one would increase the number of observa-
tions. But it is necessary to observe that the coefficients γ , γ1, γ2, etc., being propor-
tional to the coefficients q, q1, q2, etc., would form also a series decreasing to infinity;
so that this case falls in the exception of no 11, the formulas that we just found are not
applicable at all. In fact, by adopting the same law of probability of errors as in this no,
one would have

k = 0, h2 =
1
2

∫
∞

0
e−xx2dx = 1;

now, the limits of error of u being± 2r
√

6
π

, those of the value of E would be± 2r
√

6
π ∑γ2

i ,
or ± 2rπ√

6
, and the corresponding probability would have for expression

1− e−
4rπ√

6

1+ e−
4rπ√

6

,

while, according to the preceding formulas, it would be equal to 2
π

∫
e−r2

dr, the integral
commencing with r.

By supposing always the same error equally probable in all the observations, if one
takes all the coefficients γ , γ1, γ2, etc., equal to unity, the value of u, deduced from
equation (6), will be

u =
∑δi

∑qi
+

ks
∑qi

; (9)

and the limits of the error to fear with the probability 2
π

∫
e−r2

dr, will have for expres-
sion

±2rh
√

s
∑qi

These limits must be less narrow than those which correspond to formula (8), for which
their extent is reduced to the minimum. It is necessary therefore that the ratio

∑qi
√

s
√

∑q2
i

,
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be < 1, setting aside the sign, this which is easy to verify. In fact, by calling ∆2 the sum
of the squares of the differences of the coefficients q, q1, q2, etc., taken two by two,
and Q the sum of their products two by two, we will have

∆
2 = (s−1)∑q2

i −2Q,(
∑qi

)2
= ∑q2

i +2Q;

consequently
∆

2 = s∑q2
i −
(
∑qi

)2 ; (10)

whence one draws
∑qi

√
s
√

∑q2
i

=

√
1− ∆2

s∑q2
i

;

a quantity evidently < 1, excepting in the case where the coefficients q, q1, q2, etc.,
being all equal, one has ∆ = 0.

(13) According to the expression of εi of no 11, one has

∑(εi− k)2 = ∑(qiu−δi− k)2;

and if one determines u by the condition that this sum is a minimum, one finds

u =
∑qiδi

∑q2
i
+

k ∑qi

∑q2
i
,

this which coincides with formula (8). There results from it therefore that the most
advantageous manner to determine u, consists in rendering a minimum the sum of the
squares of the errors of all the observations, after having diminished each error by the
quantity k; and when one supposes k = 0, this method is that of least squares of errors,
as Mr. Laplace has demonstrated first. But when the positive errors and the negative
errors are not equally probable, this method, as well as the ordinary process, where one
makes the sum of the errors equal to zero, will give an incomplete value of u; and, in
order to complete it, it will be necessary to know the value of the constant k for each
particular question immediately, one is able to observe that the coefficient of k is less
in formula (8) than in formula (9) which reports to the second method; whence there
results that by suppressing the term which contains k, one will risk to commit a greater
error, by making use of the ordinary process, than by employing the method of least
squares, this which is further an advantage of this method.

(14) We suppose that the s observations that one considers, are composed of many
groups in each of which the law of probability of the errors is the same. Let in the first
group, s′ be the number of observations, h and k the values of hi and ki; in the second,
s′′ this number, h′ and k′the values of these quantities; and thus in sequence: according
to formula (7), one will have

u =
1
h2 ∑

′ qiδi +
1

h′2 ∑
′′ qiδi + etc.+ k

h2 ∑
′ qi +

k′
h′2 ∑

′′ qi + etc.
1
h2 ∑

′ q2
i + 1

h′2 ∑
′′ q2

i + etc.
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and the limits of the error to fear with the probability 2√
π

∫
e−r2

dr will be

±2r√
1
h2 ∑

′ q2
i + 1

h′2 ∑
′′ q2

i + etc.
;

the sum ∑
′ extending to the first group of observations, ∑

′′ to the second, etc.
This value of u does not suppose that the numbers s′, s′′, etc. are all very great:

it will suffice, in order that it be applicable, that their sum or the number s of all the
observations, is a very great number. Although s′, s′′, etc. are not necessarily very
great, if one has determined the value of u according to the rule of the preceding no

for each group of observations in particular, and if one names U,U ′,U ′′, . . . the results
relative to the 1st, 2nd, 3rd,. . . group, so that one has

U
′

∑q2
i =

′

∑qiδi + k
′

∑qi,

U ′
′′

∑q2
i =

′′

∑qiδi + k′
′′

∑qi,

etc.

if moreover, one makes, for brevity,

1
h2

′

∑q2
i = g,

1
h′2
′ ′′

∑q2
i = g′, etc.:

the preceding value of u will become

u =
gU +g′U ′+g′′U ′′+ etc.

g+g′+g′′+ etc.
;

a formula which will serve to calculate the value of u, resulting from many groups of
observations of different kinds, when the values of u, given by the rule of the preceding
no, and the quantities g, g′, g′′,etc., will be known for all these groups. At the same
time, the limits of the error to fear, with the probability here above, will take the form

±2r√
g+g′+g′′+ etc.

(15) The usage of the preceding formulas requires that one know the two quantities
k and h in each kind of observations: the quantity k in order to form the value of the
unknown, and the quantity h in order to evaluate the limits of the error to fear on this
value with a determined probability. The most natural assumption that one is able to
make on the first of the two quantities, is to consider it as null, this which comes back
to regarding the positive and negative errors as equally possible; but if this equality
does not hold, one will not have k = 0; and, in a great number of cases, one will be able
to determine the true value of k in the following manner.

We suppose that by employing successively two different systems of coefficients γ ,
γ1, γ2, etc., . . .γ ′, γ ′1, γ ′′2 , one has formed the two equations

∑γiεi = u∑γiqi−∑γiδi,

∑γ
′
i εi = u∑γ

′
i qi−∑γ

′
i δi,
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we subtract the one from the other, after having multiplied the first by ∑γ ′i qi and the
second by ∑γiqi; there comes

∑γ
′′
i εi = ∑γiqi ∑γ

′
i δi−∑γ

′
i qi ∑γiδi,

by making, for brevity,
γi ∑γ

′
i qi− γ

′
i ∑γiqi = γ

′′
i .

Now, after that which one has seen above (no 9), there is a probability 2√
π

∫
e−r2

dr that
the sum ∑γ ′′i εi is contained between the limits

k∑γ
′′
i ±2rh

√
∑γ ′′i

2;

the law of the probability being the same in all the observations, and their number s
being supposed very great. If therefore one takes k ∑γ ′′i for the value of this sum, the
value corresponding to k will be

k =
∑γiqi ∑γ ′i δi−∑γ ′i qi ∑γiδi

k ∑γ ′′i
;

and the limits of the error to fear on this value, with the probability above, will be

±
2rh
√

∑γ ′′i
2

∑γ ′′i
.

In order that their extent be a minimum, it would be necessary that γ ′′i be constant
with respect to i; but it is easy to see that the coefficients γi and γ ′i would not know how
to be such that that took place. If one takes one of these two coefficients constant, and
the other proportional to qi, one will have

γ
′′
i = µ

(
qi ∑qi−∑q2

i
)

;

µ being a quantity independent of i. There will result from it

∑γ
′′
i

2
= µ

2
[
s
(
∑q2

i
)2−

(
∑qi

)2
∑q2

i

]
= µ

2
∆

2
∑q2

i ,

∑γ
′′
i = µ

2
[(

∑qi
)2− s∑q2

i

]
=−µ∆

2;

∆2 having the same signification as in no 12. The value of k and the limits of the error
to fear will become therefore

k =
∑qi ∑qiδi−∑q2

i ∑δi

∆2 and ±
2rh
√

∑q2
i

∆
;

their probability being always 2√
π

∫
e−r2

dr. When the sum that ∆2 represents will be

very great with respect to ∑q2
i , this value of k will be determined with the same exac-

titude as the unknown u; but when the coefficients q, q1,q2, etc. will be equals, or only
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when their differences will be very small, the quantity ∆ will be null or very small, this
which will render illusory the limits of the error to fear on the value of k, which will no
longer be able then to be determined by any means.

If the observations that we will consider have for object to determine the coefficient
of a periodic inequality, and if they comprehend the entire extent of a period, the sum
of the coefficients q, q1,q2, etc. will approach more and more to be null in measure as
the period will have been divided into a great number of parts, or that the observations
will be more numerous; by neglecting therefore ∑qi, one will have ∆2 = s∑q2

i , and the
value of k and the limits of the error to fear will be reduced to

k =−∑δi

s
and ± 2rh√

s
;

by dividing therefore, in this case, the sum of the quantities δ , δ1, δ2, etc. by their
number, one will knew immediately if the quantity k has a sensible value; and the
quotient, taken with a contrary sign, will give quite exactly this value.

(16) Instead of seeking to determine this quantity, one would be able to try to make
it vanish from the value of u. For this, we take the general expression of u given
by formula (6). By supposing that the quantities ki and hi are the same in all the
observations, this expression and the limits of error which relates will become

u =
∑γiδi

∑γiqi
+

k ∑γi

∑γiqi
and ±

2rh
√

∑γ2
i

∑γiqi

We make therefore
∑γi = 0,

this which will determine one of the factors γ , γ1, γ2, etc. We render next the limits
of error a minimum, with respect to all the others; we will have the two differential
equations

∑dγi = 0, ∑γiqi ∑γidγi−∑γ
2
i ∑qidγi;

multiplying the first by an indeterminate factor θ , adding it next to the second, then
equaling to zero the coefficient of each differential, one will have

θ + γi ∑γiqi−qi ∑γ
2
i = 0.

The value of γi that one will draw from this equation will be of the form

γi = µqi +θ
′,

µ and θ ′ being some constants that the concern is to determine. Now, by substitut-
ing this value into the preceding equation, and equating next to zero separately the
coefficient of qi beyond the sign ∑, and the constant term with respect to i, there comes

µθ
′
∑qi +θ

′2s = 0,

θ +θ
′
µ ∑q2

i +θ
′2

∑qi = 0;
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whence one draws

θ =−µ

s ∑qi, θ =
µ2

s2

[
s∑q2

i −
(
∑qi

)2
]
∑qi;

by means of which the value of γi will become

γi = µ

(
qi−

1
s ∑qi

)
,

and the factor µ will remain indeterminate. The value of u will be therefore

u =
s∑qiδi− (∑qi)

2

∆2 ,

and designating by ∆2 the same quantity as previously; and all reduction made, the
limits of the error to fear will have for expression

±2rh
√

s
∆

,

the probability being always 2√
π

∫
e−r2

dr.

When ∆2 will be a very small quantity with respect to s, these limits will be illusory,
and one will be not be able to make any use of this value of u. When ∑qi will be a
very small quantity, this value and these limits will differ very little from the value of
u given by equation (8) and from the limits of error which are reported there.

(17) We occupy ourselves now in the determination of the quantity h, necessary
to know in order to calculate the limits of error of the different preceding formulas. I
observe, for that, that instead of considering, in nos 1 and 2, the sum of the errors of
the s observations, one could have considered the sum of the values of any function
of these errors; the probability p that this sum would be contained between two given
limits b− c and b+ c would be determined without new difficulties by the analysis of
these two nos; and if one indicates this function by the characteristic φ , formula (1) will
give further the value of p, by putting φx in the place of x in the imaginary exponential
that the integral contains relative to x, and conserving all the other notations. If one
supposes next the number s very great; if one makes∫ a

−a
f xφxdx = K,

∫ a

−a
f x(φx)2dx = K′,

1
2
(K′−K2) = H2;

if one indicates always by ε , ε1, ε2, etc., the errors of the observations: one will find,
as in no 7,

p =
2√
π

∫
e−r2

dr,

for the probability that the sum

φε +φε1 +φε2 + · · ·+φεs−1,
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or ∑φεi, is contained between the limits

Ks±2rH
√

s.

Consequently, one will be able always to take the number s great enough in order that
it has a given probability that 1

s ∑φεi differs from K by as little as one will wish; and
by taking

1
s ∑φεi = K,

the limits of the error to fear with the probability p, will be

±2rH√
s
.

This put, we suppose φx = x2, a case in which K and the quantity k′ of no 6 will be
equals, so that one will have, according to this no,

K = k′ = 2h2 + k2.

The preceding equation will become therefore

h2 +
1
2

k2 =
1
2s ∑ε

2
i ;

but one has (no 11)
∑ε

2
i = ∑(uqi−δi)

2;

substituting therefore for u its value given by formula (8), which is the least susceptible
to error, one will conclude from it

as(h2 +
1
2

k2)∑q2
i =

(
∑qiδi + k∑qi

)2−2
(
∑qiδi + k∑qi

)
∑qiδi +∑q2

i ∑δ
2
i ,

or else, by reducing,

2sh2
∑q2

i +∆
2k2 +

(
∑qiδi

)2−∑q2
i ∑δ

2
i = 0;

an equation which will make known the value of u when that of k will be known.
This formula coincides with that which Mr. Laplace has given for the same object,3

when one supposes k = 0, and in the case where all the coefficients q, q1, q2, etc., are
equals among them. In this last case, one has ∆ = 0, and the preceding formula gives

h2 =
∆′2

2s2 , or h =
∆′

s
√

2
;

∆′2 designating, with respect to the quantities δ , δ1, δ2, etc., that which ∆2 represents
relative to the coefficients q, q1, q2, etc., that is to say the sum of the squares of the
differences of these quantities δ , δ1, δ2, etc., taken two by two.

3Théorie analytique des Probabilités, page 321.
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In general, the error that one will commit by taking for h the value resulting from
the equation that we just found, will depend on the error of which the value of u that we
have employed is susceptible, and on the error of the equation 1

s ∑φεi = K. The limits
of that here containing a new unknown H, one will not be able to evaluate them exactly,
no more than those of the error to fear on the value of h; but that will not prevent at all
using this value of h in the formulas of the preceding numerals, where it is multiplied
by some very small quantities of the order of 1√

s .
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