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I myself propose to add some new developments to the part of this Memoire which
is relative to the probability of the arithmetic mean among the results of a great number
of observations.

1. We suppose that any one thing, that we will name A in order to shorten the
discourse, is susceptible, by its nature, to all the values contained between some given
limits and represented by a and b. Let x be one of these values; if one makes a series
of experiences in order to determine A, the probability that the value that one will
find through one of these observations will not exceed x, will vary, in general, from
one experience to the other. We will represent it by Fnx for the nth experience. The
probability that this value will be precisely x will be able to be only infinitely small,
since the number of possible values is infinite; by making Fnx

dx = fnx, it will have for
expression fnxdx.

We designate by X a given function of x, which increases without interruption from
x = a to x = b, and we represent by a1 and b1 its extreme values. For greater generality,
we are going to seek the probability that if one takes the sum of the values of X which
will result from a number s of successive observations, this sum will be contained
between some given limits.

We admit first that X is only susceptible of a number ν of equi-different values;
we will make next ν infinite, and the difference of two consecutive values infinitely
small. We suppose then that a1 and b1 are some multiples of one same quantity w, so
that a1 = p1w, b1 = q1w, p1 and q1 being some whole numbers, positive or negative.
We designate by iw one of the intermediate values of X , i being also a whole number
or zero; by making q1− p1 = ν−1, the number of values of X will be equal to ν , and
their constant difference equal to w. We call Qn the probability of the value of x which
corresponds to X = iw, relative to the nth observation. Finally let M be the probability
that in a number s of observations, the sum of the values of X will be equal to mw, m
being a whole number contained between sp1 and sq1. It is easy to see that M will be
∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
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the coefficient of tm in the development of

∑ t iQ1.∑ t iQ2.∑ t iQ3 . . .∑ t iQs,

according to the powers of t; each of the sums ∑ extending themselves to all the values
of i contained from p1 to q1, and being composed, consequently, of a number ν of
terms. One is able to say that M will be the part independent of t in the product of this
function of t multiplied by t−m; and if one puts in this product eθ

√
−1 in place of t, if

one makes, for brevity,

∑eiθ
√
−1Q1.∑eiθ

√
−1Q2.∑eiθ

√
−1Q3 . . .∑eiθ

√
−1Qs = P,

one will conclude from it

M =
1

2π

∫
π

−π

Pe−mθ
√
−1dθ ;

e being the base of the Naperian logarithms, and π the ratio of the circumference to the
diameter.

We represent by p the probability that the same sum of ν values of X will be
contained between µw and µ ′w, µ and µ ′ being some whole numbers or zero, which
will not exit from some limits sp1 and sq1. It is evident that p will be the sum of the
values of M that one will obtain by giving successively to m all the values contained
from m = µ to m = µ ′ inclusively. Now, by having regard to the sum of the values
corresponding to the factor e−mθ

√
−1, there comes

p =
1

4π
√
−1

∫
π

−π

[
e−(µ−

1
2 )θ
√
−1− e−(µ

′− 1
2 )θ
√
−1
] dθ

sin 1
2 θ

.

Let finally,

µw = c− ε, µ
′w = c+ ε,

θ

w
= α;

there will result from it

=
w
2π

∫
P

sin(ε + 1
2 w)α

sin( 1
2 wα)

e−cα
√
−1dα;

and the limits relative to α will be± π

w . In the case of ν infinity, or of w infinitely small,
they will become±∞; one will be able to replace ε+ 1

2 w by ε , and 2
wα

sin 1
2 wα by unity;

by means of which the expression of p will be changed into this here:

p =
1
π

∫
∞

−∞

Pe−cα
√
−1 sinεα

dα

α
(1)

At the same time the quantities iw and Qn will coincide with X and fnxdx; the sums ∑

contained in P will be transformed into some definite integrals relative to x, of which
the limits will be a and b; and one will have

P =
∫ b

a
f1e−Xα

√
−1xdx.

∫ b

a
f2e−Xα

√
−1xdx . . .

∫ b

a
fse−Xα

√
−1xdx. (2)
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2. This formula (1) will express, in the most general manner, the probability that
the sum of s values of the function X , resulting from a parallel number of successive
observations, will be contained between c− ε and c+ ε , which are some quantities
given and contained between sa1 and sb1. If one makes there X = x, p will be the
probability that the value of A, expressed by the mean result of these s observations,
will have for limits 1

s (c± ε). As the result of each observation must be contained, by
hypothesis, between a and b, it will be necessary that one has∫ b

a
f1xdx = 1,

∫ b

a
f2xdx = 1, . . .

∫ b

a
fsxdx = 1. (3)

The quantities f1x, f2x, etc., will be besides some functions any whatever of x, provided
that their values be all positive or not surpass unity. When these functions will be
given, one will be able to calculate the exact value of p; but most often the law of
probability of the values of A is unknown and variable from one observation to the
other: the s functions f1x, f2x, etc., are therefore so many unknowns; this which does
not prevent nevertheless that one is able, in the case where the number of observations
is considerable, to deduce from the preceding formulas a value of p so much closer as
the number s will be great.

When one has c− ε = sa1 and c + ε = sb1 the limits to which the probability
p corresponds are the same limits a1 and b1 which comprehend, by hypothesis, the
unknown value of X ; p must therefore be certitude, or equal to unity; and it is, in fact,
that which one is able to verify.

For this, I replace X and x by X1 and x1, X2 and x2 . . .Xs and xs, in the first, the
second, . . . the last of the s integrals of which p is the product; I substitute next its
expression into that of p; and by making

X1 +X2 +X3 . . .+Xs = σ ,

equation (1) becomes

p =
1
π

∫ b

a

∫ b

a
· · ·
∫ b

a

∫
∞

−∞

(
e(σ−c)α

√
−1 sinεα

dα

α

)
f1x1 f2x2 . . . fsxs dx1dx2 . . .dxs

Now, we have ∫
∞

−∞

e(σ−c)α
√
−1 sinεα

dα

α
=

1
2

∫
∞

−∞

sin(ε +σ − c)α
dα

α

+
1
2

∫
∞

−∞

sin(ε−σ + c)α
dα

α

According to the limits of the integrals relative to x1, x2, . . .xs, the sum σ is not able
to be less than sa1, nor surpass sb1; in the case that we examine, the two coefficients
ε +σ − c and ε −σ + c are therefore positive: consequently, these last two integrals
are, as one knows, one and the other equal to π: one has therefore∫

∞

−∞

e(σ−c)α
√
−1 sinεα

dα

α
= π;
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whence there results

p =
∫ b

a

∫ b

a
· · ·
∫ b

a
f1x1 f2x2 . . . fsxs dx1dx2 . . .dxs;

a quantity which is reduced to unity, by virtue of equations (3).
3. From this that the integral

∫ b
a fnxdx is unity, and that fnx has only positive values,

it follows that the integrals
∫ b

a fnx cosαX dx and
∫ b

a fnxsin αX dx are less than unity;
so that one is able to put ∫ b

a
fnx cosαX dx = ρn cosφn,∫ b

a
fnxsin αX dx = ρn sinφn,

 (4)

ρn and φn being some real quantities, of which the first will be regarded as positive. By
making next

ρ1ρ2ρ3 · · ·ρs = R,

φ1 +φ2 +φ3 · · ·+φs = ψ,

formula (2) will become
P = Reψ

√
−1

For two values of α equal and of contrary sign, there will be likewise in regard to the
corresponding values of the angle ψ , and those of the quantity R will be equal and of
the same sign. After this consideration, and by means of the value of P, formula (1)
will be changed into this here:

P =
2
π

∫
∞

0
Rcos(ψ− cα)sinεα

dα

α
. (5)

Each of the factors of R is equal to unity for α = 0, and < 1 for every other value
of α . In fact, the expression of the square of ρn is able to be written thus:

ρ
2
n =

∫ b

a
fnx cosαX dx.

∫ b

a
fnx′ cosαX ′ dx′

+
∫ b

a
fnxsin αX dx.

∫ b

a
fnx′ sin αX ′ dx′,

by designating by X ′ that which X becomes when one puts there x′ in the place of x;
now, this equation is the same thing as

ρ
2
n =

∫ b

a

∫ b

a
fnx fnx′ cosα(X−X ′)dxdx′;

and it is evident that the value of ρn will be less than the square root of
∫ b

a
∫ b

a fnx fnx′

dxdx′, or than
∫ b

a fnx dx, and consequently less than unity. There results from this that
when the number s of its factors will be very great, the product R will have sensible
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values only for some very small values of α . It is for this reason that one is able then
to obtain a value near to the integral relative to α , that contains formula (5).

4. If we make, for brevity,∫ b

a
X fnx dx = kn,

∫ b

a
X2 fnx dx = k′n, etc.,

and if we develop the first members of equations (4) according to the powers of α , we
will have

ρn cosφn = 1− α2

2
k′n +

α4

2.3.4
k′′′n − etc.

ρn sinφn = αkn−
α3

2.3
k′′n + etc.

The quantities kn, k′n, k′′n , etc., will increase less rapidly than the powers (b1−a1), (b1−
a1)

2, (b1−a1)
3, etc.; this which suffices in order that these developments are of some

series which will always end by being convergent, and consequently in order that one
be able to employ them in place of ρn cosφn and ρn sinφn. One deduces from them for
ρn and φn of some series, of which the one contains only some even powers and the
other odd powers of α , namely:

ρn = 1−α
2hn +α

4ln− etc.,

φn = αkn−α
3gn + etc.,

by making, for brevity,
1
2
(k′n− k2

n) = hn,

1
6
(k′′n −3knk′n +2k3

n) = gn,

etc.,

and one concluded thence

logρn =−α
2hn +α

4
(

ln−
1
2

h2
n

)
+ etc.,

ρn = e−α2hn

[
1+α

4
(

ln−
1
2

h2
n

)
+ etc.,

]
Let further, for brevity,

∑kn = ks, ∑hn = hs, ∑

(
ln−

1
2

h2
n

)
= ls, etc.;

the sums ∑ being extended from n = 1 to n = s. There will result from it

K =e−α2hs(1+α
4ls+ etc.),

ψ =αks−α
3gs+ etc.,

cos(ψ− cα) =cos(ks− c)α +α
3gs sin(ks− c)α + etc.
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The quantities k, h, g, etc., will be able to vary with s; but they will not increase indefi-
nitely with this number, and they will always form, as the integrals ku, k′u, k′′u , etc., from
which they are deduced, a series less increasing than that of the powers of b1−a1.

I substitute these values into formula (5); if make besides

α =
β√

s
, dα =

dβ√
s

;

and I neglect the terms of this formula which will be of the order of smallness of 1
s ,

that is to say the terms which will be divided by s outside of sinus and cosinus: there
comes

p =
2
π

∫
∞

0
e−β 2h cos

(ks− c)β√
s

sin
εβ√

s
dβ

β

+
2g

π
√

s

∫
∞

0
e−β 2h sin

(ks− c)β√
s

sin
εβ√

s
β

2dβ

 (6)

In order that these integrals not be indeterminates, it is necessary that h be a positive
quantity; and it is also that which takes place. In effect, according to that which kn and
k′n represent, one has

2hn =
∫ b

a
X2 fnx dx

∫ b

a
fnx′ dx′−

∫ b

a
X fnx dx

∫ b

a
X ′ fnx′ dx′;

a quantity which one is able to reduce to a single double integral, namely:

2hn =
∫ b

a

∫ b

a
(X2−XX ′) fnx fnx′dxdx′,

or, this which is the same thing,

2hn =
∫ b

a

∫ b

a
(X ′2−XX ′) fnx fnx′dxdx′.

Now, by adding these two equations, one has

4hn =
∫ b

a

∫ b

a
(X−X ′)2 fnx fnx′dxdx′;

and this value of 4hn is evidently positive, and is not able to be null, since all the
elements of the double integral are positive. Therefore, it will be likewise in regard to
it of ∑hn and of h. That being, one will obtain by the known rules the exact value of
the second integral contained in formula (6), and one will reduce, if one wishes, the
first to a simpler form.

5. If one takes c = ε , p will be the probability that the sum of the values of X
given by the s observations, will not exit the limits zero and 2ε . By differentiating with
respect to ε , one will have

d p
ds

=
2

π
√

s

∫
∞

0
e−β 2h cos

(2ε− ks)β√
s

dβ

− 2g
π
√

s

∫
∞

0
e−β 2h sin

(2ε− ks))β√
s

β
3dβ ;
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and d p
ds ds will be the infinitely small probability that the sum of the values of X will be

precisely equal to 2ε .
We make now

2ε = ks+2u
√

hs;

we will have ∫
∞

0
e−β 2h cos(2uβ

√
h)dβ =

√
π

2
√

h
e−u2

;

whence one draws, by differentiating with respect to u,∫
∞

0
e−β 2h sin(2βu

√
h)β 3dβ =

√
π

4h2 (3y−2u3)e−u2
.

Because d p
du = d p

dε

√
hs, one will have therefore

d p
du

=
1√
π

e−u2 − g
4h
√

hs
(3u−2u3)e−u2

; (7)

and if one designates by Xn the value of X which will be given by the nth observation,
d p
du du will be the probability that one will have

∑Xn = ks+2u
√

hs; (8)

the sum ∑ being extended to all the observations. I integrate d p
du du between some given

limits, which I will represent by ±γ; there comes

p =
2√
u

∫
γ

0
e−u2

du, (9)

for the probability that ∑Xn will be contained between the limits ks±2γ
√

hs, and the
mean value of X , or 1

s ∑Xn,between those here:

k± 2γ
√

h√
s

.

It is also this which one will deduce from equation (6), by making there

c = ks, ε = 2γ
√

hs,

and effecting the integrations.
One will always be able to take γ great enough in order that the value of p differs

as little as one will wish from unity. For γ = 3, for example, one will have∫
∞

γ

e−u2
du = 0.000019577,

according to the table of values of this integral, which is found at the end of the Analyse
des réfractions de Kramp; and as one has∫

γ

0
e−u2

du =
1
2
√

π−
∫

∞

γ

e−u2
du,
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there will result from it
p = 1−0.000022091;

this which differs very little from certitude. One is able therefore to regard as extremely
probable that the value of 1

s ∑Xn resulting from the observations, will approach indefi-
nitely to be equal to k, and that by taking it for the value of k, the error to fear will be
less than 2γ

√
h√

s on each side, γ being a number of little importance.
It is good to observe that the terms divided by s which have been neglected in pass-

ing from equation (5) to formula (6), would have for factor e−γ2
after the integrations

relative to u; this which contributes again to render them very small; independently
of the magnitude of s; because for γ = 3

2 , for example, the factor e−γ2
is below two

thousandths, and it diminishes very rapidly for greater values of γ .
6. The curve of which the equation is

y = fnx,

represents the law of probability of the values of A in the nth observation, in this sense
that the element ydx of its area is the probability of the value of A expressed by the
abscissa corresponding to x, and the same area, the probability that this value will not
be > x. That which has for equation

y =
1
s ∑ fnx,

is the curve of mean probability, relative to the series of s observations. According to
equations (3), its total area, from x = a to x = b, will be equal to unity; and by calling
x1, the abscissa of its center of gravity, one will have

1
s ∑

∫ b

a
x fnxdx = x1.

Now, if one makes X = x in the expression of kn of no 4, there results from it

kn =
∫ b

a
x fnxdx, k =

1
s ∑

∫ b

a
x fnxdx = x1

this abscissa x1 is therefore, in every case, the limit of which the mean result of a series
of observations approaches indefinitely. In designating by λn the particular value of A
which will be given by the nth observation, the mean result of which there is question
will be 1

s ∑λn; there will be there the probability p, given by formula (9), that its value
will be contained between the limits

x1±
2γ
√

h√
s

;

and if one makes also X = x in the expression of h of no 4, one will have

h =
1
2s ∑

[∫ b

a
x2 fnxdx−

(∫ b

a
x fnxdx

)2
]
. (10)
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One is able to present this result under another form, by making, in equation (9)

u
√

h = ν , γ
√

h = δ ;

this which gives

p =
2√
πh

∫
δ

0
e−

ν2
h dν , (11)

for the probability that the value of 1
s ∑λn will be contained between the limits

x1±
2δ√

s
.

The infinitely small probability of an intermediate value x1 +
2ν√

s , would be deduced

from formula (7), by putting there ν√
h

in the place of ν , and by multiplying by dν√
h
.

One sees that for a given value of δ , it would depend on two unknown quantities h
and g, while the probability of the preceding limits, which it will suffice us to know,
will depend only on a sole unknown h, of which it remains to us to calculate the value
according to the results given from s observations.

7. For this, let

x = x1 + z, fnx = f ′nz, a = x1 +a′, b = x1 +b′;

we will have ∫ b′

a′
f ′nzdz = 1,

∫ b′

a′
z f ′nzdz = 0;

equation (10) will become

h =
1
2s ∑

∫ b′

a′
z2 f ′nzdz;

and if we take
X = (x− x1)

2 = z2,

the quantity k of no 4 will be the double of that value of h.
According to formula (7), the infinitely small probability of equation (8) is of the

form:
du√

π
e−u2

+uUdu,

U being a function of u, equal and of the same sign for two values of u equal and of
contrary sign, of which the value is of the order of 1√

s . By applying this equation (8)
to the preceding value of X , and putting there, consequently, 2h in the place of k, one
will deduce from it

h =
1
2s ∑(λn− x1)

2 +uσ ;

σ being a quantity independent of u, which will also be of the order of 1√
s . The same

formulas (7) and (8), applied to the case of X = x, give

x1 =
1
s ∑λn +u′σ ′,
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and, for the probability of this equation,

du′√
π

e−u′2 +u′U ′du′;

σ ′ and U ′ being some quantities of the order of 1√
s , of which the first will be indepen-

dent of u′, and the second of them will be a function which will neither change sign
nor magnitude for some values of u′ equal and of contrary sign. The probability that
these last two equations will hold simultaneously will be the product of their respec-
tive probabilities, as if these equations were two events independent of one another;
because the probability of each of them being infinitely small, the existence of each
equation is able to alter the probability of the other only by an infinitely small quantity
of the second order. That being, if one eliminates x1 between the two equations; if one
makes, for brevity,

1
s ∑λn = m,

1
s ∑(λn−m)σ ′ = λ ,

1
2s ∑(λn−m)2 = µ,

and if one neglects the square of σ ′, one will have

h = µ +uσ −u′λ ,

and the probability of this value of h will be infinitely small of the second order,
namely: (

1
π

e−u2
e−u′2 +uu′U ′+u′uU

)
dudu′,

by neglecting also the product UU ′ which is, by hypothesis, a quantity of the order of
1
s .

I substitute this value of h into formula (11); I develop according to the powers of
uσ −u′λ , of which I neglect the square which would be of the order of 1

s ; there comes

p =
2
√

πµ

∫
δ

0
e−

ν2
µ dν + p′(uσ −u′λ );

p′ being that which d p
du becomes when one makes h = µ there.

This value of p would be the probability of the limits x1± 2δ√
s of the mean result

1
s ∑λn, if the value of h that one has substituted was certain; but the different values
of h being only probables, the probability of these limits corresponding to each of
these values, will be the product of the corresponding value of p, multiplied by the
probability of that of h; consequently the total probability of these same limits, or their
probability relative to all the values of h, will be the integral of this product, extended
to all the values of u and u′ which do not render insensible the coefficient of dudu′.
After that, by neglecting always quantities of order 1

s , and observing that the terms
multiplied by an odd power of u or of u′, vanish in the integrations, we will have

2
π
√

πµ

∫
δ

0
e−

ν2
µ dν

∫∫
e−u2

e−u′2dudu′,
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for the probability of which there is question; and as one is able, without sensible
error, to extend the integrals relative to u and u′ from −∞ to +∞, it will be reduced to

2√
πµ

∫
δ

0 e−
ν2
µ dν ; this which is nothing other than formula (11), in which one has made

h = µ .
Thus, to the degree of approximation where we ourselves are stopped, that is to say

by neglecting the quantities of order of 1
s , the quantity µ is the value of h, which one

must substitute into formula (11), or else into the limits of the mean result 1
s ∑λn, to

which corresponds formula (9). This value of h is able to be written under these two
forms:

h =
1
2s ∑(λn−m)2

h =
1

2s2 ∑

[
s∑λ

2
n −

(
∑λn

)2
]
,

 (12)

which are equivalent, by observing that one has made 1
s ∑λn = m. The numeric cal-

culation of the first expression will always be easy, according as the deviations of the
observations on both sides of the mean, that is to say according to the values of λn−m;
the calculation of the second will be generally much less convenient and often imprac-
tical.

Formula (11) and the value of h as function of the givens of the observation are due
to Laplace, who has made a great number of interesting applications. Lagrange is the
first who has submitted to analysis1 the probability of the arithmetic mean among the
observed results; but he has supposed known the law of probability of the values of the
unknown; and it is to Laplace that one must have rendered the probability of the mean
result independent of this law, in the case where the observations are in great numbers.
The preceding analysis is proper, it seems to me, to dissipate the doubts which were
able to remain yet on the use of the value of h and on the degree of exactitude of
formula (11).2

8. The quantity x1, toward which the mean result of the observations converges
in measure as their number increases, is not necessarily one of the values of A which
have greatest probability and are given most often by the isolated observations; it is
even able to happen that its probability is completely null, so that this value of A is not
able to be given by any observation in particular: it is this which will take place, for
example, if all the functions fnx are nulls for one same value of x, and symmetric from
one side and to the other. In the general case that we have considered, that is to say in
the case where the curve of probability of which the equation is y = fnx changes from
one observation to another, it is able yet to happen that the areas of all these curves did
not have their centers of gravity on the same ordinate; then the abscissa x1 will vary
with the number s of observations; and if one divides s into two parts s′ and s1, which
are still very large numbers, the mean results of these two partial series s′ and s1 of
observations will not be the same, although the error to fear on each of them is very
small, and although they had both a very large probability.

The calculation of the mean life is one of the most ingenious applications that one
has made of the preceding formulas. We suppose that one considers a very great num-

1Volume V of the old Mémoires de Turin.
2First Supplement to the Théorie analytique des probabilités, p. 7.
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ber s, one million, for example, of infants born at one same epoch: if one designates by
x any one time, and by fnxdx the infinitely small probability that one of these infants
has of living the time x, and if one assimilates the duration of life to an eventual gain,
the sum of all the possible values of x, multiplied by their respective probabilities, or∫

x fnxdx, will be the advantage of this infant, or his expectation of life. Consequently,
the mean life will be the sum of these integrals relative to all the infants, divided by their
number, or 1

s ∑
∫

x fnxdx; each integral being extended from x = 0 to a value of x which
renders fnx null or insensible, and that one is able to regard as the limit of human life.
Now, this quantity is that which we have designated by x1; its approximate value will
be therefore 1

s ∑λn, in taking for λ1, λ2,etc., the ages to which the deaths are a number
s of other individuals, born in the same country as the infants that one considers, and
in an epoch as near as it will be possible with the birth of those. The same values of
λ1, λ2,etc., will serve to calculate the probability that the difference x1− 1

s ∑λn, or the
error of x1 = 1

s ∑λn, is contained between some given limits. The unknown function
fnx is very different for the different infants who are born at the same epoch and in one
same country; but the mean function 1

s ∑ fnx, and hence the mean life 1
s ∑
∫

x fnxdx,
varies without doubt only with slowness, through the extinction of the maladies and
the perfection of society. Experience alone is able to teach us if this duration of mean
life is stationary, or if it changes sensibly in some great intervals of time.

It is by the same principles that one calculates the mean benefit and its probability,
that one is able to expect from a very great number of speculations, according to the
gains and losses known of another very great number of similar operations, that is to
say of which the mean probability is supposed the same.

9. When one proposes to determine, by a series of observations, the magnitude of
a phenomenon or the measure of any one thing A, one supposes implicitly that among
all the values of which A susceptible a priori, there exists one of them such that it is
equally probable that one of them will deviate equally on each side in each observation;
one supposes moreover that this unknown value is the same for all the observations that
one is going to make; and it is this value of A that one wishes to find. This comes back
to say that all the curves which are deduced from the equation y = fnx are symmetric
on both sides of one of their points, and that this point corresponds to the same abscissa
for these different curves, which abscissa represents the unknown value of A. Under
this hypothesis, the centers of gravity of their areas, and the one of the area of the mean
curve, of which the equation is y = 1

s ∑ fnx, will be situated on a common ordinate,
of which the abscissa will be this same value. By multiplying the observations, the
quantity x1 of which one will approach indefinitely, will be constant or independent of
their number s; and it will have the probability p, given by formula (9), that their mean
result 1

s ∑λn will not deviate from x1 or from the true value of A, by a quantity greater or

smaller than 2γ
√

h√
s . The value of h will be given also by the observations, as one has seen

above; it will depend on their degree of precision; and if there is question, for example,
of the measure of an angle, that quantity h will be able to be very different for two series
of observations made with some instruments or by some different observers. If there
is a question of the magnitude of a phenomenon, as, for example, the difference of the
heights of the barometer at two epochs determined from the day, h will depend again
on some accidental and variable causes which influence unequally on these heights,
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and which one is able to attribute to the state of the atmosphere.
But, as small as the limit 2γ

√
h√

s of the error to fear be, by taking 1
s ∑λn for the value

of A, and as probable as this limit be, one must not lose from view that this value is
subordinate to the hypothesis that one has made, of the symmetry of all the functions
fnx on both sides of one same value of x. If some unknown cause renders dominating,
either in on sense, or in an opposed sense, the errors of the instruments, or the variable
circumstances which influence the phenomena, or else further, if the magnitude of A
varies during the duration of the observations, he hypothesis of which there is question
will not have place: the quantity 1

s ∑λn will always be the approximate value of the
abscissa x1; but x1 will no longer represent the thing that one wished to determine,
and the observations ought be rejected. It would therefore be important to understand,
by the observations themselves, if they are incompatible with the hypothesis of the
symmetry of fnx; or, there exists, in effect, some conditions to which they must satisfy,
if this hypothesis is applicable to the laws of probability of the values of A.

10. We will arrive to some similar conditions, by taking for the function X an odd
power of x− x1, that is to say by designating by i a positive and odd number, and
making

X = (x− x1)
i.

According to the notations of no 7, the quantities kn and k′n of no 4 will be

kn =
∫ b′

a′
zi f ′nzdz, k′n =

∫ b′

a′
z2i f ′nzdz.

Under the hypothesis of all the functions fnz symmetric on both sides of one same
value of x, this value will be x1, and one will have

f ′nz = f ′n(−z), a′ = b′;

this which will render null the value of kn. The quantities k and h of no 4 will be then

k = 0, h =
1
s ∑

∫ b′

0
z2i f ′zdz.

According to no 5, there will be therefore the probability p given by formula (9), that
∑(λn− x1)

i will be less than 2γ
√

hs, setting aside the sign. This probability will be
equal to 1

2 , for example, by taking γ = 0.47614. But the number s of observations
being very great, it is very probable that their mean result 1

s ∑λn will differ very little
from x1, and that at the same time the sum ∑(λn− x1)

2i will be very near the value of
∑
∫ b′
−b′ z

2i f ′zdz, or 2hs. Therefore by making, for brevity,

1
2 ∑λn = m,

∑(λn−m)i

∑(λn−m)2i = r,

there will be a probability very little different from p, that this ratio r will be smaller
than γ

√
2; and by taking for γ the value which gives p = 1

2 , one will be able to wager,
very nearly, one against one, that one will have

r < (0.47614)
√

2, or r < 0.67336,
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if the hypothesis f ′z = f ′(−z) really holds. Consequently, if one calculates the ratio
r for a determined exponent, and if one finds its value superior to 0.67336, or even
a little under this fraction, that will suffice in order that the hypothesis f ′z = f ′(−z)
not be probable, and in order that one must, consequently, reject these observations as
improper to make known the true value of A that one wishes to find.

11. In a great number of cases, and especially in the questions of Astronomy,
the quantity that one proposes to determine by the observations is a given function
of many elements which are already known by approximation, and to which there is
no more question but to make undergo some very small corrections, of which one
neglects the products and the powers superior to the first. The given function must
then be a linear function of these unknown corrections: one equates it successively
to all the values resulting from experience, this which furnishes as many equations
of condition as one has observations. The usage of these linear equations in order to
determine the corrections of the elements by making them to unite a great number of
observations, has contributed much to the perfection of astronomical tables. It appears
that Euler and Mayer are the first who have employed them, one in his Memoire on
the libration of the Moon, and the other in his piece on the Perturbations of Jupiter
and of Saturn, crowned by our Academy in 1750. But their number always being
superior to the one of the unknowns, one was embarrassed to resolve them, and there
resulted from it this grave inconvenience, that the calculators were able to deduce from
one system of equations, different results, according to the method of calculation that
they employed. This embarrassment has subsisted until the epoch when Mr. Legendre
proposed a direct and uniform method, which was generally adopted under the name
of method of least squares of errors, which his author has given to it. It consists, as one
knows, in subtracting from the result of each observation, the linear function of which
it furnishes an approximate value: the difference is the error of the observation; one
makes the sum of the squares of all these differences, next one equates to zero these
differentials, taken successively with respect to the corrections of all the elements; this
which gives as many equations as one has unknowns to determine. This method, had it
only the advantage of uniformity and of freeing the process of the calculation from all
indetermination, would be already an important service that our illustrious colleague
has rendered to the sciences of observation; but it is further that which allows to fear
the minimum of error on the value of each element, thus as Laplace has proven by
the calculus of probabilities. We add, in terminating this Memoire, that after having
calculated the corrections of the element by the method of least squares, and having
substituted their values into the linear expressions of the errors of the observations,
if one made the sum of the odd powers of all the errors, and if one divided it by the
square root of the sum of the their double powers, the magnitude of the quotient will
furnish a criterium, according to which one must reject the observations, or to adopt the
results of them, if they have besides a sufficient probability. One would find, in effect,
that it is very probable that this quotient must be a fraction of little consequence; and
by a rather complicated calculation, one would be able to determine, whatever be the
number of elements corrected, the exact value of this fraction for a determined degree
of probability.
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