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Many scattered analytic meditations exist here and there concerning the calculation
of Probabilities, the resolve to examine which things is not here. While generally some
consider particular questions, the greatest Geometers Laplace and Lagrange have at-
tempted to treat this theory more generally, deriving assistance out of the most intimate
inmost parts of the calculation of integers, and indeed they have secured extraordinary
fruits thereupon. But while the whole theory of Probabilities may be supported by sim-
ple and obvious principles, which require nothing in general other than the theory of
combinations, and most difficulties may be meditated upon with regard to enumerat-
ing and distinguishing cases, it had seemed because of the fact, to treat the same more
general questions by an elementary method, without any foreign assistance. Of which
effort these pages embrace the first specimen, they contain of course elementary so-
lutions of the more general Problems which the most illustrious man Lagrange gave
solutions in Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres
de Berlin1 for the year 1775. If these will not have displeased the Geometers, else-
where then, I will put forward clarifications of the same kind by themselves with God
helping.

Problem 1.2

1. A gamester wagers to bring forth all an event b times neither more nor less, but
exactly a casts are permitted, moreover the Probability of each and every cast is p, the
lot of the gamester is sought.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. December 19, 2009

1Translator’s note. The full title of this paper is “Recherches sur les suites récurrentes dont les termes
varient de plusiers manieres différentes, ou sur l’integration des équations linéares aux différences finies et
partielles; et sur l’usage de ces équations dans la théorie des hasards.” pp. 183-272.

2Translator’s note. This is a Corollary to Problem I of Lagrange. See Sections 49 & 50 of the paper cited.
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Solution.

The Probability of bringing forth the event b times following each other is pb. The
Probability of bringing forth the other event a − b times following each other is =
(1 − p)a−b. The Probability of bringing forth the event b times precisely when there
are a casts permitted is pb(1 − p)a−b. This Probability must be multiplied by the
number of combinations a of quantities according to exponent b, it is by

a(a− 1) . . . (a− b+ 1)

1.2.3 . . . b
=

1.2 . . . a

1.2 . . . b.1.2 . . . (a− b)
=

(b+ 1)(b+ 2) . . . a

1.2.3 . . . a− b
.

The sought Probability will be therefore

(b+ 1)(b+ 2) . . . a

1.2.3 . . . a− b
pb(1− p)a−b.

The Learned de la Grange finds the same, if in his formula you correct the typo-
graphical error, namely it contains in the denominator the factor a−b+1 which should
be erased.

Problem 2.3

2. A gamester wagers to bring forth some event b times, or more, but exactly a
casts are permitted, moreover the Probability of each and every cast is p, the lot of the
gamester is sought.

Solution.

The sought Probability is the sum of the following Probabilities: the Probabilities
of bringing forth the event precisely b times; the Probabilities of bringing forth the
event precisely b+1 times; the Probabilities of bringing forth the event precisely b+2
times. . . the Probabilities of bringing forth the event precisely a times. Moreover it
follows from the preceding Problem, when a casts are permitted; the Probability of
bringing forth the event 1 time is precisely

= ap(1− p)a−1.

The Probability of bringing forth the event 2 times is precisely

=
a(a− 1)

1.2
p2(1− p)a−2;

the Probability of bringing forth the event precisely 3 times is

=
a(a− 1)(a− 2)

1.2.3
p3(1− p)a−3

3Translator’s note. The statement of this problem is the same as that of Problem I in the paper of La-
grange. See his section 49.
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and thus successively. Therefore the Probability of bringing forth the event precisely b
times is

=
(b+ 1)(b+ 2) . . . a

1.2.3 . . . a− b
pb(1− b)a−b.

The Probability of bringing forth the event precisely b+ 1 times is

=
(b+ 2)(b+ 3) . . . a

1.2.3 . . . a− b+ 1
pb+1(1− b)a−b−1;

the Probability of bringing forth the event precisely b+ 2 times is

=
(b+ 3)(b+ 4) . . . a

1.2.3 . . . a− b+ 2
pb+2(1− b)a−b−2

and thus successively. Next the Probability of bringing forth the event precisely a times
is = pa. The sought Probability will be therefore =

pa + apa−1(1− p) + a(a− 1)

2
pa−2(1− p)2 . . .

+
a(a− 1) . . . (b+ 1)

1.2 . . . (a− b)
pb(1− p)a−b =

pb
(
pa−b + apa−b−1(1− p) + a(a− 1)

2
pa−b−2(1− p)2 . . .

+
a(a− 1) . . . (b+ 1)

1.2 . . . (a− b)
pb(1− p)a−b

)
.

The form of this formula was different from it, which the Celebrated Lagrange gives,
yet returns to the same, as is easily proved a posteriori, it was long and wearisome to
compare these formulas to one another a priori. It will be short and simple to deduce
the formula of the Learned Lagrange out of the following reasoning, because chiefly
it will be useful to us in the future. The sought Probability is able to be considered as
the sum of the following Probabilities; of bringing forth the event b times following
themselves, with b + 1 casts permitted, of bringing forth the event b times, with b + 2
casts permitted, of bringing forth the event b times, and thus successively, finally with
a casts permitted, of bringing forth the event b times, yet by subtracting from the cases
of each new Probability the case of the preceding Probabilities lest the same cases are
selected several times. Moreover the Probability of bringing forth the event b times fol-
lowing themselves is pb. The Probability of bringing forth the event b times precisely,
with b+ 1 casts permitted is (b+ 1)pb(1− p). From these cases should be subtracted
the case in which the event is brought forth with the first b casts, which case now was
introduced into the calculation, therefore there remains bpb(1− p). The probability of
bringing forth the event b times, with b+2 casts permitted is (b+2)(b+1)

1.2 pb(1− b)2, the
preceding cases should be subtracted. Therefore there remains(

(b+ 2)(b+ 1)

1.2
− (b+ 1)

)
pb(1− p)2 =

b(b+ 1)

1.2
pb(1− p)2.
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In like manner the Probability will be obtained of bringing forth the event b times, with
b+ 3 casts permitted =(
(b+ 3)(b+ 2)(b+ 1)

1.2.3
− b(b+ 1)

1.2
− (b+ 1)

)
pb(1−p)3 =

b(b+ 1)(b+ 2)

1.2.3
pb(1−p)3

and thus successively up to

b(b+ 1) . . . (a− 1)

1.2.3 . . . (a− b)
pb(1− p)a−b.

Therefore the sought Probability will be

pb
(
1 + b(1− p) + b(b+ 1)

2
(1− p)2 . . .+ b(b+ 1) . . . (a− 1)

1.2.3 . . . (a− b)
(1− p)a−b

)
This is the formula which the Learned Lagrange deduced from his calculations.

Scholium.

3. Problems 3, 4 and 5 of the extraordinary work of the Celebrated Moivre to which
the title is recorded as Doctrine of Chances are able to be solved with help of this
Problem. In Problem 3 the Celebrated Man asks with how many casts it is necessary,
in order that he is able to predict some event to arrive or not with equal lot, let p be the
Probability of the sought event, q the Probability of the contrary event, x the sought
number of casts, if there is in our formula a = x, b = x, p = q, the sought Probability
is qx and by the conditions of the Problem we have qx = 1

2 , therefore x = − ln 2
ln q .

Let be made with Moivre q = a
a+b , we have x = ln 2

(a+b)−ln b which is the formula of
Moivre.4 This solution in which the Probability of the event is sought the other not
going to arrive is briefer in which it must happen a = x, b = 1, p = p. We have in this
case

p(1 + p+ q2 + q3 . . .+ qx−1) =
1

2

(here there is q = 1− p) or by making the sum of the geometric progression,

p

(
1− qx

1− q

)
=

1

2
,

or 1 − qx = 1
2 or qx = 1

2 as above. The comparison of these solutions gives the sum
of the geometric progression. For since there is

(1− q)(1 + q + q2 + q3 . . .+ qx−1) = 1− qx

there will be made
1 + q + q2 + q3 . . .+ qx−1 =

1− qx

1− q
.

4 Translator’s note. The formula is in error. It should read x = ln 2
ln(a+b)−ln b

.
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In the 4th Problem Moivre seeks, in how many casts it is necessary, in order that
he is able to predict with equal lots, some event to arrive two times or not. Let p be
the Probability of the sought event, q the Probability of the contrary event. Thus this
problem is able to be proposed: The Probability is sought of some event of which the
Probability is q, with x casts permitted going to arrive at least x−1 times. Let be made
in our formula a = x, b = x− 1, p = q, we will have

qx−1[1 + (x− 1)(1− q)] = 1

2
.

Let with Moivre be made p = a
a+b , q =

b
a+b , it makes

bx

(a+ b)x−1

(
1 +

(x− 1)a

a+ b

)
=

bx−1

(a+ b)x−1

(
b+ ax

a+ b

)
=
bx + axbx−1

(a+ b)x
=

1

2

which is the Moivrean equality. With regard to direct solution the Probability is sought
of some event, with x casts permitted, to arrive at least 2 times. Let there be in our
formula a = x, b = 2, the equality will be had

p2[1 + 2q + 3q2 + 4q3 . . .+ (x− 1)qx−2] =
1

2
.

But it is agreed by known methods to be

1 + 2q + 3q2 . . .+ (x− 1)qx−2 =
1− qx−1 − (x− 1)qx−1(1− q)

(1− q)2
.

Therefore the equality will be made qx[1 + (x − 1)(1 − q)] = 1
2 as above. The com-

parison of the two solutions gives the sum of the series, of which the terms follow a
geometric progression but the coefficients of the terms follow an arithmetic progres-
sion. For while there is

(1− q)2[1 + 2q + 3q2 + 4q3 . . .+ (x− 1)qx−2] = 1− qx−1 − (x− 1)qx−1(1− q),

therefore

1 + 2q + 3q2 . . .+ (x− 1)qx−2 =
1− qx−1

(1− q)2
− (x− 1)qx−1

1− q

as it is agreed.
In the 5th Problem it is asked by Moivre, with how many casts it is necessary, in

order that he is able to predict with equal lots, any event to be brought forth three times
or not. Let p be the Probability of the sought event, q the Probability of the contrary
event. Thus the Problem is able to be proposed. The Probability is sought of any event
of which the Probability is q, x casts permitted to arrive at least x − 2 times. Let be
made in our formula a = x, b = x− 2, p = q, the equality will be,

qx−2[1 + (x− 2)(1− q) + (x− 2)(x− 1)

2
(1− q)2] = 1

2
.
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Let there be with Moivre p = a
a+b , q =

b
a+b , there will be

bx−2

(a+ b)x
[bb+ xab+

x(x− 1)

2
aa] =

1

2
;

in direct solution of the Problem the equality arrives,

p3[1 + 3q + 6q2 + 10q3 . . .+
(x− 1)(x− 2)

1.2
qx−3] =

1

2
.

The comparison of the two solutions gives the sum of the series, of which the terms
follow a geometric progression, but the coefficients follow a progression of triangular
numbers. And indeed by comparing the two formulas it produces,

1 + 3q + 6q2 + 10q3 . . .+
(x− 1)(x− 2)

1.2
qx−3

=
1− qx−2

(1− q)3
− (x− 2)qx−2

(1− q)2
− (x− 2)(x− 1)

1.2.(1− q)
qx−2

as it is agreed, the law of progression is evident. It is apparent in the case of 4 events
to produce the equation

qx−3[1+(x−3)(1−q)+ (x− 3)(x− 2)

1.2
(1−q)2+(x− 3(x− 2)(x− 1)

1.2.3
(1−q)3] = 1

2

the law of progression is evident.

Problem 3.

4. Two events are able to arrive in any one cast, of which the Probabilities are p and
q, the lot of the gamester is sought, who wagers to bring forth the other event b times,
before the first will appear a times, with an indeterminate number of casts permitted.

Solution.

The solution of this Problem coincides with the second Problem preceding. For the
Probability of the gamester is the sum of the following Probabilities: of the Probability
the other event to arrive b times first, which is = qb; of the Probability the same event to
arrive b times, with b+ 1 casts permitted, by subtracting the preceding cases, which is
bqpp; of the Probability the same event to arrive b times, with b+2 casts permitted, by
subtracting the preceding cases, which is b(b+1)

2 qbp2; of the Probability the same event
to arrive b times, with b+ 3 casts permitted, by subtracting the preceding cases, which
is b(b+1)(b+2)

2.3 qbp3 and thus successively; and next the Probability the same event to
arrive b times, with b+a−1 casts permitted, by subtracting the preceding cases, which
Probability is obvious from the law of progression b(b+1)(b+2)...(b+a−2)

1.2.3...(a−1) qbpa−1. By
making the sum of these Probabilities, the sought Probability appears

= qb
(
1 + bp+

b(b+ 1)

2
p2 +

b(b+ 1)(b+ 2)

2.3
p3 . . .+

b(b+ 1)(b+ 2) . . . (b+ a− 2)

1.2.3 . . . a− 1
pa−1

)
.

This same the Celebrated Lagrange finds in his first solution of this Problem.
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Scholium.

5. The first two Problems of Moivre are able to be solved with the aid of this
Problem and indeed in a simpler manner. Let the two gamblers be A and B, but it is
agreed by trial the gamester A to be of such skill, that of three games he is able to
concede two to B, the lot of gambler A is sought for any one game, or the ratio of skill.
In this Problem the unknown quantities are p and q. Let there be q = 1

x , p = x−1
x , by

the condition of the Problem this is, in order that A is able to promise with equal right,
himself is going to be the victor in three games sooner than B is the victor in one. Let
there be a = 1, b = 3. The sought Probability is = 1

x3 , therefore the equality produces
1
x3 = 1

2 or x = 3
√
2. Hence the proportion appears q : p = 1 : x − 1 : 1 : 3

√
2 − 1, as

Moivre reports.
If out of the three games A is able to concede one game to gambler B, the lot of

the gambler A is sought for any one game. By the condition of the Problem this is, in
order that A is able to promise with equal right, himself going to be the victor in three
games sooner than B will be victor in two. By the same values having been used for q
and p, and by supposing a = 2, b = 3, the sought Probability is

1

x3

(
1 +

3(x− 1)

x

)
=

4x− 3

x4
=

1

2
.

Therefore the equality appears x4 = 8x + 6; x = 1.625 as nearly. Therefore q : p =
1 : 0.625 = 8 : 5, as Moivre reports.

Problem 4.5

6. The three events P, Q, R are able to arrive in any one cast, of which the Probabil-
ities are respectively p, q, r; the lot of the gambler is sought, who wagers to bring forth
the event R, c times, before the event Q will arrive b times, but the event P a times.

Solution.

Of this problem the type is the same as the preceding; the Probability is formed in
precisely the same manner, in the same manner the coefficients of each and every term
appear, indeed on account of the total of three events it is necessary for some further
calculations. But first, the gambler wins, if he will bring forth event R, c times first, of
which case the Probability is rc. Second, the same gambler wins, if he will bring forth
the event c times, c+ 1 casts permitted, of which case the Probability for event P is by
the preceding Problem crcp, for the event Q, by the same Problem crcq, therefore it
produces the Probability crc(p+ q). Third, the gamester wins if he will bring forth the
event R, c times, c+ 2 casts permitted, of which case the Probability by the preceding
Problem is c(c+1)

1.2 p2 for the event P, and c(c+1)
1.2 q2 for the event Q. In addition they

should consider here jointly the events P and Q, for when c + 2 casts are given, the
event R is able to arrive c times, the event P, 1 time, the event Q, 1 time, of which case

5Translator’s note. This is the Problem of Points for 3 players. See Problem VI of Moivre, 3rd edition.
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the Probability is 2pq: therefore it will produce c(c+1)
1.2 2pq. Therefore the Probability

of the third case will be

=
c(c+ 1)

1.2
(p2 + 2pq + q2) =

c(c+ 1)

1.2
(p+ q)2.

Fourth, the gambler wins, if he will bring forth the event R, c times, c + 3 casts per-
mitted, this event P is able to arrive 3 times, of which case the Probability is by the
preceding Problem c(c+1)(c+2)

2.3 rcp3; the event P is able to arrive 2 times, also the
event Q one time, of which case the Probability is = c(c+1)(c+2)

2.3 3rcp2q; the event
P is able to arrive 1 time, also the event Q, 2 times, of which case the Probability is
= c(c+1)(c+2)

2.3 3rcpq2, finally the event Q is able to arrive 3 times, of which case the
Probability is = c(c+1)(c+2)

2.3 rcq3. Therefore the Probability of the fourth case is

=
c(c+ 1)(c+ 2)

2.3
rc(p3 + 3p2q + 3pq2 + q3) =

c(c+ 1)(c+ 2)

2.3
rc(p+ q)3.

By the evident law of progression it is able to be concluded, the Probability of the case
in which the gambler wagers to bring forth event R, c times with c+n casts permitted,
to be

=
c(c+ 1)(c+ 2) . . . (c+ n− 1)

1.2.3 . . . n
rc(p+ q)n.

But because generally it is able to be demonstrated with the following reckoning. With
c+n casts permitted the event P is able to arrive n times, of which case the Probability
is

c . . . (c+ n− 1)

1 . . . n
pn,

the event P is able to arrive (n − 1) times, also the event Q, 1 time, of which case the
Probability is

=
c . . . (c+ n− 1)

1 . . . n
npn−1q;

the event P is able to arrive n − 2 times, but the event Q, 2 times, of which case the
Probability is

=

(
c . . . (c+ n− 1)

1 . . . n

)
n(n− 1)

1.2
pn−2q2;

the event P is able to arrive n − 3 times, but the event Q, 3 times, of which case the
Probability is

=
c . . . (c+ n− 1)

1 . . . n

n(n− 1)(n− 2)

1.2.3
pn−3q3,

generally the event P is able to arrive n − d times, but the event Q, d times, of which
case the Probability is

=
c . . . (c+ n− 1)

1 . . . n

n(n− 1)(n− 2) . . . (n− d+ 1)

1.2 . . . d
pn−dqd.

Therefore the Probability of the (n+ 1)st case will be

c(c+ 1) . . . (c+ n− 1)

1 . . . n
rc(p+ q)n.
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By making the sum of all such Probabilities the sought Probability is obtained

= rc
(
1 + c(p+ q) +

c(c+ 1)

1.2
(p+ q)2 +

c(c+ 1)(c+ 2)

1.2.3
(p+ q)3 . . .

c . . . (c+ n− 1)

1 . . . n
(p+ q)n

)
which formula the Celebrated Lagrange obtains. It is clear from the condition of the
Problem, this series to be evolving, until when the exponent of the quantity p becomes
= a, also the exponent of the quantity q becomes = b, such cases to be precluded. Let
there be, for the sake of brevity, c = u′, c(c+1)

1.2 = u′′ etc. there will be obtained the
evolving series, of which rc is a factor,

1+u′p+u′′p2 · · · · · · · · · · · · · · · · · · · · · · · · +u(x−1)px−1

+u′q+2u′′pq + 3u′′′p2q · · · · · · · · · +xu(x)p(x−1)q

+u′′q2 + 3u′′′pq2 + 6u′′′p2q2 +x(x+1)
2 u(x+1)px−1q2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+u(c−1)q(t−1) + tu(t)pq(t−1) + t(t+1)

2 u(t+1)p2qt−1 · · · + t...(t+x−2)
1...(x−1) u

(x+t−2)px−1qt−1.

The coefficient of the last term is able to be put into this form also x(x+1)...x+t−2
1.2...t−1 as is

clear.

Scholium.

7. With this Problem the general solution is contained in the Problem, which is
called commonly of the three gamblers, of which Moivre gives an example in Prob. VI.
We will treat this example, in order that it is able to be seen, by which applied method
of the formula it must be done. Three gamblers, A, B, C play under this condition, that
he may hold the deposited sum, who first will be the victor a certain number of times,
with the probability being of one and all for each and every trial respectively a, b, c.
With time elapsed, this is the state of the thing: there are lacking to the gambler C 3
coups, to gambler B 2, to gambler A 1, as they had intended the deposit, the expectation
of each and every one is sought. Moreover the deposited sum is = 1. Here there must
be

p =
a

a+ b+ c
, q =

b

a+ b+ c
, r =

c

a+ b+ c
, a = 1, b = 2, c = 3

if the expectation of gambler C is sought. In addition not unless b must be raised to the
first power, but a to appear nowhere. Therefore the formula will become

c3

(a+ b+ c)3

(
1 +

3b

a+ b+ c

)
=
ac3 + 4bc3 + c4

(a+ b+ c)4
.

If the expectation of the gambler B is sought, there must be

p =
a

a+ b+ c
, q =

c

a+ b+ c
, r =

b

a+ b+ c
, a = 1, b = 3, c = 2.

In addition not unless c must be raised to the second power, but a to appear nowhere.
Therefore the formula will become

b2

(a+ b+ c)3

(
1 +

2c

a+ b+ c
+

3c2

(a+ b+ c)2

)
=
a2b2 + b4 + 6b2c2 + 2ab3 + 4abc2 + 4bc3

(a+ b+ c)4
,
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if the expectation of the gambler A is sought, there must be

p =
c

a+ b+ c
, q =

b

a+ b+ c
, r =

a

a+ b+ c
, a = 3, b = 2, c = 1.

In addition not unless c must be raised to the second power, but not unless b to the first.
Therefore the formula becomes

a

a+ b+ c

(
1 +

b+ c

a+ b+ c
+

2bc+ c2

(a+ b+ c)2
+

3bc2

(a+ b+ c)3

)
=
a4 + 4a3b+ 5a2b2 + 2ab3 + 4a3c+ 12a2bc+ 8ab2c+ 6a2c2 + 3ac3 + 12abc2

(a+ b+ c)4
,

Moivre obtains the same formulas. If these three expectations are added, there will be
obtained,

a4 + 4a3b+ 6a2c2 + 4ab3 + 4a3c+ 12a2bc+ 12ab2c+ 6a2c2 + 12abc2 + 4ac3 + b4 + 6b2c2 + 4b3c+ c4

(a+ b+ c)4

=
(a+ b+ c)4

(a+ b+ c)4
= 1,

what the nature of the thing demands.

Problem 5.6

8. With any one cast four events P, Q, R, S are able to arrive, of which the Proba-
bilities are respectively p, q, r, s, the lot of the gambler, who wagers to bring forth the
event P α times, before Q will arrive β times, R γ times, S δ times.

Solution.

It is apparent this problem is able to be solved in precisely the same way as the
preceding, indeed so that the more general solution may proceed we seek the coefficient
of the term sαplqmrn. It follows from the preceding Problem and the reasoning of
Problem 2 the total coefficient of the term to be

=
α(α+ 1)(α+ 2) . . . (α+ l +m+ n− 1)

1.2 . . . l +m+ n
,

this is the coefficient of the term, by which the Probability is expressed of the event δ
to arrive α times, with α+ l +m+ n trials permitted, if it is multiplied by

l(l + 1) . . . (l +m+ n)

1.2.3 . . .m.1.2.3 . . . n
.

The sought term will be therefore,

α(α+ 1)(α+ 2) . . . (α+ l +m+ n− 1)

1.2 . . . (l +m+ n)
· (l + 1)(l + 2) . . . (l +m+ n)

1.2.3 . . .m.1.2.3 . . . n
sαplqmrn

6Translator’s note. This is the Problem of Points for 4 players.
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and this solution for its own sake is extended to any number of events. If therefore in
accordance with this kind the events A, B, C, D etc. are able to arrive of which the
respective Probabilities are a, b, c, d etc. and the lot of the gambler is sought, who
wagers to bring forth the event A α times before B will arrive β times, C γ times, D δ
times etc. the term of the formula aαblcmdn will be with regard to kind

α(α+ 1) . . . (α+ l +m+ n etc.− 1)

1.2 . . . (l +m+ n etc.)
=

(l + 1)(l + 2) . . . (l +m+ n etc.)

1.2 . . .m.1.2 . . . n.1.2 etc.
aαblcmdn etc.

but all whole numbers from 0 to β − 1, γ − 1, δ − 1 respectively must be substituted
successively for l, m, n etc. The Celebrated Lagrange obtains the same solution. Thus
in an easy manner the general expectation of the gambler is able to be deduced. For
out of the Newtonian theorem there appears

(b+ c+ d)l+m+n =bl+m+n + (l +m+ n)bl+m+n−1(c+ d)

+
(l +m+ n)(l +m+ n− 1)

2
bl+m+n−2(c+ d)2 . . . etc.

+
(l +m+ n)(l +m+ n− 1) . . . (l + 1)

1.2.3 . . . (m+ n)
bl(c+ d)m+n etc.

There appears likewise

(c+ d)m+n =cm+n + (m+ n)cm+n−1d

+
(m+ n)(m+ n− 1)

2
cm+n−2d2 etc.

+
(m+ n)(m+ n− 1) . . . (m+ 1)

1.2.3 . . . n
cmdn.

Therefore in the formula (b+ c+ d)l+m+n the coefficient of the term blcmdn is

(l +m+ n)(l +m+ n− 1) . . . (l + 1)

1.2.3 . . . (m+ n)

(m+ n)(m+ n− 1) . . . (m+ 1)

1.2.3 . . . n

=
(l + 1)(l + 2) . . . (l +m+ n)

1.2.3 . . .m.1.2.3 . . . n
.

Therefore the Probability to bring forth the event R with α+ l+m+n casts permitted
is

=
α(α+ 1) . . . (α+ l +m+ n− 1)

1.2 . . . (l +m+ n)
(b+ c+ d)l+m+n,

and hence the expectation of the gambler in accordance with this kind is expressed
through the series

aα[1 + α(b+ c+ d etc.) +
α(α+ 1)

2
(b+ c+ d etc.)2×

+
α(α+ 1)(α+ 2)

2.3
(b+ c+ d etc.)3 etc.]

by preserving so many same terms in which the exponents of the quantity b will be less
than β, the exponents of the quantity c will be less than γ, the exponents of the quantity
d will be less than δ and thus successively, as the Celebrated Lagrange reports.
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Scholium.

9. This Problem coincides with Problem LXIX7 of Moivre, this contributed exam-
ple is solved as a result of the fourth Problem. Let there be three gamblers A, B, C,
of whom the respective Probabilities are a, b, c, to gambler A are lacking 2 coups, to
the gambler B 3 coups, to the gambler C 5 coups in order that they be victors, the ex-
pectation of the gambler A is sought. In the formula of the fourth Problem there must
be made r = a

a+b+c , q = b
a+b+c , p = c

a+b+c , c = 2, b = 3, a = 5. The exponent
of the quantity b must not exceed 2, the exponent of the quantity c must not exceed 4.
Therefore the formula will become,

a2

(a+ b+ c)2

(
1 +

2(b+ c)

a+ b+ c
+

3(b+ c)2

(a+ b+ c)2
+

4(3b2c+ 3bc2 + c3)

(a+ b+ c)3

+
5(6b2c2 + 4bc3 + c4)

(a+ b+ c)4
+

6(10b2c3 + 5bc4)

(a+ b+ c)5
+

7.15c4b2

(a+ b+ c)6

)
,

as Moivre reports.

Problem 6.8

9. Let p be the Probability of any event; a gambler wagers, with a casts permitted to
bring forth an event in a certain number of trials which surpasses by b units the number
of trials, in which the event does not appear. The lot of the gambler is sought.

Solution.

This problem and which precede are solved in a not dissimilar manner. The sought
Probability is the sum of the following Probabilities:

1) With b casts permitted, the event to arrive with b trials, of which case the Proba-
bility is pb.

2) With b + 2 casts permitted, the event to arrive with b + 1 trials only, of which
case the Probability is pb+1(1 − p) = pb+1q (by supposing q = 1 − p). This term is
multiplied by the coefficient, which we will seek out in the following way. The number
of permutations of b+ 2 quantities, of which b+ 1 are the same is = b+ 2. The cases
should be subtracted, in which with b casts the game is completed. But with the event
p brought forth b times first, there remain two trials in which p and q are able to arrive
in two ways, therefore the coefficient is = b + 2 − 2 = b, and the Probability of this
case is = bpb+1q. (I have omitted the supposition of b+ 1 trials, as impossible, for if q
units at least arrive by chance, the game is not able to be completed with b + 1 casts;
if it not arrive, the game is finished with b casts. For the same reason I will omit the
suppositions of b+ 3, b+ 5, b+ 7 etc. casts.)

3. With b+4 casts permitted, the event to arrive with b+2 trials only, of which case
the Probability is the term pb+2q2 multiplied by the coefficient which now I will seek

7Translator’s note. Trembley refers here to the 2nd edition. This problem was incorporated into Problem
VI of the 3rd.

8Translator’s note. This is a Problem of the Duration of Play. See Problem LXV of Moivre.
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out. The number of permutations of b+4 quantities, of which b+2 are the same and 2

the same is (b+4)(b+3)
2 . The cases should be subtracted, in which the game is completed

with b + 2 casts, and the case in which the game is completed with b casts. In order
that the game may be completed in b + 2 casts, q must arrive once only in the first b,
therefore there remain in the end p and q of which the permutations are 2; but through
the preceding case b combinations arrive in which the game is finished with b+2 casts,
therefore 2b cases should be subtracted. In order that the game may be completed with
b casts, q must not appear in the first b, therefore there remain in the end 2p and 2q, of
which the combinations are = 1.2.3.4

1.2.1.2 = 6. Therefore there should be subtracted in all
2b + 6 = 4(b+3)

2 cases. The coefficient will be (b+4)(b+3)
2 − 4(b+3)

2 = b(b+3)
2 and the

Probability of this case is = b(b+3)
2 pb+2q2.

4) With b+6 casts permitted, the event to arrive with b+3 trials only, of which case
the Probability is the term pb+3q3 multiplied by the coefficient which now I will seek.
The number of permutations of b+6 quantities, of which b+3 are the same, and 3 the
same is = (b+6)(b+5)(b+4)

1.2.3 . The cases are subtracted in which the game is completed
with b + 4, b + 2, b trials. In order that the game may be completed in b + 4 trials,
in this q must appear twice, therefore there remains in the end p and q of which the
permutations are = 2, but by the previous case, b(b+3)

2 combinations arrive, in which
the game is completed with b+ 4 casts, therefore b(b+ 3) cases should be subtracted.
In order that the game may be completed with b+ 2 casts, in this q must appear once,
there remain therefore in the end 2p and 2q of which the permutations are = 6, and
by the second case, the number of combinations, in which the game is finished with
b+ 2 casts is = b, therefore 6b cases should be subtracted. In order that the game may
be completed with b casts, q must not appear in the first b, therefore there remain in
the end 3p and 3q of which the permutations are 1.2.3...6

1.2.3.1.2.3 = 20. Therefore 20 cases
should be subtracted therefore there should be subtracted in total

b(b+ 3) + 6b+ 20 = (b+ 4)(b+ 5) =
6(b+ 4)(b+ 5)

2.3

cases. Therefore the coefficients will be

=
(b+ 6)(b+ 5)(b+ 4)

2.3
− 6(b+ 5)(b+ 4)

2.3
=
b(b+ 4)(b+ 5)

2.3

and the Probability of this case will be

=
b(b+ 4)(b+ 5)

2.3
pb+3q3.

5) With b+8 casts permitted, the event to arrive with b+4 trials only, of which case
the Probability is the term pb+4q4 multiplied by the coefficient which we will seek. The
number of Permutations of b + 8 quantities of which b + 4 are the same and 4 are the
same is = (b+8)(b+7)(b+6)(b+5)

1.2.3.4 . The cases should be subtracted in which the game is
completed in a smaller number of casts. In order that the game may be completed in
b + 6 casts, q must arrive three times in this, therefore there remain in the end p and q
of which the permutations are = 2; but by the preceding case, there arrive b(b+4)(b+5)

2.3
of which the game is completed in b + 6 casts. Therefore the first number should be
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subtracted = b(b+4)(b+5)
3 . In order that the game may be terminated with b+ 4 casts q

must arrive twice in this, therefore there remains 2p and 2q of which the permutations
are = 6, and by the third case there arrive b(b+3)

2 combinations of which the game
will be terminated with b+4 casts. Therefore the second number should be subtracted
= 3b(b+ 3). In order that the game may be terminated in b+ 2 casts, q must be in this
one time, therefore there remain 3p and 3q of which the permutations are 20, but by
the second case there arrive b combinations in which the game will be terminated in b
casts. Therefore the third number should be subtracted = 20b. Finally in order that the
game may be terminated in b casts, q must not appear in this, therefore there remain
4p and 4q of which the permutations are = 70. Therefore the fourth number should be
subtracted = 70. Therefore there should be subtracted in all cases

=
b(b+ 4)(b+ 5)

3
+

3b(b+ 3)

2
+ 20b+ 70

=
(b+ 7)(b+ 6)(b+ 5)

3

=
8(b+ 7)(b+ 6)(b+ 5)

2.3.4
.

Therefore the coefficient will be

=
(b+ 8)(b+ 7)(b+ 6)(b+ 5)

1.2.3.4
− 8(b+ 7)(b+ 6)(b+ 5)

1.2.3.4

=
b(b+ 7)(b+ 6)(b+ 5)

1.2.3.4
,

and the Probability of this case will be

=
b(b+ 5)(b+ 6)(b+ 7)

1.2.3.4
pb+4q4.

6) With b + 10 casts permitted, the event to arrive b + 5 times only, of which case
the Probability is the term pb+5q5 multiplied by the coefficient, which we will seek.
The number of Permutations of b + 10 quantities, of which b + 5 are the same and
5 the same is = (b+6)...(b+10)

1.2...5 . The cases should be subtracted in which the game is
terminated in a fewer number of casts. But it is clear from the preceding, with the same
method used,
b(b+5)(b+6)(b+7)

3.4 cases to arrive in which the game is terminated in b+ 8 casts,
b(b+ 4)(b+ 5) cases in which the game is terminated in b+ 6 casts,
10b(b+ 3) cases in which the game is terminated in b+ 4 casts,
70b cases in which the game is terminated in b+ 2 casts,
252 cases in which the game is terminated in b casts.
The sum of these terms is

=
10(b+ 6)(b+ 7)(b+ 8)(b+ 9)

1.2.3.4.5
.

Therefore the coefficient will be

=
b(b+ 6)(b+ 7)(b+ 8)(b+ 9)

1.2.3.4.5

14



and the Probability of this case will be

=
b(b+ 6)(b+ 7)(b+ 8)(b+ 9)

1.2.3.4.5
pb+5q5.

Now the law of progression is evident, from which it is clear, the Probability with
b+2n casts permitted the event to arrive with b+n coups and to be lacking by n coups
to be

=
b(b+ n− 1)(b+ n− 3) . . . (b+ 2n− 1)

1.2.3 . . . n
pb+nqn.

Therefore the lot of the gambler will be

= pb
(
1 + bpq +

b(b+ 3)

2
p2q2 +

b(b+ 4)(b+ 5)

2.3
p3q3

+
b(b+ 5)(b+ 6)(b+ 7)

2.3.4
p4q4 +

b(b+ 6)(b+ 7)(b+ 8)(b+ 9)

2.3.4.5
p5q5 . . .

+
b(b+ n− 1) . . . (b+ 2n− 1)

1.2 . . . n
pnqn

)
.

But the number of casts is not able to exceed a, whence b + 2n = a, n = a−b
2 ,

therefore the number of terms must be assumed = a−b
2 + 1 if a− b is an even number,

and = a−b−1
2 + 1 if it is odd. The same consequences result from the solution of the

Celebrated Lagrange.

Scholium.

10. This Problem coincides with Problem LXIV9 of Moivre, but our solution
coincides with the second solution of the most celebrated Author. We solve exam-
ples here which Moivre reports. Let there be two gamblers A and B, of whom the
Probabilities are respectively a and b, with each cast the defeated gives a coin to the
victor, the Probability is sought of A to win 3 coins within 10 casts. Here there is
p = a

a+b , q = b
a+b , a = 10, b = 3, the number of terms of the formula must be

= 6
2 + 1 = 4. Therefore the formula will become

a3

(a+ b)3

(
1 +

3ab

(a+ b)2
+

9a2b2

(a+ b)4
+

28a3b3

(a+ b)6

)
=

a9 + 9a8b+ 36a7b2 + 84a6b3 + 36a5b4 + 9a4b5 + a3b6

(a+ b)9

as Moivre reports. It is sought again, under the same assumptions, A winning 4 coins
within 10 casts, here there is b = 4, with all the rest remaining. Therefore the formula
will become

a4

(a+ b)4

(
1 +

4ab

(a+ b)2
+

12a2b2

(a+ b)4
+

48a3b3

(a+ b)6

)
=

a10 + 10a9b+ 45a8b2 + 120a7b3 + 45a6b4 + 10a5b5 + a4b6

(a+ b)10

9Translator’s note. In the 3rd edition, this is Problem LXV.
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as Moivre reports.

Problem 7.10

11. Let as in the preceding Problem p be the Probability of any event, the gambler
wagers, with a casts permitted, to bring forth the event in a certain number of trials,
which exceed by b units the number of trials, in which the event will not arrive, or be
inferior by c units to the same number of trials, in which namely the event will not
arrive.

Solution.

It is evident the sought Probability to correspond to the following Probabilities: 1)
The number of cases in which the event will arrive surpassing by b units the number of
cases in which it will not arrive. 2) The number of cases in which the event not arrive
surpassing by c units the number of cases in which it will arrive. But certain cases
are contained twice in these formulas, and hence the cases should be subtracted from
the Probability a priori, in which before the end of the game the number of casts in
which the event has not arrived surpasses by c units the number of casts in which it has
arrive, for that number of cases already is contained in the second Probability, in the
same way, a posteriori the cases should be subtracted from the Probability in which the
number of casts in which the event has arrived surpasses by b units the number of cases
in which it has not arrived, for that number already is contained in the first Probability.

This posed, by the preceding Problem the Probability of the event arriving within
a casts in a certain number of trials which surpass by b units the number of trials in
which the event has not arrived, is

pb
(
1 + bpq +

b(b+ 3)

2
p2q2 +

b(b+ 4)(b+ 5)

2.3
p3q3 . . .

+
b(b+ 1.2 + 1) . . . (b+ 2n− 1)

1.2 . . . n
pnqn

)
(here b+ n = a). Let now n = c+ d, the preceding formula will become

pb
(
1 + bpq +

b(b+ 3)

2
p2q2 +

b(b+ 4)(b+ 5)

2.3
p3q3 . . .

+
b(b+ c+ 1) . . . (b+ 2c− 1)

1.2 . . . c
pcqc

+
b(b+ c+ 2) . . . (b+ 2c+ 1)

1.2 . . . (c+ 1)
pc+1qc+1

+
b(b+ c+ 3) . . . (b+ 2c+ 3)

1.2 . . . c
pc+2qc+2

+
b(b+ c+ d+ 1) . . . (b+ 2c+ 2d− 1)

1.2 . . . (c+ d)
pc+dqc+d

)
10Translator’s note. This is Problem VI of Lagrange. See § 61.
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It is plain from this formula, as long as it considers the terms which precede the term
pcqc, the number of cases in which the event will not arrive to be impossible, to surpass
by c trials the number of cases in which it will arrive. For the term pcqc the fact is
possible in one way, thus as for this case the term pb+cqc should be subtracted. For
the term pb+c+1qc+1, in first place they produce the cases in which qc precedes, with q
and pb+c+1 undergoing all permutations, of which the number is b+ c+ 2. Then they
produce the cases in which qc+1 and p are combined, with the remaining terms arising
= pb+c, the permutations of these cases are = c+2, moreover the cases contained in the
preceding should be subtracted, certainly qc. qp, with qp undergoing all permutations
of which the number is= 2, therefore there remains c + 2 − 2 = c, we have therefore
b+2c+2 but the cases should be subtracted in which the game will be terminated with
b+2c casts, it is the case of this formula pb+cqc.qp, with qp undergoing all permutations
of which the number= 2, therefore there remains b+2c. In this case therefore the term
(b+ 2c)pb+c+1qc+1 should be subtracted.

For the term pb+c+2qc+2 the same will be obtained by the distinction of the cases
employed which applies to the place in the preceding Problem, the following table,

1) The substitution qc.q2pb+c+2 of which the cases are (b+c+3)(b+c+4)
1.2 .

2) The substitution qc+1p.pb+c+1 of which the cases are c(b+ c+ 2).

2) The substitution qc+2p2.pb+c of which the cases are c(c+3)
1.2 .

The sum of these cases is (b+c+3)(b+c+4)
1.2 + c(b + c + 2) + c(c+3)

1.2 . The cases should
be subtracted in which the game will be terminated in a fewer number of casts, which
by the method used above are discovered = (b+ 2c)− 6. Therefore the coefficient is

(b+ c+ 3)(b+ c+ 4)

1.2
+ c(b+ c+ 2) +

c(c+ 3)

1.2
− 2(b+ 2c) + 6

=
(b+ 2c+ 3)(b+ 2c)

2
,

and the term to be subtracted (b+2c+3)(b+2c)
2 pb+c+2qc+2.

For the term pb+c+3qc+3, likewise there appear

1) qc.q3pb+c+3 of which substitution the cases are (b+c+4)(b+c+5)(b+c+6)
2.3 ,

2) qc+1p.q2pb+c+2 of which substitution the cases are c(b+c+3)(b+c+4)
2 ,

3) qc+2p2.qpb+c+1 of which substitution the cases are c(c+3)
2 (b+ c+ 2),

4) qc+3p3.pb+c of which substitution the cases are c(c+4)(c+5)
2.3 .

The sum of these cases is

(b+ c+ 4)(b+ c+ 5)(b+ c+ 6)

2.3
+
c(b+ c+ 3)(b+ c+ 4)

2

+
c(c+ 3)

2
(b+ c+ 2) +

c(c+ 4)(c+ 5)

2.3
.
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The cases should be subtracted in which the game will be terminated in a smaller
number of casts which are discovered = 2(b+2c+3(b+2c)

2 + 6(b + 2c) + 20. Therefore
the coefficient after reductions is

=
(b+ 2c)(b+ 2c+ 4)(b+ 2c+ 5)

1.2.3
.

and the term

=
(b+ 2c)(b+ 2c+ 4)(b+ 2c+ 5)

1.2.3
pb+c+3qc+3.

should be subtracted.
Now the law of progression is clear, and the general formula of the terms to be

subtracted will be

pb+cqc
(
1 + (b+ 2c)pq +

(b+ 2c)(b+ 2c+ 3)

2
p2q2

+
(b+ 2c)(b+ 2c+ 4)(b+ 2c+ 5)

2.3
p3q3 . . .

+
(b+ 2c)(b+ 2c+ d+ 1) . . .+ (b+ 2c+ 2d− 1)

1.2 . . . d
pdqd

)
.

Now let there be d = b+m, and the formula will become

pb+cqc
(
1 + (b+ 2c)pq +

(b+ 2c)(b+ 2c+ 3)

2
p2q2 . . .

+
(b+ 2c)(b+ 2c+ 1)(3b+ 2c− 1)

2.3 . . . b
pbqb . . .

+
(b+ 2c)(2b+ 2c+ 2)(3b+ 2c+ 1)

2.3 . . . (b+ 1)
pb+1qb+1

+
(b+ 2c)(b+ 2c+m+ 1) . . . (3b+ 2c+ 2m− 1)

2.3 . . . (b+m)
pb+mqb+m

)
.

This second series permits the same exceptions as the first. Because it observes the
terms which precede the term pbqb, it is impossible the number of cases in which the
event will arrive to exceed by b trials the number of cases in which it not appear, from
this term the thing is possible, and the terms to be subtracted are discovered in precisely
the same manner as above, thus as the third series which must be added, when it should
be subtracted from the series it must be subtracted

p2b+cqb+c
(
1 + (3b+ 2c)pq +

(3b+ 2c)(3b+ 2c+ 3)

2
p2q2

+
(3b+ 2c)(3b+ 2c+m+ 1) . . . (3b+ 2c+ 2m− 1)

1.2.3 . . .m
pmqm

)
.

The same reasoning is able to proceed to infinity. But we have n = a−b
2 or n = a−b−1

2 ,
I will use the first value, it produces d = n− c = a−b−2c

2 , m = d− b = a−3b−2c
2 , and

thus successively. Now this formula exists generally,
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pb
(
1 + bpq + b(b+3)

2 p2q2 . . .+
b( a+b2 +1)( a+b2 +2)...(a−1)

1.2.3 p
a−b
2 q

a−b
2

−pb+cqc
(
1 + (b+ 2c)pq + (b+2c)(b+2c+3)

1.2 p2q2

+ (b+2c)(b+2c+4)(b+2c+5)
2.3 p3q3 . . .

+
(b+2c)( a+b+2c

2 +1)( a+b+2c
2 +2)...(a−1)

1.2.3...( a+b+2c
2 )

p
a−b−2c

2 q
a−b−2c

2

)
+p2b+cqb+c

(
1 + (3b+ 2c)pq + (3b+2c)(3b+2c+3)

2 p2q2 . . .

+
(3b+2c)( a+3b+2c

2 +1)( a+3b+2c
2 +2)...(a−1)

1.2.3...( a+3b+2c
2 )

p
a−3b−2c

2 q
a−3b−2c

2

−p2b+2cqb+2c
(
1 + (3b+ 4c)pq + (3b+4c)(3b+4c+3)

2 p2q2 . . .

+
(3b+4c)( a+3b+4c

2 +1)( a+3b+4c
2 +2)...(a−1)

1.2.3...( a+3b+4c
2 )

p
a−3b−4c

2 q
a−3b−4c

2

)
+p3b+2cq2b+2c

(
1 + (5b+ 4c)pq + (5b+4c+3)

2 p2q2 . . .

− (5b+4c)( a+5b+4c
2 +1)( a+5b+4c

2 +2)...(a−1)
1.2.3...( a+5b+4c

2 )
p
a−5b−4c

2 q
a−5b−4c

2

)
−pµb+µcq(µ−1)b+µc [1 + [(2µ− 1)b+ 2µc]pq

+ [(2µ−1)b+2µc][(2µ−1)b+2µc+3]
2 p2q2 . . .

+
[(2µ−1)b+2µc]( a+(2µ−1)b+2µc

2 +1)( a+(2µ−1)b+2µc
2 +2)...(a−1)

1.2.3...( a+(2µ−1)b+2µc
2 )

p
a+(2µ−1)b+2µc

2 q
a+(2µ−1)b+2µc

2

]
+p(µ+1)b+µcqµb+µc [1 + [(2µ+ 1)b+ 2µc]pq

+ [(2µ+1)b+2µc][(2µ+1)b+2µc+3]
1.2 p2q2 . . .

+
[(2µ+1)b+2µc]( a+(2µ+1)b+2µc

2 +1)( a+(2µ+1)b+2µc
2 +2)...(a−1)

1.2.3...( a−(2µ+1)b−2µc
2 )

p
a−(2µ−1)b−2µc

2 q
a−(2µ−1)b−2µc

2

]
The last two formulas express the 2µth and (2µ + 1)th formula, and hence the general
formula is able to be continued to infinity.

This formula contains the first part of the expectation of the gambler, namely the
Probability of the numbers of cases, in which the event will happen being about to
surpass by b units the number of cases, in which it is not contained, with the Probability
excluded before this time of the numbers of cases, in which the event not happen being
about to surpass by c units the number of cases, in which it happens.

The second part of the expectation of the gambler expresses the Probability of the
numbers of cases, in which the event not happen being about to surpass by c units the
number of cases in which it happens, with the Probability excluded before this time the
number of cases, in which the event not happen being about to exceed by b units the
number of cases in which it not happen, but it is obtained by substituting into the first
q for p and p for q, likewise b for c and c for b. Therefore the formula will become

qc
[
1 + cpq + c(c+3)

2 p2q2 . . .+
c( a+c2 +1)( a+c2 +2)...(a−1)

1.2.3 p
a−c
2 q

a−c
2

]
−qb+cpb

[
1 + (c+ 2b)pq + (c+2b)(c+2b+3)

1.2 p2q2
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+ (c+2b)(c+2b+4)(c+2b+5)
2.3 p3q3 . . .

+
(c+2b)( a+c+2b

2 +1)( a+c+2b
2 +2)...(a−1)

1.2.3...( a−c−2b
2 )

p
a−c−2b

2 q
a−c−2b

2

]
+q2c+bcpc+b

[
1 + (3c+ 2b)pq + (3c+2b)(3c+2b+3)

2 p2q2 . . .

+
(3c+2b)( a+3c+2b

2 +1)( a+3c+2b
2 +2)...(a−1)

1.2.3...( a+3c+2b
2 )

p
a−3c−2b

2 q
a−3c−2b

2

]
−q2b+2cpc+2b

(
1 + (3c+ 4b)pq + (3c+4b)(3c+4b+3)

2 p2q2 . . .

+
(3c+4b)( a+3c+4b

2 +1)( a+3c+4b
2 +2)...(a−1)

1.2.3...( a+3c+4b
2 )

p
a−3c−4b

2 q
a−3c−4b

2

]
+q3c+2bp2c+2b

[
1 + (5c+ 4b)pq + (5c+4b)(5c+4b+3)

2 p2q2 . . .

− (5c+4b)( a+5c+4b
2 +1)( a+5c+4b

2 +2)...(a−1)
1.2.3...( a+5b+4c

2 )
p
a−5c−4b

2 q
a−5c−4b

2

]
−qµb+µcp(µ−1)c+µb [1 + [(2µ− 1)c+ 2µb]pq

+ [(2µ−1)b+2µb][(2µ−1)c+2µb+3]
2 p2q2 . . .

+
[(2µ−1)c+2µb]( a+(2µ−1)c+2µb

2 +1)( a+(2µ−1)c+2µb
2 +2)...(a−1)

1.2.3...( a−(2µ−1)c−2µb
2 )

p
a+(2µ−1)c+2µb

2 q
a+(2µ−1)c+2µb

2

]
+q(µ+1)c+µbqµc+µb [1 + [(2µ+ 1)c+ 2µb]pq

+ [(2µ+1)c+2µb][(2µ+1)c+2µb+3]
1.2 p2q2 . . .

+
[(2µ+1)c+2µb]( a+(2µ+1)c+2µb

2 +1)( a+(2µ+1)c+2µb
2 +2)...(a−1)

1.2.3...( a−(2µ+1)c−2µb
2 )

p
a−(2µ−1)c−2µb

2 q
a−(2µ−1)c−2µb

2

]
From these two joined formulas the expectation of the gambler is understood. If a−

b be an odd number, there must be n = a−b−1
2 , therefore d = n− c = a−b−1−2c

2 , n =

d − b = a−3b−1−3c
2 , and thus successively. But it is not useful that our formulas be

written anew, it suffices in the case of the odd number a− b to use the nearest inferior
even number. The solution reverts to the same of the Celebrated Lagrange, although
the same formulas are not produced. We solve the same example which the Celebrated
man proposes. In this example there happens a = 7, b = 2, c = 3. First the first part of
our formulas will become p2(1 + 2pq + 2.5

2 p
2q2), I stop here, because a−b

2 = 5
2 = 2,

the second part, and all the others vanish, because a−b−2c
2 = − 1

2 . The first part of the
second formula becomes q3(1 + 3pq + 3.6

2 p
2q2), I stop here because a−c

2 = 2. The
second part, and all the others vanish, because a−c−2b

2 = 0. Therefore the expectation
of the gambler appears

= p2 + 2p3q + 5p4q2 + q3 + 3pq4 + 8p2q5

= p2 + 2p3(1− p) + 5p4(1− p)2 + (1− p)3 + 3p(1− p)4 + 8p2(1− p)5

= 1− 21p3 + 71p4 − 87p5 + 45p6 − 8p7

as the Celebrated Lagrange reports.
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Scholium 1.

12. Here Problem 6211 of Moivre returns, in which namely the complement of the
Probability is sought which we sought here. We have been seeking the Probability of
the games being terminated within a certain number of casts, but Moivre the Probability
of the games not being terminated. For Problem 6312 of Moivre is the same kind. In
the example reported there is a = 15, b = 2, c = 3. Therefore the first formula will
become

p2
(
1 + 2pq +

2.5

2
p2q2 +

2.6.7

2.3
p3q3 +

2.7.8.9

2.3.4
p4q4

+
2.8.9.10.11

2.3.4.5
p5q5 +

2.9.10.11.12.13

2.3.4.5.6
p6q6

)
− p5q3

(
1 + 8pq +

8.11

2
p2q2 +

8.12.13

2.3
p3q3

)
+ p7q5(1 + 12pq)

=p2 + 2p3q + 5p4q2 + 13p5q3 + 34p6q4 + 89p7q5 + 233p8q6.

The second formula will become

q3
(
1 + 3pq +

3.6

2
p2q2 +

3.7.8

2.3
p3q3 +

3.8.9.10

2.3.4
p4q4

+
3.9.10.11.12

2.3.4.5
p5q5 +

3.10.11.12.13.14

2.3.4.5.6
p6q6

)
− p2q5

(
1 + 7pq +

7.10

1.2
p2q2 +

7.11.12

1.2.3
p3q3 +

7.12.13.14

1.2.3.4
p4q4

)
+ p5q8(1 + 13pq)

=q3 + 3pq4 + 8p2q5 + 21p3q6 + 55p4q7 + 143p5q8 + 377p6q9.

The expectation of the gambler therefore will become=

p2+2p3q + 5p4q2 + 13p5q3 + 34p6q4 + 89p7q5 + 233p8q6

+q3 + 3pq4 + 8p2q5 + 21p3q6 + 55p4q7 + 143p5q8 + 377p6q9.

Which formula coincides with the formula of Moivre if there are made p = a
a+b , q =

b
a+b .

Scholium 2.

13. If with close attention the two formulas are assessed carefully, of which the last
presents the general solution of our problem, it will be well-known the first part of the
first formula, of which the factor is pb, to be nothing other, if not the formula of Problem
6, namely to express the Probability A to win b coins however many the number of
coins B should have gained; but the other part of this first formula, of which the factors

11Translator’s note. In the 3rd edition, this is Problem LXIII.
12Translator’s note. In the 3rd edition, this is Problem LXIV. The particular case is on p. 205.
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are respectively pb+cqc, pb+2cqb+c, p2b+2cqb+2c etc. to express the Probability A to
win b coins within a casts before B may have won anything. In the same manner the
first part of the second formula, of which the factor is qc, is nothing other, if not the
Prob. 6 formula if the Probability A to be losing b coins is sought, it provides the
Probability B to win c coins, however many the number of coins A may have gained;
but the other parts of this second formula, of which the factors are qb+cpb, q2c+bpb+c

etc. respectively present the Probability B to win c coins, before A may have won
any. Therefore the sum of the Probabilities of these latter parts present the Probability,
within a casts A to win b coins, but B c coins. Therefore with the first part of each
formula removed, our Problem will give the solution to Prob. 6513 of Moivre without
any runaround. For the sake of an example, the Probability is sought within 10 casts A
to win 2 coins, also B three. This will become a = 10, b = 2, c = 3, and the second part
of the first formula will present p5q3(1+8pq). I stop here, because a−b−2c

2 = 10−8
2 =

1, moreover the other parts vanish, because a−3b−2c
2 = −1. The second part of the

second formula presents p2q5(1+7pq). I stop here, because a−c−2b
2 = 10−7

2 = 3
2 = 1,

moreover the other parts vanish, because a−3c−2b
2 = 10−11

2 = − 1
2 . Therefore the

sought Probability will be p5q3+8p6q4+p2q5+7p3q6, as Moivre reports. If in addition
the Probability A to win 3 coins and B 2 is sought, we will obtain by permuting p and
q in the discovered terms,

p3q5 + 8p4q6 + p5q2 + 7p6q3,

moreover the entire Probability will be

(pp+ qq)(p3q3 + 8p4q4) + (p3 + q3)(p2q2 + 7p3q3)

as Moivre reports. In order that a comparison may be made, it must be supposed
p = a

a+b , q = b
a+b as above.

Scholium 3.

14. By aid of this Problem Problem 6614 of Moivre is solved besides in which the
Probability is sought within a casts A to win q coins, but B not to win p coins, in fact
in the second formula there must happen c = p− 1.

Problem 8.15

15. With any one cast two events are able to happen, of which the Probabilities are
p and q, the lot of the gambler is sought, who wagers to bring forth the first event b
times at least, and the second event c times at least within a casts.

13Translator’s note. In the 3rd edition, this is Problem LXVI.
14Translator’s note. In the 3rd edition, this is Problem LXVII.
15Translator’s note. This is Problem II of Lagrange.
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Solution.

We have solved an analogous question in the second Problem, but there one event
arrived, of which the Probability was p, and generally we have exhibited the lot of the
gambler for this case. The same method used for the two events may offer lengthier
formulas, it is permitted in certain cases they may be abbreviated. Therefore in order
that we may obtain the general solution of the Problem, we suppose known through
Prob. 2 the lot of the gambler in the case of one event, and we drive from the other
event, of which the Probability is q, just as we have driven from the first in the Problem
cited. The Probability of bringing forth this event c times by following themselves is qc,
this Probability should be multiplied by the lot of the gambler, when he wagers to bring
forth the event p b times within a − c casts. Let therefore by using the denominations
of the Celebrated Lagrange, 7x,t be the lot of the gambler, who wagers to bring forth
a certain event t times at least, within x casts, the Probability of the case, in which the
event q happens in the first c trials, will be qc7a−c, b.

We come to the second case in which the event q happens in c trials within the first
c+ 1 casts; the number of cases under this assumption is as we proved in Prob. 2, = c.
Therefore in this case when the event q may arrive c times within c + 1 casts, in the
cast which is in excess the event p will arrive or not. In the first case the Probability
will be the term cqcp multiplied by the lot of the gambler, who wagers to bring forth
the event p, with b − 1 trials within a − c − 1 casts, namely = cqcp7a−c−1, b−1. In
the second case the Probability will be the term cqc(1− p− q) = cqcn (by supposing
n = 1 − p − q) multiplied by the lot of the gambler, who wagers to bring forth the
event p, b times within a − c − 1 casts, namely = cqcn7a−c−1, b. The Probability of
this second case will be therefore = cqc(n7a−c−1, b + p7a−c−1, b−1).

The third case is this in which the event q happens c times within c + 2 casts, the
number of cases under this assumption is through Prob. 2, = c(c+1)

2 . Therefore in this
case when the event q may arrive c times within c + 2 casts, in the remaining two
casts there will arrive either p2 or n3 or 2np as it is clear from Prob. 3. In the first
case the Probability will be the term c(c+1)

2 qcp2 multiplied by the lot of the gambler,
who wagers to bring forth the event p, b − 2 times within a − c − 2 casts, namely =
c(c+1)

2 qcp27a−c−2, b−2. In the second case the Probability will be the term c(c+1)
2 qcn2,

multiplied by the lot of the gambler, who wagers to bring forth the event p, b times
within a− c−2 casts, namely = c(c+1)

2 qcn27a−c−2, b. In the third case the Probability
will be the term c(c+1)

2 qc.2npmultiplied by the lot of the gambler, who wagers to bring
forth the event p, b−1 times within a−c−2 casts, namely = c(c+1)

2 qc.2np7a−c−2, b−1.
The Probability of this third case will be therefore =

c(c+ 1)

2
qc(n27a−c−2, b + 2npq7a−c−2, b−a + p27a−c−2, b−c).

The fourth case is this in which the event q happens c times within c+3 casts. The
number of cases under this supposition is through Prob. 2, = c(c+1)(c+2)

2.3 . Therefore
in this case, when the event q arrives c times within c+ 3 casts, in the remaining three
casts there arrive either p3 or 3p2n or 3pn2 or n3, as it is clear from Prob. 4. In the first
case the Probability will be the term c(c+1)(c+2)

2.3 multiplied by the lot of the gambler,
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who wagers to bring forth the event p, with b− 3 trials within a− c− 3 casts, namely
= c(c+1)(c+2)

2.3 qcp37a−c−3, b−3. In the second case the Probability will be the term
c(c+1)(c+2)

2.3 qc.3p2n multiplied by the lot of the gambler, who wagers to bring forth the
event p, by b−2 trials within a−c−3 casts, namely = c(c+1)(c+2)

2.3 qc.3p2n7a−c−3, b−2.
In the third case the Probability will be the term c(c+1)(c+2)

2.3 qc3n2p multiplied by the
lot of the gambler who wagers to bring forth, the event p, by b−1 trials within a−c−3

casts, namely = c(c+1)(c+2)
2.3 qc.3pn27a−c−3, b−1. In the fourth case the Probability will

be the term c(c+1)(c+2)
2.3 qcn3 multiplied by the lot of the gambler, who wagers to bring

forth the event p, by b trials within a−c−3 casts, namely = c(c+1)(c+2)
2.3 qcn37a−c−3, b.

The Probability of this fourth case will be therefore

=
c(c+ 1)(c+ 2)

2.3
qc(n37a−c−3, b+3pn27a−c−3, b−1+3np27a−c−3, b−2+p

37a−c−3, b−3).

Now the law of progression is clear. The same general coefficients of the terms will be
what in the second Problem, the last will be c(c+1)...(a−1)

1.2.3...(a−c) . Because it has regard to the
terms themselves, the same induction is effective as in Problem 4. The last term will
be obtained namely the term (a− c+ 1), by advancing n+ p to the power a− c, and
there will appear,

na−c70,b+(a−c)n2−c−1p70,b−1+
(a− c)(a− c− 1)

2
na−c−2p270,b−2+p

a−c70,b−a+c.

This clearly follows from the preceding reckonings, by which the general induction
is corroborated. Therefore the lot of the gambler generally will be expressed by the
following formula,

7a,b,c =q
c(7a−c, b + cn7a−c−1, b + p7a−c−1, b−1)

+
c(c+ 1)

2
(n27a−c−2,b + 2np7a−c−2, b−1 + p27a−c−2, b−2)

+
c(c+ 1)(c+ 2)

2.3
(n37a−c−3, b + 3n2p7a−c−3, b−1

+ 3np27a−c−3, b−2 + p37a−c−3, b−3) . . .

+
c(c+ 1)(c+ 2) . . . (a− 1)

1.2 . . . (a− c)
(na−c70, b + (a− c)na−c−1p70, b−1

+
(a− c)(a− c− 1)

2
na−c−2p270,b−2 . . .+ pa−c70,b−1+c).

The Celebrated Lagrange offers this same formula. From the general formula of
Prob. 2 result all required values of the quantity 7 for use of this formula.

Scholium 1.

16. There should be observed 1) that if b > a, there will become 7a,b = 0, for it
is impossible to bring forth the event in b trials within casts fewer in number than b. 2)
That if a = 0, b = 0, it produces 70,0 = 1, indeed the formula of Problem 2 makes
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p0 = 1, as the rule demands, for the victor is the gambler, if no events remain to be
brought forth. 3) But if a = 0, and b is a positive quantity, it produces 70,b = 0, for no
casts remain for the gambler. 4) But if a is a positive or null quantity, but b a negative
quantity, it produces 7a,b = 1, for when b is a negative quantity, the event has been
exhibited for a number of trials by unity in a greater number than necessary, and hence
the gambler to have been the victor. It is impossible a to be a negative quantity, for the
last number of the formula is that in which a = 0.

Scholium 2.

17. I will illustrate the thing with the following example. A gambler wagers to
bring forth the event p, 2 times, the event q, 3 times at least within 6 casts. Here it
happens a = 6, b = 2, c = 3, therefore the formula produces

76,2,3 =q3(73,2 + 3(n72,2 + p72,1) + 6(n271,2 + 2np71,1 + p271,0)

+ 10(n370,2 + 3n2p70,1 + 3np270,0 + p370,−1).

But out of the formula Prob. 2 the following values result,

73,2 = p2[1 + 2(1− p)], 72,2 = p2, 72,1 = p(1 + 1− p)
71,2 = 0, 71,1 = p, 71,0 = 1,

70,2 = 0, 70,1 = 0, 70,0 = 1, 70,−1 = 1

By substituting these values, we will have

76,2,3 = q3(60p2 − 40p3 − 45p2q).

The same formula may have been able to be derived by direct calculation. For the
cases which present p2q3 within 5 casts are = 1.2.3.4.5

1.2.3.4.5 = 10; the cases which present
p2q3(1− p− q) = p2q3 − p3q3 − p2q4 within 6 casts are

1)
1.2.3 . . . 6

1.2.3.1.2
− 10 = 50,

2)
1.2.3 . . . 6

1.2.3.1.2.3
− 10 = 10,

3)
1.2 . . . 6

1 . . . 4.1.2
− 10 = 5

(in any one case I subtract the 10 preceding cases, they may not enter the calculation
twice). We will have therefore 60p2q3−40p3q3−45p2q4 as above. Indeed this method
might be exceedingly lengthy in the cases where a was a large number before b and c.

Scholium 3.

The method employed in this Problem is able to be extended to any number of
events. Let, for the sake of an example, there be three events, of which the Probabilities
are respectively p, q, r, and the lot of the gambler is sought, who wagers to bring forth
the event p, b times at least, the event q, c times at least, the event r, d times at least
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within a casts, the known lots of the gambler will be put for 2 events, through the
general formula of this Problem, and by precisely the same reasoning there will be
obtained by supposing (1− p− q − r) = n, the formula

7a,b,c,d =r
d(7a−d,b,c + d(n7a−d−1,b,c + p7a−d−1,b,c + q7a−d−1,b,c−1)

+
d(d− 1)

2
(n27a−d−2,b,c + 2np7a−d−2,b−1,c + 2nq7a−d−2,b,c−1

+ 2pq7a−d−2,b−1,c−1 + p27a−d−2,b−2,c + q27a−d−2,b,c−2)

+
d(d+ 1)(d+ 2)

2.3
(n37a−d−3,b,c + 3n2p7a−d−3,b−1,c

+ 3n2q7a−d−3,b,c−1 + 3np27a−d−3,b−2,c + 3pq27a−d−3,b−1,c−2

+ 6npq7a−d−3,b−1,c−1 + 3nq27a−d−3,b,c−2 + 3p2q7a−d−3,b−2,c−1

+ p37a−d−3,b−3,c + q37a−d−3,b,c−3) + etc.

the coefficient of the last term will be d(d+1)...(a−1)
1.2...(a−d) .

In general let there be any number of events of which the Probabilities are p, q,
r, s, . . . ζ, u, and the lot of the gambler is sought who wagers to bring forth the first
in b trials, the second in c trials, the third in d trials etc. the last in g trials at least
within a casts, there will appear always 7a,b,c,d...f,g =to a series of terms of which the
coefficients will be successively 1, g, g(g+1)

2 , g(g+1)(g+2)
2.3 . . . g(g+1)...(a−1)

1.2...(a−g) . As long
as the first term itself will be 7a,g,g,c,etc. f : the second will be obtained (by supposing
n = 1 − q . . .etc.−2) by raising n + p + q . . . + 7 to the first power, the third will be
obtained by raising (n + p . . . + 2) to the second power, the fourth will be obtained
by raising (n + p + q . . . + 2) to the third power and thus successively. But it will
be discovered easily by what Probability each and every term should be multiplied,
for the sake of an example the term an1pγqδ . . . 7e of the term (m + 1) must be mul-
tiplied by 7a−g−b,b−γ,c−δ etc. f−e but the entire series must be multiplied by ug . All
which are demonstrated by repeating, mutatis mutandis, the same reasoning as we em-
ployed above. Thus the same reasoning as we employed above. This Problem is solved
generally for however many cases.

Problem 9.16

19. Let there be placed a vessels successively of which they individually set in line
n tickets first white, then black: let be extracted simultaneously from the individual
vessels one ticket, thus so that the drawn ticket from the first vessel is restored into the
second, from the second into the third, and thus successively, finally from the last into
the first, it is sought, what number of tickets first of the whites then of the blacks will
be able to be distributed after b drawings.

Solution.

Let us consider first two vessels of which the first contains c black tickets, and the
second d. From this second a ticket is extracted; d cases arrive which will present a

16Translator’s note. This is the last problem (Problem VII) of Lagrange. See Section 64.
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black ticket, n−d cases which will present a white ticket; that is d cases arrive in which
there will be d− 1 black tickets remaining, n− d cases in which there will be d black
tickets remaining in the second vessel. Therefore from this cause the number of black
tickets in the second vessel will be probably

=
d(d− 1) + (n− d)d

n
=

(n− 1)d

n
=

(
1− 1

n

)
d.

There will be restored next into this vessel the ticket extracted from the first, but the
Probability this ticket to be black is = c

n , therefore the number of black tickets will be
from this second cause

=

(
1− 1

n

)
d+

c

n
=

(
1− 1

n

)
d+

n− 1

n
,

c

n− 1
=

(
1− 1

n

)(
d+

c

n− 1

)
.

From this beginning will be deduced the number of black tickets in the first vessel

=

(
1− 1

n

)(
c+

d

n− 1

)
.

Now that the number of black tickets probably contained in a single vessel after b draw-
ings may be evident, I will be calculating as follows. Let there be generally a number
p of black tickets in the first vessel, a number q of black tickets in the second vessel
thence after a finite number of drawings, after the following extraction the number of
black tickets contained in the second vessel will be probably

=

(
1− 1

n

)(
q +

p

n− 1

)
and the number of black tickets contained in the first vessel will be

=

(
1− 1

n

)(
p+

q

n− 1

)
by the principle posed above. But the number of black tickets contained in each vessel
exists after the first extraction. Therefore by substituting into this formula with the
values of the quantities p and q, namely

p =

(
1− 1

n

)(
c+

d

n− 1

)
, q =

(
1− 1

n

)(
d+

c

n− 1

)
,

after reductions the number of black tickets contained in the first vessel will appear
after the second extraction,

=

(
1− 1

n

)2(
c+

2d

n− 1
+

c

(n− 1)2

)
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and the number of black tickets contained in the second vessel

=

(
1− 1

n

)2(
d+

2c

n− 1
+

d

(n− 1)2

)
.

By substituting again with these values for p and q, the number of black tickets after
the third extraction will appear,

in the first vessel(
1− 1

n

)(
c+

3d

n− 1
+

3c

(n− 1)2
+

d

(n− 1)3

)
in the second vessel(

1− 1

n

)3(
d+

3c

n− 1
+

3d

(n− 1)2
+

c

(n− 1)3

)
.

Now the law of progression is clear, just as the number of black tickets is after b draw-
ings

in the first vessel(
1− 1

n

)b(
c+

b.d

n− 1
+

b.(b− 1)

2(n− 1)2
+
b(b− 1)(b− 2)

2.3(n− 1)3
d . . .+

c or d
(n− 1)b

)
in the second vessel(

1− 1

n

)b(
d+

bc

n− 1
+

b(b− 1)

2(n− 1)2
d+

b(b− 1)(b− 2)

2.3(n− 1)3
c . . .+

d or e
(n− 1)b

)
.

in the first formula, the numerator of the last term will be d if b is an odd number, and c
if b is an even number. In the second formula the numerator of the last term will be c if
b is an odd number and d if b is an even number. In other respects the denominators are
1, n− 1, (n− 1)2, . . . (n− 1)b, the numerators are the binomial coefficients (1 + 1)b,
but the letters c, d are alternately assumed.

Now let there be three vessels of which the first contains c black tickets, the second
d, the third e. Let generally p be the number of black tickets in any vessel whatsoever,
q the number of black tickets in the vessel following after any number of drawings,
after the following extraction, the number of black tickets contained in the vessel next
in order will be

=

(
1− 1

n

)(
q +

p

n− 1

)
as it is evident from the above said. This posed, by assuming p = d, q = e, the number
of black tickets in the third vessel will be after the first extraction

=

(
1− 1

n

)(
e+

d

n− 1

)
;

by supposing p = c, q = d the number of black tickets in the second vessel will be
after the first extraction

=

(
1− 1

n

)(
d+

c

n− 1

)
;
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by supposing p = e, q = c, the number of black tickets in the first vessel will be after
the first extraction

=

(
1− 1

n

)(
c+

e

n− 1

)
.

By substituting again with these values for p and q, after the second extraction the
number of black tickets will appear,

in the first vessel(
1− 1

n

)2(
c+

2e

n− 1
+

d

(n− 1)2

)
in the second vessel(

1− 1

n

)2(
d+

2c

n− 1
+

e

(n− 1)2

)
in the third vessel17(

1− 1

n

)2(
e+

2d

n− 1
+

c

(n− 1)2

)
In the same manner the number of black tickets appears after the third extraction

in the first vessel(
1− 1

n

)3(
c+

3e

n− 1
+

3d

(n− 1)2
+

c

(n− 1)3

)
in the second vessel(

1− 1

n

)3(
d+

3c

n− 1
+

3e

(n− 1)2
+

d

(n− 1)3

)
in the third vessel(

1− 1

n

)3(
e+

3d

n− 1
+

3c

(n− 1)2
+

e

(n− 1)3

)
.

Now the law of progression is evident, just as after b drawings the number of black
tickets in the third vessel may appear,(

1− 1

n

)b(
e+

bd

n− 1
+

b(b− 1)

2(n− 1)2
c+

b(b− 1)(b− 2)

2.3(n− 1)3
e

)
+
b(b− 1)(b− 2)(b− 3)

2.3.4(n− 1)4
d . . .+

c, d or e
(n− 1)b

.

The coefficients are the same as in the preceding case, and for the terms themselves
the original numbers of the black tickets of each and every vase should be written, by
starting with a vessel of which the number of tickets is sought and by proceeding in the
same order all the way to the end.

In the case of 4, 5, 6 etc. vessels the same coefficients remain, and the terms
themselves proceed according to the same law just as in the case of a vessels, if there
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are 71,0, 72,0, 73,0, 74,0 . . .7a,0 the number of black tickets of the first, second, third
. . .etc. a vessel, the number of tickets of the xi vessel will appear after b drawings(
1− 1

n

)b(
7x,0 +

b

n− 1
7x−1,0 +

b(b− 1)

2(n− 1)2
7x−2,0 +

b(b− 1)(b− 2)

2.3(n− 1)3
7x−3,0 etc.

)
of which series b+ 1 terms should be summed, as the Celebrated Lagrange reports.

Scholium.

20. Of this Problem the particular case is a Problem18 proposed by the Celebrated
Dan. Bernoulli in the Commentariis Academiae Petropolitanae for the year 1769. Let
there be many vessels of which each contains an equal number of tickets, and in the
beginning with the tickets of each and every vessel its color will appear, afterwards
the tickets should be led out by the law that the ticket extracted from the one vessel is
restored into the next, precisely as in our Problem, this posed, after a given number of
drawings, the number of tickets of each and every color probably contained in any one
vessel is sought.

Let there be first two vessels of which the first contains n white tickets, the second
n black tickets, let r be the number of drawings, there must be in the general formula
b = r, d = n, c = 0, and it produces the number of white tickets in the first vessel

= n

(
1− 1

n

)r (
1 +

r(r − 1)

2(n− 1)
+
r(r − 1) . . . (r − 3)

2.3.4(n− 1)4
+
r(r − 1) . . . (r − 5)

2.3 . . . (n− 1)6
etc.
)

Let there be c = n, d = 0, the number of white tickets in the second vessel appears

= n

(
1− 1

n

)r (
r

n− 1
+
r(r − 1)(r − 2)

2.3(n− 1)3
+

r . . . (r − 4)

2.3.4.5(n− 1)5
etc.
)

Now if n and r quantities should be considered as if large or infinite there will appear(
1− 1

n

)r
= 1− r

n
+

r2

2n2
− r3

2.3n3
+

r4

2.3.4n4
etc. = e−

r
n ,

1 +
r(r − 1)

2(n− 1)2
+
r(r − 1)(r − 2)(r − 3)

2.3.4(n− 1)4
+
r(r − 1) . . . (r − 5)

2.3 . . . 6.(n− 1)6
etc.

= 1 +
r2

2n2
+

r4

2.3.4n4
+

r6

2.3.4.5.6n4
+

r8

2 . . . 8n8
etc.

This series has the same form as the preceding, indeed the terms are missing of which
the exponents are odd. But since

e
r
n = 1 +

r

n
+

r2

2n2
− r3

2.3n3
+

r4

2.3.4n4
etc. = e

r
n ,

18Translator’s note. “Disquisitiones analyticae de novo problemate coniecturali,” Novi Commentarii Acad.
Petrop. Vol. XIV, 1769, pars prior (1770), pp. 3-25.
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it is evident the sum of the sought series to be 1
2

(
e
r
n + e−

r
n

)
. Therefore the first

formula will become= n
2

(
1 + e−

2r
n

)
as the Celebrated Bernoulli reports, the second

factor of the second is under the same assumption

=
r

n
+

r3

2.3n3
+

r5

2 . . . 5n5
etc.

the sum of this series is as is clear 1
2

(
e
r
n − e− r

n

)
just as the formula itself is =

n
2

(
1− e− r

n

)
.

Now let there be three vessels of which the first contains n white tickets, the second
n black tickets, the third n red tickets, let r be the number of drawings let there be in
the general formula b = r, e = n, d = 0, c = 0, the number of white tickets in the first
vessel will be,

n

(
1− 1

n

)r (
1 +

r(r − 1)(r − 2)

2.3(n− 1)3
+

r . . . (r − 5)

2 . . . (n− 1)6
+

r . . . (r − 8)

2 . . . 9(n− 1)9
etc.
)

let there be c = 0, d = n, e = 0, the number of white tickets in the second vessel will
be

n

(
1− 1

n

)r (
r +

r(r − 1) . . . (r − 3)

2 . . . 4(n− 1)4
+

r . . . (r − 6)

2 . . . 7(n− 1)7
+

r . . . (r − 9)

2 . . . 10(n− 1)10
etc.
)

let there be c = n, d = 0, e = 0, the number of white tickets in the third vessel will be

n

(
1− 1

n

)r (
r(r − 1)

2(n− 1)2
+

r . . . (r − 4)

2 . . . 5(n− 1)5
+

r . . . (r − 7)

2 . . . 8(n− 1)8
etc.
)

if now n and r are infinite, the first formula will become

ne−
r
n

(
1 +

r3

2.3n3
+

r6

2 . . . 6n6
+

r9

2 . . . 9n9
etc.
)

let there be

1 +
r3

2.3n3
+

r6

2 . . . 6n6
+

r9

2 . . . 9n9
etc. = A

(
ea

r
n + eb

r
n + ec

r
n

)
,

(A, a, b, c, with existence determined,)=

A
(
3 + ax+

a2x2

2
+
a3x3

2.3
+
a4x4

2.3.4
etc.
)

+ bx+
b2x2

2
+
b3x3

2.3
+
b4x4

2.3.4

+ cx+
c2x2

2
+
c3x3

2.3
+
c4x4

2.3.4

this is for the sake of brevity x = r
n it produces by comparison of terms,

A =
1

3
, a+ b+ c = 0,

a2 + b2 + c2 = 0, a3 + b3 + c3 = 3,

a4 + b4 + c4 = 0, a5 + b5 + c5 = 0,

a6 + b6 + c6 = 3 and thus successively.
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Out of the first three equations is obtained ab + ac + bc = 0, abc = 1. Therefore the
quantities a, b, c will be roots of the equation a3 − 1 = 0, namely

a = 1, b = −1 +
√
−3

2
, c = −1−

√
−3

2
.

Therefore the sum of the series will become

=
1

3

(
e
r
n + e−

1−
√
−3

2
r
n + e−

1+
√
−3

2
r
n

)
.

For it will be proved easily from the formula of Newton, to be a4 + b4 + c4 = 0,
a5 + b5 + c5 = 0, a6 + b6 + c6 = 3, a7 + b7 + c7 = 0 and thus successively if it is as
in this case

ab+ ac+ bc = 0, abc = 0, a+ b+ c = 0.

This sum is able to be put into the following form

1

3
e
r
n +

2

3
e−

r
n cos

r
√
3

2n
.

Therefore the formula will become

n

3
+

2

3
ne−

3r
2n cos

r
√
3

2n
,

as the Celebrated Bernoulli reports. If n and r are infinite, the second formula becomes

ne−
r
n

[
r

n
+

r4

2.3.4n4
+

r7

2 . . . 7n7
+

r10

2 . . . 10n10
etc.
]
.

Let there be

r

n
+

r4

2 . . . 4n4
+

r7

2 . . . 7n7
+

r10

2 . . . 10n10
etc. = Ae

ar
n +Be

br
n + Ce

cr
n

=A

[
1 +

ar

n
+

1

2

a2r2

n2
+

1

2.3

a3r3

n3
+

1

2.3.4

a4r4

n4
etc.
]

+B

[
1 +

br

n
+

1

2

b2r2

n2
+

1

2.3

b3r3

n3
+

1

2.3.4

b4r4

n4
etc.
]

+C

[
1 +

cr

n
+

1

2

c2r2

n2
+

1

2.3

c3r3

n3
+

1

2.3.4

c4r4

n4
etc.
]

it produces by the comparison of terms

A+B + C = 0, Aa+Bb+ Cc = 1,

Aa2 +Bb2 + Cc2 = 0, Aa3 +Bb3 + Cc3 = 0,

Aa4 +Bb4 + Cc4 = 1, Aa5 +Bb5 + Cc5 = 0 etc.

Since the series proceeds in the same manner as the preceding, let there be as above

a = 1, b = −1 +
√
−3

2
, c = −1−

√
−3

2
,
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they produce the three equations,

A+B + C = 0,

A−B
[
1−
√
−3

2

]
− C

[
1 +
√
−3

2

]
= 1,

A2 +B

[
1−
√
−3

2

]2
+ C

[
1 +
√
−3

2

]2
= 0,

whence are drawn forth

A =
1

3
, B = −1

3

[
1 +
√
−3

2

]
, C = −1

3

[
1−
√
−3

2

]
.

Therefore the sum will become

1

3
e
r
n − 1

3

[
1 +
√
−3

2

]
e
−
[

1−
√
−3

2

]
r
n − 1

3

[
1−
√
−3

2

]
e
−
[

1+
√
−3

2

]
r
n

The formula itself will become by using the sine and cosine

n

3
− 1

3
ne−

3r
2n cos

r
√
3

2n
+

n√
3
e−

3r
2n sin

r
√
3

2n

as the Celebrated Bernoulli reports. If n and r are infinite, the third formula will
become

ne−
r
n

[
r2

2n2
+

r5

2.3.4.5n5
+

r8

2 . . . 8n8
etc.
]

Let there be

r2

2n2
+

r5

2 . . . 5n5
+

r8

2 . . . 8n8
etc. = Ae

ar
n +Be

br
n + Ce

cr
n

There will be obtained by unfolding,

A+B + C = 0, Aa+Bb+ Cc = 0,

Aa2 +Bb2 + Cc2 = 1, Aa3 +Bb3 + Cc3 = 0, etc.

since the series proceeds in the same manner as the preceding let there be as above

a = 1, b = −1 +
√
−3

2
, c = −1−

√
−3

2
,

the three prior equations will become

A+B + C = 0,

A−B
[
1−
√
−3

2

]
− C

[
1 +
√
−3

2

]
= 0,

A+B

[
1−
√
−3

2

]2
+ C

[
1 +
√
−3

2

]2
= 1,
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whence are drawn forth

A =
1

3
, B = −1

3

[
1−
√
−3

2

]
, C = −1

3

[
1 +
√
−3

2

]
.

Therefore the sum will become,

1

3
e
r
n − 1

3

[
1−
√
−3

2

]
e
−
[

1−
√
−3

2

]
r
n − 1

3

[
1 +
√
−3

2

]
e
−
[

1+
√
−3

2

]
r
n

This formula itself will become by using the sine and cosine,

n

3
− n

3
e−

3r
2n cos

r
√
3

2n
− n√

3
e−

3r
2n sin

r
√
3

2n

as the Celebrated Bernoulli reports. It is easily deduced from the above said in the
case of b vessels, the exponents and the coefficients of the quantities of the form Aec

r
n

to be derived from the equation xb − 1 = 0 just as the calculation is pressed by no
difficulties. And therefore by this I will not be delayed.
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