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Introduction by the Translator 
 

    1. Pafnuty Lvovich Chebyshev (Tchébichef) (1821 – 1894) was one of the two most eminent Russian 

mathematicians of the 19
th

 century (the second, or, rather, the first one was Lobachevsky). In the theory 

of probability, he proved the law of large numbers in a general form and thoroughly studied the 

conditions for the central limit theorem (a term introduced by Polya in 1920) providing, in 1887, the 

necessary framework for its definitive investigations carried out by his former students, Markov and 

Liapunov. Chebyshev also dealt on both of these most important topics in his lectures on probability 

theory that he delivered at Petersburg University from 1860 to 1882. The authoritative Russian sources 

about his work are [1 – 3] and I myself published a paper [4] discussing his lectures on probability; its 

conclusions would be an useful supplement to this Introduction and to my notes in the main text below
1
. 

    In 1936, Aleksei Nikolaevich Krylov, a naval architect and an applied mathematician, published 

Chebyshev’s lecture notes as written down by Liapunov in 1879 – 1880 (see Krylov’s Foreword which I 

am now presenting in translation below). In 1999, my translation of the lecture notes appeared as a 

microfiche edition published by Verlag Dr. Hänsel-Hohenhausen in their series Deutsche 

Hochschulschriften, No. 2665, Egelsbach, but the copyright to ordinary publication is mine. 

 



    2. This translation contains Chebyshev’s own footnotes as well as  notes by Krylov and me (my notes 

are in curly brackets), all of which are collected at the end of the appropriate subsections, and an Index of 

names compiled by me.  

    The readers of the Russian edition undoubtedly noticed many dozens of misprints in mathematical 

formulas and an almost total absence of periods after displayed formulas and (effectively) new sentences 

beginning then with a lower-case first letter of their first words. The only possible explanation of this sad 

state of affairs seems to be that Krylov, in spite of his testimony provided in the Foreword, had not 

rewritten the original manuscript himself. The type-setter (an apprentice?) had contributed to the 

wrecking of the formulas; and hardly anyone read the proofs. I have corrected the misprints without 

special notice but I did not check all the formulas; and when I write something like Chebyshev had not 

…, the fault can well lie elsewhere rather than with him or Liapunov.    

 

    3. I had not improved on Chebyshev’s style of oral presentation and I attempted to preserve his 

mathematical terminology and notation [value of integral; exactly contrary events; mathematical 

expectation (dropping however the adjective in §3.3); equations in finite differences;  lim P x  =  0] or used 

it either more often than Chebyshev (exp [f (x)]) or throughout rather than exceptionally (i  instead of  #– 

1). Then, I myself introduced the notation  Cm
n
  and  n!.  On the other hand, disregarding a single 

exception, I have not retained Chebyshev’s notation (§3.3) 

 

    ∏
M

L

=  �
=

M

Lm

p(m) 

 

for the sums of probabilities. Chebyshev transformed such sums and arrived at appropriate integrals with 

limits  to  and  t1  (say) being functions of  L  and  M  respectively. Just the same, I have not preserved his 

similar use of letter  S  instead of  �  in §§3.3.9 – 3.3.10. 

    The numeration of the formulas was chaotic; furthermore, it did not enable the author to refer to his 

previous results and he rewrote many formulas time and time again
2
. I ordered his numeration assigning 

numbers to those formulas which were marked by asterisks or Greek or Roman letters, and the numbers 

are now running consecutively through each chapter with no separate systems of them appearing 

anywhere anymore. In addition, I numbered many more formulas needed for references by using a 

parallel system of Roman numerals. Note that the formulas which Chebyshev included in his main 

system are now printed in bold type. 

              In conclusion, I note that in a few cases Chebyshev had not shown 

         the necessary intermediate steps (§§3.1.5 and 3.3.19). 

 

          ��"�� �"����� �
�
"����� 
 

    Notes 
 

    1. I have subsequently described Chebyshev’s work in probability [5, Chapt. 15]. In particular (pp. 205 and 

206), I noted that Tikhomandritsky, in 1898, stated that in 1887 Chebyshev had remarked that it was necessary 

to transform the entire theory of probability. I also described an episode proving that Chebyshev had 

considered the Riemann geometry and the complex-variable analysis as trendy disciplines. 

    2. In this respect Markov followed his teacher. 
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Chapter 1. Definite Inegrals 
 

1.1. Preliminary Remarks and the Integrals of the First Group 
 

    1.1.0. We shall call definite only such integrals whose limits are constant magnitudes. Thus, we shall not 

consider definite integrals of the type 

 

    �
x

1
x

dx
  = ln x. 

 

Many definite integrals can be deduced from indefinite integrals but we shall only treat such of them which 

cannot be determined in an indefinite form. For example, the integral 

 

    � exp (– x
2
) dx 

 

cannot be determined because it represents a transcendental function unknown to us. At the same time, we can 

find its value if we add the limits 0 and $; the integral will then equal  #%/2. This happens because we do not 

have such a function that shows how the quantity of the area OAMB 
1
 changes depending on the change of  x.  

This, however, does not preclude the possibility of determining the quantity of all the area restricted by the 

curve 

 

    y  =  exp (– x
2
).                                                                                                (i) 

 

    In such investigations it is impossibile to apply a direct approach and we must perforce choose an indirect 

way. For this reason the methods used are extremely diverse and often numerous. Definite integrals are 

separated into several groups and special tricks exist for each of these. In addition, various scientists determine 

one and the same integral by different methods. Our method is this: Issuing from known double integrals and 

changing the order of integration, we shall determine the definite integrals. We do not aim at deriving the value 

of a certain definite integral; on the contrary, we shall rather determine various definite integrals from a given 

double integral. 

    Thus, the change in the order of integration will be the foundation of all our conclusions. Such a change is 

known to be only possible if the integral might be considered as the limit of a sum; this, in turn, only holds if 

the integrand remains finite within the limits of integration. For example, the integral 

 

    �
−

1

1

2
x

dx
 =  =  – 2 

 

cannot therefore be regarded as the limit of a sum because the integrand is infinite at  x  =  0.  This is even 

obvious also because the integrand takes positive values for any  x  lying within the  limits of integation so that 

the equality above is impossible.       

    The same remark may be made concerning the integral  

 

    �
−

1

1
x

dx
  = – ln (–  1). 

 

Its value can  be represented in a somewhat different way. Since 

 

    e
& i

  =  cos&  +  isin&, 
 

it follows that 

 

    &i  =  ln (cos&  +  isin&). 
 



Setting here  &  =  % (2n  +  1), we have 

 

    % (2n  +  1) i  =  ln (–  1),  – �
−

1

1
x

dx
  =  %i (2n  +  1). 

 

    This integral thus has an infinite set of different values, all of them imaginary. This can be explained by 

noting that, while integrating, we could have led  x  through imaginary values; many paths of integration are 

here possible which indeed explains the indefiniteness of the integral. 

 

    Note 1. {I do not reproduce the appended figure (which Chebyshev had not mentioned in his text). The 

equation of the curve there represented was not specified and it was drawn wrongly: at point  B(0; 1) the curve 

(i) was not perpendicular to the axis Oy.}            

 

    1.1.1. We begin with the integral 
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=
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β

α

y

y

�
∞=

=

x

x 0

e
–xy

 dx dy. 

 

For the integrand to remain finite it is neceesary that  '  >  0  and  (  >  0. These conditions will indeed restrict 

our investigation. We have 

 

    � e
–xy

 dx  =  – e
–xy

 /y, 

therefore   

    �
∞

0

e
–xy

 dx  =1/y. 

    Then 

    �
β

α
y

dy
  =  ln ((/ ')  =  �

β

α
�
∞

0

e
–xy

 dx dy  =  �
∞

0

dx �
β

α

e
–xy

 dy. 

    However,  

    �
β

α

e
–xy

 dy  =  
x

ee

x

e

x

e
xxxx βααβ −−−− −

=
−

−
−

  

so that 

    �
∞

0
x

ee
xx   βα −− −

dx  =  ln ((/ ').                                                                      (1) 

    This integral is almost the most important one. We shall indicate one of its applications. Supposing that  (  =  

n  and  '  =  1,  we have  

    �
∞

0
x

ee
xx   βα −− −

dx  =  ln n. 

Assuming that  n takes differenct values from  1  to  (n  –  1)  and adding up the expressions obtained, we get 



    ln [(n  –  1)!]  =  �
∞

0
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�

�
��
�

� +++
−

− −−−−−

x

eee

x

en
xnxxx )1(2 ...)1(

 dx 

or 

    ln [(n  –  1)!]  =  �
∞

0
x

dx

e

ee
en

x

xnx
x

��
�

�
��
�

�

−

−
−−

−

−−
−

1
)1( . 

    This integral thus allows us to express the logarithm of the product of natural numbers which is sometimes 

useful. 

    Integral (1) is usually written down in a somewhat different form. Suppose that 

 

    x  =  ln (1/z),  then  dx  =  – dz/z, 

 

    �
∞

0
x

ee
xx   βα −− −

dx  =  – �
0

1
z

dz

z

zz

ln−

− βα

  =  ln 
α

β
 

 

so that  

 

    �
−− −

1

0

11

ln z

zz
βα

dz  =  ln('/().                                                                             (2) 

 
    We arrived at this conclusion under the assumption that  '  and  (  were positive magnitudes which of course 

presupposes that they were real numbers. Assuming however that they are imaginary magnitudes, and issuing 

from the integral (1), we can secure some notion about the value of the integral 

 

    �
∞

0
x

cxsin
dx. 

 

We say some notion because our assumption leads to a non-rigorous conclusion, that, like all suchlike 

inferences, fails to provide, as we shall see now, the desirable results. 

    Suppose that  '  = – ci,  (  =  ci  where  c is some real magnitude. Then    

    �
∞

0
x

ee
icxicx −−

dx  =  ln (– 1)  

and, since 

    [(e
icx

)  –  (e
–icx

)/2i]  =  sincx,      

it follows that 

    �
∞

0
x

cxsin
2i dx  =  ln (– 1)  =  %i 

so that 

    �
∞

0
x

cxsin
 dx  =  %/2.                                                                                      (ii) 

    We have thus determined the value of this integral. However,  ln (– 1)  is an indefinite magnitude and %(2n  

+  1)i  should have been taken instead of  %i,  and already this circumstance indicates that the result is doubtful 

because the integral ought to have a single and quite definite value. In addition, the expression obtained does 



not depend on  c  so that the determined value holds only for positive c’s whereas, according to the assumption 

made when deriving this integral, we have only suuposed that  c  was a real magnitude. Strictly speaking, we 

have not thus obtained the result sought. 

    1.1.2. Consider now the integral 

    �
β

0

dy �
∞

0

e
–xy

 sincx dx. 

Now 

    � e
–xy

 sincx dx  =  – � −
−

−−

y

e

y

cxe
xyxy sin

 c cos cx dx  = 

     – 
y

cxe
xy sin−

 +  (c/y) � e
–xy

 cos cx dx. 

    Therefore 

    �
∞

0

e
–xy

 sin cx dx =  (c/y) �
∞

0

e
–xy

 cos cx dx 

but   

    � e
–xy

 cos cx dx  = 
y

cxe
xy

−

− cos
  – � y

e
xy

−

−

(– c) sin cx dx  =     

    (1/y)  –  (c/y) �
∞

0

e
–xy

 sin cx dx. 

    Thus 

    � e
–xy

 sin cx dx  =  (c/y
2
)  –  (c

2
/y

2
) �

∞

0

e
–xy

 sin cx dx 

and it follows that 

   �
∞

0

e
–xy

 sin cx dx  =  
22 yc

c

+
,  �

∞

0

e
–xy

 cos cx dx  =  
22 yc

y

+
.                   (3; 4) 

    These integrals are very important because they enable us to express the algebraic fractions in (3; 4) through 

definiote integrals which very ofdten simplifies the solution of many problems. Note that the integrals (3; 4) 

can also be determined in the indefinite form. 

    Supposing that  y  in these integrals gradually decreases tending to zero, we have, in the limit, 

 

    �
∞

0

sin cx dx  =  1/c,  �
∞

0

cos cx dx  =  0. 

 

It is easy to see, however, that the obtained integrals possess no direct sense because neither  sin cx  nor  cos cx  

approaches any definite limit as  x  increases to infinity. Taken by themselves, these integrals are therefore 

indefinite magnitudes. Nevertheless, when considered as the limits of integrals (3; 4), they have quite a definite 

value as found by us.  



  

 

 

    �
∞

0
2

nuinui
ee

−+
·

22 up

du

+
  = 

p2

π
e

 – n p
. 

Substituting positive numbers  n1,  n2, … instead of  n,  we get in the right side        factors         exp (– n1 p),  

exp (– n2 p), … and, multiplying the obtained integrals            by  A1,  A2, … respectively and adding together 

the results we shall find                            

    (1/2) �
∞

0

[A1exp (– n1 ui)  +  A2exp (– n2 ui)  + …  A1exp (n1 ui)  +   

                   A2exp (n2 ui)  + …]
22 up

du

+
  =   

    
p2

π
 [A1exp (– n1 ui)  +  A2exp (– n2 ui)  + …].                                                                                                                                           

    Suppose now that          

 

    f (x)  =  A1exp (–n1 x)  +  A2exp (–n2 x)  + …                                             (ix) 

 

and the last integral will become 

 

    �
∞

0
2

)()( uifuif −+
·

22 up

du

+
  =  

p2

π
f (p).                                              (18) 

 

    We have thus derived the required formula. The non-rigor of this derivation consists in that (18) holds only 

for such functions which may be expanded into       the series (ix) where  A1,  A2,  … are some constant 

coefficients, whereas,                 having no criteria for distinguishing between functions that may, and may                

not be expanded into such a series, we consider (18) as though valid for any  function. 

    Assuming  

 

    f (x)  =  A1exp (–n1 x/a)  +  A2exp (–n2 x/a)  + … 

 

we shall find 

 

    �
∞

0
2

)()( auifauif −+
·

22 up

du

+
  =  

p2

π
f (ap). 

 

Differentiating this equality with respect to  a,  we shall obtain 

 

    �
∞

0
2

)()( auifauif −′−′
·

22 up

ui

+
du  =  

2

π
f )(a p) 

 

and therefore 

 

    �
∞

0
i

auifauif

2

)()( −′−′
·

22 up

udu

+
  =  –  

2

π
f )(a p). 

 

    Denoting  f )(x)  =  * (x)  we get 

 



    �
∞

0
i

auiaui

2

)( )( −− ϕϕ
·

22 up

udu

+
  =    –  

2

π
* (ap).                                     (19) 

 

If now  f (x)  =  +) (x),  the integral (18) will provide 

 

    �
∞

0
2

)()( auiaui −′+′ ψψ
 

22 up

du

+
  =  

p2

π
+)(ap). 

 

Integrating this equality with respect to  a  between the limits  0  and  '  we                 shall find 

 

    �
∞

0

�
α

0
2

)()( auiaui −′+′ ψψ
 

22 up

du

+
  =  

2

π
·

2

)0() (

p

p ψαψ −
. 

 

However, 

 

    �
α

0

+)(aui) da  =
ui

ui )0()( ψαψ −
,  �

α

0

+)(– aui) da  =
ui

ui)()0( αψψ −−
 

 

and we obtain 

 

    �
∞

0
ui

uiui

2

)()( αψαψ −−
·

22 up

du

+
  =  

2

π
·

2

)0() (

p

p ψαψ −
 

or 

    �
∞

0
i

uiui

2

)()( αψαψ −−
·

)( 22 upu

du

+
  =  

2

π
·

2

)0() (

p

p ψαψ −
.                      (20) 

 

    Integrals (18) – (20) are to be found in a contribution by Abel and one of them      is in Bertrand’s writing, 

but the general formula that interests us was first given        by Cauchy. We conclude here the study of the 

integrals of the second group. 

 

1.3. Integrals of the Third Group 

 

    1.3.1. The integrands of the integrals that we shall now study contain          functions which could at first 

sight seem to be algebraic whereas in essence            they are special transcendental functions. These integrals 

are of the type 

 

    �
∞

0

21 x

x

+

λ

dx                                                                                                 (x) 

where  ,  is any number. We shall therefore begin by saying a few words about              algebraic functions in general. 

We call algebraic only such functions that are the roots          of the equation  

 

    Ao y 
n
  +  A1 y 

n-1  
+  A2 y 

n-2
  + … +  An-1 y  +  An  =  0 

 

where  n  is an positive integral number and the coefficients  Ao,  A1, …,  An  are some  integral functions of  x.  Functions 

not fitting in with this definition no longer represent algebraic functions so that  x 
,
  that cannot satisfy our equation at all 

values of  ,  is a transcendental function, but it becomes algebraic as soon as we assume that  ,  is a commensurable 

number.
1
 

    We shall now indeed consider the integral (x) at any  ,.  But we shall note         first of all that this integral 

will have a finite value only for values of  ,                     within 1 and – 1. Indeed, for  ,  >  1  the degree of the 

product  x·x
,
  =  x

,+1
            will be higher than  2  and the integral, in virtue of a known theorem, will be          

infinite. And for  ,  <  –1, setting  x  =  1/z,  ,  =  –  µ  and  µ   >  1,  we have     

 



    �
∞

0

21 x

x

+

λ

dx  =  �
∞

0

21 z

z

+

µ

dz. 

 

This means that the integral will {again} be infinite. For  ,  =  ± 1  we obtain 

    �
∞

0

21 x

x

+
dx  =  (1/2) [ln(1  +  x

2
)]

0

∞
  =  $; 

    �
∞

0

2

1

1 x

x

+

−

dx  =  �
∞

0

)/1(1

)/1(
2

1

z

z

+

−

 [–
2

z

dz
]  =  �

∞

0

21 z

z

+
dz  =  $. 

 

    If now  ,  =  '  +  i (  it will be necessary that  '  be contained between  1          and  – 1. Thus, we shall 

consider the integral (x) assuming that  1  >  ,  >  – 1. 

 

    Note 1. {Chebyshev’s term.} 

 

    1.3.2. We have 

 

    �
∞

0

21 x

x

+

λ

dx  = �
1

0

21 x

x

+

λ

dx  +  �
∞

1

21 x

x

+

λ

dx, 

but 

    �
1

0

21 x

x

+

λ

dx  =  �
1

0

x
,
 (1  +  x

2
) 

– 1 
dx  = 

    �
1

0

x
, 
(1  –  x

2
  +  x

4
  –  x

6
  + …) dx  = �

1

0

x
,
 dx  – �

1

0

x
,+2

 dx  + 
 
    

    �
1

0

x
,+4

 dx  – �
1

0

x
,+6

 dx + … 

    In general, however, 

    �
1

0

x
,+m

 dx =  [
1

1

++

++

m

x
m

λ

λ

]
0

1
 = 

1

1

++ mλ
 

because, under our conditions regarding  ,,  (,  +  m  +  1)  is always positive.                          If  ,  =  '  +  (i  

then 

 

    lim (x
,+m+1

) x=0  =  lim (x
'+m+1

 x
(i

) x=0. 

 

Since  (  can be negative it could seem at first sight that  x
(i

  can be infinite, but         it is not difficult to prove 

that this factor cannot exceed some boundary. Indeed, 

 

    x
(i

  =  e
(i lnx

  =  cos (( lnx)  +  i sin (( lnx) 

 

and therefore in any case 

 

    lim (x 
, + m + 1

)x=0  =  0 

 

if only  '  is contained within the boundaries indicated above. Thus, 

   

    �
1

0

21 x

x

+

λ

dx  =  
1

1

+λ
  –  

3

1

+λ
  +  

5

1

+λ
  –  … 

 

    The second integral is  

 



    �
∞

1

21 x

x

+

λ

dx  =  �
0

1
)/1(1 2z

z

+

−λ

·[–
2

z

dz
]  =  �

1

0

21 z

z

+

−λ

dz. 

 

But, because of the above, the last integral is equal to 

    
1

1

+− λ
  –  

3

1

+− λ
  +  

5

1

+− λ
  – … 

 

    And so  

    �
∞

0

21 x

x

+

λ

dx  =  (
λ+1

1
  +  

λ−1

1
)  –  (

λ+3

1
  +  

λ−3

1
)  + …  = 

    
221

12

λ−

⋅
  –  

223

32

λ−

⋅
  +  

225

52

λ−

⋅
  –  …                                                       (21) 

  

We have thus expressed our integral as a series whose sum we still ought to determine. 

    The similarity of this expansion with the decomposition of rational fractions        into partial fractions at 

once arrests our attention. Indeed, we can present (21)          as 

    �
∞

0

21 x

x

+

λ

dx  =  
1

1

+λ
  –  

1

1

−λ
  +  

3

1

+λ
  –  

3

1

−λ
  + … 

 

However, any rational fraction  f (x) /F (x)  where  F (x)  has no multiple roots             can be represented as 

 

    
)(

)(

xF

xf
  =  

)(

)(

1

1

xF

xf

′
·

1

1

xx −
  +  

)(

)(

2

2

xF

xf

′
·

2

1

xx −
  +  

)(

)(

3

3

xF

xf

′
·

3

1

xx −
  + … 

 

so that in our case the roots of  F (x)  are 

 

    1,  3,  5,  7,  …,  – 1,  – 3,  –  5,  – 7, … 

 

and  f (x) / F (x)  =  1  at any  x  equal to one of the roots of  F (x). And we                shall now determine the 

function  F (x)  satisfying these conditions.     

 

    1.3.3. Let us consider the function 

 

    F (x)  =  cos(n arccos x) 

 

where  n  is any integer. It is easy to show that  F (x)  is an integral function                    of the  n-th degree. 

Indeed, substituting  arccos x  =  *  and noting that 

 

    cos n*  =  [e 
n*i

  +  e
 – n*i

]/2 

 

we shall find that 

 

    F (cos *)  =  cos n*  =  [e 
n*i

  +  e
 – n*i

]/2. 

 

However,  e 
±n*i

  =  cos n*  ±  i sin n*  so that 

 

    F (cos *)  ={[cos n*  +  i sin n*]  +  [cos n*  –  i sin n*]}/2  = 

    {[cos *  +  i sin *]
n
  +  [cos *  –  i sin *]

n
}/2. 

 

    Thus 

    

    F (x)  =  cos(n arccos x)  =  (1/2) [(x  +  12 −x )
n
  +  (x  –  12 −x )

n
]. (22)   

 



The terms that include odd degrees of the root will depend on it; however, it              is not difficult to see that 

they will finally cancel out so that we shall obtain for                F (x)  an integral rational function. Since 

 

    12 −x  =  x  –  (1/2)·(1/x)  –  (1/2)·(1/2)·(1/2)·(1/x
3
)  – …     

 

we have 

    x  –  12 −x   =  (1/2)·(1/x)  +  (1/2)·(1/2)·(1/2)·(1/x
3
)  + … 

and the term [x  –  12 −x ]
n
  in (22) will contain only negative powers of  x;                 all such terms will 

finally cancel out with the terms containing negative powers                 of  [x  –  12 −x ]
n
  and only the 

integral part of this expression will be left.              Denoting {here and in the sequel} the entire part {of a 

function} by  E,  we can express this result as 

    F (x)  =  E {[[x  –  12 −x ]
n 

/ 2]}. 

 

    Contributions concerning the study of such functions are mainly due to         Chebyshev so that the 

expression (22) is also called Chebyshev polynomial.                   At present, such investigations are included in 

many writings on integral calculus,
1
 and, for example, in England they can be found in many courses in 

integral           calculus under the heading Chebyshev’s works. Zolotarev’s studies concern             similar 

issues; more precisely, issues relating not to circular but to elliptic functions. Accordingly, they are much more 

complicated, but also less important than                  the works of Chebyshev. 

    Suppose now that  n  =  2m  where  m  is an integer. Then 

 

    F (x)  =  cos (2m arcos x )  =  Ao x
2m

  +  A1 x
2m-1

  +  +  A2 x
2m-2

  + …  

 

We shall try to expand the function  1/F (x)  into partial fractions. To attain                  this goal we shall find 

the roots of the equation 

 

    F (x)  =  0  or  cos (2m arcos x )  =  0 

  

and prove that all of them are different. It is not difficult to see that this                 equation is satisfied if 

    arccos x  =  
m

k

4

)12( π+
  

where  k  is any integer. Assuming that it takes different values from  0  to                   (2m  –  1),  we obtain the 

following roots of this equation: 

 

    k  =  0,  x1  =  cos (%/4m);  k  =  1,  x2  =  cos (3%/4m);   

    k  =  2,  x3  =  cos (5%/4m); …;  k  =  µ,  xµ+1  =  cos [(2µ  +  1)%/4m];  

    k  =  2m  –  µ  –  1,  x2m – µ  =  cos [(4m  –  2µ  –  1)%/4m]; …   

    k  =  2m  –  1,  x2m  =  cos [(4m  –  1) %/4m].  

 

    Since the equation  F (x)  =  0  {above} is of degree  2m,  it cannot have any       other roots. It is seen 

therefore that all of its roots are different and moreover            real. For this reason our expansion will be of the 

type 

 

    
)(

1

xF
 = 

)(

1

1xF ′
·

1

1

xx −
  –  

)(

1

2xF ′
·

2

1

xx −
  + …  = �

)(

1

µxF ′
·

µxx −

1
. 

 

However, 

    F)(x)  =  
21

)arccos2sin(2

x

xmm

−
, 

    F)(xµ)  =  2m
]4/)12sin[(

]}4/)12cos[(arccos2sin{

m

mm

πµ

πµ

−

−
  =  2m

]4/)12sin[(

]2/)12sin[(

mπµ

πµ

−

−
. 



 

But  sin[% (2µ  –  1)/2]  =  (– 1)
µ-1

  so that   

 

    F)(xµ)  =  (– 1)
µ-1

 
]4/)12sin[(

2

m

m

πµ −
. 

 

Thus, 

    
)arccos2cos(

1

xm
 =� 1)1( 2

]4/)12sin[(
−−

−
µ

πµ

m

m
·

]4/)12cos[(

1

mx πµ −−
  = 

 

                                    (1/2m)� (– 1)
µ-1

]4/)12cos[(

]4/)12sin[(

mx

m

πµ

πµ

−−

−
   

 

where the sums should extent consecutively over  µ  =  1,  2, …,  2m.  We                  now have the following 

remarkable formula 

 

    
)arccos2cos(

2

xm

m
 =� (– 1)

µ-1

]4/)12cos[(

]4/)12sin[(

mx

m

πµ

πµ

−−

−
   

 

from which, assuming that arccos x  =  *  and  m  =  1, we can derive the                known formula 

 

    cos 2*  =  2cos
2*  –  1. 

 

For  x  =  cos*  we have  

  

    
ϕm

m

2cos

2
  = � (– 1)

µ-1
 

]4/)12cos[(cos

]4/)12sin[(

m

m

πµϕ

πµ

−−

−
.                             (23) 

 

    We shall compare now two terms of this formula, those where  µ  =  k  and              µ  =  (2m  + 1  –  k). 

Introducing, in general, 

 

    - (µ)  =  (– 1)
µ-1

 
]4/)12cos[(cos

]4/)12sin[(

m

m

πµϕ

πµ

−−

−
 

we have    

 

    - (k)  =  (– 1)
k-1

 
]4/)12cos[(cos

]4/)12sin[(

mk

mk

πϕ

π

−−

−
, 

 

    - (2m  +  1  –  k)  =  (– 1)
2m-k

 
]4/)214cos[(cos

]4/)214sin[(

mkm

mkm

πϕ

π

−+−

−+
 = 

 

                                      (– 1)
 k 

]4/)12cos[(cos

]4/)12sin[(

mk

mk

πϕ

π

−+

−
. 

 

    
It is therefore seen that in our expansion the sum of the terms equally distant          from the middle is 

 

    - (k)  +  - (2m  +  1  –  k)  =  (– 1)
 k-1

 sin
m

k

4

)12( π−
· 

    [
]4/)12cos[(cos

1

mk πϕ −−
  –  

]4/)12cos[(cos

1

mk πϕ −+
]  = 

 



    (– 1)
 k-1

 
]4/)12[(coscos

]2/)12sin[(
22 mk

mk

πϕ

π

−−

−
 = 

 

  

    (– 1)
 k-1

 
]sin]4/)12[(sin

]2/)12sin[(
22 ϕπ

π

−−

−

mk

mk
. 

 

Formula (23) thus becomes 

 

    
ϕm

m

2cos

2
  = � (– 1)

k-1
 

]sin]4/)12[(sin

]2/)12sin[(
22 ϕπ

π

−−

−

mk

mk
                           (23�) 

 

where  k  should be changed from  1  to  m  inclusively. 

    Suppose now that  *  tends to zero and  m  increases indefinitely in such a way  that the product  2m *,  

which we shall denote by  % ,/2,  remains finite. We         shall try to find the limit of our sum under these 

conditions. We have                       2m  =  % ,/2*,  therefore 

 

    
)2/cos(

2/

λπ

ϕλπ
  =  � (– 1)

k-1
 

ϕλππϕ

πλϕπ
22 sin]2/2)12[(sin

]/2)12sin[(

−−

−

k

k
  = 

 

                             � (– 1)
k-1

 
ϕλϕ

λϕ
22 sin]/)12[(sin

]/)12(2sin[

−−

−

k

k
, 

 

    
)2/cos(

2/

λπ

π
 = � (– 1)

k-1
 

ϕϕλλϕϕλ

λϕ
22 sin)/(]/)12[(sin)/(

]/2)12sin[(

−−

−

k

k
 = 

 

                            � (– 1)
k-1

22 ]/)[(sin]}/]/)12{sin[(

]/)12(2sin[

ϕϕϕλϕλ

λϕ

−−

−

k

k
. 

 

And, since in general 

 

    lim [sin (N*)/*]*=0  =  N, 

 

    [
)2/cos(

2/

λπ

π
]*=0   = � (– 1)

k-1
 

1]/)12[(

/)12(2
2 −−

−

λλ

λ

k

k
  = 

 

                                    � (– 1)
k-1

22)12(

)12(2

λ−−

−

k

k
. 

 

    
Thus, we find the following expression 

 

    
)2/cos(

2/

λπ

π
 = � (– 1)

k-1
 

22)12(

)12(2

λ−−

−

k

k
                                                 (24) 

 

where  k  should take all the integer values from  1  to  $.  Evidently, since  ,            is here determined by the 

condition 

 

    ,  = (4m*/%)*=0,  m  =  $, 

 

it may take all possible values including incommensurable ones.
2 

If  ,  has                  value of the type   ('  +  

i(),  which is only possible if  *  takes imaginary                values (because  m  is a real magnitude), the 

obtained formula is also valid in               this case, because, when determining the limit of the sum at  *  =  0  

and                          m  =  $  by means explicated in the differential calculus (the method based on geometric 



considerations that we applied in this case { ? } evidently will not          do), we would have arrived at the same 

expression. 

 

    Note 1. Alekseev, N.N. ��
��������� �	
�	����� (Integral Calculus). 

    Note 2. {Cf. Note 1 to §1.3.1.}  

 

    1.3.4. We may represent the expression (24) in such a way:  

 

    
)2/cos(

2/

λπ

π
  =  

21

12

λ−

⋅
  –  

23

32

λ−

⋅
  +  

25

52

λ−

⋅
  – … 

 

Supposing now that  ,  is contained between the boundaries  – 1  and  1,  and comparing this equality with 

(21), we shall have  

 

    �
∞

0

21 x

x

+

λ

dx  =  
)2/cos(

2/

λπ

π
,  – 1  <  ,  <  1.                                            (25) 

 

    We have thus found the integral sought. It is sometimes expressed in a              different way. Substituting  x  

=  e
z
  we shall obtain 

 

    
)2/cos(
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λπ

π
  = �

∞

∞−
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z
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λ
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λ

dz. 

 

However, 

 

    �
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z
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λ
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z

ee

e

+

−
−

−  λ
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∞

0
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z

ee
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and therefore 

 

    �
∞

0

zz

z

ee

ee
−

−

+

+  z λλ

dz  =  
)2/cos(

2/

λπ

π
.                                                              (26) 

 

Assuming now that  ,  =  (i,  we shall get 

 

    �
∞

0

zz

iziz

ee

ee
−

−

+

+   ββ

dz  = �
∞

0
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ee

z

+−

βcos2
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)2/cos(

2/

iβπ

π
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2/2/ βπβπ
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    Thus 

 

    �
∞

0

zz
ee

z

+−

βcos
dz  =  

2/2/

2/
βπβπ

π

ee +−
.                                                             (27) 

 

Even more remarkable is another modification of the integral (25) to which             we can arrive by 

substituting  x
2
  =  z,  dx  =  (1/2) z

–1/2
 dz: 

 

    �
∞

0
z

z

+1

2/λ

·(1/2) z
–1/2

dz  =  
)2/cos(

2/

λπ

π
, 

    �
∞

0
z

z

+

−

1

2/1 2/λ

dz  =  
)2/cos(λπ

π
. 



 

Supposing here that  ,/2  –  1/2  =   n  –  1, we shall find 

 

    �
∞

0
z

z
n

+

−

1

1

 dz  =  
])2/1cos[( π

π

−n
  =  

)2/cos( nππ

π

−
  =  

nπ

π

sin
. 

 

If now  z  =  x/(1  –  x)  we shall have finally 

    �
1

0

x 
n-1

(1  –  x) 
–n

 dx  =  
nπ

π

sin
,  0  <  n  <  1.                                           (28)  

    In such a form this integral is a particular case of the Euler integral of the                first kind 

    �
1

0

x 
,-1

(1  –  x) 
µ-1

 dx 

with  ,  =  n  and  µ =  – n  –  1.  We shall now go on to considering such             integrals. 

 

    The Euler Integrals {§§1.3.5 – 1.3.14} 

 
    1.3.5. An Euler integral of the second kind is the integral   

    �
∞

0

x
. – 1

e
 – x

 dx 

which is usually denoted /(.) as a function of  .. And, as stated above, the             integral of the first kind is 

    �
1

0

x 
,-1

(1  –  x) 
µ-1

 dx. 

There is no special notation for this integral; however, some authors denote it               by  (,;  µ),  others by  B 

(,;  µ).  We shall adopt the fist symbol, so that,              replacing  .  by  n,  ,  by  p  and  µ  by  q, we have 

    �
1

0

x 
p-1

(1  –  x) 
q-1

 dx  =  (p;  q),                                                                (29) 

    �
∞

0

x
n – 1

e
 – x

 dx  =  /(n).                                                                             (30) 

    In order to consider these integrals as limits of some sums it is necessary that       the parameters  n,  p,  q  be 

positive; otherwise, each integrand becomes                  infinite at one of its limits. We shall therefore assume 

that  n  >  0,  p  >  0,                     q  >  0. True, the integrand in (29) becomes infinite at each of the limits, and 

in         (30), at the lower limit, when the parameters being positive are less than  1.  However, it can be proved 

that in these cases the integrals are finite. Indeed, 

    �
∞

0

x
n – 1

e
 – x

 dx  = �
1

0

 x
n – 1

e
 – x

 dx  + �
∞

1

x
n – 1

e
 – x

 dx. 

Supposing now that  n  is a positive proper fraction,
1
 we shall find that  

    �
1

0

 x
n – 1

e
 – x

 dx  < �
1

0

 x
n – 1

 dx       

or that 

    �
1

0

 x
n – 1

e
 – x

 dx  <  [x
n
/n]

0

1
 . 

This integral is thus finite at any positive  n  whereas 

    �
∞

1

x
n – 1

e
 – x

 dx  <  �
∞

1

e
 – x 

dx  <  1/e. 

    As to the Euler integral of the first kind, it will also be finite at the stated 

values of the parameters  p  and  q. Indeed, we shall soon prove that it is 

connected wuth the integral of the second kind by the remarkable equation  



 

    (p,  q)  = 
)(/
)/()(/

qp

qp

+
.                                                                                  (31) 

 

However, before proving this relation, we shall indicate some properties of the 

Integrals of the first and the second kind beginning with the latter. 

    When integrating by parts, we find that 

    �
∞

0

x
n – 1

e
 – x

 dx  = [
n

ex
xn −

]
0

∞
  + �

∞

0
n

ex
xn −

dx  =  (1/n) �
∞

0

x
n 

e
 – x

 dx, 

i.e., that 

 

    /(n)  =  (1/n) /(n  +  1).  

 

Therefore, 

 

    /(n  +  1)  =  n /(n).                                                                                  (32) 

 

In the same way 

 

    /(n  +  2)  =  (n  +  1) /(n  +  1),  /(n  +  3)  =  (n  +  2) /(n  +  2), … 

    /(n  +  m)  =  (n  +  m  –  1) /(n  +  m  –  1). 

 

    Multiplying these equalities we obtain 

 

    /(n  +  m)  =  n (n  +  1) (n  +  2) … (n  +  m  –  1) /(n). 

 

Assuming that  n  =  1  and noting that 

    /(1)  = �
∞

0

e
 – x

 dx  =  1 

we find for any integral  m  the following equality 

 

    /(m  +  1)  =  m!.                                                                                       (33) 

 

It is seen now that  /(2)  =  1  =  /(1)  so that between  1  and  2  the function  /  ought to have a minimum (the 

second derivative of  /(n)  is always positive). Consider now the integral  

    (p;  q)  = �
1

0

x 
p–1

(1  –  x) 
q–1

 dx 

where  p  is supposed to be any positive number and  q,  a positive integer greater than  1.  Integrating by parts, 

we find that 

    (p;  q)  =  [(x 
p
/p) (1  –  x) 

q–1
]
0

1
  +  (1/p) �

1

0

x 
p 

(q  –  1) (1  –  x) 
q–2

 dx 

so that 

 

    (p;  q)  =  [(q  –  1)/p] (p  +  1;  q  –  1). 

 

    Hence 

 

    (p  +  1;  q  –  1)  =  [(q  –  2) / (p  +  1)] (p  +  2;  q  –  2), 

    (p  +  2;  q  –  2)  =   [(q  –  3) / (p  +  2)] (p  +  3;  q  –  3), 

    (p  +  k;  q  –  k)  =  [(q  –  k  –  1) / (p  +  k)] (p  +  k  +  1;  q  –  k  –  1) 

if only we admit the inequality  q  –  k  >  1. 



    Multiplying these equalities we obtain 

    (p;  q)  = 
))...(1(

)1)...(2)(1(

qppp

kqqq

++

−−−−
 (p  +  k  +  1;  q  –  k  – 1). 

Assuming that  q  –  k  =  2  we get 

  

    (p;  q)  = 
)2)...(1( 

)!1(

−++

−

qppp

q
 (p  –  q  –  1;  1). 

 

This equality will be valid for any positive  p  and positive integer  q.  However, 

    (p  +  q  –  1;  1)  =   �
1

0

x 
p+q–2

 dx  =  
1

1

−+ qp
. 

 

Therefore, we obtain, for such values of  p  and  q, 

 

    (p;  q)  = 
)1)...(2)(1( 

)!1(

−+++

−

qpppp

q
.                                                    (34) 

 

If we assume now that  p  is also an integer, then it follows that 

 

    (p;  q)  =  
)!1(

)!1()!1(

−+

−−

qp

pq
 = 

)(/
)(/)(/

qp

pq

+
. 

 

And so, the equation (31) is proved for integer values of  p  and  q. 

 

    Note 1. {Here, and in many cases in the sequel, Chebyshev as though avoids irrational numbers.} 

 

    1.3.6. In order to prove the validity of (31) in the general case, we consider the double integral 
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∞

0

�
∞

0

x 
 p–1

e
 – x y

 y 
p+q–1

e
 – y

 dx dy. 

Integrating first with respect to  x,  and then to  y,  and substituting  xy  =  z,             we shall have 
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 /(p) e
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 dy  =  /(p) /(q). 

    Integrating now in the other order and assuming that  y (x  +  1)  =  u, we find    that 
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e
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Therefore 

    �
∞

0
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p

x

x
+

−

+ )1(

1

dx =
)(/

/(q))(/
qp

p

+
.                                                                    (xi) 



     

    Supposing that  p  +  q  =  1 and using formula (28) we may incidentally          derive the following 

remarkable formula 

 

    /(p) /(1  –  p)  =  
π

π

psin
                                                                         (35) 

 

which is very important in the practical sense for compiling tables of the values         of the function  /.  It 

shows that, within the interval  (0;  1),  it is sufficient to calculate the values of  /  only for the argument not 

exceeding  1/2;  the other   values will be determined by formula   (35). 

    We return now to the integral (xi). Assuming that  x  =  z / (1  –  z)  so that         1/(1  +  x)  =  1  –  z  and  dx  

=  dz/(1  –  z)
2
,  we obtain 
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x
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−
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    �
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0

z 
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(1  –  z) 
q–1

dz  =  (p;  q), 

hence (31). This equation shows that  (p;  q)  is a symmetric function of  p              and  q  which can also be 

proved directly by setting  z  =  1 – y: 

 

    (p;  q)  = �
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(1  –  z) 
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dz  =  – �
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1
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                  �
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0
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dy  =  (q;  p). 

    Thus, the validity of the equation (31) is proved for all values of  p  and  q           for which the double 

integral at the very beginning of this subsection might be considered as the limit of a sum. This last is true for 

any positive  p  and  q      because, when integrating in the first order, we arrive at the product  /(p) /(q),     

and, according to the above, each of these two factors is finite for all positive     values of  p  and  q. 

 

    1.3.7. Assuming that  p  =  1/2  in (35), we have 
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But, in accord with (9), 
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    1.3.8. A remarkable equation connecting the values of the  /  function can be derived from equation (31). 

Supposing that  p  =  q  we have here 
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Transforming the left side of this equality we obtain 



    (p;  p)  =   �
1

0

x 
p–1

(1  –  x) 
p–1

dx  =  �
1

0

[x (1  –  x)] 
p–1 

dx  = 

   �
1

0

{(1/4)  –  [x  –  (1/2)]
2
} 

p–1
dx  =  (1/4) 

p–1
 �

1

0

[1  –  (2x  –  1)
2
] 

p–1
dx. 

Setting  2x  –  1  =  z  we arrive here at 
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because the integrand is an even  function. Assuming now that  z
2
  =  u, we find      that 
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and, on the strength of (xii), we obtain 

    /(p) /(p  +  1/2)  = 
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π
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This remarkable formula was first discovered by Legendre. 

 

    1.3.9. Let us now go over to integrals expressed by the logarithm of gamma. In §1.1.1 we found that for any 

positive and integer  n  
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and on the strength of formula (33) this is equal to  ln /(n).  

    We shall prove that this formula is valid for any values of  n  for which  /(n)      can be taken. We have, in 

general, formula (30). Differentiating it with respect         to  n,  we obtain 
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Integrating here with respect to  x,  we arrive at 
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so that 
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It follows that 
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    Thus 
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Noting now that  /(2)  =  1,  we have 
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and, consequently, 
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    Subtracting this equality from the preceding one we shall have 
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and, assuming that  ln (1  +  z)  =  x,  we find that 
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    1.3.10. Replacing  n  by  (n  +  1)  in (37) we have 
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This formula is extremely important in mathematics and, especially, in the          theory of probability where it 

is applied for integer and very large values of  n.       We shall dwell on it also because remarkable corollaries 

follow from it. 

    If  n  is a very large number, it will be more convenient to represent this        formula in such a way that its 

right side  consists of two parts, one of them        including all the finite and very large terms and the other one 

serving as a       supplement and including only very small terms and vanishing at  n  =  $.  This         is 

necessary for example when calculating  ln /(n  +  1)  for very large values           of  n.  We shall indeed 

derive this logarithm. The integrand in (38) can be  represented as   
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where  * (x)  is the sum of all the other terms of the expansion. It is not difficult        to see that  * (x)  includes 

only positive powers of  x  because its term containing       x  in the lowest degree is  x/12,  so that  * (x) / x  

will have a finite limit at                   x  =  0. We thus have 
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and therefore 
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    Or, supposing that the two integrals are denoted by  F(n)  and  0(n)          respectively, we obtain 

 

    ln /(n  +  1)  =  F(n)  +  0(n). 

 

We thus reduced our expression to the desired form: the function  0(n)  is represented by an integral of a 

function taking finite and very small values                at all values of  x  contained within and including the 

limits of integration, – and, moreover, taking very small values at very large values of  n.  This function has 

exactly those properties which, according to our assumption, should be          possessed by the second part of 

the expression sought. 

    It is only left to determine the type of the functions  F(n)  and  0(n).  To find      the first of them we 

differentiate this {yet unknown} function with respect                to  n: 
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where  C  is a constant that for the time being we leave indefinite. Thus, 

 

    F(n)  =  C  +  n ln n  –  n  +  (1/2) ln n. 



 

    It ought to be noted here that the differentiation applied by us destroyed the constant  C  in whose 

determination all the difficulty really consists. We were        able to calculate the function  F(n)  in such an 

indefinite form without any              trouble exactly because of this differentiation. 

    Let us now investigate the function  0(n).  Here, we cannot carry the          integration to its conclusion and 

have to express  0(n)  by a series. We have  
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so that the integrand becomes 
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The product of the first two factors is here an even function {see below} so              that it is possible to say at 

once that its expansion into powers of  x  will be                 of the form 
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    Thus,  A1  =  1/12.  Taking into account a larger number of terms in the          numerator and the denominator 

and carrying out the division, we shall obtain,               in the same way,  A2,  A3, …The numbers that express 

these coefficients are             very closely related to the Bernoulli numbers; at present, very many           

mathematicians are studying them.  

    So, we have  
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Noting that, in general, 
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and that, for any integer and positive values of  l,  /(l)  =  (l  –  1)!,  we obtain 
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   We have thus expressed  0(n)  by a series depending on the coefficients  A1,  A2,  A3, … Therefore, to say 

something general about this equality, it is necessary to know the law of their composition. However, the 

method of their determination applied above does not provide this law and we shall derive{other} expressions 

for these coefficients, awkward for calculation but very convenient for our present purpose. 
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But, in general, 
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    Differentiating this equality we have 
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    Assuming that  m  takes here different values beginning with  1  and adding         the thus obtained equalities 

we shall have 
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where the notation introduced is obvious. Hence   
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    It is seen now that 
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and, taking into account the equality (39), 
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    And so, we have expressed  0(n)  by a series whose terms are alternatively    positive and negative and the 

sign of whose additional term {remainder} is      opposite to that of its preceding term. Such series are called 

limitative. They     possess a remarkable property: their additional term is always numerically less      than the 

term subsequent to the last one considered. Indeed, let us take the             series 

 

    X  =  u1  –  u2  +  u3  –  …  ± un  �  Rn), 

    X  =  u1  –  R1;  or,  u1  –  u2  +  R2;  or,  u1  –  u2  +  u3  –  R3,  etc. 

 

It is seen that 



 

    R1  <  u2;  R2  <  u3;  …;  Rn  <  un+1. 

 

    Therefore, such series always enable us to determine the error taking place when calculating their 

{approximate} sum and this is their advantage over other series. However, they also suffer from a serious 

shortcoming: they provide no clue for determining when should we stop in order to obtain the most precise 

value of the sum. Indeed, in such series each term can be {numerically}  either greater or less than its 

preceding term. When breaking off at some term  ± uk,  we will note that in one case the addition of one more 

term,  �  uk+1),  can lower, and in another case it can heighten the degree of approximation. In general, as it is 

seen from what was said about these series, we should stop at such a term  ul  whose subsequent neighbor  – 

ul+1  is least; the sum, calculated in such a way, will be the most precise and differ from the real sum less than 

by  ul+1. 

    Formula (39) shows that at first the terms of the series expressing  0(n)  will decrease, but that, beginning 

with some term, they will increase. Therefore, in order to determine, in this case, the term at which we should 

break off, we ought to have  ul  >  ul–1  or  ul / ul+1  >  1  and to determine the least value of  l  satisfying this 

inequality. We shall show how to acquire some notion about the least boundary of  l  by means of this 

inequality. 

    We have 

 

    ul  =  Al /(2l  –  1) /n 
2l–1

,  ul–1  =  Al–1 /(2l  –  3) /n 
2l–3

, 

 

    
1−l

l

u

u
  =  

1 2

1

3 2

  

)32(/  

)1/(2
−

−

−

−

−
l

l

l

l

nlA

nlA
  =  (Al /Al–1) (2l  –  2) (2l  –  3) (1/n

2
) 

 

where only the numerical values of  Al   and  Al–1  are taken into account. We shall thus have a conjectural 

inequality 

 

    (Al /Al-1 ) (2l  –  2) (2l  –  3)  >  n
2
   

 

or 

    (1/2
2%2

)  
...)3/1()2/1(1

...)3/1()2/1(1
2222

22

+++

+++
−− ll

ll

 (2l  –  2) (2l  –  3)  >  n
2
.                (40) 

 

    Now we may conclude that inequality 

 

    (2l  –  2) (2l  –  3)  >  2
2%2 

n
2
  

 

also exists so that  (2l)
2
  >  (2%n)

2
  and  

 

    2l  >  2%n,  l  >  %n.                                                                                    (41) 

 

    Thus we see that  l  should not be less than  %n.  However, the method of        obtaining this lower boundary 

does not provide the possibility of seeing             whether, for  l  >  %n,  ul  will really be the least, having the 

least value               satisfying this inequality. We went over from inequality (40) to (41), but,         evidently, 

we had no right to go in the other direction. It is therefore seen that          %n  provides only an approximate 

notion about how great should  l  be. 

    We have remarked (§1.3.10) that the coefficients  A1,  A2, … are very               closely related to the 

Bernoulli numbers  B1,  B2, … The dependence between           them is expressed by the equation 

 

    Al  =  (– 1) 
l–1  

)!(2

 

l

B l

  

so that  

 

    A1  =  B1/2!,  A2  =  – B2/4!,  A3 =  B3/6!,  etc. 

 



The Bernoulli numbers play a rather important part in mathematics, and,       accordingly, very many treatises 

are expressly devoted to studying their          properties. 

 

    1.3.12. Let us now go over to the determination of the constant  C  in the expression (xiii). Taking the 

logarithms of both sides of the Legendre formula (36) 

 

    /(n) /[n  +  (1/2)]  =  (#% / 2
2n–1

) /(2n) 

 

we have 

 

    ln /(n)  +  ln / [n  + (1/2)]  =  ln #%  +  ln / (2n)  –  (2n  – 1) ln 2. 

 

However,     

 

    ln /(n  +  1)  =  C  +  n ln n  –  n  +  (1/2) ln n  +  0 (n) 

 

and therefore 

 

    ln /(n)  =  C  +  (n  –  1) ln (n  –  1 )  –  n  +  1  +  (1/2) ln (n  –  1)  +  0(n  –  1), 

 
    ln /[n  + (1/2)]  =  C  +  [n  – (1/2)] ln [(n  –  (1/2)]  –  n  +  (1/2)  + 

                                 (1/2) ln [n  –  (1/2)]  +  0 [n  –  (1/2)], 

 
    ln /(2n)  =  C  +  (2n  –  1) ln (2n  –  1)  –  2n  +  1  +   
                      (1/2) ln (2n  –  1)  +  0 (2n  –  1). 

 

    We thus obtain such an equation: 

 

    2C  +  [n  –  (1/2)] ln (n  –  1)  +  n ln [n  –  (1/2)]  –  2n  +  (3/2)  +  0 (n  –  1)  + 

    0 (n  –  1/2)  =  ln #%  +  C  +  [2n  –  (1/2)] ln (2n  –  1)  +  1  –  2n  +    

    0 (2n  –  1)  –  (2n  –  1) ln 2 

 

so that 

 

    C  =  ln #%  +  [2n  –  (1/2)] ln (2n  –  1)  –  [n  –  (1/2)] ln (n  –  1)  –     

    n ln [n  –  (1/2)]  –  (1/2)  –  (2n  –  1) ln 2  –  0 (n  –  1)   

    0 [n  –  (1/2)]  +  0 (2n  –  1). 

 

    However, in general we have 

 

    ln (x  –  1)  =  ln {x [1  –  (1/x)]}  =  ln x  +  ln [1  –  (1/x)]  =  ln x  –   

                           (1/x)  –  (1/2) (1/x
2
)  –  …  

 

and therefore 

 

    ln (2n  –  1)  =  ln 2n  –  (1/2n)  –  (1/8n
2
)  –  … 

    ln (n  –  1)  =  ln n  –  (1/n)  –  (1/2n
2
)  –  …, 

    ln [n  –  (1/2)]  =  ln (2n  –  1)  –  ln 2  =  ln n –  (1/2n)  –  (1/8n
2
)  –  …  

 

And so 

 

    C  =  ln#%  +  [2n  –  (1/2)] [ln n  +  ln 2  –  (1/2n)  –  (1/8n
2
)]  –  [n  –  (1/2)]· 

    [ln n  –  (1/n)  –  (1/2n
2
)  –  …]  –  n [ln n   –  (1/2n)  –  (1/8n

2
)]  –  (1/2)  –  

    (2n  –  1) ln 2  +  0(2n  –  1)  –  0(n  –  1)  –  0[n  –  (1/2)]  

 

or 

 

    C  =  ln #%  +  (1/2) ln 2  –  {[2n  –  (1/2)] /2n}  +  {[n  –  (1/2)]/n}  –   



    {[(2n  –  (1/2)]/8n
2
}  +  {[n  –  (1/2)/]2n

2
}  +  (1/8n)  +  …  +  0(2n  –  1)  –     

    0(n  –  1)  –  0[n  –  (1/2)].  

 

    Assuming now that in this equation or identity (it should hold for all values           of n)  n  =  $,  and noting 

that  0 ($)  =  0, we find that 

 

    C  =  ln#%  +  (1/2) ln 2  =  ln#2%. 

 

Thus 

 

    ln /(n  +  1)  =  ln#2%  +  n ln n  +  (1/2) ln n  –  n  +  0(n)                            (xiv) 

 

so that 

 

    /(n  +  1)  =  π2 n 
n+1/2

 e
 –n+0(n)

. 

 

But              ·                                      
 

    e
 0(n)

  =  e
(1/12n) +… 

 =  1  +  (1/12n)  +  …  

 

and we thus finally obtain            

 

    /(n  +  1)  =  π2 n 
n+1/2

 e
 –n

 [1  +  (1/12n)  +  …].                                  (42) 

 

    If  n  is an integer we shall get 

 

    n!  =    π2 n 
n+1/2

 e
 –n

 [1  +  (1/12n)  +  …]. 

 

This formula that enables us to calculate the approximate value of the product          of natural numbers is due 

to Stirling.
1 

 

    Note 1. {In 1730, De Moivre derived this formula independently from and simultaneously with Stirling; the 

latter only communicated to him the value of         the constant. De Moivre also published a table of  lg n!  for  

n  =  10 (10 ) 900        with 14 decimals of which  11  or  12  were correct.}  

 

    1.3.13. In concluding the section on the Euler integrals we shall derive the     famous Gauss equation 

connecting {various values of} gamma. We may           always suppose that 

 

    /(n) /[n  +  (1/m)] /[n  +  (2/m)] …/[n  +  (m  –  1)/m]  =  F (n;  m) /(nm). 

 

    Let us now try to determine the function  F (n;  m).  We have  

 

    /(a) /[a  +  (1/m)] /[a  +  (2/m)] … /[a  +  (m  –  1)/m] / /(am)  =  F (a;  m). 

 

Substituting here  (a  +  1)  instead of  a  and recalling equality (32) we shall find that 
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    /(a) /[a + (1/m)] … /{[a  +  (m  –  1)/m]}  =  F (a  +  1;  m), 
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and consequently 
 

    
ma

m

maF
)1( 
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+−

+
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m

maF
  

);(
−
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    Thus, assuming that in general  m 
km

 F (k;  m)  =  & (k),  we have 

 

    & (a)  =  & (a  +  1)  so that  & (a)  =  & ($).  Therefore 

 

    
)(/

]/)1([/).../2(/)/1(/)(/
am

mmamamaa −+++
  =  m 

–a m 
lim [& (x)] x =$ 

where 
 

    & (x)  =  
xmmmx

mmxmxmxx
  )(/

]/)1([/).../2(/)/1/()(/
−

−+++
. 

Therefore 
 

    ln & (x)  =  ln /(x)  +  ln / [x  +  (1/m)]  +  …  +  ln /{x  +  [(m  –  1)/m]}  + 

                     m x ln m  –  ln /(m x). 
 

But because of (xiv) 
 

    ln & (x)  =  ln π2 +  [x  –  (1/2)] ln (x  –  1)  –  x  +  1  +  0 (x  –  1)  +      

    ln π2 +  [x  –  (1/2)  +  (1/m)] ln[x  –  1  +  (1/m)]  –  x  +  1  –  (1/m)  + 

    0 [x  –  1  +  (1/m)]  +  ln π2 +  [x  –  (1/2)  +  (2/m)] ln[x  –  1  +  (2/m)]   

  – x  –  1  –  (2/m)  +  0 [x  –  1  +  (2/m)]  +  …  +  ln π2 +   

    {x  –  (1/2)  +  [(m  –  1)/m]} ln{x  –  1  +  [(m – 1)/m]}  –  x  +  1  –   

    [(m  –  1)/m] +  0 {x  –  1  +  [(m  –  1)/m)]}  –  ln π2  – 

    [mx  –  (1/2)] ln (mx  –  1)  +  mx  –  1  +  mx ln m  –  0 (mx  –  1). 

 

    Noting that in general 

 

    ln (x  –  r)  =  ln [x (1  –  (r/x)]  =  ln x  +  ln[1  –  (r/x)]  =  ln x  –  r/x  – …  

 

we find that 

 

    ln & (x)  =  (m  –  1) ln π2  +  [x  –  (1/2)] [ln x  –  (1/x)  +  …]  +   

    0 (x  –  1)  +  [x  –  (1/2)  +  (1/m)] {ln x  –  [1  –  (1/m)]/x}  + 

    0 [x  –  1  +  (1/m)]  +  [x  –  (1/2)  +  (2/m)] {ln x  –  [1  –  (2/m)]/x}  + 

    0 [x  –  1  +  (2/m)]  +  …  +  {x  –  (1/2)  +  [(m  –  1)/m]}· 

    [ln x  –  
x

mm /)1(1 −−
]  +  0 {x  –  1  +  [(m  –  1)/m]}  +  m x ln m  + 

    (m  –  1)  –  {[(1  +  2  +  …  +  (m  –  1)]/m}  – 

    [m x  –  (1/2)] [ln mx  –  (1/mx)  –  …]  –  0 (mx  –  1) 

 

and 

 



    ln & (x)  =  (m  –  1) ln π2  +  mx ln x  +  mx ln m  –  mx ln mx  +  m  –      

    1  +  1  +  (1/2) ln mx  –  [1  +  2  +  …  +  (m  –  1)]/m  –  (1/2) m ln x  – 

    m  +  [1  +  2  +  …  +  (m  –  1)]/m  +  
m

m )1(...21 −+++
ln x  +  …  + 

    0 (x  –  1)  +  0 [x  –  1  +  (1/m)]  +  …  +  0 {x  –  1  +  [(m  –  1)/m]}  – 

    0 (mx  –  1). 

 

    Therefore 
         

    ln & (x)  =  (m  –  1) ln π2  +  (1/2) ln m  +  …  

 

    We have retained only two terms because all the rest of them vanish at  x  =  $.            And so 

         

    lim [ & (x)] x =$   =  (m  –  1) ln π2   +  ln #m  

 

which means that        
 

    lim [ln & (x)] x =$   =  #m (2%) 
(m–1)/2

;  F(a;  m)  =  m
 – am+1/2

 (2%) 
(m–1)/2 

 

and                                                                
 

    
)(/

]/)1([/).../2(/)/1(/)(/
am

mmamamaa −+++
  =  m 

–a m+1/2
 (2%) 

(m–1)/2
. 

 

Thus we have 

 

    /(,) /[, + (1/m)] … /{,  +  [(m  –  1)/m]}  =  m 
–, m–1/2

 (2%) 
(m–1)/2 /(m,).      (43) 

 

    This equation which is valid for any  ,  and any integral and positive  m  is a generalization of equation (36). 

Assuming here that  ,  =  1  and supposing that          n  is an integral positive number, we obtain 

 

    /[1  + (1/n)] /[1 + (2/n)] … /{1  +  [(n  –  1)/n]}  =  n– n+1/2
 (2%)

(n–1)/2
 /(n). 

 

It follows that 

    
1

)!1(
−

−
n

n

n
/(1/n) /(2/n) ... /[(n  –  1)/n]  =  n– n+1/2

 (2%)
(n–1)/2

 /(n) 

and in  virtue of the equality (33) 

 

    /(1/n) /(2/n) ... /[(n  –  1)/n]  =  (2%)
(n–1)/2

 n–1/2
.                                            (44) 

 

    1.3.14. We defined  /(,)  as the value of the definite integral {see (30)} 

 

    �
∞

0

x 
,–1

e 
– x 

dx. 

Accordingly, we have necessarily considered the gamma function only for such values         of  ,  for which this integral 

had sense, i.e., for which it was the limit of some sum. We     saw that these values were contained within  0  and  $.  

There exists, however, another     more general definition of the gamma {function}. The values of this function are         

extended onto such cases where the variable also takes negative values. Exactly this           last fact gave the occasion for 

the new definition and in order to go over to it we note         that for any integral and positive  , 
 

    /(,)  = 
1)!(

 )(/)!1(

++

−

λ

λ λ

n

nn
n=$. 

 

This equality might however be expressed in the forms 

 



    /(,)  =  
)(/
 )/()/(

λ

λ λ

+n

nn
n=$  =

)1( ... 2)( 1)( 

)!1(

−+++

−

n

nn

λλλλ

λ

n=$.                       (45) 

 

The last equality is indeed adopted as the definition of gamma and it is also extended       onto fractional and negative 

values of  ,. 
 

    1.3.15. We are now going over to integrals that have a very close connection with the  Euler integrals and are usually 

derived from these latter by assuming imaginary values        for  x.  However, so as to follow quite a rigorous path, we 

shall determine them independently from the Euler integrals. We shall consider the integral 

    I  =  �
∞

0

�
∞

0

e 
– z 

cos (x z) x 
µ–1

 
 
dx dz. 

    Integrating at first with respect to  x,  and then to  z,  we find, when substituting                 x z  =  y, 

    �
∞

0

cos(x z) 
µ–1 

dx  = �
∞

0

cos y (y/z) 
µ–1 

dy/z  =  z 
–µ �

∞

0

y 
µ–1

cos y
 
dy 

so that  

    I  = �
∞

0

y 
µ–1 

cos y dy �
∞

0

z 
–µ 

e 
– z 

dz  =  /(1  –  µ) �
∞

0

y 
µ–1 

cos y dy 

where  µ  is supposed to be positive and less than  1. 

    Integrating now in the other order, we have, in accord with formula (4) of §1.1.2 

    �
∞

0
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cos (x z) dz  =  
21

1

x+
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Then, on the strength of formula (25) we obtain 
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/2]1)-2cos[( πµ

π
 

and therefore 
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cos y dy  =
/2]1)-[( cos )-(12 πµµ

π

Γ
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Assuming that  µ  is here positive and using formula (35) we have 
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∞

0
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cos y dy  =  
/2]1)-[( cos2

 sin )/(

πµ

µπµ
  = 

/2]1)-[( 2cos

 /2 cos /2 sin )(2

πµ

µπµπµΓ
  = 

 

    /(µ) cos (µ%/2). 

 

    Integrating this equality by parts we obtain a similar formula containing a sine: 

    �
∞

0

y 
µ–1 

cos y dy  = [y 
µ–1 

sin y]
0

∞
 –  (µ  –  1) �

∞

0

y 
µ–2 

sin y dy  = 

(1–  µ) �
∞

0

y 
µ–2 

sin y dy 

so that 

    �
∞

0

y 
µ–2 

sin y dy  =   
µ

µ

-1

)(Γ
cos (µ%/2).                    

 

Substituting  µ  –  2  =  ,  –  1  we arrive at 

 

     �
∞

0

y 
,–1 

sin y dy =  
λ

λ

−

+Γ )1(
 cos[(,  +  1) %/2]  =  /(,) sin (, %/2).                   (xv) 

    We have replaced [/(,  +  1)/,]  by  /(,); in this case, however, since  µ  is  

contained within the boundaries  0  and  1,  ,  takes values between  – 1  and  0  whereas 



the substantiation of the formula (32) held only for positive values of  n  because this 

restriction follows from the definition of the gamma function that underlies the proof. So 

as to remove this difficulty we can prove the obtained formula also for negative values 

of  n  and we shall now have to use the definition of the gamma function included in 

formula (45). Noting that 

 

    lim [n/(n  +  ,)] n=$   =  1 

 

we may assume that 
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so that 

    /(,)  =  [
)11( ... 1)( 

)!1( 1

−+++

− +

n

nn

λλλ

λ

]n=$,  , /(,)  =  /(,  +  1)         

and 

      �
∞

0

y 
,–1 

sin y dy  =  /(,) sin (, %/2). 

    And so, formula (xv) is justified. We derived it for negative values of  ,  but it will      also hold for positive  ,’s  

because it can be obtained in the same way as the formula containing the cosine. We thus have the formulas 

    �
∞

0

x 
µ–1 

cos x dx  =  /(µ) cos (µ %/2),  0  <  µ  <  1                                            (46a) 

      �
∞

0

x 
µ–1 

sin x dx  =  /(µ) sin (µ %/2),  – 1  <  µ  <  1                                        (46b) 

    We are concluding here the section on the Euler integrals. 

 

1.4. Integrals of the Fourth Group 

 
    1.4.1. We are now going over to the integrals whose characteristic feature is that their limits are magnitudes having 

special significance for such angles as  0,  %/2,  %,  2%, etc.      We begin by considering the integral 

    �
−

π

π

e 
m * i 

e
–n * i 

d* 

and we shall prove that its value is either  0  or  2%  depending on whether  m  and  n          are different or equal to each 

other. In the first case we obtain by integration 
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    It is seen however that, when  m  and  n  are integers, and, in addition, different, the  integral vanishes. If  m  =  n,  the 

formula takes an indefinite form  0/0.  When        determining its real magnitude 
1
  in accord with the rules of differential 

calculus, we         shall have  2%.  The same result can also be gotten directly: in this case, the integral           will be 
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−

π

π

d*  =  2%. 

Thus 
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e
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nm
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=
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 if 2

 if  ,0

π
                                                                  (47) 

    A large number of mathematicians studied, and are studying, integrals of this kind.      Their importance for 

{mathematical} analysis is based on the fact that, through their    property consisting in {the existence of} equalities 

similar to (47), any function can be expanded into powers of one of the factors of the integrand. Thus, by means of 



equality    (47) we may expand  F (e 
i *

)  into powers of  e 
i *

.  Note that we may attain the same       goal by differential 

calculus and it would seem that this latter method is preferable       because no difficulties can be encountered there, but 

actually this is not so:        differentiation presents no trouble only when we determine derivatives of known orders 

expressed by numbers, and becomes as difficult as integration is as soon as we desire    to calculate the expression for the 

n-th derivative. 

    In addition, it is very often important to determine the term at which we should break     off, and this problem is 

reduced to finding out how the general term of the expansion    changes with the change of its number. In studies of this 

kind the terms expressed by  integrals, even when these cannot be calculated, provide unquestionable advantage      over 

expressions depending on derivatives of a known order. It is for this reason that          the integrals of the considered kind 

are important for analysis. 

    By applying the properties of these integrals it is evidently possible to solve converse problems as well: Given an 

expansion, to determine the value of the integral that       expresses its general term. Indeed, let us suppose that 

 

    F (e
* i

)  =  Ao e 
o * i

  +  A1 e 
* i

  +  A2 e 
2 * i

  +  …  +  An e 
n * i

  +  … 

 

Now, multiplying both sides of this equality by  e
–i n *

  and integrating within the             limits  – %  and  %  we have, by 

means of the formula (47),    
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so that 
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π2
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 F (e
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) e
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    We thus obtain a formula that enables us to derive both the general term of the     expansion, and the integrals given 

the expansion. The coefficient of the general term           can also be represented as 

 

    A n  =  F 
(n)

(0)/n!. 

 

Substitute now  F(x)  =  f (,x)  so that  F (e 
i *

)  =  f (, e 
i *

).  Then 

 

    F )(x)  =  dF(x)/dx  =  df (,x)/dx  =  ,f )(,x), 

    F1(x)  =  d 
2
F/dx

2
  =  , df )(,x)/dx  =  ,2 

f 1(,x), …,  F 
(n)

(x)  =  ,n
f 

(n)
(,x) 

 

and therefore 

 

    A n  = ,n
 f 

(n)
(0)/n!. 

 

    We thus arrive at the formula 

    �
−

π

π

f (, e* i
) e

–n * i 
d*  =  (2%/n!) f 

(n)
(0) ,n

.                                                          (48) 

We can somewhat generalize this formula by setting  f (z)  =  & (a  +  z)  so that                     f 
(n)

 (z)  =  & (n) (a  +  z).  We 

thus obtain    

    �
−

π

π

& (a  +  , e* i
) e

–n * i 
d*  =  (2%/n!) & (n)

(a) ,n
.                                                 (49) 

    Note 1. {A dated concept.} 

 

    1.4.2. Suppose now that  f (,x)  =  ln (1  –  ,x)  so that  

 

    f (,x)  =  – ,x  –  ,2
x

2
/2  –  ,3

x
3
/3  – …, 

    f (, e* i
)  =  – , e* i

  –  (,2
/2) e

2* i
  –  (,3

/3) e
3* i 

  – … 

 

or 

 

    f (, e* i
)  =  –  (,/1) (cos *  +  i sin *)  –  (,2

/2) (cos 2*  +  i sin 2*)  –  … 

 

    It is seen now that we ought to assume here that  ,  <  1.  Only under this condition        the series will always 

converge: the series of its coefficients,  – (,/1),  –  (,2
/2),                    –  (,3

/3), … will always converge only if  | , |  <  1  

because, for such values  of  ,,           the series  (,  +  ,2
  +  ,3

  +  …)  will represent an infinitely decreasing geometric 

progression.  



    And so, supposing that  ,  <  1  and applying formula (48), we find that 

    I  =  �
−

π

π

ln (1  –  , e* i
) d*  =  0 

Transforming this integral, we have 

    I  = �
−

0

π

ln (1  –  , e* i
) d*  + �

π

0

ln (1  –  , e* i
) d*  =  I1  +  I2. 

Suppose now that  *  =  – +,  then  

    I1  =  – �
−

0

π

ln (1  –  , e–+ i
) d+  = �

π

0

ln (1  –  , e–* i
) d*, 

    I  =  I2  + �
π

0

ln (1  –  , e–* i
) d*  = �

π

0

ln [(1  –  , e* i
) (1  –  , e–* i

)] d* 

and therefore, for  ,  <  1, 

    I  = �
π

0

ln [1  –  , (e* i
  +  e

–* i
)  +  ,2

] d*  = �
π

0

ln [1  –  2, cos *  +  ,2
] d*  =  0. 

    If  ,  =  1/R  where  R  >  1, we shall find that 

    �
π

0

ln [1  –  2R cos *  +  R
2
] d*  =  ln R

2 �
π

0

d*  =  % ln R
2
. 

We do not replace  ln R
2
  by  2ln R  because  R  can be negative so that the formula        would have provided an 

indefinite result whereas it should be quite definite. We thus       come to such an integral: 

    �
π

0

ln [22
  –  22 cos *  +  1] d*  =  0  if  2  <  1   and  =  % ln 22

  if  2  >  1          (50) 

which is usually attributed to Poisson. 

 

    1.4.3. Issuing from the integral (50) we can derive several remarkable integrals.         Setting  2  =  1  we shall find that 

    �
π

0

ln (2  –  2 cos *) d*  =  0. 

We may admit this as a limiting equality because each of the formulas (50) leads to it          at  2  =  1.  And so 

    �
π

0

ln (2sin */2)
2
 d*  =  0,    �

π

0

ln (2sin */2) d*  =  0 

so that 

    �
π

0

ln sin */2 d*  =  –    �
π

0

ln 2 d*  =  – % ln 2. 

Assuming here that  *  =  2+  we get 

    �
2 / 

0

π

ln sin + d+  =  – (%/2) ln 2.                                                                            (51) 

If  sin +  =  x  then  d+  =  dx / 
21 x− and 

    �
1

0
21

 ln

x

x

−
dx  =  –

2

2 ln π
.                                                                                (52) 

    Integrating the expression (51) by parts, we get 

 

    �
2 / 

0

π

ln sin + d+  =  [+ ln sin +]
0

/2π
– �

2 / 

0

π

(+/sin +) cos + d+  =  – �
2 / 

0

π

ψ

ψψ

 tg

 d
. 

     

Since 

 

    lim (+ ln sin +) +=0  =  0 

 

we have 



 

    �
2 / 

0

π

ψ

ψψ

 tg

 d
  =  

2

2 ln π
.                                                                                        (53) 

 

    1.4.4. We shall show now the application of the formula (49) to determining the upper boundaries of derivatives, but 

before that we shall say when this formula may be used without any danger of encountering contradictions. The 

derivation of this formula was    based on the possibility of expanding the function  F (e
* i

)  into powers of  e
* i

,  but it is 

known that not any function may be expanded into powers of its independent variable; in  other words, that the series 

obtained will not converge always. It is seen now that the convergence of the series 

 

   Ao  +  A1 e
* i

  +  A2 e
2* i

  +  … 

 

which, according to our supposition, expresses the function  F (e
* i

),  should be formulated   as the condition for the 

validity of formula (49). Since we replace  F  by an identical   function  f [, (e* i
)]  expanded into a series of the kind 

 

    Ao  +  A1  , e
*i

  +  A2 ,
2
 e

2*i
  +  …                                                                       (xvi)    

 

the convergence of this series is necessary for the possibility of the existence of the      formula (49). But (xvi) can be 

represented as a sum of two series arranged in the order         of cosines, and sines, of multiple arcs. It follows that (xvi) 

will always converge if only      the series of the numerical values of the coefficients  Ao,  A1 ,,  A2 ,
2
, … of its terms 

converges.  

    We may form an opinion about the convergence of this series only if  ,  <  1  because, under this condition, as it is not 

difficult to see, the series will always converge if only  A k  decreases, or at least remains finite with an increasing  k.  We 

thus see that the formula     (49) may be adopted only for such functions the coefficients of whose expansion into powers 

of the variable always remain finite for the values of  ,  <  1. 

    After these remarks we proceed to solve the issue now interesting us. We have, in general, 

 

    mod (k1  +  k2  +  …)  <  mod k1  +  mod k2  +  …  

 

Therefore, considering the integral as the limit of a sum, we find that 

 

    mod � - (u) du  < � mod - (u) du. 

 

    From formula (49) and from the one just obtained, since 

    mod 
!

  )( 2 )(

n

af
nn λπ

  =  mod �
−

π

π

f (a  +  , e* i
) e

–n* i
 d*,  

it follows however that the left side is less than 

    �
−

π

π

mod f (a  +  , e* i
) e

–n* i
 d*. 

But, since mod  e
–n * i

  =  1, 

 

    mod [f (a  +  , e * i
)  e

–n * i
]  =  mod f (a  +  , e * i

) mod e
–n * i

  =  mod f (a  +  , e * i
). 

 

    Let us assume that we have somehow determined the upper boundary  R  of the      modulus,  mod f (a  +  , e*i
): 

 

    mod f (a  +  , e*i
)  3  R.                                                                                      (xvii) 

 

 Then 

    mod 
!

  )( 2 )(

n

af
nn λπ

  <  �
−

π

π

R d*  =  2% R, 

hence 

 

    mod f 
(n)

(a) ,n
  <  R n!. 

 

    Supposing now that both the function  f 
(n)

(a)  and  ,n
  are real and stipulating that these expressions only denote the 

appropriate numerical values, we obtain the formula 

 



    f 
(n)

(a)   <  R n! / ,n
                                                                                                (54) 

 

where  R  is determined by the condition (xvii). To provide an example of applying formula (54) let us take  F (e
* i

)  =  

1/[k  –  e
i *

]  with  mod k  >  1.  Then the series 

 

    F (e
* i

)  =  (1/k)  +  (1/k
2
) e

* i
  +  (1/k

3
) e

2* i
  +  … 

 

will be convergent. Assuming that  a  =  0  we find that 

    f (a  +  , e* i
)  =  

i
ek

  

1
ϕλ−

 

 

where, in accord with the remark above, we ought to suppose that  ,  <  1. 

    In order to determine  R  we note that, in general, 

 

    mod (A  +  Bi)  = )( )( BiABiA −+  

 

so that  

    (mod 
i

ek
  

1
ϕλ−

)
2  

=  (
i

ek
  

1
ϕλ−

)
2
  =  

2  2 )( 

1

λλ ϕϕ ++− − ii eekk
. 

 

    It is seen now that the modulus will be maximal at  *  =  0  so that we should assume    that 

 

    R
2
  =  

22 2

1

λλ +− kk
 

 

and, since  k  >  ,,  R  =  1/(k  –  ,).  We thus obtained 

 

    
n

n

dx

xkd )]/(1[ −
x=0    <  

nk

n
  )(

!

λλ−
. 

   

    And so, we determined the upper boundary of the  n-th derivative of the function           1/(k  –  x)  at  x  =  0.  Note that 

it is advantageous to derive the least value of the          upper boundary which the studied magnitude cannot exceed; and 

since the inequality  obtained by us takes place for any values of  ,,  we ought to find such of its values that    will 

minimize the determined upper boundary. This problem reduces to the derivation          of the maximal value of the 

function 

 

    (k  –  ,) ,n
  =  k ,n

  –  ,n+1
. 

 

For calculating this value we have the equation 

 

    n k ,n–1
  =  – (n  +  1) ,n

  =  0  and  ,  =  n k/(n  +  1). 

     

    If the thus determined value of  ,  will be less than  1,  we might use it, and then 

 

    k ,n
  –  ,n+1

  =  
n

nn

n

kn

)1(

1

+

+

  –  
1

11

)1(

)1(
+

++

+

+
n

nn

n

kn
  =  

1

1

)1( +

+

+ n

nn

n

kn
. 

 

Therefore, if  k  <  [1  +  (1/n)], we shall have 

 

    
n

n

dx

xkd )]/(1[ −
x=0    <  

1

1)1(!
+

++
nn

n

kn

nn
. 

 

    The Fourier Formulas {§§1.4.5 – 1.4.12} 
 

    1.4.5. We are now going over to multiple integrals and to deriving the Fourier formula   that was previously considered 

very important; recently, however, it is ever more losing       its significance. This happens because we are unable, while 

deriving this formula, to     provide the conditions determining the functions for which it remains valid. 



    Let us take the integral 

    P$  = �
∞

∞−

�
∞

∞−

f (x) cos [y (x  –  ')]dx dy. 

Integrating with respect to  y,  we find that 

    �
∞

∞−

cos [y (x  –  ')] dy  =  
α

α

−

−

x

yx ] )sin[( }
∞−

∞
. 

It is seen now that the value of this integral is indefinite so that instead of the limits               – $  and  + $  we first 

assume  – A  and  A,  and only then, in the final result, we set             A  =  $.  Consequently, we have 

 

    �
−

A

A

cos [y (x  –  ')] dy  = 
α

α

−

−

x

xA )](sin[2
,  PA  = �

∞

∞−

f (x) 
α

α

−

−

x

xA )](sin[2
dx. 

   

    Substituting now    

                               

    A(x  –  ')  =  z                                                                                             (xviii) 

 

so that  dx  =  dz/A,  we find that 

    PA  =  2 �
∞

∞−

f ['  +  (z/A)] [(sin z)/z] dz. 

Assuming here  A  =  $,  we arrive at 

    P$  =  2 �
∞

∞−

 f (')   [(sin z)/z] dz  = 2 f (') �
∞

∞−

[(sin z)/z] dz 

and, on the strength of formula (5),  P$  =  2% f (').  We thus derive the famous Fourier formula 

    �
∞

∞−

�
∞

∞−

f (x) cos [y (x  –  ')]dx dy  =   2% f (').                                            (55) 

    The non-rigor of this derivation consists in that, having obtained the limits  – $               and  +  $  for  z  from formula 

(xviii) or from  x  =  '  +  z/A,  and knowing that these          are the limits for  x,  we {nevertheless} are not always able 

to formulate the inverse statement: Assuming that  A  =  $  in the final result for  z, we cannot go over to the        limits  – 

$  and  +  $  for  x.  It follows that we would be unable to go back, i.e., to          pass to the integral from the expression   

2% f ('), when deriving this formula. 

    It is seen now that in general the formula (55) will not be valid for any function  universally. Let for example  f (x)  =  

exp (– x
2
).  By  formula (55) we would have found   

    exp (– '2
)  =  

π2

1
�
∞

∞−

�
∞

∞−

 exp (– x
2
) cos [y (x  –  ')] dx dy. 

We shall integrate so as to check this result. We have 

    I  = �
∞

∞−

exp (– x
2
) cos [y (x  –  ')]dx = �

∞

∞−

cos (y ') exp (– x
2
) cos (y x)] dx  + 

    �
∞

∞−

sin (y ') exp (– x
2
) sin (y x) dx. 

The second integral vanishes because its integrand is an odd function; the integrand in         the first integral is even, so 

that in accord with formula (13) 

    I  =  2 cos (y ') �
∞

0

exp (– x
2
) cos (y x) dx  =  �� exp (– y

2
/4) cos (y '). 

Once more in virtue of this formula we have 

    �
∞

∞−

�
∞

∞−

exp (– x
2
) cos [y ( x  –  ')] dx dy  =   �� �

∞

∞−

exp (– y
2
/4) cos (y ') dy  = 

    2% exp (– '2
). 

 

    We thus arrived at the same result as when applying the Fourier formula. 

 

    1.4.6. We shall now modify formula (55). We have 



 

    cos *  =  e
* i

  –  i sin * 

 

so that  

    �
∞

∞−

�
∞

∞−

f (x) cos [y ( x  –  ')] dx dy  =  �
∞

∞−

�
∞

∞−

f (x) e 
i
 
y (x–')

 dx dy  – 

    i �
∞

∞−

�
∞

∞−

f (x) sin [y ( x  –  ')] dx dy. 

 

But the second integral contains an odd function with respect to  y  and therefore       vanishes. We have 

    �
∞

∞−

�
∞

∞−

f (x) cos [y ( x  –  ')] dx dy  = �
∞

∞−

�
∞

∞−

f (x) e 
y (x–') i

 dx dy. 

Consequently 

    f (')  =  
π2

1
 �

∞

∞−

�
∞

∞−

f (x) e 
y x i 

e 
–'

 
y  i 

dx dy, 

    f (')  = �
∞

∞−

* (y) 
 
e 

–'
 
y  i

 dy                                                                                (56) 

where 

    * (y)  =  
π2

1
�
∞

∞−

f (x) e 
y x i 

dx.   

     Equation (56) solves a particular case of determining a function satisfying the        equation 

    �
B

A

* (y) F (';  y) dy  =  f (').    

Such issues were studied among others by Abel. In general, it ought to be noted that their solution leads to very 

remarkable results. Until now {however} they were completely   solved only for the particular case in which  A  =  – $,  

B  =  $,  F (';  y)  =  e
–i '  y

.  

 

    1.4.7. We shall now modify the equation (56) and apply it, in its new form, in the     sequel. Assuming that 

 

    '  =  u i,  f (u i)  =  F (u), so that  f (u)  =  F (– u i), we find that 

 

    f (u i)  = �
∞

∞−

* (y) e 
u y

 dy  =  F (u),  * (y)  =  
π2

1
�
∞

∞−

F (– x i) e 
y x i 

dx. 

And so, we use the following equations:  

    F (u)  = �
∞

∞−

* (y) e 
u y

 dy,  * (y)  =  
π2

1
�
∞

∞−

F (– x i) e 
y x i 

dy.                               (57) 

    Issuing from them, we can derive formula (18). Indeed, on the strength of (15) we         have 

 

    �
∞

0

22

cos

xa

mx

+
dx  =

a2

π
e

–am
,  �

∞

0
2

    ixmixm
ee

−+
 

22
xa

dx

+
  =  

a2

π
e

–a m
.  

 

Setting in the second equality  x  =  z,  m  =  n y,  multiplying both its sides by  * (y) dy    and integrating with respect to  

y  from  –  $  to  +  $,  we obtain   

 

    �
∞

∞−

�
∞

∞−
2

    ixmixm
ee

−+
22

  )( 

xa

dxdyy

+

ϕ
  =  

a2

π
�
∞

∞−

e
–a n y

 * (y) dy, 

    �
∞

0

(1/2)[ �
∞

∞−

e
 n y z i

 * (y) dy  + �
∞

∞−

 e
 –n y z i

 * (y) dy]
22

za

dz

+
  =  



    
a2

π
�
∞

∞−

e
–a n y

 * (y) dy 

and, because of (57), 

    �
∞

0
2

)()( nziFnziF −+
22

za

dz

+
  =  

a2

π
 F (– an). 

Now we can proceed to the derivation of the celebrated Dirichlet formula concerning  multiple integrals. To this end, we 

note that, in general, 

    �
∞

0

.2–1
e

–' .
d.  = �

∞

0

(t/')
2–1

e
–t
 (d t/')  =  /(2) / 2 

' 

so that 

 

    �
∞

0

�
∞

0

… �
∞

0

x 
,–1

e
–' x.

 y 
µ–1

e
–' y.

 z 
.–1

e
–' z.

 … dx dy dz … = 

    �
∞

0

x 
,–1

e
–' x.

 dx �
∞

0

 y 
µ–1

e
–' y.

 dy …=  
...

)...()()(
+++

ΓΓΓ
νµλα

νµλ
. 

    Then, we have 

    �
∞

0

s 
,+µ+.+…–1 

e
–' s

 ds  =  
...

...)(
+++

+++Γ
νµλα

νµλ
   

and consequently 

    �
∞

0

�
∞

0

… �
∞

0

 x 
,–1 

y 
µ–1.

 z 
.–1

…e
–' (x+y+z+…)

 … dx dy dz … = 

    
...)(

)...()()(

+++Γ

ΓΓΓ

νµλ

νµλ
�
∞

0

s 
,+µ+.+…–1 

e
–' s

 ds. 

 

    Multiplying both sides of this equality by  * (') d'  and integrating with respect to  '  within the limits  – $  and  +  $,  

we obtain 

    �
∞

0

�
∞

0

… �
∞

0

x 
,–1 

y 
µ–1.

 z 
.–1

…[ �
∞

∞−

* (') e
–' (x+y+z+…)

 d�] dx dy dz … = 

    
...)(

)...()()(

+++Γ

ΓΓΓ

νµλ

νµλ
�
∞

0

s 
,+µ+.+…–1 

ds �
∞

∞−

* (') e
–' s

d'. 

 

    Consequently, on the strength of (57), we get  

    �
∞

0

�
∞

0

… �
∞

0

 x 
,–1 

y 
µ–1.

 z 
.–1

…F [– (x  +  y  +  z  +  …)] dx dy dz … = 

    
...)(

)...()()(

+++Γ

ΓΓΓ

νµλ

νµλ
�
∞

0

s 
,+µ+.+…–1 

F(– s) ds 

 

and, substituting  F (– t)  =  f (t),  we indeed arrive at the Dirichlet formula 

    �
∞

0

�
∞

0

… �
∞

0

 x 
,–1 

y 
µ–1.

 z 
.–1

…f (x  +  y  +  z  +  …) dx dy dz … = 

    
...)(

)...()()(

+++Γ

ΓΓΓ

νµλ

νµλ
�
∞

0

s 
,+µ+.+…–1 

f (s) ds.                                                             (58) 

 

    1.4.8. Formula (58) can be somewhat generalized by introducing new parameters whose particular values would have 

led to it. Suppose that  x  =  au,  y  =  bv,  z  =  cw, … and that a,  b,  c, … are positive so that the limits of integration 

persist. Noting that, consequently, a constant factor  a 
, 
b 

µ 
c 
.
…will be included in the left side of the equality and 

dividing both its sides by this factor, we obtain 



    �
∞

0

�
∞

0

… �
∞

0

u 
,–1 

v 
µ–1.

 w 
.–1

… f (au  +  bv  +  cw  +  …) du dv dw … = 

    
...)(...

)...()(

++Γ

ΓΓ

µλ

µλ
µλba �

∞

0

s 
,+µ+.+…–1 

f (s) ds. 

 

    Setting now  u  =  x 
m
,  v  =  y 

n
,  w  =  z 

p
, …  we arrive at 

    �
∞

0

�
∞

0

… �
∞

0

 x 
m,–m 

y 
nµ–n.

 z 
p.–p

…f (ax 
m
  +  by 

n
  +cz 

p
  + …)4 

    mx 
m–1

 dx ny 
n–1 

dy pz 
p–1

 dz …  = 

    m n p … �
∞

0

�
∞

0

… �
∞

0

x 
m,–1 

y 
nµ–1.

 z 
p.–1

… f (ax 
m
  +  by 

n
  +  cz 

p
  +  …) dx dy dz  = 

    
...)(...

)...()(

++Γ

ΓΓ

µλ

µλ
µλba �

∞

0

s 
,+µ+.+…–1 

f (s) ds. 

 

    Substituting finally  m,  =  ',  nµ  =  (,  p.  =  5, … and dividing both sides of the equality by  m n p …, we get 

    �
∞

0

�
∞

0

… �
∞

0

x 
'–1 

y 
(–1.

 z 
5–1

… f (ax 
m
  +  by 

n
  +  cz 

p
  +  …) dx dy dz…  = 

    
...)///(......

).../()/()/(
/// pnmcbamnp

pnm
pnm γβα

γβα
γβα ++Γ

ΓΓΓ
�
∞

0

s 
'/m+(/n+5/p+…–1 

f (s) ds.      (59) 

Here, the parameters  m,  n,  p, … are of course supposed to be positive; otherwise,  0  and  $  would not be the limits of 

the new integral. 

    Formula (58) can be derived as a particular case of (59) when substituting in the latter  a  =  b  =  c  …  =  1,  m  =  n  

=  p  =  1,  '  =  ,,  (  =  µ,  5  =  6, … 

 

    1.4.9. Suppose that  f (t)  is a function satisfying the conditions  

 

    f (t)  =  1,  t  �  L  and  =  0,  t  >  L. 

 

Then, assuming {also} the condition 
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where  L  is a given positive magnitude and applying formula (59), we reduce the determination of the integral 
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to the calculation of 
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since in this case 
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But the first of these integrals is 
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and, on the strength of formula (32), we find that 

                                                                                 



    Integral (xx) equals  
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This formula thus solves the problem of determining the integral (xx) extended over all the positive values of the 

variables  x,  y,  z, … connected by condition (xix). 

 

    1.4.10. Problems about the determination of areas and volumes as well as those touching on the attraction of bodies of 

a known form are easily solved by formula (60). For example, we shall calculate the area of an ellipse; the condition 

connecting the variables  x  and  y  will therefore be 

ax
2
  +  by

2
  3  1  where  a  =  1/A

2
,  b  =  1/B

2
  with  A  and  B  being  the semi-axes of the ellipse. In this case,  m  =  n  =  

2,  '  =  (  =  1  so that formula (60) provides 
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where the integral is extended over all the positive values of the variables  x  and  y  obeying the condition  ax
2
  +  by

2
  3  

L.  In our case,  L  =  1;  and  /(1/2)  =  #%,   /(2)  =  1  so that 

    � � dx dy  =  %/4 ab   =  (%/4) AB. 

As expected, we thus obtained the magnitude of a quarter of the area sought: the variables  x  and  y  are positive only for 

the quarter of the ellipse determined by the equation 

 

    x
2
/A

2
  +  y

2
/B

2
  =  1. 

 

    Let us also consider a triple integral that, for  '  =  (  =  5  =  1  and under the condition of the type 
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m
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represents some volume. Assume also that  m  =  n  =  p  =  2.  Then formula (60) provides    
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However,  

 

    /(5/2)  =  (3/2) /(3/2)  =  (3/2) (1/2) /(1/2)  =  3#%/4 

 

and 

        � � � dx dy dz  =  (%/6)
abc

L
2/3

. 

 

    Suppose now that the equation transformed to the normal form 
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2
  +  by

2
  +  cz

2
  =  L 

 

belongs to an ellipsoid. Consequently,  L  =  1,  a  =  1/A
2
,  b  =  1/B

2
,  c  =  1/C

2
  where  A,  B  and  C  are the ellipsoid’s 

semi-axes and 

 

    � � � dx dy dz  =  (%/6) ABC 

 

will be the expression for 1/8 of its volume. 

 

    1.4.11. We deduced the Fourier formula in the form (55). Now, we shall impart a more general form to it by choosing 

some magnitudes  L  and  M  (L  <  M) as the limits of integrating with respect to  x.  In order to accomplish this we 

might have acted in the following way. Since  f (x)  is an absolutely arbitrary function (restricted however by conditions 

indicated when deriving formula (55)) that can even be discontinuous, we may assume that 

 

    f (x)  =  0,  – $  <  x  <  L;  f (x)  =  * (x),  L  <  x  <  M;  f (x)  =  0,  



                                              

    M  <  x  <  + $. 

 

   Consequently, we have 

    f (')  =  (1/2%){0  + �
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* (x) cos [y (x  –  ')] dx dy  +  0}  = 

                 (1/2%) �
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* (x) cos [y (x  –  ')] dx dy. 

Here, for  '  included within  – $  an   L  or between  M  and  + $,  the function                     f (')  =  0  and the integral 

vanishes. If, however,  '  is within the boundaries  L  and  M  the integral equals  2% * (').   

    We shall now derive the same result by applying considerations similar to those used when deducing formula (55). To 

this end let us study the integral 
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f (x) cos [y (x  –  ')] dx dy. 

When integrating with respect to  y,  we find that 
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. 

Supposing now that  A (x  –  ')  =  z  and integrating with respect to  z (whose limits will be  A (L  –  ')  and  A (M  –  ')) 

we get 
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so that                                                                                                   
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   In order to calculate this integral we ought to consider separately two cases. If  '  is included between the boundaries  L  

and  M,  then, when  A  increases to  + $,  the lower limit of the integral will tend to  – $,  and the upper limit, to  + $, so 

that the double integral will be equal to  2% f ('). Otherwise, both limits of integration will approach  + $ (if                   L  

>  ')  or  – $  (if M  <  ')  and 
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f (x) cos [y (x  –  ')] dx dy  =  2 f (') �
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(sin z / z) dz  =  0  

or                                                                                                                                                                                                                                 
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f (x) cos [y (x  –  ')] dx dy  =  2 f (') �
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(sin z / z) dz  =  0. 

We thus arrive at the result that can be expressed in the following way 

 

(1/2%) �
∞

∞−

�
M

L

f (x) cos [y (x  –  ')] dx dy  =  0  if  '  <  L   

                                                                  or if  >  M;  =  f (')  otherwise.        (61) 

                                                                                                                                        

This is identical with what was obtained above in a different way. 

 

    1.4.12. In §1.4.11, while considering the case in which  '  was not included between the boundaries  L  and  M, we 

arrived at the integrals 

    �
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∞+

(sin z/z) dz,  �
−∞

∞−

(sin z/z) dz                                                                    (xxi) 

and, since in both cases the upper and the lower limits of integration were equal to each other, we concluded that the 

integrals vanished. Evidently, however, we do not always have the right to make such inferences. An integral taken 

between infinite limits of the same sign is, in general, an indefinite magnitude representing the area included between 

two ordinates infinitely distant from the origin.This area is obviously not always equal to zero and it can even be 

infinitely large. 



    For this reason we believe that it is not amiss to say now a few words about when such integrals really have indefinite 

values and when they ought to be considered equal to zero. We shall therefore examine, in general, the integral 

    �
T

S

f (x) dx                                                                                                 (xxii) 

and assume that  S  and  T  tend to infinity. It is not difficult to see that, if the integral  

    �
∞

0

f (x) dx                                                                                                (xxiii) 

has a finite and definite value  C,  then (xxii) will always be equal to  0  when  S  and  T  increase to infinity. Indeed, we 

have 

    lim �
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f (x) dx T = $  =  C,  lim �
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f (x) dx S = $  =  C 

so that 
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                          lim [ �
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f (x) dx ] T  =  �,  S = $  =  C  –  C  =  0.    (xxiv)                                           If, 

however, the value of the integral (xxiii) is infinitely large or indefinite, then the integral (xxiv), being represented by the 

difference of either two infinities or of two indefinite expressions, will also have an indefinite value. 

    Thus, we see that a necessary condition for the integral (xxiv) to vanish is the definiteness and finiteness of (xxiii). In 

§1.4.11 the latter is {indeed} finite and definite because  
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[(sin z) / z] dz  =  %/2 

and 
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∞
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{[(sin (– z)] /(–z)} d (– z)  =  – �
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0

[(sin z) / z] dz  =  – %/2 

so that we have the right to assume that the integrals (xxi) are both zero. 

    We are here concluding our course {in definite integrals}. 

 

Supplement 

 
    In §1.3.14 the gamma function was defined as 
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n = $.                                                                 (45) 

 

The correctness of this definition is obvious only for integer and positive values of  ,.  We shall now justify it for any 

positive values of  ,.  Consider the function 

 

    F (x;  n)  = 
)1)...(1(
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nxxx
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                                                                  (62) 

 

where  x  is arbitrary and  n  is an integral and positive number. We shall prove that                     F (x;  n)  has a limit at  n  

=  $  for any non-integer  x.  Obviously, 

 

    F (0;  n)  =  $;  lim F (7;  n) 7 = 0  =  + $,  lim F (– 7;  n) 7 = 0  =  – $, 

 

and  F (– x;  n)  =  ± $  for any integer and positive  x  not greater than  (n  –  1). To prove our proposition we shall apply 

the formula 
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where  (  >  0,  '  >  0,  '  >  (,  1  >  &  >  0.  This formula can be derived in the following way. 

    We have in general 

 

    * (a  +  h)  =  * (a)  +  h *)(a  +  & h) 

 

so that, if  * (x)  =  x
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, 
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  <  1  if  µ h  <  1. 

 

Dividing by  (1  –  µ h)  we have 
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Let now  h  =  1/('  +  m)  and  µ  =  '  –  (  where  '  >  (  >  0.  Then 
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    Supposing that, consecutively,  m  =  0,  1,  2, …,  (n  –  1)  and multiplying the obtained inequalities, we have 

 

    0  <  
)11)...(( 

1)-1)...(( 

−++

++

n

n

ααα

βββ
  <  

βα

α

α
−

�
�

�
�
�

�

+ n
 

{QED}. 

    We return now to the function  F (x;  n).  For  x  >  0  formulas (62) and (63) provide 
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And so, if  x  >  0,  F (x;  n)   is always less than  [(x  +  1)
x
/x]  and, since 
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with this ratio approaching its limit equal to  1,  then, for  x  >  0,  F (x;  n)  remains always positive and tends to a finite 

limit. 

    Suppose now that  x  =  – y  and  let  k  –  1  <  y  <  k.  If  k  –  y  =  ,  = 

k  +  x  then  1  >  ,  >  0  so that 
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    It is seen now that 
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so that  F (x;  n)  cannot be infinitely large; and because 
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Suppose that  x  >  0.  We shall prove that 

 

    F (x;  $)  =  /(x).                                                                                         (xxv) 

 

Taking the logarithm of both sides of (62) we have 

 

    ln F (x;  n)  =  ln (n  –  1)!  +  x ln n  – [ln x  +  ln (x  +  1)  +  …  +   

                         ln (x  +  n  –  1)] 

 

and consequently 
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    Formula (62) shows that  F (1;  n)  =  1  so that, integrating  the equation above with respect to  x  within the limits  1  

and  x,  we obtain 
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At  n  =  $  this formula becomes 
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hence (xxv). 

 

Collection of Formulas Occurring in This Course 

 

    {Chebyshev adduced a list of 50 integrals which I am omitting here.} 

 

Chapter 2. The Theory of Finite Differences 

 

2.1. Direct Calculus of {Finite} Differences 

 
    2.1.1. Let us take some function  f (x)  and assume that the independent variable  x  gets equal finite increments 8 x (as 

in the differential calculus,  x  is here supposed to vary uniformly). We denote the corresponding values of the function in 

the following way: 

 

    uo  =  f (x);  u1  =  f (x  +  8 x);  u2  =  f (x  +  28 x); …;  un  =  f (x  +  n 8 x). 

 

Its increments will correspondingly be 

 

    8 uo  =  u1  –  uo;  8 u1  =  u2  –  u1;  8 u2  =  u3  –  u2;  …; 8 un  =  un+1  –  un. 

 

We thus obtain the series of functions 

 

    8 uo;  8 u1;  8 u2;  …;  8 un                                                                                                                      (i)      

      

from  the series  uo;  u1;  u2;  …;  un;  un+1.   

    Considering (i) as the series of initial functions and calculating the differences between its adjacent terms (always 

subtracting the preceding term from the subsequent term) we get a series of new functions 
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2
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2
u2;  …;  82

un 

 

where, in general, 

 

    82
un  =  8 (8 un)  =  8 un+1  –  8 un.  

 

Reasoning further on in the same way, we shall each time obtain a new series of functions. The general form of these 

series is 

 

    8, uo;  8
, 
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, 
u2;  …;  8, un;     8

, +1 
uo;  8

, +1 
u1;  8

, +1 
u2;  …;  8, +1 

un   

 

where   

 

    8, +1 
un  =  8 (8, un)  =  8, un+1  –  8, un. 

 

It is not difficult to see now that 

 

    un+1  =  un  +  8 un;  8 un+1  =  8 un  +  82
 un;  …;  8, un+1  =  8, un  +  8,+1

 un. 

 

    We thus arrive at the following practical rule for calculating the differences of any order: When compiling a table, each 

of whose vertical columns includes all the functions corresponding to one and the same increment  8x  of the independent 



variable, and determining some function located at the intersection of a column and a line, it is necessary to choose the 

function of the same column situated directly above it and to add to it the directly following function of the horizontal 

line.  

 

    2.1.2. Let us now derive the general formulas that enable us to express the difference of any order in terms of the initial 

functions and, conversely, to express the initial functions through the differences of various orders. 

    We have  8 un  =  un+1  –  un  so that, replacing  n  by  (n  +  1),  8 un+1  = 

un+2  –  un+1.  Therefore                       

 

    82
 un  =  8 un+1  –  8 un  =  (un+2  –  un+1)  –  (un+1  –  un)  =  un+2  –  2un+1  +  un, 

    82
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so that  
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    By analogy we may conclude that, in general, 
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In order to justify this formula we shall prove that it holds for  (,  +  1)  if it is valid for  ,.  Replacing  n  by  (n  +  1)  in 

(1) we have 

 

    8,un+1  =  un+1+,  –  ,un+,  +  [, (,  –  1) / 2!] un+,–1  – 

                   [, (,  – 1) (,  –  2) / 3!] un+,–2  + …  +   (– 1)
µ+1

 
1+µ

λC  un+,–µ+1 

 

Therefore 

 

    8,+1
un  =  8,un+1  –  8,un  =  un+1+,  –  (,  +  1) un+,  +  [(,  +  1) ,/ 2!] un+,–1  – 

                 [(,  +  1) , (,  –  1) / 3!] un+,–2  +  … 

 

The general term will be 
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Thus, formula (1) is proved. 

    Let us now solve the inverse problem, that is, derive a formula enabling us to express the initial function through the 

differences of various orders corresponding to one and the same increment of the variable. We have the formulas {see 

§2.1.1} 

 

    8 un  =  un+1  –  un ,   8
2
un  =  8 un+1  –  8 un,  8

3
un  =  82

 un+1  –  82
 un, … 

 

so that 

 

    un+1  =  un  +  8un,  

    un+2  =  un+1  +  8un+1  =  (un  +  8un)  +  (8un  +  82
un)  =  un  +  28un  +   82

un, 

    un+3  =  un+1  +  28un+1  +  82
un+1  =  un  +  38un  +  382

un  +  83
un. 

 

    By analogy we suppose that 

 

    un+,  =  un  +  , 8un  +  [, (,  –  1)/2!] 82
un  + … +  

µ

λC  8µ
un.                      (ii)    

 

To substantiate this formula we shall consider  8 un+,  as an initial function. In accord with (ii) we have                      

 

    8 un+,  = 8 un  +  (,/1!)82
un  +  [, (,  –  1)/2!] 83

un  + … +  
µ

λC  8µ+1
un.  

 



Adding this formula to (ii) we obtain 
 
    un+,  +  8 un+,  =  un  +  8 un  +  , 8un  +  [, (,  –  1)/2!] 82

un  +  (,/1!) 82
un  + 

… +  [
1+µ

λC +  
µ

λC ] 8µ+1
un  +…,    

              

    un+,+1  =  un  +  (,  +  1) 8un  +  [ (,  +  1) ,/2!] 82
un  + …  +  

1

1

+

+

µ

λC  8µ+1
un  + … 

 

    We thus proved our formula. Assuming now that  n  =  0  we arrive at the Newton interpolation formula 

  

    u,  =  uo  +  (,/1!) 8 uo  +  [, (,  –  1)/2!] 82
uo  +  C,

383
uo  + …                         (2) 

 

    2.1.3. Suppose now that 

 

    uo  = f (a),  8x  =  h,  u,  =  f (a  +  ,h). 

 

Formula (2) will then become 

 

    f (a  +  ,h)  =  f (a)  +  (,/1!)8f (a)  +  [, (,  –  1)/2!] 82
f (a)  + … 

 

Substituting  ,h  =  x  we obtain for each  x  being a multiple of  h  

         

    f (a  +  x)  =  f (a)  +  (x/1!) [8f (a)/h]  +  [x (x  –  h)/2!] [82
f (a)/h

2
]  + …          (iii) 

 

    It is not difficult now to derive the Taylor series by assuming that  h  tends to zero so that, in the limit, 

 

    f (a  +  x)  =  f (a)  +  (x/1!) [df (a)/dx]  +  (x
2
 /2!) [d 

2
f (a)/dx

2
]  + …                 (iv) 

 

where, in general,  d 
k
f (a)/dx 

k
  denotes  the value of  d 

k
f (x)/dx 

k
  at  x  =  a. 

    Suppose that   

 

    F (x)  =  f (a)  +  (x/1!) [8f (a)/h]  +  [x (x  –  h)/2!] [82
f (a)/h

2
]  + …  + 

                
!

))...(( 

k

hkhxhxx +−−
 

k

k

h

af )(∆
, 

 

    - (x)  =  f (a)  +  (x/1!) [df (a)/dx]  +  (x
2
 /2!) [d 

2
f (a)/dx

2
]  + … + 

                 (x
k
 /k!) [d 

k
f (a)/dx 

k
] 

 

so that in general 

 

    f (a  +  x)  –  - (x)  =  A) x 
k+1

 +  B) x 
k+2

  +  C) x 
k+3

  + … 

 

    Assume now that  y  =  f (a  +  x)  is the equation of the curve  MN  and consider also curves  MN�  and  PABCDQ  

with equations  y  =  - (x)  and    

 

    y  =  F (x)                                                                                                         (v) 

 

(Figures 1 and 2). The curve  MN)  has a common point with the curve  MN  at  x  =  0  where the curves have an 

osculation with contact of the k-th order so that in its vicinity they generally very little differ from each other. And, if the 

expansion of the function                    f (a  +  x)  into powers of  x  is a convergent series, then, with a sufficiently large  k,  

the curve  MN  may be replaced by the curve  MN�  which is what we are doing every time when we calculate the values 

of a function by expanding it into a Taylor series and neglecting the terms of the series beginning with some  (k  +  1)-th 

order. 

    When interpolating, we replace a given function in exactly the same way by another one, – by a simpler one, – and the 

geometric sense of this substitution is that we replace a given curve  MN  by a “parabolic” curve  PQ  having equation 

(v). It is not difficult to see that this curve has  (k  +  1)  points in common with the curve  MN,  and, namely, points  A,  

B,  C,  D, … with abscissas  0,  0a  =  h,  0b  =  2h, …, 

(k  –  1) h,  kh. 

    If a sufficiently small magnitude is chosen as  h,  the curve  PQ  will in general very little differ from the curve  MN,  

and it is this fact that underlies the calculation of the values of the function  f (a  +  x)  corresponding to the intermediate 



values of  x  between  0  and              (k  –  1)h.  The calculation is replaced by the determination of the values of the 

function       F (x)  corresponding to the same values of  x. 

    It is seen now that interpolation has much in common with the calculation of the values of a function by expanding {it} 

into a series in powers of the variable. The difference consists in that in one case the given curve is replaced by another 

one that intersects it a known number of times at points whose abscissas increase in an arithmetic progression, whereas in 

the second instance the given curve is substituted by a curve having with it an osculation with contact of a certain order, 

but, in general, withdrawing from it afterwards.  

                 

    2.1.4. In §2.1.2 we derived the Newton interpolation formula. We shall now derive another formula, and, to this end, 

we shall solve the following problem: To find the simplest polynomial, that, at various given values of the variable  x,  

takes values identical to the known values of an {otherwise} unknown function  f (x). 

    We shall suppose that the given values of  x  are 

 

    x1,  x2, …,  xn-1,  xn                                                                                                                                       (vi) 

 

and that  f (x1),  f (x2), …,  f (xn-1),  f (xn)  are the known values of the function  f (x)  whose form might be unknown. 

Since the sought polynomial ought to take  n  different values at  n  values of the variable, it should in general have at 

least  n  coefficients so that its form will be 

 

    - (x)  =  An  +  An–1 x  +  …  +A1 x 
n–1

. 

 

    To determine these n coefficients it would suffice to substitute consecutively, in this equation, the values (vi) instead 

of  x  and to replace  - (x1),  - (x2), … by  f (x1),                 f (x2), … This would have provided  n  equations necessary, 

and, in general, sufficient for determining the coefficients sought. However, we can also write out the unknown 

polynomial at once. It is not at all difficult to see that the polynomial 

 

    - (x)  = 
))...()((

))...()((

13121

32

n

n

xxxxxx

xxxxxx

−−−

−−−
 f (x1)  +  

                 
))...(( )(

))...(( )(

23212

31

n

n

xxxxxx

xxxxxx

−−−

−−−
 f (x2)  +  …  + 

                
))...()((

))...()((

121

121

−

−

−−−

−−−

nnnn

n

xxxxxx

xxxxxx
 f (xn)                                                      (3) 

 

satisfies the formulated conditions and it only remains to show that it really is the simplest polynomial of the (n  –  1)-th 

degree {from among those} satisfying them. 

    Indeed, when assuming that  + (x)  is the simplest polynomial of the same degree satisfying the demanded conditions, 

the difference  - (x)  –  + (x)   will represent a polynomial of a degree not higher than  (n  –  1).
1
  It vanishes at  n  values 

of  x  which is only possible if  + (x)  is identically equal to  - (x).  Thus,  - (x)  is the polynomial sought. 

    Equation (3) is called the Lagrange formula of interpolation. For example, let                   x1  =  0,  x2  =  1,  x3  =  2  and  

f (x1)  =  0,  f (x2)  =  1,  f (x3)  =  8.  In accord with the Lagrange formula we obtain 

 

    - (x)  =  
)20)(10(

)2)(1(

−−

−− xx
40  +  

)21)(01(

)2)(0(

−−

−− xx
41  +  

)12)(02(

)1)(0(

−−

−− xx
48  =  

                 3x
2
  –  2x.  

 

    In order to solve the same problem by the Newton formula, we note that in this case         uo  =  1,  u1  =  1,  u2  =  8;  8 

uo  =  1,  8 u1  =  7,  8 u2  =  6, 

 

    - (x)  =  uo  +  (x/1!) 8 uo,  +  [x (x  –  1) / 2!] 82
 uo  =  0  +  1x  +   

                 6[x (x  –  2) / 2!]  =  3x
2
  –  2x. 

 

    Note 1. Because this difference can only be of a degree higher than (n – 1)  if  + (x)  is {also} of a degree higher than  

(n  –  1),  but then  + (x)  would not have been the simplest polynomial.   

 

    2.1.5. There also exists a method of interpolation based on replacing the unknown function  f (x)  by a linear function  

(A  +  Bx)  most suitable to it. Suppose that we know the values of this function,        f (x1),  f (x2), …, f (xn),  

corresponding to the given values of the variable  x.  We take the function 

 

    u  =  [f (x1)  –  A  –  Bx1]
2
  +  [f (x2)  –  A  –  Bx2]

2
  +  …  +   



            [f (xn)  –  A  –  Bxn]
2
 

 

of two variables,  A  and  B,  and determine these latter according to the rules of the differential calculus by issuing from 

the condition that this function is minimal. The values of  A  and  B  thus obtained will indeed make the function  (A  +  

Bx)  the most suitable to  f (x), at least within the boundaries of the minimal and the maximal values of  x1,  x2, …,  xn. 

 

    2.1.6. We are now going over to the determination of the finite differences of the simplest functions. This section 

corresponds to that on the differentials of the simplest functions in the differential calculus.  

    a) One of these functions there was  x 
m
,  but in the theory of finite differences it will not be simplest because its 

difference is represented by a series. So as to find out what function will here correspond to  x 
m
,  we compare the 

Newton formula (iii) with the Taylor series (iv). It is seen that the function  

 

    x (x  –  h) (x  –  2h) … [x  –  (m  –  1)h] 

 

corresponds to  x 
m
.  We shall now show that its difference has indeed a very simple form similar to the differential of  x 

m
.  We have  

 

    8 { x (x  –  h) (x  –  2h) … [x  –  (m  –  1)h]}  =  (x  +  h) x (x  –  h) …4 
    [x  –  (m  –  2)h]  –  x (x  –  h) … [x  –  (m  –  1)h]  = 

    x (x  –  h) … [x  –  (m  –  2h)](x  +  h  –  x  +  mh  –  h). 

 

    And so 

 

    8 { x (x  –  h) (x  –  2h) … [x  –  (m  –  1)h]}  =                                                                                                               
    m h x (x  –  h) (x  –  2h) … [x  –  (m  –  2h)].                                                     (4) 

 

    This formula is similar to the formula  dx 
m 

 =  mdx�x 
m–1

 of the differential calculus. From (4) we find that 

 

    82
 {x (x  –  h) … [x  –  (m  –  1)h]}  =                                                                   

    m (m  –  1) h
2
x (x  –  h) … [x  –  (m  –  3h)], 

    83
 {x (x  –  h) … [x  –  (m  –  2)h]}  = 

    m (m  –  1) (m  –  2) h
3
x (x  –  h) … [x  –  (m  –  4h)],   …, 

 

    8m–1
 {x (x  –  h) … [x  –  (m  –  1)h]}  =  m! h

m–1
x, 

    8m
 {x (x  –  h) … [x  –  (m  –  1)h]}  =  m! h 

m
. 

 

    The next differences corresponding to a constant will identically be equal to zero. It is not difficult to derive on this 

basis the Newton formula. To this end let us assume the following expansion: 

 

    f (a  +  x)  =  Ao  +  A1 x  +  A2 x (x  –  h)  +  A3 x (x  –  h) (x  –  2h)  +  … 

 

Supposing that here  x  =  0  we have  Ao  =  f (a)  and, in addition,  

 

    8f (a  +  x)  =  A1h  + 2A2  hx  + 3A3 h x (x  –  h)  +  …, 

    82
f (a  +  x)  = 192A2  h

2
  +293A3 h

2
 x  +  …,  83

f (a  +  x)  =  3! A3 h
3
  +  … 

 

    Assuming that in these equalities  x  =  0  we obtain 

 

    A1  =  8 f (a) / h,  A2  =  82
 f (a) /(2! h

2
),  A3  =  83

 f (a) /(3! h
3
), … 

 

hence the Newton formula (iii). 

    In the theory of finite differences, the function 

    
))...(2( )( 

1

nhxhxhxx +++
, 

     

whose difference is 

 

    
))...(2( )(

1

nhxhxhx +++
  –  

])1()...[2( )( 

1

hnxhxhxx −+++
  = 



    
))...(2( )( nhxhxhxx

nhxx

+++

−−
  =  – nh  

))...(( 

1

nhxhxx ++
,                           (5) 

 

corresponds to 1/x 
n
.  This formula is similar to the formula  d (1/x 

n
)  =  – n dx/x 

n+1
. 

    Let us determine now the difference of a fraction in terms of the differences of its numerator and denominator: 

    8 (un /vn)  =  un+1/vn+1 – un/vn  = 
1

)()(

+

∆+−∆+

nn

nnnnnn

vv

uvvvuu
  = 

                    
1

 

+

∆−∆

nn

nnnn

vv

vuuv
.                                                                             (6) 

 

This formula which is similar to  d (u/v)  =  (vdu  –  udv)/v
2
  is far less important in the practical sense than the latter. 

    b)The function  a 
x
. We have 

 

    8 a 
x
  =  a 

x+h
 – a 

x
  =  a 

x
 (a 

h
  –  1)  =  a 

x
 h (a 

h
  –  1)/h.                                   (7) 

 

    In order to go over from (7) to the {corresponding} formula of the differential calculus it only suffices to assume here 

that  h  tends to zero; noting also that 

 

    lim [(a 
h
  –  1)/h] h=0  =  ln a  

 

we indeed have  d a
x
  =  a

x
 ln a dx. 

    From (7) we obtain  

 

    82
 a 

x
  =  (a 

h
  –  1) 8 a 

x 
 =  a 

x
 (a 

h
  –  1)

2
 

 

and in general 

 

      8m
 a 

x
  =  a 

x
 (a 

h
  –  1) 

m
.                                                                                (8) 

 

    c) The function sin x: 

 

    8 sin x  =  sin (x  +  h)  –  sin x  =  2cos [x  +  (h/2)] sin (h/2).                            (9) 

 

Noting that 

    8 sin x  =  cos [x  +  (h/2)] 
2/

2/ sin

h

h
h 

 

and assuming that  h  tends to zero, we have  d sin x  =  cos x dx. 

   d) Let us now consider the function  cos x: 

 

    8 cos x  =  cos (x  +  h)  –  cos x  =  – 2sin [(x  +  h)/2] sin (h/2). 

 

Thus,   

 

    8 cos x  =  – sin [(x  +  h)/2] 2 sin (h/2).                                                         (10) 

 

    On the basis of formulas (9) and (10) we find that 

     

    82
 sin x  = 8 cos [(x  +  h)/2] 2 sin (h/2)  =   – sin (x  +  h) [2sin (h/2)]

2
, 

    83
 sin x  = – 8sin (x  +  h) [2sin (h/2)]

2
  =    – cos [x  + (3h/2)] [2sin (h/2)]

3
, … 

 

and in general 

 

    8n
 sin x  =  sin{x  +  [n(%  +  h)/2]} [2sin (h/2)]

n
,                                              (11) 

    8n
 cos x  = – cos{x  +  [n(%  +  h)/2]} [2sin (h/2)]

n
.                                          (12) 

 

    In conclusion, we shall derive the difference of the product of two functions: 

 

    8(un vn)  =  un+1 vn+1  –  un vn  =  (un  +  8 un) vn+1 – un vn  = 



                      un 8 vn  +  vn+1 8 un.                                                                     (13) 

 

Like formula (6), this one is not really important. 

 

    2.1.7. We go over to consider a new section, the derivation of the dependences {connections} between finite 

differences and differentials. Supposing that  u  = f (x), we have 

 

    8 u  =  f (x  +  h)  –  f (x)  =  (h/1!) f )(x)  +  (h
2
/2!) f 1 (x)  + …  = 

              (h/1!) du/dx  +  (h
2
/2!) d

2
u/dx

2
  + … 

 

Thus, 

     

    8 u  =  (h/1!) du/dx  +  (h
2
/2!) d 

2
u/dx

2
  + …,                                                     (14) 

    82
u  =  (h/1!) 8 (du/dx)  +  (h

2
/2!) 8 (d 

2
u/dx

2
)+ … 

 

    Replacing  u  consecutively  by  du/dx,  d
2
u/dx

2  
etc in formula (14) we obtain 

   

    8 (du/dx)  =  (h/1!) d 
2
u/dx

2
  +  (h

2
/2!) d 

3
u/dx

3
  + …, 

    8 (d 
2
u/dx

2
)  =  (h/1!) d 

3
u/dx

3
  +  (h

2
/2!) d 

4
u/dx 

4
  + …,  

    8 (d 
3
u/dx

3
)  =  (h/1!) d 

4
u/dx

4
  +  … 

 

so that 

 

    82
u  =  (h/1!) [(h/1!) d 

2
u/dx 

2
  +  (h

2
/2!) d 

3
u/dx

3
  + …]  +           

               (h
2
/2!) [(h/1!) d 

3
u/dx

3
  +  (h

2
/2!) d 

4
u/dx 

4
  + …]  +    

               (h
3
/3!) [(h/1!) d 

4
u/dx

4
  +  …] +  …  = 

                h
2 
d 

2
u/dx

2
  +  h

3 
d 

3
u/dx

3
  +  (7/12) h

4 
d 

4
u/dx

4
  + …  = 

                A d 
2
u/dx

2
  +  B

 
d 

3
u/dx

3
  +  C

 
d 

4
u/dx

4
  + … 

 

    It is seen now that in general 

 

    8,u  =  A1du/dx  +  A2 d 
2
u/dx

2
  +  …  +  A,–1

 
d 
, – 1

u/dx 
,–1

+  A,
 
d 
,
u/dx 

,
  + … 

 

where  A1,  A2, … are magnitudes not dependent on the form of the function  f (x)  =  u.  Using this fact, we can easily 

determine these coefficients. Since  8,u  is here represented by a linear and homogeneous function of  u  and its 

derivatives, it only suffices to choose  f (x)  in such a way that both its finite differences and derivatives were of the 

simplest form; and we saw that  a 
x 
 was such a function. And so, suppose that  u  =  a 

x
, then 

 

    8,u  =    a 
x
 (a 

h
  –  1)

,
,  d 

m
u/dx

m
  =  a 

x
 (ln a)

m
. 

 

Consequently, we find that 

 

    a 
x
 (a 

h
  –  1)

,
  =  A1 a 

x
 ln a  +  A2 a 

x
 (ln a)

2
  +  A3 a 

x
 (ln a)

3
  +  … 

 

or 

 

     (a 
h
  –  1)

,
  =  A1 ln a  +  A2 (ln a)

2
  +  A3 (ln a)

3
  +  … 

 

Assuming here  ln a  =  s  and noting that 

 

    e 
hs

  =  1  +  (hs/1!)  +  (h
2
s

2
/2!)  + … 

 

we obtain the following equality 

 

    [(hs/1!)  +  (h
2
s

2
/2!)  + …]

,
  =  A1 s  +  A2 s

2
  +  …  +  A, s 

,
  +  … 

 

from which we shall indeed determine the coefficients A1,  A2, …by making use of its being an identity. Thus, it is not 

difficult to see that 

 

    A1  =  A2  =  …  A,–1   =  0   

 

so that 



 

    8,u  =  A,
 
d 
, 
u/dx 

,
+  A,+1

 
d 
,+1

u/dx 
,+1

  + … 

 

and 

 

    [(hs/1!)  +  (h
2
s

2
/2!)  + …]

,
  =  A, s 

,
  +  A,+1   s 

,+1 
  + …                                  (15) 

 

    It is not difficult to conclude now that if  u  is an integral function of a power not higher than  (, –  1),  all of its 

derivatives beginning with those of the  ,-th order, and all of its differences beginning with those of the same order, are 

identically equal to zero. 

    We are now going over to the solution of the inverse problem: To express the derivatives of any order through the 

differences. Suppose that we found that 

 

    8 u  =  C1 du/dx  +  C2 d 
2
u/dx 

2
  + …,   

    82
 u  =  D2 d 

2
u/dx 

2
  +  D3 d 

3
u/d 

3
x  +   ,   

    83
 u  =  E3 d 

3
u/dx 

3
  +  E4 d 

4
u/d 

4
x  +   , … 

 

then 

 

    du/dx  =  (1/C1) 8 u  –  (C2/C1) (d 
2
u/dx 

2
)  –  (C3/C1) (d 

3
u/dx 

3
)  –  …, 

    d 
2
u/dx 

2
  =  (1/D2) 8

2
 u  –  (D3/D2) (d 

3
u/dx 

3
)  –  (D4/D2) (d 

4
u/dx 

4
)  –  …, 

    d 
3
u/dx 

3
  =  (1/E3) 8

3
 u  –  (E4/E3) (d 

4
u/dx 

4
)  – … 

 

It is seen now that in general 

 

    d 
µ
u/dx 

µ
  =  Nµ 8µ

 u  +  Nµ+1 8
µ+1

 u  +  …                                                       (16) 

 

    In order to determine the coefficients of this series we assume that  u  =  a
x
  so that 

 

    (ln a)
µ
  =  =  Nµ (a 

h
  –  1)

µ
  +  Nµ+1 (a 

h
  –  1)

µ+1
  +  … 

 

Substituting here   (a 
h
  –  1)  =  s  and noting that 

 

    ln (1  +  s)  =  (s/1)  –  (s
2
/2)  +  (s

3
/3)  – … 

 

we ought to have such an identity: 

 

    (8/h
µ
) [(s/1)  –  (s

2
/2)  +  (s

3
/3)  – …]

µ
  =    

    Nµ s
 µ

  +  Nµ+1 s
 µ+1

  +  … 

 

from which we shall indeed determine the coefficients  N.  Thus we have (16) and 
1
  

 

    

µ

�
�

�
�
�

� +

h

s)1ln(
 =  Nµ s 

µ
  +  Nµ+1 s 

µ+1
  +  Nµ+2 s 

µ+2
  +  …                                   (17) 

 

    Supposing that  µ  =  1  we obtain 

 

    (s/1h)  –  (s
2
/2h)  +  (s

3
/3h)  – … =  N1 s   +  N2 s 

2
  +  N3 s 

3
  + … 

 

so that 

 

    N1  =  1/h,  N2  =  – [1/(2h)],  N3  =  1/(3h), …    

 

and 

 

    du/dx  =  8 u / h  –  82
u / 2h  +  83 

u/ 3h  – …                                                 (18) 

 

    Formulas (16) and (17) can be represented symbolically and they will {then} be easier to memorize. Considering  u  in 

(16) as a factor and  8  as some magnitude, we may write them in the following way:     

 

    d 
µ
u/dx 

µ
  =  (Nµ 8 

µ
  +  Nµ+1 8 

µ+1
  +  Nµ+2 8 

µ+2
  +  …) u, 



    

µ

�
�

�
�
�

� ∆+

h

)1ln(
=  Nµ 8 

µ
  +  Nµ+1 8 

µ+1
  +  Nµ+2 8 

µ+2
  +  … 

so that 

    d 
µ
u/dx 

µ
  =  

µ

�
�

�
�
�

� ∆+

h

)1ln(
u.                                                                           (19) 

    Another symbolic formula replacing (15) can be deduced symbolically from (19). To this end we shall consider there  

u  as a factor,  µ  as a power and  d/dx  as a magnitude, so that we obtain 

 

    d/dx  =  ln (1  +  8)/h,                                                                                     (vii) 

 

hence  8  =  (e 
h d/dx

  –  1)  and 

 

    8 
, 
u  =   (e 

h d/dx
  –  1) 

,
 u.                                                                               (20) 

 

    In order to provide one more example of the “symbolic” method of deriving symbolic formulas, we shall obtain, 

issuing from (20), a formula showing the dependence between the difference of any order corresponding to a given 

increment of the independent variable, and the differences corresponding to another increment. Let 

 

    8 u  =  f (x  +  h)  –  f (x)  and  81 u  =  f (x  +  H)  –  f (x). 

 

From (19) we had, symbolically, (vii). In the same way, from 

 

    81
, 
u  =   (e 

H d/dx
  –  1) 

,
 u 

 

we obtain  d/dx  =  ln (1  +  81)/H  so that 

 

    (1  +  8)
1/h

  =  (1  +  81)
1/H

, 

 

hence  81  =  (1  +  8)
H/h

  –  1  and 

 

    81
, 
u  =  [(1  +  8)

H/h
  –  1]

,
 u.                                                                         (21) 

 

    Thus, for example, setting  ,  =  2,  h  =  1,  H  =  2,  we shall find that 

 

    81
2 
u  =  [(1  +  8)

2
  –  1]

2
 u  =    84 

u  +  4 83 
u  + 4 82 

u.                               (22) 

 

Suppose that we have the following table (Table 1) for the increment  h  =  1.  Then, for the increment  H  =  2  we obtain 

Table 2, and from the equation (22) it follows that 

 

    81
2 
u  = 0  +  4.6  +  4.12  =  72, 

 

a result coinciding with that provided by Table 2. 

       

                                 Table 1                                        Table 2 

    u     8 u     82
 u     83

 u     84
 u                    u     81 u     81

2
 u     81

3
 u     81

4
 u             

    1       7      12          6          0                       1       26         72        48         0 

    8     19      18          6                                 27       98       120        48   

  27     37      24                                           125     218        168  

  64     61                                                     343     386 

125                                                              729 

 

Formula (21) transforms into (19) if  H  becomes infinitesimal: 

 

    

0

1

=

�
�
�

�
��
�

� ∆

H
H

u
λ

λ

 =  

λ

��
�

�
��
�

� −∆+

H

hH 1)1( /

u  =  

0

/

1

)1)(1ln()/1(

=

�
�

�

�

�
�

�

�
	



�
�



� ∆+∆+

H

hHh
λ

= 

                           

λ

�
�

�
�
�

� ∆+

h

)1ln(
u, 



but     

    lim 

0

1

=

�
�
�

�
��
�

� ∆

H
H

u
λ

λ

  =  lim [(8,u / (8 x) 
,
] =  d 

,
u/dx 

, 

   

so that we find 

 

    d 
,
u/dx 

,  
=   

λ

�
�

�
�
�

� ∆+

h

)1ln(
u  =  

λ

�
�

�
�
�

� ∆+

H

)1ln( 1 u. 

 

    Note 1. {The left side of the identity above is apparently written wrongly. Moreover, Chebyshev wrote out here the 

equality (16) for the second time without indicating that it was already provided somewhat above, and it is this equality 

that is really needed.} 

 

2.2. The Inverse Calculus of Finite Differences 

 

    2.2.1. We are going over to a section of the theory of finite differences similar to the integral calculus in the doctrine of 

infinitesimals; indeed, we shall now determine the function given its differences. 

    Suppose that  8 ux  =  vx  where the subscripts show the value of the variable to which the value of the function is 

corresponding; or, in a simpler way,  8 u  =  v.  We shall show that all the functions satisfying this equation can differ 

only by a constant for those intervals at whose ends {for those values of  x  for which} the values of the function are 

taken. Indeed; suppose that some function  w  {also} satisfies this equation, then  8 w  =  v  and  8 u  –  8 w  =  8 (u  –  

w)  =  0.  But the difference of a function can equal zero only when it takes one and the same value for all the values of 

the independent variable following each other after equal intervals which we assume as the constant increment  h  =  8 x  

of the variable. In other words, we may then regard the function as a constant; this follows from the fact that the values of 

a function corresponding to the intermediate values of the variable are not at all considered in the theory of finite 

differences. 

    We thus have  u  –  w =  C  where  C  should not be considered as an “absolutely” constant magnitude; because of the 

said just above, it can depend on such a function that takes one and the same value at the values of  x  differing one from 

another by a constant  h  =  8 x.  Thus, if  h  =  1,  C  can equal  sin (2% x),  cos (2% x),  etc., because, in general,  sin (2% 
xo)  =  sin [2% (xo  +  n)]  where xo  is the initial value of the variable and  n  is an integer. However, we do not need 

intermediate values and we shall consider  C  as a constant. 

    It is not difficult to show now that the function 

 

    wx  =  vm  +  vm+1  +  vm+2  +  …  +  vx–1   

 

satisfies our equation. Indeed, 

 

    8wx  =  vm  +  vm+1  +  vm+2  + … +  vx–1  +  vx  –  (vm  +  vm+1 … +  vx - 1)  =  vx. 

 

    We shall denote the sum 

 

    vm  +  vm+1  +  vm+2  +  …  +  vx–1  =�
x

m

v. 

Therefore, if  8 u  =  v,  u  =  �
x

m

v  +  C. 

    If  x  =  m, noticing that�
m

m

v  =  0,  we find that  um  =  C  and 

    �
x

m

v  =  ux  –  um.  

It is not difficult to see that 

    �
x

m

(v ±  w)  =�
x

m

v  ±�
x

m

w  

and 

    �
x

m

Av =  A �
x

m

v 

where  A  is a constant magnitude. 



  

    2.2.2. We shall now try to determine the sums of some simplest functions assuming that    h  =  1. 

    a) First, let 

 

    u  =  x (x  –  1) (x  –  2) … (x  –  l  +  1), 

 

then  

 

    8 u  =  l x (x  –  1) (x  –  2) … (x  –  l  +  2) 

 

and 

   8 (u/l)  = 
l

lxxxx )1)...(2( )1(  +−−−∆
 =  x (x  –  1) (x  –  2) … (x  –  l  +  2). 

    Denote now  l  –  1  =  n  so that 

 

    
1

))...(2( )1(  

+

−−−∆

n

nxxxx
  =  x (x  –  1) (x  –  2) … (x  –  n  +  1) 

and 

 

    � x (x  –  1) … (x – n  +  1)  =  
1

))...(2( )1( 

+

−−−

n

nxxxx
  +  C 

 

because in general� 8 u  =  u  +  C. 

    Consequently, we also have 

    �
x

m

x (x  –  1)…(x  –  n  +  1)  =  
1

))...(1( ))...(1( 

+

−−−−−

n

nmmmnxxx
.    (23) 

Assuming here  m  =  0  we obtain 

    �
x

0

 x (x  –  1)…(x  –  n  +  1)  =   
1

))...(2( )1( 

+

−−−

n

nxxxx
.                       (24) 

 

    These formulas are similar to the following formulas of the integral calculus: 

    � x 
n
 dx  =  

1

1

+

+

n

x
n

  +  C,  �
x

0

x
n
 dx  =  

1

1

+

+

n

x
n

. 

    b) The sums of the type 

 

    � x 
m
                                                                                                        (viii) 

are expressed by very involved formulas and are therefore usually determined by reducing the calculation to the 

computation of 

 

    � x 
m–1

. 

 

Before going on to these calculations we shall show now another method of computation similar to the approximate 

integration, but instead of the Taylor series applied in the integral calculus we shall, however, use the Newton 

interpolation formula, cf. (2), 

 

    u  =  uo  +  (x/1!) 8 u  +  [x (x  –  1) /2!] 82
 u  + 

            [x (x  –  1) (x  –  2) /3!] 83
 u  + … 

 

    As an illustration, we shall thus find the sum 

    �
x

0

x
3
. 

We shall have Table 3 so that uo  =  0,  8 uo  =  1,  82
 u  =  6,  83

 u =  6,     84
 u =  

…  =  0  and 

 

    x
3
  =  x  +  3x (x  –  1)  +  x (x  –  1) (x  –  2).  



 

                       Table 3       

      x        u       8 u       82
 u       83

 u       84
 u 

      0        0         1           6            6           0 

      1        1         7          12           6 

      2        8       19          18 

      3       27      37 

      4       64           

 

    Consequently, 

    �
x

0

x
3
  =  �

x

0

x  +  3�
x

0

x (x  –  1)  +�
x

0

x (x  –  1) (x  –  2). 

But 

    �
x

0

x  =  
2

)1( −xx
,  �

x

0

x (x  –  1)  =
3

)2( )1( −− xxx
,   

    �
x

0

x (x  –  1) (x  –  2)  =  
4

)3( )2( )1( −−− xxxx
   

and therefore 

    �
x

0

x
3
  =  

2

)1( −xx
  +  3 

3

)2( )1( −− xxx
  +  

4

)3( )2( )1( −−− xxxx
  = 

                     
2

)1( −xx
4

2

)1( −xx
. 

And so     

    �
x

0

x
3
  =  

2

2

)1( 
�
�

�
�
�

� −xx
=  

2

0
��
�

�
�
�

�
�

x

x .                                                               (25) 

 

This remarkable formula shows that 

 

    1
3
  +  2

3
  + … +  N 

3
  +  =  (1  +  2  + … +  N)

2
. 

 

    We are now going on to the abovementioned method of calculating the sums of the type of (viii). We have 

 

    8 x 
m
  =  (x  +  1) 

m
  –  x 

m
  =  (m/1!) x

 m–1
  +   

                 [m (m  –  1)/2!] x 
m–2

  +  …  +  mx  +  1 

 

so that 

    x 
m
  =  m�

x

0

x 
m–1

  +  [m (m  –  1)/2!]�
x

0

x 
m–2 

 + … +  m�
x

0

x  + x 

 

because  8 x  =  (x  +  1)  –  x  =  1  and 

    �
x

0

1  =  x. 

Therefore 

    m�
x

0

x 
m–1

  =  x 
m
  –  {[m (m  –  1)/2!]�

x

0

x 
m–2 

 +   

                                    Cm
3
 �

x

0

x 
m–3 

  + … +  m�
x

0

x  +  x} 

and 

    �
x

0

x 
m–1

  =  (x 
m
/m)  –  [(m  –  1)/2!] �

x

0

x 
m–2

  –   

    [(m  –  1) (m  –  2)/3!]�
x

0

x 
m–3

  –  …  –�
x

0

x  –  (1/m) x. 

 



    Setting here  m  =  n  +  1  we shall indeed arrive at the formula sought: 

    �
x

0

x 
n
 =  [x 

n+1
/(n + 1)]  –  (n/2!) �

x

0

x 
n-1

    

    –  [n (n  –  1) /3!]�
x

0

x 
n–2 

  –  …  –�
x

0

x  –  [1/(n  +  1) x.                             (26) 

    Assuming that  n  =  1  we obtain 

 

    �
x

0

x  =  (x
2
/2)  –  (1/2)�

x

0

1  =  [(x 
2
  –  x)/2]  =  [x (x  –  1)/2]. 

 

If  n  =  2  we shall find that 

 

    �
x

0

x
2
  =  (x

3
/3)  –�

x

0

x  –  (x/3)  =  (x
3
/3)  –  [x (x  –  1)/2]  –  (x/3)  = 

                     [x (2x
2
  –  3x  +  1)/6] 

 

and if  n  =  3 

    �
x

0

x
3
  =  (x 

4
/4)  –  (3/2)�

x

0

x 
2
  –�

x

0

x  –  (x/4)  =   

    (x 
4
/4)  –  [x (2x 

2
  –  3x  +  1)/4]  –  x (x  –  1) /2  –  (x/4)  =  

2

2

)1( 
�
�

�
�
�

� −xx
etc. 

 

    Formula (26) thus enables us to calculate consecutively the sums of the type (viii). 

    c) Suppose now that 

    u  =  
)1)...(2( )1( 

1

−+++ lxxxx
. 

 

According to formula (5) we have then 

    8 u  =  
))...(2( )1( lxxxx

l

+++
 

or 

    8 [– 
)1)...(2( )1 

1

−+++ lxx(x xl
]  =  

))...(2( )1( 

1

lxxxx +++
. 

 

Assuming that  l  =  n  –  1  we obtain 

    
)1)...(2( 1)( 

1

−+++ nxxxx
  =  8 [– 

)2)...(2( )1(  )1(

1

−+++− nxxxxn
]. 

 

    Consequently 

    �
)1)...(2( 1)( 

1

−+++ nxxxx
  =   

     – 
)2)...(2( )1(  )1(

1

−+++− nxxxxn
  +  C, 

 

hence 

 

    �
x

m )1)...(2( 1)( 

1

−+++ nxxxx
 = –

)2)...(2( )1(  )1(

1

−+++− nxxxxn
  + 

    
1

1

−n
•

)2)...(1 ( 

1

−++ nmmm
,                                                                      (27) 

    �
∞

m )1)...(2( 1)( 

1

−+++ nxxxx
  =  

1

1

−n
•

)2)...(1 ( 

1

−++ nmmm
.          (28) 



 

These formulas are similar to the formulas of the integral calculus  

    � n
x

dx
  =  

1

1

+

−

n
 • 

1

1
−n

x
  +  C,  �

∞

m n
x

dx
  =  

1

1

−n
 • 

1

1
−n

m
. 

 

    d) Suppose now that  u  =  a 
x
.  Then 

 

    8 u  =  a 
x
 (a  –  1),    8 [u/(a  –  1)]  =  a 

x
  

 

so that 

    � a 
x
  =  

1−a

a
x

  +  C 

 

and therefore 

    �
x

m

a 
x
  =  

1−

−

a

aa
mx

.                                                                                     (29) 

This formula is similar to the formula of the integral calculus 

 

    �
x

m
a

x
 dx  =  

a

aa
mx

ln

−
. 

 

    e) We shall also determine the sums of the trigonometric functions  sin x  and    

cos x. We have 

 

    8 cos x  =  – 2 sin (h/2) sin [x  +  (h/2)] 

 

so that  

    8
)2/sin(2

cos

h

x

−
  =  sin [x  +  (h/2)]. 

 

Supposing that  x  +  (h/2)  =  z  we obtain 

 

    8{– 
)2/sin(2

)]2/(cos[

h

hz −
}=  sin z 

 

and, setting  z  =  a  +  by,   we arrive at 

 

    8 
)2/( sin 2

)]2/([ cos

h

hbya −+−
  =  sin (a  +  by). 

 

Assuming now that  8 y  =  1  we have 

 

    h  =  8 x  =  8 z  =  8 (x  +  by)  =  b 8 y  =  b 

 

and therefore 

 

    8
)2/sin(2

)]2/(cos[

b

bbya −+−
  =  sin (a  +  by). 

 

Hence 

 

    � sin (a  +  by)  =  
)2/sin(2

)]2/(cos[

b

bbya −+−
  +  C                                          (30) 

or  

 



    � 2sin (b/2) sin (a  +  by)  =  – cos [a  +  by  –  (b/2)]  +  C1. 

 

    When substituting here  by  =  x,  assuming that  b  decreases to zero and  y  increases to infinity in such a way that  x  

remains finite, we transform this formula into the known formula 

 

    � sin (a  +  x) dx  =  – cos (a  +  x)  +  C1 

 

of the integral calculus because  

 

    2sin (b/2) b=0  =  b b=0  =  [b (y  +  1)  –  by] b=0  =  (b 8 y) b=0  =  dx. 

 

    The formula for  cos x  can be obtained from (30) if we set  a  =  (%/2)  +  f.  This transforms (30) into 

    � cos (f  +  by)  = 
)2/sin(2

)]2/(sin[

b

bbyf −+
  +  C.                                           (31) 

 

    2.2.3. In most cases, summation, like integration, cannot be accomplished precisely and we therefore need methods 

enabling us to sum approximately. We are now indeed going over to describing these methods. We have the formula 

(14), that, as we saw, is included in the general symbolic formula, cf. (20), 

 

    8 
n 
u  =   (e 

h d/dx
  –  1) 

n
 u. 

 

    Setting  h  =  1  we obtain 

 

    8 u  =  du/dx  +  (1/2) d 
2
u/dx 

2
  +  [1/(293)] d 

3
u/dx 

3
  + … 

 

so that 

   

    u  =� du/dx+  (1/2)� d 
2
u/dx 

2
  +  [1/(293)]� d 

3
u/dx 

3
  + …  +  C) 

 

where  C)  is a general arbitrary constant. 

    Suppose now that  du/dx  =  v.  Accordingly, our series will become 

  

    � v dx  =� v  +  (1/2)� du/dx  +  [1/(293)]� d 
2
u/dx 

2
  + … +C), 

    � v  = � v dx  –  (1/2)� du/dx  –  [1/(293)]� d 
2
u/dx 

2
  + … +  C).      (32) 

    Substituting here  dv/dx  instead of  v  we shall find that 

 

    � du/dx  =v  –  (1/2)� d 
2
u/dx 

2
  –  [1/(293)]� d 

3
u/dx 

3
  – … 

 

In the same way 

 

   � d 
2
v/dx 

2
  =  dv/dx  –  (1/2)� d 

3
v/dx 

3
  –  [1/(293)]� d 

4
v/dx 

4
  – …, 

   � d 
3
v/dx 

3
  =  d 

2
v/dx 

2
  –  (1/2)� d 

4
v/dx 

4
  –  [1/(293)]� d 

5
v/dx 

5
  – … 

etc. 

    Inserting the values of these sums into the expression (32) we shall obtain, in general, 

 

    � v  = � v dx  +  Ao v  +  A1 dv/dx  +  A2 d 
2
v/dx 

2
  + … +  C. 

 

In order to determine the coeffficients which, as is not difficult to see, do not depend on the type of the function  v,  we 

set  v  =  a 
x
.  Therefore, if  – $  and  x  are taken as the limits of summation and integration. 

 

    [a 
x
/ (a  –  1)]  =  [a 

x
/ ln a]  +  Ao a

 x
  +  A1 a 

x
 ln a  +  A2 a 

x
 (ln a)

2
  + … 

 

    It follows, when setting  x  =  0,  that 

 



    [1/(a  –  1)]  =  (1/ ln a)  +  A1 ln a  +  A2 (ln a)
2
  + … 

 

And, if  ln a  =  ', 

 

    [1/(e
' 
 –  1)]  =  (1/')  +  A1 '  +  A2 '

2
  +  …  +  A k ' 

k
  + … 

 

This identity indeed enables us to determine the coefficients  A1,  A2,  …,  A k, … Let us calculate some of them. We have 

     

    e
' 
 –  1  =  '  +  ('2

/2!)  +  ('3
/3!)  +  … 

 

Dividing  1  by this series we obtain 

 

    [1/(e
' 
 –  1)]  =  (1/')  –  (1/2)  +  (1/12) '  +  0 '2

  + … 

 

and thus  Ao  =  – (1/2),  A1  =  (1/12),  A2  =  0, … It is easy to show that  A4  =  A6  =   

    …  =  A2n  =  0.  Indeed, 

 

    [1/(e
' 
 –  1)]  =  (1/')  –  (1/2)  +  A1 '  +  A2 '

2
  + … 

 

therefore 

   

    [1/(e
' 
 –  1)]  +  (1/2)  =  (1/')  +  A1 '  +  A2 '

2
  + … 

 

but 

[1/(e
' 
 –  1)]  +  (1/2)  =  (1/2) 

1

1

−

+
α

α

e

e
  =  (1/2) 

2/2/

2/2/

αα

αα

−

−

−

+

ee

ee
 

so that 

 

    (1/2) 
2/2/

2/2/

αα

αα

−

−

−

+

ee

ee
  =  (1/')  +  A1 '  +  A2 '

2
  + … 

 

    Now, the left side of this equality is an odd function. Consequently, the right side should also be odd and 

 

    A2 '
2
  +  A4 '

4
  +  …  =  0. 

 

Since this is an identity,  A2  =  A4  =  …  =  A2n  =  0.  Thus we have 

 

    � v  = � v dx  –  (1/2) v  +  A1 dv/dx  +  A3 d 
3
v/dx 

3
  + … +  C                    (33) 

 

where the coefficients are determined by the equality 

 

    (1/2) 
2/2/

2/2/

αα

αα

−

−

−

+

ee

ee
  =  (1/')  +  A1 '  +  A3 '

3
  + … 

or by 

 

    [1/(e
' 
 –  1)]  +  (1/2)  =  (1/')  +  A1 '  +  A3 '

3
  + … 

 

    Suppose for example that  v  =  x,  then 

     

    � x  = � x dx  –  (1/2) x  +  (1/12)  +  C  =  [x
2
  –  x)/2]  +  (1/12)  +  C 

and 

    �
n

1

x  =  1  +  2  +  3  + … +  (n  –  1)  =  [n (n  –  1)/2]. 

 As a second example, let  v  =  x
3
,  then 

 

    � x
3
  = � x

3
 dx  –  (1/2) x

3
  +  (1/4) x

2
  +  6 A3  +  C  =   



                    [(x
 4
  –  2x

3
  +  x 

2
)/4]  +  6 A3  +  C 

and 

    �
n

1

x
3
  =  [n

4
  –  2n

3
  +  n

2
)/4]  =  [n

2
 (n  –  1)

2
/4]  =  [n (n  –  1)/2]

2
  =  

                    

2

1
��
�

�
�
�

�
�

n

x . 

 

    2.2.4. Suppose now that  A1  =  B1/2!,  A3  =  –  B2/4!  and that in general 

 

    A2,+1  =  (– 1)
, 
B,+1/[2(,  +  1)]!. 

 

The magnitudes  B1,  B2, … are called the Bernoulli numbers. We shall now derive a formula for determining them and it 

will also enable us to make some general conclusions about them. These numbers should obviously satisfy the equality 

 

    (1/2) 
2/2/

2/2/

αα

αα

−

−

−

+

ee

ee
  =  (1/')  +  (B1/2!) '  –  (B2/4!) '

3
  + …  + 

    (– 1) 
,
 

)]!1(2[

1

+
+

λ
λB

'2,+1
. 

 

    However, we have in general 

 

    sin +  =  + [1  –  (+2
/%2

)] [1  –  (+2
/2

2
 %2

)] [1  –  (+2
/3

2
 %2

)]  … 

 

and therefore 

 

    ln sin +  –  ln +  =  ln [1  –  (+2
/%2

)]  +  ln [1  –  (+2
/2

2
 %2

)]  + … 

 

Differentiating this equality, we obtain after simplification  

    ctg +  =  
ψ

1
  –  

22

2

ψπ

ψ

−
  –  

2222

2

ψπ

ψ
  –  

2223

2

ψπ

ψ
  –  … 

Denote for the sake of brevity 1− =  i,  then 

 

    ctg +  =  (cos + / sin +)  =  i
ψψ

ψψ

ii

ii

ee

ee
−

−

−

+
 

 

so that, substituting  2+  =  ' i,  we arrive at       
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   , 
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    However, in general, 

 

    [1/(1  +  x)]  =  1  –  x  +  x
2
  –  …  + (– 1)

n
x

n
  + …  

 

and consequently 
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    We thus obtain 

 

    (1/2) 
2/2/

2/2/

αα

αα

−

−

−

+

ee

ee
  =  (1/')  +  ('/2%2

) [1  +  (1/2
2
)  +  (1/3

2
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    ('3
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    ('5
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π
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    Comparing this result with the previous one we get the following series for the Bernoulli numbers: 

    B1  =  (2!/2%2
) S2,  B2  =  (4!/2

3%4
) S4, …,  B,+1  = 

2212

)]!1(2[
++

+
λλ π

λ
 S2,+2,    

    S2,+2  =  1  +  (1/2
2,+2

)  +  (1/3
2,+2

)  +  … 

 

Details concerning these series can be found in Ostrogradsky’s “Sur les quadratures définies”. 

 

    2.2.5. We had to do with series in which the difference  8 x  was assumed to be  1;  wishing to introduce any difference  

h,  we would only have to set  x  =  z/h  so that, when  x changed by  1,  z  would have changed by  h,  and we would have 

obtained 

 

    � v  = � v d z/h  –  (1/2) v  +  A1 d v/d (z/h)  +  A2 d 
2
v/d (z/h) 

2
  + …  

or 

    � v  =  (1/h) � v dz  –  (1/2) v  +  h A1 d v/d z  +  h
2
 A2 d 

2
v/d z 

2
  + …         (34) 

 

    Therefore 

 

    � v  = � vh  –  h [(1/2)v  –  h A1 d v/d z  –  h
2
 A2 d 

2
v/d z 

2
  – …]. 

 

Supposing that  h  is here tending to zero, we get 

 

    lim [h� v]  =  lim  � vh  = � v dz. 

 

Thus, the integral is the limit of the product of the sum by the increment of the independent variable. 

 

    2.2.6. Noticing that  A1  =  (1/12),  we have     

 

    � u  = � u dx  –  (1/2) u  +  (1/12) d u/d x  +  C. 

 

Assuming that  u  =  ln x  and  assigning  1  and  x  as the limits for  x,  we obtain 



    �
x

1

ln x  =  C  +  � ln x dx  –  (1/2) ln x  +  (1/12) d ln x/d x  + … 

or     

    �
x

1

ln x  =  C  +  x ln x –  x  –  (1/2) ln x  +  (1/12) (1/ x)  + … 

where  C  already has an absolutely definite value which we shall indeed try to determine. We may express this equality 

in the following form 

 

    ln 1  +  ln 2  +  ln 3  + … +  ln (x  –  1)  =         

    C  +  x ln x  –  x  –  (1/2) ln x  +  (1/12) (1/ x)  + …, 

 

    ln x!  =  C  +  x ln x  –  x  –  (1/2) ln x  +  (1/12) (1/ x).                                      (ix) 

 

    However, 
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Consequently, 

 

    ln (%/2)  =  lim {4n ln 2  +  4 ln (n!)  –  2 ln [(2n!)]  –  ln (2n  +  1)}n=$, 

 

but, cf. (ix), 

 

    ln (n!)  =  C  +  n ln n  –  n  +  (1/2) ln n  +  (1/12) (1/ n)  + …, 

    ln [(2n)!]  =  C  +  2n ln n  –  2n  +  (1/2) ln (2n)  +  (1/12) (1/2n)  + … 

 

with next terms of the order higher than (1/n)  in both cases. We thus have  

 

    ln (%/2)  =  lim [4n ln 2  +  4n  +  4C  +  4n ln n  –  4n  +  2 ln n  +  (1/3n)  + 

    …–  ln (2n  +  1)  –  2C  –   4n ln n  –   ln (2n)  –  (1/12n)]n=$  = 

    lim [2C  +  ln n  –  ln 2  –  ln (2n  +  1)  +  (1/4n)] n=$  = 

    lim {2C  +  ln
)12(2 +n

n
  +  (1/4n)} n=$. 

 

    Finally, 

 

    ln (%/2)  =  2C  +  ln (1/4),  C  =  ln π2    

 

and we get 

 

    ln (x!)  =  ln π2   +  x ln x  –  x  +  (1/2) ln x  +  (1/12x)  + … 

 

or 

 

    x!  =   π2 x 
x+1/2 

e
–x 

e 
(1/12x)+…

  

 

But  e 
(1/12x)

  = 1  +  (1/12x)  + …  so that, as already derived in §1.3.12, 

 

    x!  =   π2 x 
x+1/2 

e
–x 

[1  +  (1/12x)  + …].                                                       (35) 

 



    2.2.7. We shall now provide another proof of (35). Consider the function 

    
xx

ex

x
−+ )2/1(

!
  =  * (x)   

where  x  is supposed to be integer and positive. We have 

 

    
1)2/1()1(

)!1(
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−
xx ex

x
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so that 
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x

x
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x
e  =  [1  – (1/x)] 

x– (1/2)
 e 

  

and consequently 

 

    ln * (x)  –  ln * (x  –  1)  =  1  +  [x  –  (1/2)] ln [1  –  (1/x)]. 

 

    Expanding  ln [1  –  (1/x)]  we obtain 

 
    ln * (x)  –  ln * (x  –  1)  = 1  +  [x  –  (1/2)] {– (1/x)  –  (1/2x

2
)  –  (1/3x

3
)  – … –  

    [1/(l  +  1) x 
l+1

]  –  …}  =  1  –  1  –  (1/2x)  –  (1/3x
2
)  –  … –  (1/l x 

l–1
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    [1/(l  +  1) x 
l
]  –  …  +  (1/2x)  +  (1/2) (1/2x

2
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l
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2
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3
)  –  …  –   

    
lxll

l 1

)1(2

1

+

−
  – …                                                                                           (x) 

 

But 
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    If  l  =  5  it follows that the left sides of these inequalities are less than (1/12).  For  l  =  4  it is  3/40 

and, since it decreases with an increasing  l,  (1/12)  is the maximal coefficient in the right side of (x) so that  

 

    (1/12x
2
)  +  (1/12x

3
)  +  …  +  

lxll

l 1

)1(2

1

+

−
  <   

    (1/12x
2
)  +  (1/x

3
)  + …  +  (1/x 

l
)  + …] 

 

which leads to the equality 

 

    (1/12) (1/x
2
)  +  (1/12x

3
)  +  …  +  

lxll

l 1

)1(2

1

+

−
  =  (&/12) [1/x (x  –  1)] 

 

where  &  is some proper fraction.  And so, 

 

    ln * (x)  –  ln * (x  –  1)  =  – (&/12) [1/x (x  –  1)], 

 

hence 

 

    ln * (x)  –  ln * (x  –  1)  <  0,                                                                    (36)        

    ln * (x)  –  ln * (x  –  1)   >  – (1/12) [1/x (x  –  1)].                                  (37) 

 

    Inequality (36) leads to  ln * (x)  <  ln * (x  –  N)  where  N  is any integer and inequality (37) can be written 

as 

 

    ln * (x)  –  (1/12x)  >  ln * (x  –  1)  –  [1/12 (x  –  1)] 



 

so that 

 

    ln * (x)  –  (1/12x)  >  ln * (x  –  N)  –  [1/12 (x  –  N)]. 

 

    We set now  x  –  N  =  z  and obtain 

 

    ln * (N  +  z)  <  ln * (z),      

    ln * (N  +  z)  >  ln * (z)  –  (1/12z)  +  [1/12 (N  +  z)]. 

 

And, assuming that 

 

    lim [ln * (N  +  z)] N=$  =  C, 

 

we arrive at 

 

    ln * (z)  >  C  >  ln * (z)  –  (1/12z). 

 

    Consequently, 

 

    C  =  ln * (z)  –  (&/12z),  ln * (z)  =  C  +  (&/12z) 

 

where  &  is a proper fraction. However, 

 

    ln * (x)  =  ln (x!)  –  [(x  +  (1/2)] ln x  +  x 

 

so that 

 

    ln (x!)  =  [(x  +  (1/2)] ln x –  x  +  C  +  (&/12x), 

 

which is what we ought to have derived. 

    We are thus concluding the issue on summing and are going over to the integration of equations in finite 

differences. 
 

2.3. Integration of Equations in Finite Differences 
 

    2.3.1. We are now going over to that section of the theory of finite differences that is similar to integrating differential 

equations. The problems of this theory are much more difficult than the similar problems of the theory of infinitesimals, 

and the integration of equations in finite differences is also incomparably more troublesome than the solution of 

differential equations. Even the reduction of this integration to summation which is similar to expressing the solution of 

the latter equations in quadratures, – even this would have been of comparatively little use because we are only able to 

calculate the sums of a very small number of functions, by far less than the number of those which we can integrate. 

    It is therefore clear that the integrating factor that transforms the left side of an equation into a total differential, or, in 

our case, into a difference, after which the problem is reduced to summation, can have no significance in the theory of 

finite differences. Even in the theory of differential equations the determination of this factor leads to integrating partial 

equations, i.e., to the integration presenting more difficulties so that it cannot be important as a method of integrating 
1
 

whereas in the theory of finite differences we would have encountered incomparably more difficulties when determining 

it. We begin by integrating linear equations of the first order, then we shall consider linear equations of any order both 

with and without the last term {the right side}. The methods of integrating these equations will be quite similar to those 

of solving differential equations except that now we shall not encounter integrating factors. 

    In their form, the equations in finite differences will not be quite similar to differential equations because now we will 

show the dependence not between the differences of the function and the independent variable, but between the initial 

and the changed values of the function and the independent variable so that these equations will be of the following type: 

 

    f ( yx+n; yx+n–1; yx+n–2; …;  yx+1;  yx;  x)  =  0 

 

where  yx  is the initial value of the function. Since 

 

    yx+1  =  yx  +  8 yx,  yx+2  =  yx+1  +  8 yx+1  =  yx  +  28 yx  +  82
 yx,  etc, 



 

the form of this equation is easily made similar to that of differential equations. 

 

    Note 1. Concerning the integrating factor, Lagrange expressed himself in such a way: “It is good for various theorems 

about it, but not as a method of integration”. At present, his idea is being ever more confirmed. 

 

    2.3.2. Let us consider a linear equation of the first order of the type 

 

    P yx+1  +  Q yx  =  V 

 

where  P,  Q  and  V  are functions of  x  only. Suppose that  yx  =  ux vx,  then 

 

    yx+1  =  (ux  +  8 ux) vx+1 

 

so that the form of the equation becomes 

 

    P (ux vx+1  + 8 ux vx+1)  +  Q vx ux  =  V 

 

or 

 

    ux (P vx+1  +  Q vx)  +  P 8 ux vx+1  =  V. 

 

    Since the function  vx  is arbitrary, we assume that 

 

    P vx+1  +  Q vx  =  0, 

 

therefore 

 

    P 8 ux vx+1  =  V. 

     

    Let 

 

    vx  =  exp (wx),  vx+1  =  exp (wx)·exp (8 wx), 

 

then 

 

    P exp (wx) exp (8 wx)  +  Q exp (wx)  =  0 

 

and consequently 

 

    P exp (8 wx)  +  Q  =  0, 

    8 wx  =  ln (– Q / P),  wx  =  �
x

ln (– Q / P). 

    We shall not assign any lower limit because it ought to remain arbitrary. And so, 

    vx  =  exp �
x

ln (– Q / P) 

and 

    8 ux  =  
P

V
·

1

1

+xv
  =  

�
+

−
1

)/ln(

/
x

PQ

PV
  =  

P

V
 exp [–�

+1x

ln (– Q / P)].   

Therefore,  

    ux  =  �
x

P

V
 exp [–�

+1x

ln (– Q / P)]  +  C, 

    y  =  exp �
x

ln (– Q / P) [C  +  �
x

P

V
 exp [–�

+1x

ln (– Q / P)]. 

    For example, let us integrate the equation 

 



    x yx+1  –  (x  +  1) yx  =  1. 

 

We substitute  yx  =  ux vx,  then 

 

    yx+1  =  (ux  +  8 ux ) 8 vx+1  =  ux vx+1  +  ux vx+1  

 

and   

 

    ux [x vx+1   –  (x  +  1) vx]  +  x 8 ux vx+1  =  1. 

 

    Suppose that  

 

    x vx+1  –  (x  +  1) vx  =  0, 

 

then 

    8 ux  =  (1/x) vx+1
–1

. 

Let  vx  =  exp (wx),  then 

    x exp (8 wx)  –  (x  +  1)  =  0,  8 wx  =  ln [(x  +  1)/x]  =  8 ln x, 

 

    wx  =  � ln [(x  +  1)/x]  =  ln x,  exp (wx)  =  x, 

    8 ux  =  
)1(

1

+xx
,  ux  = �

x

)1(

1

+xx
  =  – (1/x)  +  C. 

    Thus,  

 

    yx  =  [C  –  (1/x)] x  =  Cx  –  1.  

 

    2.3.3. We go over now to linear equations of the higher orders and we begin by considering those of the second order 

 

    yx+2  +  P yx+1  +  Q yx  =  V                                                                           (38) 

 

where  P,  Q,  V  are some functions of  x.  We shall show how to find its integral 

when knowing the integral of the same equation without its right side                  

 

    yx+2  +  P yx+1  +  Q yx  =   0.                                                                         (xi) 

 

    Suppose that  functions  vx  and  ux  satisfy this; we shall show that the function 

  

    C ux  +  C) vx                                                                                               (xii) 

 

will also satisfy it. Indeed, since  ux  satisfies the equation, we have  

 

    ux+2  +  P ux+1  +  Q ux  =  0.                                                                        (39) 

 

    Multiplying (39) by a constant  C  we obtain  

 

    C ux+2  +  C P ux+1  +  C Q ux  =  0 

 

so that  C ux  {also} satisfies it. In the same way we find that 

 

    C) vx+2  +  C� P vx+1  +  C� Q vx  =  0. 

 

Adding these two equalities we obtain 

 

    C ux+2  +  C) vx+2  +  P (C ux+1  +  C� vx+1)  +  Q (C ux  +  C� vx)  =  0, 

 

which means that (xii) is an integral of equation (39) containing two arbitrary constants. So as to determine now the 

integral of the initial complete {non-homogeneous} equation we shall apply the Lagrange method of varying the arbitrary 



constants. Going over to this complete equation, we ought to assume that  C  and  C)  are some functions of  x  so that its 

general integral will have the form 

 

    yx  =  Cx ux   +  C�x vx . 

 

    Now we shall indeed determine  Cx and  C�x. We have 

 

    yx+1  =  Cx+1 ux+1   +  C�x+1 vx+1  =  (Cx  +  8 Cx) ux+1  +  (C�x  +  8 C�x) vx+1. 

 

Suppose that 

 

    8 Cx ux+1  +  8 C�x vx+1=  0 

 

so that 

 

    yx+1  =  Cx ux+1   +  C�x vx+1                                                                              (40) 

 

and 

 

    yx+2  =  Cx+2 ux+2   +  C�x+2 vx+2   =  (Cx  +  8 Cx) ux+2  +  (C�x  +  8 C�x) vx+2. 

 

    Substituting the values of  yx+2,  yx+1  and  yx  into equation (38) we have 

 

    Cx [ux+2  +  P ux+1  +  Q ux]  +  C�x [vx+2  +  P vx+1  +  Q vx]  + 

    8 Cx ux+2  +  8 C�x vx+2  =  V. 

 

But 

 

    ux+2  +  P ux+1  +  Q ux  =  vx+2  +  P vx+1  +  Q vx  =  0 

 

because  ux  and  vx  satisfy equation (xi). We thus determine that 

 

    8 Cx ux+2  +  8 C�x vx+2  =  V.                                                                          (41) 

 

    Adding to this equation (40) we have 

 

    8 Cx ux+1  +  8 C�x vx+1  =  0 

 

and, solving now {this together with  (41)} with respect to  8 Cx   and  8 C�x,  we obtain 

 

    8 Cx  =  *o(x),  8 C�x  =  *1(x) 

 

so that 

    Cx  =  � *o(x)  +  Co,  C�x  =  � *1(x)  +  C1 

and 

 

    yx  =  Co ux  +  C1 vx  +  ux� *o(x)  +  vx� *1(x). 

 

    We have thus reduced the integration of equation (38) to the integration of (xi) for whose solution mathematics in its 

present state has no methods. To illustrate, let us take up equation 

 

    yx+2  –  5yx+1  +  6yx  =  x.                                                                                (xiii) 

 

The equation 

 

    yx+2  –  5yx+1  +  6yx  =  0 

 

has solutions  2
x
  and  3

x
  and we assume that 

 

    yx  =  Cx 2
x
  +  C�x 3

x
. 



 

Consequently, 

 

    yx+1  =  Cx 2
x+1

  +  C�x 3
x+1

  +  8 Cx 2
x+1

  + 8 C�x 3
x+1

. 

 

    Assuming that  

    8 Cx 2
x+1

  + 8 C�x 3
x+1

  =  0                                                                       (42) 

 

we have 

 

    yx+1  =  Cx 2
x+1

  +  C�x 3
x+1

   

 

and 
 

    yx+2  =  Cx 2
x+2

  +  C�x 3
x+2

  +  8 Cx 2
x+2

  + 8 C�x 3
x+2

   

 

and also 

 

    8 Cx 2
x+2

  + 8 C�x 3
x+2

  =  x. 

 

    Solving this equation together with (42), we obtain 

 

    8 Cx  =  – x/ 2
x+1

,  8 C�x  =  x/3
x+1

   

 

so that 

 

    Cx  =  – (1/2)� x (1/2) 
x
  +  Co,  C�x  =  (1/3)� x (1/3) 

x
  +  C1. 

 

    In order to obtain the values of these sums we shall derive the formula for “summing by parts”. Choose some 

functions  Sx  and  Kx.  Then 

 
    8 (Sx Kx)  =  (Sx  + 8 Sx) Kx+1  –  Sx Kx  =  Sx (Kx  +  8 Kx)  +  Kx+1 8 Sx  –  Sx Kx, 

    8 (Sx Kx)  =  Sx 8 Kx  +  Kx+1 8 Sx   

 

and consequently  

 

    Sx Kx  =� Sx 8 Kx  +� Kx+1 8 Sx. 

 

Set now  8 Kx  =  Tx,  then 

 

    Kx  =�
x

Tx,  Kx+1  =�
+1x

Tx, 

    � Sx Tx  =  Sx� Tx  –  � 8 Sx�
+1x

Tx.                                               (43)        

When applying this formula that is similar to the formula 

 

    � Sx Tx dx  =  S � Tx dx  –  � [
dx

dSx � Tx dx] dx 

 

of the integral calculus, we have   

    � x (1/2) 
x
  =  x� (1/2) 

x
  –  � 8x�

+1x

(1/2) 
x
, 



    � x (1/3) 
x
  =  x� (1/3) 

x
  –  � 8x�

+1x

(1/3) 
x
. 

However, in general 

 

    � a
x
  =  a

x
 / (a  –  1) 

 

and 

 

    � (1/2) 
x
  =  – 2 (1/2) 

x
;  � (1/3) 

x
  =  – (3/2) (1/3) 

x
;   

    �
+1x

(1/2) 
x
  =  – 2 (1/2) 

x
;  �

+1x

(1/3) 
x
  =  – (1/2) (1/3) 

x
; 

    –� 2 (1/2) 
x+1

  =  2 (1/2) 
x
;    – (1/2)� (1/3) 

x
  =  (3/4) (1/3) 

x
 

 

so that  
 

    � x (1/2) 
x
  =  – 2x (1/2) 

x
  –  2 (1/2) 

x
  =  –  2 (1/2) 

x
 (x  +  1), 

    � x (1/3) 
x
  =  – (3/2) x (1/3) 

x
  – (3/4) (1/3) 

x
  =  – 3 (1/3) 

x
 [(x/2)  +  (1/4)]. 

 

    Thus,    

 

    Cx  =  (1/2) 
x
 (x  +  1)  +  Co,  C�x  =  – (1/3) 

x
 [(x/2)  +  (1/4)]  +  C1 

 

and 

 

    y  =  Co 2
x
  +  C1 3

x
  +  (x  +  1) (2

x
 / 2

x
)  –  (1/3) 

x
 [(x/2)  +  (1/4)] 3

x
  = 

           (1/2) x  +  (3/4)  +  Co 2
x
  +  C1 3

x
. 

 

This is indeed the general integral of the equation (xiii). 

 

    2.3.4. Let us apply now the same method to equations of the third order which we shall consider in the form 

of 

 

    yx+3  +  P yx+2  +  Q yx+1  +  R yx   =  V.                                                      (44)          

 

Suppose that three functions,  ux,  vx,  wx,  satisfy the equation 

 

    yx+3  +  P yx+2  +  Q yx+1  +  R yx  =  0                                                        (45)              

 

and that its general integral can be formed by them. A necessary condition for this is that the determinant 

 

    

333

222

111

+++

+++

+++

xxx

xxx

xxx

wvu

wvu

wvu

                                                                                     (46) 

 

does not vanish. Otherwise these three functions will be connected by such a dependence that equation (45) 

(after their substitution there and its solution with respect to  1,  P  and  Q) 
1
  would have provided for  P  and  

Q  either indefinite or infinite values. The three functions should be linearly indendent one from another. 

    In this case the function  

 

    yx =  Cux+  C�vx  +  C�wx  

 

will satisfy equation (45). For a function of the same type to satisfy equation   (44) we ought to replace here  C,  

C�  and  C1  by  Cx,  C�x  and  C1x  and consider them {the new magnitudes} as functions of  x. 



    And so, let the function  

 

    yx =  Cxux+  C�xvx  +  C�xwx                                                                                                                  (xiv) 

 

satisfy equation (44). Then 
 

    yx+1  =  Cxux+1  +  C�xvx+1  +  C�xwx+1  +  8 Cxux+1  +  8 C�xvx+1  +  8 C�xwx+1. 

 

    Let 

 

    8 Cxux+1  +  8 C�xvx+1  +  8 C�xwx+1  =  0                                                              (47) 

 

so that 

 

    yx+1  =  Cxux+1  +  C�xvx+1  +  C�xwx+1,                                                                   (xv) 

    yx+2  =  Cxux+2  +  C�xvx+2  +  C�xwx+2  +  8 Cxux+2  +  8 C�xvx+2  +  8 C�xwx+2. 

 

    We suppose now that 

 

    8 Cxux+2  +  8 C�xvx+2  +  8 C�xwx+2  =  0,                                                            (48) 

 

then 

 

    yx+2  =  Cxux+2  +  C�xvx+2  +  C�xwx+2                                                                  (xvi) 

 

and 

 

    yx+3  =  Cxux+3  +  C�xvx+3  +  C�xwx+3  +  8 Cxux+3  +  8 C�xvx+3  +  8 C�xwx+3.       (xvii) 
 

    Substituting now the expressions (xvii), (xvi), (xv) and (xiv) into equation (44) and noticing that 

 

    ux+3  +  Pux+2  +  Qux+1  +  Rux =  0,  vx+3  +  Pvx+2  +  Qvx+1  +  Rvx =  0, 

    wx+3  +  Pwx+2  +  Qwx+1  +  Rwx =  0 

 

because  ux,  vx  and  wx  are solutions of the equation (45), we get 

 
    8 Cxux+3  +  8 C�xvx+3  +  8 C�xwx+3  =  V.                                                         (49) 

 

    Solving now equations (47) – (49) with respect to  8 Cx,  8 C�x  and  8 C�x,  we obtain finite and definite values 

because the determinant (46) is not equal to zero. And so, we shall have 

    8 Cx =  *o(x),  8 C�x =  *1(x),  8 C�x  =  *2(x) 

and therefore 

    Cx  =� *o(x)  +  Ao,  C�x  =� *1(x)  +  A1,  C�x  =� *2(x)  +  A2. 

The general integral of equation (44) will thus be  

 

    yx =  Aoux+  A1vx  +  A2wx  +  ux� *o(x)   +  vx� *1(x)  +  wx� *2(x).    (xviii) 

 

    We have reduced the integration of the equation (44) to the solution of a simpler equation (45). Note that the 

expression (xviii) shows that the general integral consists of two parts: of the general integral of equation (45) and some 

function of  x.  It follows that, when substituting the expression (xviii) in equation (44), this function will in itself satisfy 

it because the first part of (xviii) turns the left side of (44) into zero.  

    Thus, in order to determine the general integral of the equation (44) it suffices to find some solution satisfying it, and 

the sum of that function and the general integral of the equation (45) will indeed be the general integral of the equation 

(44).  

 



    Note 1. {Chebyshev’s own expression.} 

 

    2.3.5. Let us extend now the derivations of the previous sections onto equations of any order. We take the equation 

    

    yx+n  +  Pyx+n-1  +  …  +  Ryx+2  +  Syx+1  +  Tyx  =  V                                        (50) 

 

where  P, …, R,  S,  T,  V  are functions of only one {variable}  x,  and suppose that  n  functions  ux,  vx,  wx, …,  :x  

satisfy the equation 

 

    yx+n  +  Pyx+n-1  +  …  +  Ryx+2  +  Syx+1  +  Tyx  =  0                                        (51) 

 

so that its general integral is 

 

    yx  =  C�ux  +  C�vx  +  C
 (3) 

wx  +  …  +  C
 (n) :x. 

 

    Assume also that the general integral of the {non-homogeneous} equation (50) with the last term included is 

 

    yx  =  C�xux  +  C�xvx  +  C
 (3)

xwx  +  …  +  C
 (n)

x
 :x 

 

and set 
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                               (52) 

 

    Then 

 

    yx+1  =  C�xux+1  +  C�xvx+1  +  …  +  C
 (n)

x:x+1, 

    yx+2  =  C�xux+2  +  C�xvx+2  +  …  +  C
 (n)

x:x+2, …, 

    yx+n-1  =  C�xux+n-1  +  C�xvx+n-1  +  …  +  C
 (n)

x:x+n-1 

 

and 

 

    yx+n  =  C�xux+n  +  C�xvx+n  +  …  +  C
 (n)

x:x+n  +   

                8 C�xux+n  +  8 C�xvx+n  +  …  +  8 C
 (n)

x:x+n. 

 

    Substituting these expressions instead of  yx,  yx+1, …,  yx+n  into equation  (50) and noting that the functions  

ux,  vx, … satisfy the equation (51), we obtain 

 

    8 C�xux+n  +  8 C�xvx+n  +  …  +  8 C
 (n)

x:x+n  =  V. 

 

When solving this equation together with (52) with respect to  8 C�x, …,  8 C
 (n)

x
 
,  we have   

 

   8 C�x   =  *1(x),  8 C�x  =  *2(x), …,  8 C 
(n)

x  =  *n(x);   

    C�x  =� *1(x)  +  A1, …,  C 
(n)

x  =� *n(x)  +  An, 

 

and 

 

    yx  =  A1ux  + A2vx  +  …  +  An:x  +   

             ux� *1(x)  +  vx� *2(x)  + … +  :x� *n(x)   

 
will be the general integral of the equation (50). 
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    yo,  y1,  y2, …, yx,  yx+1,  yx+2, …,  yn-1, yn 

 

arranged in the same order and satisfying the inequality 



 

    yx  not  >  Rn-x  with  yo  =  2  and  y1  =  3. 
1
 

  

    It is easy to see that this condition will be satisfied if, in general,  

 

    yx+2  =  yx+1  +  yx.                                                                                    (xxiv) 

 

Indeed, assuming that 

 

    yx+1  3  Rn–x–1  and  yx   3   Rn–x   

 

we have  

 

    yx+2  3  Rn–x–1  +  Rn–x.   

 
But 

 

    Rn–x–2  =  Rn–x–1 qn–x  +  Rn–x,  Rn–x–2  >  Rn–x–1  +  Rn–x 

 

so that 

 

    yx+2  3  Rn–x–2. 

 

    However,  yo  3  Rn,  y1  3  Rn–1.and, consequently, in general  yx  3  Rn-x. Nevertheless, when integrating 

equation (xxiv), we obtain 

 

    yx  =  C1 [(1  +  #5)/2]
x
  +  C2 [(1  –  #5)/2]

x
   

 

with the arbitrary constants  C1  and  C2  determined by the  

conditions  yo  =  2  and  y1  =  3, so that 

 

    C1  +  C2  =  2,  C1[(1  +  #5)/2]  +  C2 [(1  –  #5)/2]
  
 =  3. 

 

We thus obtain 

 

    C1  =  (#5  +  2)/#5,  C2  =  (#5  –  2)/#5, 

    yx  =  [(#5  +  2)/#5] [(1  +  #5)/2]
x
 + [(#5  –  2)/#5] [(1  –  #5)/2]

x
  3  Rn-x. 

 

    Assuming here  n  =  x  and noting that  Ro  =  A, we get 

 

    [(#5  +  2)/#5] [(1  +  #5)/2]
n
  +  [(#5  –  2)/#5] [(1  –  #5)/2]

n  
  3  A. 

 

But 

 

    [(#5  –  1)/2]
 
  3  0.7  and  [(1  –  #5)/2]

n  
  3  0.7, 

    [(#5  –  2)/#5] [(1  –  #5)/2]
n  

  3  0.7 [(#5  –  2)/#5]  <  0.08. 

 

Therefore  

 

    [(#5  +  2)/#5] [(1  +  #5)/2]
n
  –  0.08  <  A, 

    [(#5  +  2)/#5] [(1  +  #5)/2]
n+1

  <  (A  +  0.08) [(1  +  #5)/2] 

 

and, since  A  =  2,  A  +  0.08  =  A(1  +  0.08/A)  <  1.04A,  we have 

 



    [(1  +  #5)/2]
n+1

  <  1.04A (#5/2) 
52

51

+

+
  =  0.52A #5 

52

51

+

+
. 

 

    Taking logarithms we get 
2
 

 

    (n  +  1)  <  
2lg)236.21( lg

)236.22( lg236.2lg)236.21( lg52.0lglg

−+

+−++++A
, 

 

    (n  +  1)  <  
]2/)236.21[ lg

1

+
 [lg A  –  lg 

236.2 )236.21( 52.0

236.22

+

+
]. 

 

But 

 

    
236.2 )236.21( 52.0

236.22

+

+
  >  

5)(2.236 52.0

4

+
  =  

)(7 13.0

1

α+
 

 

where  '  is a proper fraction; 
3
 then, since  #5  <  2.24,  '  <  0.24  or  '  <  1/4.  Thus, 

 

    
236.2 )236.21( 52.0

236.22

+

+
  >  

1/4)(7 13.0

1

+
  >  1 

 

and consequently 

 

    n  +  1  >  
]2/)236.21[( lg

lg

+

A
. 

 

    But  #5  >  2.236  and  lg [(1  +  #5)/2]  >  lg 1.618  =  0.2090,   

 

lg [(1  +  #5)/2]  >  0.2  =  1/5  and consequently  (n  +  1)  <  5lg A. 

  

    Denote the number of digits in number  A  by  N, then  lg A  <  N  and                     (n  +  1)  <  5N.  We thus 

infer that, when calculating the greatest common divisor of numbers  A  and  B  with  A  <  B,  we shall have to 

perform a number of divisions in any case less than five times the number of digits in the lesser number  A. 

    We conclude here the theory of finite differences. 

 

    Note 1. {Below, I do not anymore follow Chebyshev in writing  a  not  >  b  (say); instead, I adopt the 

simpler notation  a  �  b.} 

    Note 2. {In several lines below I write  2.236  instead of  #5  as given by Chebyshev.}   

    Note 3. {Strictly speaking,  '  is irrational. Here and below Chebyshev considered common logarithms but 

did not change his notation.} 

 

Chapter 3. The Theory of probability 

 

3.1. The Laws of Probability 
 

    3.1.1. The theory of probability aims at determining the chances for the occurrence of some event. The word 

event means, in general, everything whose probability is being determined. In mathematics, the word 

probability thus serves to denote some magnitude subject to measurement. 

    Probability evidently depends only on two magnitudes: on the number of cases favorable to the event and on 

the number of all the equally possible cases. Therefore, when denoting the probability of some event by  E,  the 

first number by  m  and the second one by  n, we have  

 

    E  =  F (m; n)  =  F [n (m/n); n]  =  * (m/n; n) 

 



where  *  is such a function that increases with  m  and decreases with an increasing  n.  But it is not difficult to 

agree that probability should not change when the numbers of all the possible cases and of those favoring the 

event increase in the same ratio. In the theory of probability, this property is being assumed as an axiom. 

Consequently, the function  *  should not change if we replace  m  and  n  by  ,m  and  ,n  where  ,  is an 

arbitrary factor. It follows that 

 

    * (m/n; n)  =  * [(,m / ,n); ,n]. 

 

    This equality shows that the function  *  does not depend on  n.  Thus, 

 

    E  =  f (m/n). 

 

That is, the probability is a function of the ratio of the number of favorable cases to that of all the equally 

possible cases, and this function, if the mentioned ratio be assumed as an independent variable, should be an 

increasing function. As to its form, this is unknown to us so that when defining probability we may arbitrarily 

take any increasing function of the ratio  m/n.  In mathematics, this very ratio, which is the simplest function, is 

indeed assumed as an expression of probability.  

    {To repeat,} in mathematics, the ratio  m/n, which we shall now denote by  p,  is indeed usually assumed as 

the definition of probability in the sense of a magnitude subject to measurement. If  p  =  0, the probability 

turns into certainty that the event will not occur; in the same way, if  p  =  1,  probability turns to certainty that 

the event will occur. As everywhere in mathematics, we consider these two extreme cases, which go beyond 

the province of probability, as the limiting cases of the general, and it is in this sense that we regard 

probabilities equal to zero or unity. 

    Above, we defined the word event as one of the terms occurring in the theory of probability; now we add 

that we shall call events incompatible if they cannot take place at one and the same chance {trial}. Thus, the 

throwing of a card of clubs and of an ace from a deck of cards are compatible events, but the drawing of a 

single card being a club and an ace of hearts provides an example of incompatible events. Let us consider now 

the main properties of probabilities expressing them as theorems. 

 

    3.1.2. Theorem 1. The probability that {any} one of the two incompatible events will occur is equal to the 

sum of their probabilities. Suppose that E  and  E1  are the two incompatible events and let  p  =  m/n  be the 

probability of the first one, and     p1  =  m1/n1,  the probability of the second one. Since the events  E  and  E1  

are incompatible, a case favorable for the first will not be favorable for the second one, and vice versa. The 

number of cases favorable for the event  (E  +  E1)  is therefore  (m  +  m1), whereas the number of all the 

equally possible cases remains, as it was, equal to  n.  The probability that one of these events will occur is 

therefore 

 

    P  =  (m  +  m1) / n  =  p  +  p1.                                                            (i) 

 

    It is easy to extend this theorem onto any number of incompatible events. Indeed, let  E,  E1,  E2, … be 

incompatible events with probabilities  p  =  m/n,  p1  =  m1/n,  p2  =  m2/n, … The probability that one of the 

two events,  E  and  E1,  occurs, or the probability of the event  (E  or  E1),  is  (m  +  m1)/n.  It follows that the 

probability of the event  (E,  E1  or  E2)  is                  

[(m  +  m1)  +  m2]/n.  Continuing to reason in this manner, we shall find that, in general, the probability  P  of 

the event 

(E,  E1,  E2, …, or  Ek)  is 

 

    P  =  (m  +  m1  + …  +  mk) / n  =  p  +  p1  +  p2  + … +  pk. 

 

    Note that if, in formula (i),  P  =  1, the events  E  and  E1  whose probabilities are  p  and  p1  are called 

contrary. For such events the probability of one of them thus complements to unity the probability of the other 

one. 

    The probability that some event occurs or not is always  1,  so that knowing the probability  p  that the event 

will take place, we shall find the probability  p1  that it will not occur in accord with the formula                   

 

    p1  =  1  –  p. 



 

    The Theorem above can also be formulated thus: If one and the same event has several different 

incompatible forms, then its probability is the sum of the probabilities of its forms. If the probabilities of all the 

forms are equal one to another, the probability of the event is proportional both to the probability of each 

separate form and to the number of the forms. 

 

    3.1.3. Theorem 2. If the probability of event  E  is  p  and the probability for the event  F  to occur after 

event  E  happened is  q,  then the product  pq  is the probability of the compatibility of these events (of event  E  

and then of event  F  to take place). Suppose that 

 

    C1,  C2,…,  Cm, …, Cµ,  Cµ+1,  …,  Cn-1,  Cn 

 

represent equally possible cases and  µ  of them, taken in that order in which they are written above, are cases 

favorable for the event  F.  Then, 

 

    p  =  µ/n  and  q  =  m/µ 

 

because, when determining  q,  we ought to take  µ  as the number of all the possible cases. It follows that 

 

    p q  =  m/n, 

 

but  m  is the number of cases favorable for both the first and the second event and  n  is the number of all the 

equally possible cases for each of these events so that  m/n  is the probability that they both occur at the same 

time {one after another}. 

    If  r  is the probability of event  G  occurring after event  F  took place,  qr  will be the probability that the 

events  F  and  G  occur at the same time {one after another}, and  pqr, the probability of the joint occurrence 

of the three events,  E,  F  and  G.  Reasoning in this manner, we shall extend our theorem onto any number of 

events. 
    In the particular case in which the probability of event  E1  to occur after event  E  took place is  q1;  the 

probability of event  E2  to occur after event  E1  took place is  q2; etc, and, finally, in which the probability of 

event  Ek  to occur after event  Ek-1  took place is  qk;  and if  q1 =  q2  =  …  =  qk  =  p  where  p  is the 

probability of the event  E,  then the probability of the compatibility of these  (k  +  1)  events will be               p 

q1 q2 q3 … qk  =  p 
k+1

. 

 

    3.1.4. To illustrate, let us solve the following problem: Suppose that we have a vessel containing white and 

black balls and that we draw a ball, return it to the vessel, draw a ball again, etc, and repeat this operation  l  

times. It is inquired, what is the probability to extract a black ball during these trials {exactly once}. 

    We understand the word trial as such a concurrence of circumstances under which the event can take place. 

Let the probability of drawing a black ball at a trial be  p,  then (1  –  p)  is the probability that this event will 

not occur at one trial. The probability that this event will not take place at the second trial is also  (1  –  p)  

because the chances of its occurrence remain as they were previously. 

    And so, the probability that the event will not happen in two trials is  (1  –  p)
2
;  in three trials, it equals (1  –  

p)
3
, …, and in  l  trials it is  (1 – p)

l
.  Therefore, the probability that this event occurs, i.e., that the black ball 

will be extracted, is 

 

    P  =  1 – (1  –  p) 
l
. 

 

If  p  is a very small fraction, we may break off at the first term of the expansion 

 

    ln (1  –  p) 
l
  =  l ln (1  –  p)  =  l [– p  –  (p

2
/2)  – (p

3
/3)  – …] 

 

so that we will have 

 

    (1  –  p) 
l
  =  e

-l p
,  P  =  1  –  e

-l p
. 

 



    3.1.5. As a second example, we shall try to solve the following problem: Determine the probability that a 

randomly chosen fraction can be reduced. Let  A/B  be this fraction and  P,  the probability that it cannot be 

reduced. It is easy to see that this probability is composed from probabilities  p2,  p3,  p5,  …,  pm,  where  m  is 

any prime number, that  A/B  cannot be reduced by  2,  by  3, …, by  m.  Therefore, 

 

    P  =  p2 p3 p5 ... pm... 

 

    Let us determine  pm.  We shall calculate the probability that the fraction cannot be reduced by  m  if we find 

the probability that the numbers  A  and  B  are not divisible by  m.  Suppose that we divide  A  by  m; then the 

remainder can only equal  0,  1,  2, …, (m  –  1). It is seen therefore that the probability that  A  is divisible by  

m  is  1/m.  In the same way the probability that  B  is divisible by  m  is  1/m  so that  1/m
2
  is the probability 

that these events coincide, i.e., that the fraction can be reduced by  m.  Therefore   pm  =  1  –  (1/ m
2
).  Thus 

 

    P  =  [1  –  (1/2
2
)] [1  –  (1/3

2
)] [1  –  (1/5

2
)] … [1  –  (1/m

2
)]…  

 

where  m  is a prime number. It follows that 

 

    1/P  = 
)2/1(1

1
2− )3/1(1

1
2− )5/1(1

1
2−

 …  =  1  +  1/2
2
  +  1/3

2  
+ 

                       
1/4

2
  +  1/5

2
  + …   

 

and the sum of the series is  %2
/6.

1
 

    Neither is it difficult to derive this result directly. The expansion 

 

    
x

xsin
  =  [1  –  (x

2
/ %2

)] [1  –  (x
2
/ 2

2%2
)] [1  –  (x

2
/ 3

2%2
)] … 

 

is known, and we also have 

 

    
x

xsin
  =  1  –  (x

2
/6)  +  (x

4
/120)  –   … 

 

so that 

 

    ln [1  –  (x
2
/6)  +  (x

4
/120)  –   …]  =  ln [1  –  (x

2
/ %2

)]  +   

    ln [1  –  (x
2
/ 2

2%2
)]  + … 

 

or 

 

    – 
6

2
x

  + … =  –  
2

2

π

x
  –  

22

2

2 π

x
  –  

22

2

3 π

x
  –  … 

 

Therefore, equating the coefficients of the same degrees of  x  in both sides of this equality, we shall obtain, in 

part, 

 

    1+  (1/2
2
)  +  (1/3

2
)  +  (1/4

2
)  + …  =  %2

/6 

 

so that  1/P  =  %2
/6  and  P  =  6/ %2

  which is about  6/10.  If we denote the probability that the fraction can be 

reduced by  Q,  we shall have  Q  =  1 – 6/ %2
. 

    Denoting now the probability that some fraction is irreducible once it is known that it caanot be reduced by  

2,  3  or  5  by  Po,  we shall have 

 

    P  =  Po [1  –  1 (1/2
2
)][1  –  (1/3

2
)] [1  –  (1/5

2
)] 

 

and 



 

    Po  =  [6/ %2
] 

)2/1(1

1
2−
4

)3/1(1

1
2−
4

)5/1(1

1
2−

  =  
28

75

π
. 

 

But  8%2
  =  78.97  and  Po  =  75/79,  1  –  Po  =  4/79, 

 

    1/19  >   1  –  Po  >  1/20. 

 

    Thus, if the fraction  A/B  is known to be irreducible by  2,  3  and  5,  the probability that it cannot be 

reduced by other numbers either is contained between  1/19  and  1/20.
2
 

      

    Note 1. {Chebyshev refers here to his §1.3.11 where this well-known series is not even considered. He had 

not explained the transition from product to this series, but it can be found in Euler’s Introduction to the 

Analysis of Infinitesimals, Chapt. 15, §275.} 

    Note 2. {An obvious mistake: (1  –  Po)  is the probability of the contrary event. More important: It should 

have been specified that  A  and  B  with equal probabilities and independently from each other take any value 

from  #N  to  N  where  #N  is a large natural number and  N  >  $.  Bernstein severely criticized Chebyshev’s 

solution (also mentioning Markov who had followed his teacher) noting that the application of probability in 

the number theory is of a peculiar nature.See his paper The present state of the theory of probability (1928; 

translated in Deutsche Hochschulschriften 2579. Egelsbach, 1998, pp. 109 – 129 (pp. 111 – 112)). Also see 

Postnikov, A.G., �����
��	
��� 
����� 
�	�� (Stochastic Theory of Numbers). Moscow, 1974.} 

 

    3.1.6. Until now, we studied the laws which enable us to determine prior probabilities; now we shall go over 

to the laws concerning probabilities known as posterior. And we note that these laws are far from being 

distinguished by the rigor possessed by the two expounded by us {above} so that they should rather be 

regarded as hypotheses than as laws. 

    Theorem 3. Knowing that event  E  occurred, and that it could have taken place together with events  F1,  

F2, …, Fi,  whose probabilities are  P1,  P2, …, Pi,  and which are independent one from another, we shall find, 

that the probability  Q  that event  E  took place together with event  Fj,  is expressed as 

 

    Qj  =  Pj pj / (P1 p1  +  P2 p2  +  …  +  Pi pi) 

 

where  pk  is the probability of the event  E  after event  Fk  took place. 

    Let  n  be the number of all the equally possible cases for the events  F1,  F2, …, Fi,  and  mj,  the number of 

cases favorable for event  Fj.  Since the events  F1,  F2, …, Fi  are independent one from another, the number of 

cases  mj  does not include those favoring the other events. Thus,  Pj  =  mj/n.  Suppose now that among these  

mj  cases favorable for the event  Fj  there are  ,j  cases favoring the event  E,  then  pj  =  ,j/mj  and we will 

have   

 

    Qj  =  ,j / (,1  +  ,2  +  …  +  ,j  +  …  +  ,i). 

 

Substituting instead of  ,1,  ,2, … their values we obtain 

 

    Qj  =  pj mj / (p1m1  +  p2m2  +  … +  pi mi)  =   

             Pj pj / (P1 p1  +  P2 p2  +  …  +  Pi pi). 

 

    Suppose for example that we have two groups of cards,  A  and  B,  with group  A  consisting of two small 

piles, two red cards and one black card in each of them, and with group  B  being a small pile consisting only of 

three red cards. 

    Suppose now that we draw a red card  n  times in succession. It is inquired, What is the probability that the 

extracted card {cards} belongs {belong} to group  A. 
1 

We also suppose that, having put our hand in some 

group, we make all our drawings from this group; and that, after each extraction, the card is returned to the pile 

from which it was drawn. 

    In this problem, the event  F1  is the drawing of a card from group  A,  and the event  F2,  its being drawn 

from  B;  P1  is the probability that the card is drawn from group  A;  P2,  the probability of its being drawn 



from  B.  Since  A  consists of two piles and  B, of one pile, and since we consider it equally possible that any 

pile is chosen, we will have  P1  =  2/3  and  P2  =  1/3. 

    The probability of drawing a red card from group  A  is  2/3  so that the extraction of  n  red cards in 

succession from this group is  (2/3)
n
  and the probability of drawing a red card from group  B  is  1.  It follows 

that  p1  =  (2/3)
n
  and  p2  =  1.  The probability that the red card {cards} extracted  n  times belongs {belong} 

to group  A  is 

 

    Q  =  (2/3)
n
 (2/3) / [(2/3)

n
 (2/3)  +  (1/2) 1]  =  2

n+1
 / [2

n+1
  +  3

n
]   

         =  1 / [1  +  (1/2) (3/2)
n
]. 

 

It is seen therefore that with  n  increasing to infinity this probability tends to zero whereas the probability  (1  –  

Q)  that the extracted card {cards} belongs {belong} to group  B  approaches unity. 

    To provide another example let us determine the probability that an examined student who successfully 

answered  l  questions 
2
 will successfully answer the other ones as well. Let the number of questions be  N.  

The examiner supposes that the student can successfully answer  0,  1,  2, …, x, …, N  questions, and regards 

all these {implied} events,  (N  +  1)  in number, as equally possible. The probability of each of them is  1/(N  +  

1)  so that 

 

    P1  =  P2  =  …  =  PN+1  =  1/ (N  +  1). 

 

    In our case  px  is the probability that the student will answer  l  questions if it is known that he was able to 

answer  x  of them. In order to determine this probability, we note that  x/N  is the probability that under our 

condition the student will answer one {more} question. 

    However, after the card with this question is extracted, there remains  (N  –  1)  more out of which he will 

answer (x  –  1)  ones; he can draw any one of these  (N  –  1)  questions, and the probability that he will extract 

a favorable question is       

(x  –  1) / (N  –  1).  Thus, the probability that the student will answer two questions is  (x/N) (x  –  1) / (N  –  1). 

Continuing to reason in the same manner, we find that 

     

    px  =  
)1)...(2)(1(

)1)...(2)(1(

+−−−

+−−−

lNNNN

lxxxx
.                                               (ii) 

 

    Therefore, the probability that he answers  x  questions (denote it by  Qx) will be 

 

    
)1)...(2)(1(

)1)...(2)(1(

+−−−

+−−−

lNNNN

lxxxx
�

+1

0

N

)1)...(2)(1(

)1)...(2)(1(

+−−−

+−−−

lNNNN

lxxxx
. 

 

Now {formula (24) in Chapt. 2} the numerator of the sum is 

 

    
1

)1)...(1()1(

+

+−−+

l

lNNNN
 

 

and 

 

    Qx  =  
)1)...(1()1(

)1)(1)...(2)(1(

+−−+

++−−−

lNNNN

llxxxx
 

 

so that 

 

      QN  =  
1

1

+

+

N

l
. 

 

    Note 1. {As I put on record (History of theTheory of Probability to the Beginning of the 20
th

 Century. Berlin, 

2004, p. 196), Liapunov remarked that Chebyshev had sometimes wrongly used the singular form instead of 

the plural.} 



    Note 2. {Chebyshev considered questions written out on cards in advance and randomly extracted from the 

pile of cards by the students.} 

 

    3.1.7. We are now going over to the fourth law which can be considered as a corollary of the previous ones. 

It can be formulated in the form of the following theorem. 

    Theorem 4. The occurrence of event  E  is only possible together with one of the events  F1,  F2, … 

independent one from another. Then the probability  H  of event  G  which takes place after  E  occurred and 

which is also only possible together with one of the events  F1,  F2,… is determined by the formula 

 

    H  =  (P1 p1 q1  +  P2 p2 q2  +  …) / (P1 p1  +  P2 p2  +  …)  =   

            
�
�

xx

xxx

pP

qpP
                                                                         (iii) 

 

where  Px  and  px  have the same meaning as in Theorem 3  and  qx  is the probability of the event  G  under the 

hypothesis  Fx,  i.e., after  Fx  took place. 

    Supposing that the event  E occurred, the probability that it took place together with event  Fx  will be, in 

accord with the preceding theorem,   

 

    Px px / (P1 p1  +  P2 p2  +  …). 

 

But event  G  can only take place either with event  F1,  or with event  F2,…, so that the probability of its 

occurring at all is determined by formula (iii). 

    Let us consider now the following example. A student draws  l  questions and answers them successfully. It 

is inquired what is the probability of his also successfully answering the next extracted question.  

    Let  N  be the number of questions. Event  E  is the drawing of l favorable questions. Events, or, rather, 

hypotheses  F1,  F2,…, are the suppositions that the student is able to answer  0,  1,  2, …,  N  questions. It is 

assumed (certainly wrongly) that all these hypotheses are equally probable so that  Po  =  P1  =  …  =  Px  =  ...  

=  PN  =  1/(N  +  1).  The probability  px  that the student, having being able to answer  x  questions, extracts  l  

questions and successfully answers them, is expressed by the formula (ii).  

    The event  G  consists in that the student is able to answer the  (l  +  1)-th question. Its probability under the 

hypothesis  Fx  is  qx  =  (x  –  l) / (N  –  l)  so that  H,  the probability sought, will be determined by the formula 

 

    H  =  

�

�
+

+

+−−+

+−−

−+−−+

−+−−

1

0

1

0

)1)...(1()1(

)1)...(1(

))(1)...(1()1(

))(1)...(1(

N

N

lNNNN

lxxx

lNlNNNN

lxlxxx

  =  

 

             [1/(N  –  l)] 
�
�

+−−

−−

)1)...(1(

))...(1(

lxxx

lxxx
. 

 

    But we have {again cf. formula (24) from Chapt.2} 

 

    
2

))...(1()1(

+

−−+

l

lNNNN
  and  

1

)1)...(1()1(

+

+−−+

l

lNNNN
 

 

for the numerator and the denominator respectively so that 

 

    H  =  [1/(N  –  l)] 
)2)(1)...(1()1(

)1)(1)...(1()1(

++−−+

++−−+

llNNNN

llNNNN
  =  

2

1

+

+

l

l
. 

             

    Note that the probability determined by the fourth law agrees with reality (i.e., with our inner belief) as badly 

as it does when being determined by the third law. 



    We conclude here the exposition of the laws of probability and go over to its applications, and we shall 

begin with the prior probabilities; that is, with the applications of the first two laws. 

 

3.2. On Mathematical Expectation 
 

    3.2.1. We shall now consider a quantity called mathematical expectation. It, as also mathematical 

probability, presents itself when we determine the chances of some event, but in practice it is more important 

than probability itself because on its basis we form an opinion about what we may expect before some event 

takes place. 

    Suppose that  p1,  p2, …, pi  are the probabilities of incompatible events  E1,  E2, …, Ei   and that we expect 

that one of them will take place. Assume now that 

 

    a1,  a2, …, ai                                                                                          (iv) 

 

are quantities measuring these events (if, for example, the events are some gains then (iv) are their values); 

then we shall call the magnitude 

 

    a1 p1  +  a2 p2  +  …  +  ai pi  =  ? aj pj 

 

the mathematical expectation of one of these events taking place. We shall simply call this magnitude the 

mathematical expectation of quantities (iv).  

    If we have only one event,  E1,  its mathematical expectation will be  a1p1. This magnitude indeed represents 

what is usually called the mathematical expectation of quantity  a1. 

    We shall now turn to the solution of the following problem: Suppose that we have quantities  x,  y,  z, … the 

first of which can only take one of the values 

 

    x1,  x2, …, x,;                                                                                       (v) 

 

the second one, of the values 

 

    y1,  y2, …, yµ;                                                                                      (vi) 

 

and the third quantity, only one of the values 

 

    z1,  z2, …, z6, etc, 

 

and assume also that the number of values  x1,  x2, …, y1,  y2, …, z1,  z2, …, … can be indefinitely large. Then, 

we suppose that  p,  is the probability that  x  has value  x,;  qµ  is the probability that  y  has value  yµ;  r6,  that  

z  has value  z6;  etc. 

    On this basis we shall try to find the probability  P  that the sum 

 

    x,  +  yµ  +  z6  + …                                                                   (vii) 

 

is contained between certain boundaries  L  and  M  (which, as we shall see below, will not be absolutely 

arbitrary). 

    We denote the mathematical expectations of the quantities  x,  y,  z, … by  a,  b,  c, … respectively, so that 

 

    a  =  ? x,p,,  b  =  ? yµqµ,  c  =  ? z6r6, … 

 

Then, the mathematical expectations of the squares of these quantities will be  a1,  b1,  c1, …:    

 

    a1  =  ? x,
2
p,,  b1  =  ? yµ

2
qµ,  c1  =  ? z6

2
r6, … 

 

    Since, according to our supposition,  x  certainly ought to take one of the values (v);  y,  one of the values 

(vi), etc, then 

 



    ? p,  =  1,  ? qµ  =  1,  ? r6  =  1 … 

 

We shall consider now the sum 

 

    S  =  ? [x,
 
 +  yµ  +  z6  +…  – (a  +  b  +  c  + …)]

2
 p,qµr6 …             (viii) 

 

extended over all the values of  x,  y,  z, … indicated above. 

    Supposing now that 

 

    U  =  yµ  +  z6  +…  – b  – c  – … 

 

we have 

 

    S  =  ? (x,  –  a  +  U)
2
 p,qµr6 … 

 

or 

 

    S  =  ? (x,  –  a)
2
 p,qµr6 …  +  2 ? (x,  –  a) U p,qµr6 …  +  ? U 

2
 p,qµr6 … 

 

    The first term is 

 

    ? (x,  –  a)
2
 p, ? qµ ? r6 …  =  ? x,

2
 p,  –  2a ? x, p,+  a

2
 ? p,  =  a1  –  a

2
. 

 

    Since  U  does not depend on  ,,  the second term is  

 

    2 ? (x,  –  a) p,  ? U qµr6 …,  2 ? (x,  –  a) p,  =  2 ? x,  p,  –  2a ? ,  =  0.      

 

    Finally, the third term is  

 

    ? p,  ? U 
2
 qµr6 …  =  ? U 

2
 qµr6 … 

 

    And so, the sum (viii) is 

 

    S  =  a1  –  a
2
  +  ? U 

2
 qµr6 …= 

          a1  –  a
2
  +  ? [yµ  +  z6  +…  –  (b  +  c  + …)]

2
 qµr6 … 

    It is not difficult to conclude now that 

    S  =  (a1  –  a
2
)  +  (b1  –  b

2
)  +  (c1  –  c

2
)+… 

    Supposing now that 

 

    {[x,
 
 +  yµ  +  z6  +…  – (a  +  b  +  c  + …)] / t#S}  =  V,µ6… 

 

where  t  is an absolutely arbitrary quantity, we have 

 

    ? V 
2
 p,qµr6 …  =  1/t

2 

 

where the sum is extended over all the indicated values of  x,  y,  z, … 

    Decompose now this sum into three such sums that the first one, denoted by  ?1,  will extend over all the 

values of these variables for which  – $  <  V  <  – 1;  the second,  ?2,  over the values for which   

    – 1  <  V  <  1;                                                                                      (ix) 

       

and the third one,  ?3,  will extend over those values for which  1  <  V  <  + $.  We shall therefore have 

 



    [?1  +  ?2  +  ?3] V 
2
 p,qµr6 …  =  1/t

2
.  

 

    Since  V 
2
  is greater than  1  both in the first and the third sums, and since it is greater than  0  in the second 

one, we obtain, noting that all the terms are positive, 

 

    ?1  +  ?2  +  ?3  >  ?1 p,qµr6 …  +  ?3 p,qµr6 … 

 

and  

 

    ?1 p,qµr6 …  +  ?3 p,qµr6 …  <  1/t
2
.                                                     (x) 

 

    But  p,qµr6 … is the probability of the sum (vii) and the sum of these products extended over all the possible 

values of the variables  x,  y,  z, … is the probability that we will have one of the sums (vii), and this probability 

is equal to  1.  Thus, 

 

    ?1 p,qµr6 …  +  ?2 p,qµr6 …  +  ?3 p,qµr6 …  =  1. 

 

Subtracting the inequality (x) we have 

 

    ?2 p,qµr6 …  >  1  –  1/t
2
. 

 

    However; the left side is the probability that there exists one of the sums (vii) which only includes the 

quantities  x,  y,  z, ... satisfying the inequalities (ix). In other words, this side is the probability  P  that the sum  

(x  +  y  +  z  + …)  takes one of the values imparted to it by the quantities  x,  y,  z, ... leading to values of  V  

obeying inequalities (ix). We thus have 

 

    1>  P  >  1  –  1/t
2
. 

 

But the inequalities (ix) provide 

 

    |x,
 
 +  yµ  +  z6 +… – (a  +  b  +  c  + …)|  <  |t| ...)()( 2

1

2

1 +−+− bbaa  

 

    Supposing now that 

 

    L  =  a  +  b  +  c  + … –  t ...)()()( 2

1

2

1

2

1 +−+−+− ccbbaa  

    M  =  a  +  b  +  c  + … +  t ...)()()( 2

1

2

1

2

1 +−+−+− ccbbaa  

     

we come to the following conclusion: The probability  P  that the sum  (x  +  y  +  z  + …) is contained 

within the boundaries  L  and  M  is determined by the equality 

 

    P  =  1  –  &/t2
                                                                               (xi) 

 

where  &  is some positive proper fraction. 

 
    3.2.2. Suppose now that the number of the quantities  x,  y,  z, … is  n  so that (x  +  y  +  z  + …)/n  is 

their arithmetic mean. On the basis of the preceding exposition we conclude that  P  is the probability that 

the mean is confined within the boundaries  

 

    
n

cba ...+++
  +  

n

t

n

ccbbaa ...)()()( 2

1

2

1

2

1 +−+−+−
, 

    
n

cba ...+++
  –  

n

t

n

ccbbaa ...)()()( 2

1

2

1

2

1 +−+−+−
. 

 



    Assuming that  x,  y,  z, … are repetitions of one and the same event, , we will have  a  =  b  =  c  = …,  a1  

=  b1  =  c1  =  … Consequently, we find that the probability  P  that the inequalities  

 

    a  –
n

t 2

1 aa −   <  
n

zyx ...+++
  <  a  +  

n

t 2

1 aa −  

 

take place is determined by the formula (xi). 

    It is seen now that by choosing  t  we may bring  P  arbitrarily close to  1  and that, on the other hand, the 

boundaries within which the mean is confined merge at any  t  and  n  =  $  and become equal to  a.  Thus, if 

we take  t  =  n
1/6

/',  then the probability  P  that the mean is contained within the boundaries 

 

    a  –  2

1 aa − /'n
1/3

  and  a  +  2

1 aa − /'n
1/3

   

 

is expressed by the formula 

 

    P  =  1  –  '2&/n1/3
. 

 

    Since  t  is arbitrary, we may assume that  '  is some constant quantity not depending on  n,  and we will 

have 

 

    lim P n=$  =  1 

 

where the left side is the probability that 

 

    lim[(x  +  y  +  z  +  …)/n] n=$  =  a. 

 

    Since this probability is equal to  1,  we indeed infer that the limit of the mean of the quantities  x,  y,  z, … 

as their number increases to infinity is  a. 

    Here, we encounter a new concept of limit because we cannot anymore apply to our case the definition of 

limit which is usually met with in mathematics. In accord with that definition the limit is such a constant 

quantity the difference between which and the variable can be made less than any given magnitude. As a 

matter of fact, we cannot here assert this with certainty; we may only say that the probability, that the 

difference between the constant and the variable quantity can be made less than any given magnitude, has  1  

as its limit and in this instance we attribute to the word limit its usual meaning. We are now accepting this 

new definition of limit according to which we conclude about the limit of some quantity by its probability 

having  1  as its limit. 

    On the grounds of this definition we may state the inferences reached in this section in the form of the 

following theorem. 

    Theorem. The arithmetic mean of a very large number of quantities having the same mathematical 

expectations has as its limit this mathematical expectation. 

 

    3.2.3. Let us now go over to other corollaries of the results attained in §3.2.1. Especially remarkable is the 

case in which all depends on whether or not some event takes place. In this instance we consider  x,  y,  z,  … 

as the magnitudes of such events each of which has two forms: it either does not occur; or occurs. Let us 

agree to attribute to these magnitudes values equal to  0  in the first case, and to  1 in the second one, so that  

 

    x1  =  0,  x2  =  1;  y1  =  0,  y2  =  1;  z1  =  0,  z2  =  1;  etc. 

 

    Here,  p1,  q1,  r1, …{see above} are the probabilities that the first, the second; the third; … event does not 

occur, and  p2,  q2,  r2, …are the probabilities that these events take place. And, since x,  y,  z, … only take 

values  0  and  1, it follows that 

 

    a  =  0 p1  +  1 p2  =  p2;  a1  =  0
2
 p1  +  1

2
 p2  =  p2; 

    b  =  0 q1  +  1 q2  =  q2;  b1  =  0
2 

q1  +  1
2 
q2  =  q2;  etc. 

 



    Denoting now  p2,  q2,  r2, …  by  p,  q,  r, …  we have 

 

    a  =  a1  =  p,  b  =  b1  =  q,  c  =  c1  =  r,  etc. 

 

Consequently, we find that the expression (xi) is the probability that the arithmetic mean  [(x  +  y  +  z  + 

…]/n]  is contained within the boundaries 
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n
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n

qqpp ...)()( 22 +−+−
, 

    
n

rqp ...+++
  +  

n
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n

qqpp ...)()( 22 +−+−
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    It is not difficult to see that 

 

    
n

zyx ...+++
  =  

n

m
 

 

with  m  being the number of cases in which the event[s] took place, so that, like it happened in §3.2.2, we 

conclude that 

 

    lim (m/n)  =  [(p  +  q  +  r  + …]/n]. 

 

This equality expresses the following theorem. 

    Theorem. The limit of the ratio of the number of repetitions of an event to the number of trials is equal to 

the arithmetic mean of the probabilities of the events. 

    This law was discovered by Poisson and represents a generalization of the Bernoulli law which is obtained 

from the above under the assumption that  p  =  q  =  r  =  … and which therefore can be expressed by the 

equality 

 

    lim (m/n)  =  p. 

 

    This equality shows that, given a very large number of trials performed on some event with the probability 

of its occurrence remaining the same at each trial, the limit of the ratio of the number of the repetitions of 

the event to the number of the trials is equal to the probability of the event. 

 

3.3. On the Repetition of Events 
 

    3.3.1. Suppose that  n  trials are performed on some event  E  and assume at first that at each definite trial 

the probabilities of this event are different 
1
  so that  pi  is the probability that the event occurs at the i-th 

trial. We shall try now to determine the probability  Pm, n  that in these  n  trials the event took place  m  

times. Noting that this result can happen in very different ways depending on how the trials in which the 

event occurs, and does not occur, follow one another, we shall determine the probability of the event taking 

place  m  times in some definite order and calculate the sum of these probabilities which will indeed be the 

probability  Pm, n   sought.  

    Each of the terms of this sum will be composed of the quantities  p1,  p2, …,  pn  in the following way: If 

the event  E  occurs  m  times in the first  m  trials, and does not take place anymore, then this will represent 

one of the ways in which  E  can occur  m  times in  n  trials. 

    This instance may be considered as a compound event because it represents a joint occurrence of several 

events, i.e., of the event taking place at the first; at the second; …; at the m-th trial; and not occurring at the  

(m  +  1)-th; …; at the n-th trial. Therefore, the probability of this combination will be expressed as 

 

    p1p2 … pm (1  –  pm+1) (1  –  pm+2) … (1  –  pn). 

 



    The probabilities of the other combinations will be found in this way {as well}, and the sum of the 

probabilities of all the different combinations whose number is  Cn
m
  will indeed represent, as stated above, 

the probability sought,  Pm, n. 

    It is not difficult to see now that  Pm, n   is the coefficient of  t 
m
  in the expansion  

 

    (p1t  +  1  –  p1) (p2t  +  1  –  p2) … (pnt  +  1  –  pn)  =  ? Pn, k  t 
k
.      

 

This method of determining probability as the coefficient in some expansion was proposed by Laplace 
2
  and 

the function whose expansion determines the magnitudes  Pn, k   is called the fonction génératrice.  

    For the case in which the event has one and the same probability  p  of taking place in all the trials  p1  =  

p2  =  …  =  pn = p; consequently, the generating function will become  (pt  +  1  –  p)
n
  so that 

 

    Pm, n   =  Cn
m
 p

m
 (1  –  p)

n-m
.  

 

    Noting that the multiplier  p
m
 (1  –  p)

n-m
  represents here the probability that the event  E  occurs  m  times 

in  n  trials in some definite order, and that the other factor is the number of such orders, we could have also 

directly determined the probability  Pm, n   in this particular case. 

 

    Note 1. {A careless phrase.} 

    Note 2. {Simpson and Lagrange preceded Laplace.} 

 

    3.3.2. We shall now determine the probability  Pm, n   by a third method which will indicate a widely 

spread and in many cases useful trick for deriving probabilities. The trick {the method} consists in working 

out and integrating an equation in finite differences which the probability sought should satisfy.     

    For making up such an equation in the case under consideration, we note that the event  E  can only be 

repeated  m  times in  n  trials in two ways: either taking place at the n-th trial, or not. In the first case, the 

magnitude sought becomes  Pn–1 , m–1  which is the probability that the event will be repeated (m  –  1)  times 

in the first  (n  –  1)  trials; in the second instance, it becomes  Pn–1, m,  i.e., the probability that the event takes 

place  m  times in the  (n  –  1)  trials. 
1
 

    Supposing now that the probability of  E  is constant in each trial, we shall find that the probability of the 

first assumption is  p,  whereas the probability of the second, exactly contrary one, is (1  –  p).  We thus have 

the equation 

 

    Pn, m  =  p Pn–1, m–1  +  (1  –  p) P n–1, m. 

 

It includes two independent variables,  n  and  m,  and does not therefore belong to those considered in 

Chapter 2. In general, the integration of such equations presents serious difficulties, but this one can be 

integrated by means of generating functions. We shall indeed do this now, but at first we note the following. 

When integrating any equation, there appear arbitrary constants whose determination in each particular case 

is sometimes very troublesome. In the theory of probability, this determination does not present any 

difficulties because some particular cases cannot take place in virtue of the point of matter itself. Thus, in the 

expression  Pn, m  m  cannot exceed  n, so that  Pn, m  =  0  at  m  >  n  because such an event is impossible. 

For the same reason  Po, m  =  0  and  Pn, o  =  0  { ? }; again,  Pn, m  =  0  for negative values of  m  or  n. 

    Incidentally, this fact shows that in probability theory it is not necessary to consider whether some 

hypothesis is possible or not: its impossibility will lead to the vanishing of its probability and the final result 

will have such a form as though we had only regarded possible hypotheses. 

    After these remarks we shall go over to the integration of our equation. Multiplying it by  t 
m
  where  t  is 

an arbitrary quantity we have 

 

    Pn, m t 
m
  =    P n–1, m–1 pt 

m
  +  P n–1, m (1  –  p) t 

m
. 

 

Summing both sides of this equality over all possible values of  m,  i.e., from  0  to  n  inclusive, we obtain 
2
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Pn, m t
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=
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Pn–1, m–1 pt 
m
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=
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Pn–1, m (1  –  p) t 
m
.              (xii) 

 



Supposing now that 

 

    U,  =  �
+

=

1λ

om

Pn, m t 
m
   

 

we obtain 
3
  Un  for the left side of (xii). The first term on the right side will be 

 

    pt�
+

=

1

0

n

m

Pn–1, m–1 t 
m–1

  =  pt�
=

n

m 1

P n–1, m t 
m
  = 

 

    pt [Pn–1, –1 t
 –1

  +  �
=

n

m 0

Pn–1, m t 
 m

].    

 

But, as we saw,  P n – 1, –1  =  0  so that this term equals  

ptUn–1.  Then, the second term on the right side is 

 

(1 –  p) [�
=

n

m 0

Pn–1, m t 
m
  +  Pn–1, n t 

n
]  =  (1  –  p) �

=

n

m 0

Pn–1, m t 
m
   

 

because  Pn–1, n  =  0.  Therefore the second term is equal to  

(1  –  p)Um–1  and our equation becomes                      

 

    Un  =  ptUn–1  +  (1  –  p)Un–1. 

  

    We have thus the following linear equation 

 

Un  –  (pt  +  1  –  p)Un–1  =  0 

 

whose integral is, as it is not difficult to see, 

 

    Un  =  C (pt  +  1  –  p)
n
.                                                                   (xiii) 

 

    Here,  C  is an arbitrary constant which we shall determine. Note that 

 

    U1  = C (pt  +  1  –  p)  

 

which follows from the equation (xiii) and that, at the same time,  

 

    U1  =  �
=

2

0m

P1,m t 
m
  =  P1,0 t 

o
  +  P1,1 t. 

 

But  P1,0  is the probability that the event does not take place in one trial, and  P1,1, the probability that it 

occurs, so that  

 

    P1,0  =  1  –  p ,  P1,1   =  p  and  C  =  1. 

 

And so, we have the formula 

 

    �
+

=

1

0

n

m

Pn, m t 
m
  =  (pt  +  1  –  p)

n
.                                               (1) 

 

Here,  t  is absolutely arbitrary. The coefficients of the same powers of  t  in both sides of the equality should 

be equal; expanding the right side in accord with the Newton binomial, we have 

 



    Pn, m  =  Cn
m
 p

m
 (1  –  p)

n–m
.                                                    (2) 

 

    Note that at the limiting cases  of  m  =  0  and  m  =  n  this expression should not be considered literally: 

in these instances the coefficient, as it follows from the expansion, ought to be considered equal to  1,  so 

that  Pn, 0  =  1  –  p,  Pn, n  =  p 
n
. 

 

    Note 1. {Chebyshev thus changed the notation of §3.3.1. Moreover, even there he wrote either  Pm, n  or  

Pn, m  but I had then standardized this.} 

    Note 2. {Chebyshev did not pay due attention to the boundaries of the sums below; he apparently acted in 

the spirit of his own remarks formulated just above.} 

    Note 3. We take the quantity  pt  out of the sign of summation because it does not depend on the variable  

m  with respect to which the summation is carried out. Indeed,  p  is constant whereas  t  is an arbitrary 

quantity which we also assume independent from  m.    

 

    3.3.3. Let us derive now the Bernoulli law by issuing from equation (1). Differentiating it with respect to  t  

we find that 
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    Assume now that in equation (1) and in these two equations  t  =  1. We obtain  
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From the last two equations we find that 
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and therefore 
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where  s  is an arbitrary number. Hence 
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    Denote the fraction in brackets by  A  and assume that 

 

    –$  <  A  <  – 1  for  0  3  m  <  µ  +  1, 

    –1  <  A  <  1  for  µ  +  1  3  m  <  6  +  1, 

    1  <  A  <  + $  for  6  +  1  3  m  �  n  +  1, 

 

then 
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But we have 
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so that, taking into account the inequality (xiv), 
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    The left side of this inequality is the probability that in  n  trials the number of repetitions of the event is 

contained within the boundaries  (µ  +  1)  and  [6  +  1);  or, the probability that 
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  <  1.                                                                    (3) 

 

Denoting it by  �  we obtain 

 

    1  >  �  >  1  –  
2

1

s
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    The inequality (3) provides 

 

    pn –  s npp )1( −   <  m  <  pn  +  s npp )1( −  

 

so that  

 

    p  –  (s/�n) )1( pp −   <  m/n  <  p  +  (s/�n) )1( pp − . 

 

    It is seen now that the boundaries within which  m/n  is contained merge at  n  =  $  and become  p  whereas 

the probability that  m/n  is contained within them is represented by the formula 

 

    �  =  1  –  &/s2
   

 

where  &  is a proper fraction and  s, an arbitrary number. It is seen that this probability may be made arbitrarily 

close to  1,  and we conclude that 

 

    lim (m/n) n=$  =  p. 

 

    In this case, the limit has that special meaning which we discussed in §3.2.2. We thus arrived at the 

Bernoulli law. Our derivation was based on the value of the sum   
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Note that that sum can also be determined otherwise. Suppose that in equation (1)  t  =  e
'
  and multiply both 

its sides by  e
–'pn

  to obtain 
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    However, 
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    Therefore 
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    3.3.4. Let us now go over to another problem. We shall try to determine the most probable number of 

repetitions of an event in a definite number of trials. The problem is reduced to the derivation of the value of  m  

at which  Pn,m  becomes maximal for given values of  n  and  p.  

    Let  µ  be the sought value of  m.  For  Pn,µ  to be maximal, conditions 

Pn,µ–1  3  Pn,µ,  Pn,µ+1  3  Pn,µ  are necessary. We have however 
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and our conditions become 
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    It follows that 

 

    (1 –  p) µ  3  p (n  –  µ  +  1),  p (n  –  µ)  3  (1  –  p) (µ  +  1), 

    µ  3  p (n  +  1),  p (n  +  1)  –  1  3  µ.   

 



    We ought to consider now two cases: either  p (n  +  1)  is a fraction or an integer. In the first instance 

equalities are impossible. Issuing then from the inequalities 

 

    p (n  +  1)  –  1  <  µ  <  p (n  +  1) 

 

we obtain 

 

    µ  =  E [p (n  +  1)].                                                                 (xv) 

 

    In the second case 

 

    µ  3  p (n  +  1),  µ  >  p (n  +  1)  –  1,  µ  =  p (n  +  1),  µ  <  p (n  +  1)   

 

so that we get two solutions 

 

     µ1  =  p (n  +  1)  –  1,  µ2  =  p (n  +  1) 

 

and the corresponding values of  Pn,µ  will both be maximal. Note that if  n,  m  and  (n  –  m)  are very large 

numbers, we may approximately assume  np  as the value imparting the maximal value to  Pn,µ.  In the sequel, 

we shall therefore assume  Pn,np  as the maximal value of  Pn,m. 

 

    3.3.5. Applying the Stirling formula we can write the following approximate equality 
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    After reductions, we will have 
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    For the maximal value we have approximately  m  =  np,  n  –  m  =            (1  –  p)n  so that this value will 

be 

 

    Pn,np  =  
npp  )1(  2

1

−π
.                                                                          (5)   

 

    Issuing from (4), let us find now the most probable number  m.  Since this formula represents an 

approximate expression for  Pn,,m  for very large values 

of  n,  m  and  (n  –  m), and since we neglect proper fractions as compared with these numbers, we may 

consider  m  as a quantity changing continuously and, consequently, as being able to take fractional values. 

Indeed, supposing that  m  has some very large integral value, and adding to it any proper fraction and 

calculating the probability  Pn,,m  by formula (4) for both cases, we will obtain results very little differing from 

each other if only  m  differs from  np  by a finite magnitude or by an infinite magnitude of an order lower than  

1  with respect to  n. 



    Accordingly, when determining the most probable number  m  which makes  Pn,,m  maximal, we may act in 

accord with the rules of the differential calculus. From equation (4) we have 

 

    ln Pn,,m  =  (1/2)ln n  –  (1/2) ln (2%)  –  (1/2) ln m  –  (1/2) ln (n  –  m)  + 

    m ln np  –  m ln m  +  (n  –  m) ln [n (1  –  p)]  –  (n  –  m) ln (n  –  m) 

 

so that 

 

    (1/ Pn,,m) dPn,,m /dm  =  – (1/2m)  +  1/[2(n  –  m)]  +  ln np  –  ln m –  1  – 

    ln [n (1  –  p)]  +  ln (n  –  m)  + 1. 

 

    In order to determine the most probable  m  we thus obtain the equation 
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.                                                        (6) 

 

It cannot be solved exactly and we will therefore solve it approximately, especially because the strict solution 

is not here important for us: the equation (4) itself can only provide an approximate value of  m. 

    Noting that for very large  n,  m  and  (n  –  m)  of the same order, the magnitude  (n  –  2m)/[m (n  –  m)]  

becomes very small (because its numerator is of the first order and its denominator, of the second order with 

respect to these numbers), we may neglect this fraction in the first approximation and obtain 

 

    ln[m/(n – m)]  =  ln[p/(1  –  p)],  m  =  np. 

 

    It is seen now that in the first approximation we arrived at the same magnitude as before {cf. (xv)} 

 

    m  =  E [p (n  +  1)]  =  np  +  & 
 

where  &  is a proper positive or negative fraction. 

    For the second approximation we shall substitute in equation (6), in its first term on the right side, the just 

obtained value of  m  instead of that letter. This will provide the equation 
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or 
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so that  
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 ] 

 

and 

 

    m  =  np exp [ – 
npp
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    Neglecting the higher powers of the expression  (1  –  2p) / [p (1  –  p) n]  beginning with its square, we may 

substitute  
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so that 
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and approximately 

 

    m  =  np  –  (1  –  2p)/2. 

 

    3.3.6. Issuing now from formula (4), we shall search for the probability that, for very large values of  n,  m  

will very little differ from  np. Suppose that   

 

    m  =  np  +  z.                                                                                              (7) 

 

    We derived formula (4) under the assumption that  m,  n  and  (n  –  m)  were very large numbers, and we 

ought to apply it under the same condition concerning  z  as well if the last quantity is considered separately 

and by itself. However,  z  can be very small as compared with  n.  We shall suppose that it has the same order 

as  #n,  then it will indeed possess the properties indicated above. 

    Applying expression (7), we have 
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    )]/(1)][/([ 2 2
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Neglecting a very small magnitude  z/n,  we obtain 
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so that 
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    We then have 
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and 
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    However, the term  (z
3
/n

2
p

2
)  and the following ones are very small magnitudes because, assuming that  z  =  

a#n,  we have 
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    It is seen now that for  µ  >  2  the first fraction in the left side is a very small magnitude (at  µ  =  2  it is 

finite). Therefore, neglecting these small terms, we get 
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Acting in the same way with the other multiplier in formula (4) we obtain it in the form 
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    The logarithm of that multiplier will be 
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and therefore 
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so that 

 

    Pn,m  =  
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    We shall now search for the probability that  z  is contained within some boundaries which is tantamount to 

determining the similar probability concerning  m.  Calling these boundaries  L  and  M,  denoting the 

probability sought by  �  and supposing that  m  increases to the upper boundary not inclusively, we obtain 

 

    �  =  Pn,L  +  Pn,L+1  +  Pn,L+2  +  …  +  Pn,M–1   

 

so that   
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    However, we have in general     
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2
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In the case under consideration this will assume the form 
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    But, for very large values of  n,  the quantities 
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are very small whereas 

 

    exp {– 
npp

npm

 )1( 2

)( 2

−

−
}                                                                               (xvi) 

 

is always finite as also is the product of its integral by  
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see below. Therefore, neglecting the terms consisting of the product of the indicated magnitudes by (xvi) we 

have 
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    Substituting now 
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we obtain 
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so that 

 

    L  =  np  +  to npp  )1( 2 − ,  M =  np  +  t1 npp  )1( 2 − . 

 

    And so, the probability that  m  is contained within  L  and  M  is determined by the formula (9). Especially 

remarkable is the case in which   

to  =  – u,  t1  =  u.  Then 
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is the probability that  m  is contained within the boundaries 
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or that  [(m/n)  –  p]  is contained within 
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    We have however 
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exp (– t
2
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and therefore the left side of formula (10) tends to  1  as  n  increases to infinity. Nevertheless, for any  u  the 

boundaries, within which  [(m/n)  –  p]  is contained, draw together as  n  increases  and vanish  {coincide} at  n  

=  $.  We conclude therefore, as we did before, that 

 

    lim (m/n)  =  p. 

 

    3.3.7. We shall now calculate the integral 
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so as to show how rapidly its values approaches  #%/2  as  u  increases. We have 
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so that 
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9
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    We have thus expressed this integral by a series very rapidly converging at a small  u  and therefore very 

convenient for calculations under this condition. However, the case in which  u  is large is especially important 

for us whereas this series then converges very slowly and we ought therefore to turn to another method of 

calculating the integral (11). We note that 
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and we shall now indeed turn to calculating the integral 
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It is equal to 
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    Consequently integral (xvii) equals 
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    Since  u  and the integrals as well are here positive quantities, we conclude that  
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and we can therefore arrive at 
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where  &  is some proper fraction. And so, 
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    Issuing from the inequalities (xiii) we can also obtain a more precise formula because it follows from them 

that 
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This expression provides 
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    We see now that the probability sought very rapidly approaches  1  as  u  increases.  

 

    3.3.8. We shall now determine that limiting series by whose means the integral (xvii) can be expressed. 

Integrating by parts, we get 
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    We may now conclude by analogy that         
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    Let us substantiate this formula. Substituting 
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and denoting by  Rn+1  the remainder of the series (13) beginning with the term following after  vn+1,  we arrive 

at 
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    This indeed justifies the series (13). 

 

    3.3.9. Until now, we determined the probability of some number of repetitions of an event in a certain 

number of trials given the probability of the event occurring in one trial. Now we go over to the solution of the 

inverse problem: Knowing that in a certain number of trials an event occurred some number of times, we will 

determine the (posterior) probability that it takes place in one trial. More precisely, we will derive the most 

probable boundaries within which this probability ought to be contained. We shall have to assume that all the 

hypotheses that can be made concerning this probability are equally probable.  

    Suppose that the number of these hypotheses is  N  and that the  probabilities that the event occurs in one 

trial are  0/N,  1/N,  2/N, …,  ,/N, …        (N  –  1)/N  respectively. In this case we have  P1  =  P2  =  …  =  PN  

=  1/N. Denoting the recorded number of the repetitions of the event in  n  trials by  m  we obtain  
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    Denoting the sought probability that the event occurs in one trial by  p,  we shall search for the probability  S  

that  p  is contained within the boundaries 

po  =  µ/N  and  p1  =  µ1/N.  Since 
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                                                                                                                       (14) 
    The most remarkable is the case in which  p,  can assume all possible values. We shall indeed go over to this 

instance by assuming that  N  =  $.  The equation (14) will accordingly become 
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For example, let us assume that an event occurred once in three trials, and we shall search for the probability 

that  p  is contained within the boundaries  0  and  1/2.  In this case we obtain 
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And so, the probability sought is  11/16.  It was possible to foresee that it will be higher than  1/2. 

    Formula (15) can be modified. To this aim, note that 
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    Equality (15) can therefore be presented in the following form 
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        3.3.10. We shall now suppose that the difference  (p1  –  po)  is a very small given magnitude and we shall 

search, under this condition, where should we choose this interval so that the probability  S  be maximal. 

Denoting 

 

    (p1  –  po)  =  2:,  (p1  +  po)/2  =  2 

 

with  :  assumed to be very small, we obtain  
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    Note now that if  [AB]  is some mean value of  A  and  B,  then, in general, 
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Going over to the limit as  :  =  0, we have 
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    Let us find now the maximal value of this expression. We will have the equation 
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It has roots  0,  1  and  m/n.  the first two of them transform the expression   
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  into zero; and, since it is positive for any  2,  the root  m/n will make it maximal so that the 

expression 
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will also become maximal. 

    And so, the most probable boundaries of the probability sought are 

 

    po  =  m/n  –  :;  p1  =  m/n  +  :. 

 

    3.3.11. We shall now search for the probability that  p  is contained within the boundaries  po  and  p1  very 

little differing from  m/n.  Let 

    

    po  =  m/n  +  zo  and  p1  =  m/n  +  z1   

 

where  zo  and  z1  are so small positive or negative quantities that their squares may be neglected. And we will 

assume that m,  n  and  (n  –  m)  are very large numbers. Applying the Stirling theorem we obtain 

 

    n!  =  π2 n
n+1/2 

e 
–n

,  m!  =  π2 m
m+1/2 

e 
–m

, 

    (n  –  m)!  =  π2 (n  –  m) 
n–m +1/2 

e 
–n+m

. 

 

Consequently, formula (16) provides 

 

    S  =  (1/ π2 ) 
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+
mnm

n

mnm

nn
 �

1

0

p

p

x
m
 (1  –  x)

n-m
 dx. 

 

    Noting now that  (n  +  1)  =  n [1  +  (1/n)]  and neglecting the very small quantity  1/n,  we obtain 

 

    S  =  (1/ π2 ) 
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)( +−+

+

− mnm

n
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1
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p
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x
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n-m
 dx. 

 

    Set  x  =  [(m/n)  +  z], then 

 

    S  = 
)(  2
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n

−π �
1

0

z

z

[1  +  (nz)/m] 
m
 {1  –  [(nz)/(n  –  m)]}
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 dz. 



 

But we have 
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Therefore, neglecting terms with higher powers of  z,  we obtain 

 

    S  = 
)(  2
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−π �
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z
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)( 2
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−
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    Denoting  

 

    
)( 2

23

mnm

zn

−
  =  t 

2
 

 

we transform this expression to 

 

    S  =  (1/#%) �
1

0

t

t

exp (– t
2
) dt                                                                       (17) 

 

where 

 

    to  =  
)( 2

2/3

mnm

n

−
zo,  t1  =  

)( 2

2/3

mnm

n

−
z1.   

 

    And so, the probability that  p  is contained within the boundaries  

 

    (m/n)  +  to
3/)( 2 nmnm − ,  (m/n)  +  t1

3/)( 2 nmnm −     

  

will be determined by the formula (17). If  to  =  – u,  t1  =  u,  this formula becomes 

 

    S  =  (2/#%) �
u

0

exp (– t
2
) dt.                                                                       (18) 

 

    When  u  is somewhat considerable (for example, larger than  2), the value of the integral will be very close 

to  (#%/2)  and the probability will therefore be very close to  1.  But, on the other hand, for very large values of  

n  the boundaries within which  p  is contained will be very close to each other and very little differ from  m/n;  

we may therefore say that at  n  =  $  the limit of  p  is  m/n. 

 

   3.3.12. We are now going over to the solution of a new problem concerning the repetition of events. Suppose 

that in  n  trials an event occurred  m  times. It is required to form a conclusion about the probability that in  k  

{further} trials it will take place  l  times. The solution of this problem is based on Theorem 4.  

    Suppose that the probability  p  that the event occurs in one trial can only take values  0/N,  1/N,  2/N, …,  

,/N, …,  (N  –  1)/N indeed representimg the different hypotheses under which the studied event can occur. We 

assume now that all these hypotheses have equal probabilities (an assumption for which there are no grounds) 



and since their number is  N  with one of them certainly taking place, the probability of each will be  1/N.  And 

so,  Po  =   

P1  =  …  =  PN–1   =  1/N  and 

 

    p,  =  Cn
m
 (,/N) 

m
 [1  –  (,/N)] 

n–m
,  q,  =  Ck

l
 (,/N) 

l
 [1  –  (,/N)] 

k–l
. 

 

    Therefore, denoting the probability sought by  Hk,l  we have 

 

    Hk,l  =  (1/N) �
=

N

0λ

p, q,  ÷  (1/N) �
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N
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    Ck
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 [1  –  (,/N)] 
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   = 

    Ck
l

�
1

0

x
m+l 

(1  –  x)
n–m+k–l

 dx  ÷  �
1

0

x
m 

(1  –  x)
n–m

 dx                               (19) 

 

if  p  can take all possible values from  0  to  1  for which we should assume that  N  =  $. 

    As an example, we shall solve such a problem. In  n  trials an event occurred all the time; to find the 

probability that it will take place at the         (n  +  1)-th trial as well. In this case, we should assume that  m  =  

n,  k  =  l  =  1  so that 

 

    H1,1  =  �
1

0

x
m+1

dx  ÷  �
1

0

x
m
dx  =  (m  +  1)/(m  +  2). 

             

    Formula (19) can be modified when noting that  
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1

0

x
,–1 

(1  –  x)
µ–1

 dx  =  / (,) / (µ) / / (,  +  µ) 

 

and that, for an integer  n,  / (n)  =  (n  –  1)!.  We therefore obtain   
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0

x
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and consequently 

 

    Hk,l  =  
)!( ! )!1( )!( !

)!1( )!( )!( !

mnmknlkl

nlkmnlmk

−++−

+−+−+
.                                                (20) 

 

    3.3.13. We shall now find the value of  l  which makes the probability  Hk,l  maximal. Calling this value  ,,  
we ought to have 

 

    Hk,,  �  Hk,,–1  and  Hk,,  �  Hk,,+1  or   

    Hk,, / Hk,,–1  =  1  and  Hk,, / Hk,,+1  =  1.                                                    (21) 

 

    If one of these conditions were satisfied by an equality sign, we would have obtained two values for  l:  ,  
and  (,  +  1)  or  (,  –  1)  and  ,.  Applying formula (20) we get 
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and the conditions (21) will become 

 

    (m  +  ,) (k  –  ,  +  1)  =  , (n  –  m  +  k  –  ,  +  1), 

    (,  +  1) (n  –  m  +  k  –  ,)  =  (m  +  ,  +  1) (k  –  ,) 
 

so that 

 

    ,  3  m (k  +  1) /n,  ,  =  [m (k  +  1) /n]  –  1. 

 

    Consequently, if   

 

    [m (k  +  1)/n]                                                                                          (xix) 

 

is a fraction, we arrive at a single solution 
1
 

 

    ,  =  E [m (k  +  1)/n] 

 

If, however, (xix) is an integer, we obtain two solutions 

 

      ,1  =  [m (k  +  1) /n],  ,2  =  [m (k  +  1) /n]  –  1. 

 

It is seen now that in general 

 

    ,  =  (m/n) k  +  (m/n)  –  &  =  (m/n) k  ±  &1 

 

where  &  and  &1  are proper fractions. Assuming that  m,  n  and  k  are very large numbers we may therefore 

say that to within  1  the most probable number of the repetitions of the event is  mk/n. 

 

    3.3.14. We shall now assume that  m,  n,  k  and  l,  (n  –  m)  and  (k  –  l)  are very large numbers. Under this 

assumption we shall find the probability Hk,,  of the most probable number of repetitions of an event in  k  trials 

given the number  m  of its occurrences in  n  trials. To this aim we shall apply the formula (20) which we 

transform by the Stirling formula 

 

    x!  =  xπ2 x
x
 e

–x
. 

 

    We have {Chebyshev writes out this formula for  k!,  (m  +  l)!, 

(n  –  m  +  k  –  l)!,  (n  +  1)!,  l!,  (k  –  l)!,  (n  +  k  +  1)!,  m!  and             (n  –  m)!}.  Therefore 
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    Noting that  k  =  l  +  (k  –  l)  and  n  =  m  +  (n  –  m), and that  n  and  k  are very large, so that instead of 

(n  +  1)/(n  +  k  +  1)  we may take            n/(n  +  k),  we have  
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    In this formula, we may attribute to  l  not only integer, but fractional values as well. Therefore, substituting 

the most probable number  mk/n  determined above instead of  l,  we will indeed obtain  Hk,,,  the probability 

sought. But we have 
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    Therefore, 
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The numerator of this expression is of degree  3/2  with respect to the letters  n,  k,  m  and  l,  and the 

denominator, of degree  2.  It follows that for very large values of these magnitudes the considered probability 

is very low. 

 

    3.3.15. We shall now search for the probability that  l  very little differs from  ,  =  mk/n.  Let  l  =  mk/n  +  

z  where  z  is assumed very small as compared with numbers  m,  n,  k  and  ,  so that it can be neglected with 

regard to them.  Denote also  m/n  =  2,  k/n  =  6,  then 

 

    m  =  n2,  l  =  2n6  +  z,  n  –  m  =  n (1  –  2),  k  –  l  =  n6 (1  –  2)  –  z, 
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    Therefore {cf. (xx)} 
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    Noting now that  z  is very small as compared with  n,  we may neglect it in the multipliers under the radical 

sign of this expression. Accordingly, after reductions the expression will become 
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Denoting the other multiplier in the expression for  Hk,l  by  K  we obtain 
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    And so,  
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But then 

 

    ln [denominator]  =  (n26  +  z) {[z/n26]  –  [z
2
/2n

22262
]  + …}  + 

    [n(1  –  2) 6  –  z] {[z/ n (1  –  2) 6]  –  [z
2
/2n

2 
(1  –  2) 62

]  – …}  = 

    z  +  z
2
 [(1/ n26)  –  (1/2n26)  + …]  –  z  + 

   z
2
 [1/ n (1  – 2) 6]  –  1/[2n (1  – 2) 6]}  + …  =  z

2
/[2n (1  – 2) 6 2].                      

 

    In the same way 

 

    ln [numerator]  =  z
2
/[2n (1  + 6) 2 (1  –  2)]. 

 

Therefore, neglecting the other terms which are very small when the order of  z  is not higher than  #n,  we 

arrive at 
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and, consequently, 
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    The probability that  l  is contained within the known boundaries  L  and  M  (denoted by  �)  will be 

expressed through the sum of the values of  Hk,l extended between these boundaries. Acting in the same way as 

we did in §3.3.6, we will find that this sum can be replaced by an integral (given the degree of precision with 

which we make all our calculations). Thus, we obtain 
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    Substituting now 
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we shall have 
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where 

 

    uo  =  [L  –  (mk/n)] ÷ )1()1(2 ρρνν −+n ,     

    u1  =  [M  –  (mk/n)] ÷ )1()1(2 ρρνν −+n .  

 

    Consequently, substituting the values of  6  and  2,  we get 

 

    L  =  (mk/n)  +  uo 3
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The most remarkable case is the one in which  uo  =  – t  and  u1  =  t.  Then, denoting  
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we have   
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and 
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    For a somewhat considerable  t  the right side of (23) differs little from  1  so that it is very probable that  l  is 

contained within the boundaries 
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This conclusion can be expressed in the form of the following theorem: 

    Theorem. Formula (23) determines the probability of the existence of the inequalities 

 

    (m/n)  –  t )]/1()/1)][(/(1)[/2( knnmnm +−   <  l/k  < 

    (m/n)  +  t )]/1()/1)][(/(1)[/2( knnmnm +− .                                        (24) 

 

    Issuing from here, we can arrive at the results already reached before and contained in (24) as particular 

cases. Assuming that  n  =  $  and noting that  lim (m/n)  =  p, we find that 
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    We thus obtain the result achieved in §3.3.6. Supposing that  k  =  �  we will find that 
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which is a result gotten in §3.3.11. 

 

    3.3.16. We now go over to considering the case in which the probability  p  that an event occurs in one trial 

is different in different trials. Suppose that p1,  p2, …,  pn  are the probabilities that the event takes place in the 

first, the second, …, the  n-th trial. In this case, as we saw, the probability  Pn,m  that the event occurs  m  times 

in  n  trials will be the coefficient of  t
m
  in the expansion  
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    Issuing from this equation
1
 we may express the probability  Pn,m  by a definite integral. Indeed, as we know 

from Chapt. 1 {§1.4.1}, if a function      f (x)  can be expanded into a series 
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the coefficient  Am  of this series will be determined by the formula 
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    Therefore, substituting  m  =  n  +  1,  we have 
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    We shall show now that the integrand is a noticeable quantity at all only at values of  *  close to  0.  To this 

end note that 
 

    p1e
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so that         
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where the sign of equality corresponds to the value  *  =  0.  The number  n  is supposed to be very large; 

consequently, only those elements of the integral (25) will be significant whose modulus is {whose moduli 

are} very close to unity, i.e. those which correspond to the values of  *  close to zero. Therefore, when 

approximately calculating the probability  Pn,m, we shall neglect the powers higher than the second one in the 

power series of *.  We have however  

 



    ln (p1e
�i

  +  1  –  p1)  =  ln [p1(1  +  *i  –  *2
/2  – …) +  1  –  p1]  = 

   ln [1  +  p1*i  –  pi*
2
/ 2  + …]  =  p1*i  –  p1*

2
/ 2  –  [p1*i  –  (p1*

2
/2)]

2
/2 … 

    =  p1*i  –  (p1/2) (1  –  p1)*
2
  + …             

 

so that denoting 

 

    p1  +  p2  +  …  +  pn  =  nq,  p1(1  –  p1)  +  …  +  pn(1  –  pn)  =  nQ, 

 

we can replace formula (25) by the following approximate expression 

 

    Pn,m  =  (1/2%) �
−

π

π

exp [nq*i  –  (nq/2)*2
  –  m*i]d*  = 

    (1/2%) �
−

π

π

exp [– (nq/2) *2
] {cos [nq  –  m) *]  +  isin [nq  –  m) *]} d*. 

 

    And since      

 

    �
−

π

π

exp [– (nq/2) *2
] sin [nq  –  m) *] d*  =  0 

 

it follows that  

 

    Pn,m  =  (1/2%) �
−

π

π

exp [– (nq/2) *2
] cos [nq  –  m) *] d*  = 

    (1/%) �
π

0

exp [– (nq/2) *2
] cos [nq  –  m) *] d*. 

 

    We assumed that  n  was very large; therefore, neglecting the magnitude of the second integral taken from  %  

to  $,  we get   

 

    Pn,m  =  (1/%) �
∞

0

exp [– (nq/2) *2
] cos [nq  –  m) *] d*. 

 

But we have 

 

    �
∞

0
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2
) cos bx dx  =  (1/2) a/π exp [– b
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and therefore 

 

    Pn,m  =  (1/2%) nQ/2π exp [– (nq  –  m)
2
/2nQ]  = 

    
π2

1

nQ

1
 exp [– (nq  –  m)

2
/2nQ].                                                       (25�) 

 

    It is seen now that the maximal probability corresponds to the case in which 

 

    m/n  =  q  = ( p1  +  p2  +  …  +  pn)/n. 

 

Denoting the probability that  m  is contained within the boundaries  L  and  M  by  �  and supposing that the 

numbers  n,  m  and  (n  –  m)  are very large, we obtain the following approximate formula: 



 

    �  = �
M

L π2

1

nQ

1
 exp [– (m  –  nq)

2
/2nQ] dm. 

 

    Introducing 

 

    (m  –  nq) / nQ2  =  t,  (L  –  nq) / nQ2   =  to,  (M  –  nq) / nQ2   =  t1, 

 

we transform this formula thus: 

 

    �  =  (1/#%) �
1

0

t

t

exp (– t
2
) dt.                                                                      (26) 

 

    If  p1  =  p2  =  …  =  pn =  q  formula (9) is derived from here as a particular case. When  to  =  – u  and  t1  =   

u  formula (26) becomes  

 

    �  =  (2/#%) �
u

0

exp (– t
2
) dt                                                                      (27) 

 

which is the probability of the existence of the inequalities 

 

    q  +  u nQ /2   >  m/n  >  q  –  u nQ /2 . 

 

    Since their probability for somewhat considerable values of  u  is very close to  1, and, on the other hand, 

since for a very large  n  the boundaries within which  m/n  is contained differ very little from  q  and become 

equal to it at    n  =  $, we may say that 

 

    lim (m/n) n  =  $  =  q  =  ( p1  +  p2  +  …  +  pn)/n. 

 

This is the essence of the law of large numbers first proved and formulated by Poisson {cf. §3.2.3}. 

 

    Note 1. {Concerning the boundaries of the sum above and the one below see Note 2 in §3.3.2.} 

 

    3.3.17. Let us go over now to the issue about the repetition of several events. Let  A1,  A2, …, Al  be different 

events one of which certainly takes place in each trial. Therefore, denoting their probabilities by 

 

    p1,  p2, …,  pl                                                                                             (xxi) 

 

respectively, we have  p1  +  p2  +  …  +  pl  =  1.  We assume that two different events cannot occur in the 

same trial and that the probabilities of each given event are the same in each trial so that the probability of 

event  Ai  is  pi  both in the first, and in any  k-th trial.  

    Suppose that in  n trials the event  Ai  occurred  mi  times, then  

 

    m1  +  m2  +  …  +  ml  =  n. 

 

We will search for the probability  P  that in  n  trials the event  A1  occurs  m1  times;  the event  A2,  m2  times; 

…; and the event  Al,  ml  times. The probability sought may be considered as the probability of an event having 

several incompatible forms; it is therefore equal to the sum of the probabilities of each of these forms. One of 

them is that in the first  m1  trials the event  A1  was repeated  m1  times but the events  A2,  A3, …, Al  did not 

then take place; that in the following  m2  trials the event  A2  occurred  m2  times, but the events  A1,  A3, …, Al  

did not then occur; and, finally, that in the last   ml  trials the event  Al  was repeated  ml  times but the events  

A1,  A2, …, Al–1  did not take place. Since we supposed that the probabilities (xxi) were constant, the probability 

of the considered form will be 



 

    lm
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ppp ...21

21 . 

 

    However, owing to the same condition, this will also be the probability of each of the other forms. And there 

will be as many forms as there are possible combinations of  n  elements containing  l groups of identical 

elements,  m1  of them in one group,  m2  of them in another one, etc. Therefore, the probability sought will be 

expressed in the following way 

 

    P  =  
!!...!

!

21 lmmm

n
lm

l

mm
ppp ...21

21 .                                                             (28) 

 

    Neither is it difficult to convince ourselves that the probability sought can be determined as the coefficient of 
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in the expansion  

 

    (p1t1  +  p2t2  + … +  plt)
n
 

 

so that we may assume that 

 

    (p1t1  +  p2t2  + … +  plt)
n 

 =� P lm

l

mm
ttt ...21

21 .                                       (29) 

 

From this equality we can also obtain the expression (28) for the probability sought. 

    If the events  A1,  A3, …, Al  are determined by some numerical magnitudes, so that the event  Ai  is 

determined, for example, by the magnitude of the function  & (i),  then formula (29) can serve for solving the 

problem about the probability that in  n  trials the sum of these magnitudes will take a value  s  given 

beforehand. Thus, if the event  Ai  is the drawing of a card with number  i,  the problem might consist in 

determining the probability that the sum of the numbers on the cards extracted in  n  trials equals  s.       

    For solving this problem we assume that  ti  =  t
 & (i)

  so that formula (29) is transformed into 
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Since the probability sought is equal to the sum of all the probabilities for which  mi  satisfy the conditions 

 

    m1  +  m2  +  …  +  ml  =  n,  m1 &(1) +  m2 &(2) +  …  +  ml &(l)  =  s, 

 

the preceding equality shows that the probability sought is the coefficient of  t
s
  in the expansion of the 

expression  

 

    [p1 t
& (1)

  +  p2 t
& (2)

  + … +  pl t
& (l)

]
n
. 

 

    Here, the most remarkable is the particular case in which  & (x)  =  x  so that, consequently, the probability 

sought that 

 

    m1 1 +  m2 2 +  …  +  ml� l  =  s 

 

is determined as the coefficient of  t
s
  in the expansion of the expression 

 

    [p1 t  +  p2 t
2
  + … +  pl t 

l
]

n
. 

 

    If we denote the probability considered by  Ps,  then, in the general case, we will have 

 

    � Ps t
s
  =   [p1 t

& (1)
  +  p2 t

& (2)
  + … +  pl t

& (l)
]
n
                                       (30) 



 

whereas in the particular case indicated above this formula becomes 

 

    � Ps t
s
  =  [p1 t  +  p2 t

2
  + … +  pl t

l
]

n
.                                                 (xxii) 

 

    Suppose now that the events  Ai  are equally probable, i.e., that  p1  =  p2  =  …  =  pl.  Then  pi  =  1/l  for any  

i.  In this case the formula derived (xxii) will be 

 

    � Ps t
s
  =  (t

n
/l

n
) [1  +  t  +  t

2
  + … +  t

l–1
]
n
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    (t
n
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n
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n
.                                                                           (31) 

 

    Issuing from formula (31) we can indeed calculate the probability  Ps  that the sum of the magnitudes 

determining the events occurring in  n  trials (in this case, the sum of the numbers corresponding to the events 

taking place in these trials) is equal to a given magnitude  s. 

 

    3.3.18. We shall now show how to obtain, when issuing from formula (31), the expression for the probability  

Ps  as some series. The problem is reduced to the determination of the coefficient of  t
s–n

  in the expansion of 

the expression 
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l
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n
/(t  –  1)]

–n                                                                                                                         
(xxiii) 

 

in powers of  t.  But we have 
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l
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n
  =  t

ln  
–  (n/1!) t

l (n–1)  
+  [n(n  –  1)/2!] t

l (n–2)  
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    (t  –  1)]
–n

  =  t 
–n  

+  (n/1!) t 
–n–1  

+  [n(n  +  1)/2!] t 
–n–2  

+ …  + 

    [n (n  +  1) … (n  +  ,  –  1)/,!] t –n–,  
+  …                                             (xxv)  

 

    Denoting  l(n  –  i)  –  (n  +  ,)  =  s  –  n  we obtain  ,  =  l(n  –  i)  –  s.  Inserting this value of  ,  in the 

expression for the general term of the series (xxv) and making  i  consecutively  equal to  0,  1,  2, … we will 

obtain in this expansion all the possible terms, which, being multiplied by the first, the second, the third, … 

term of the series (xxiv), will provide terms including    t
s–n

.  We thus multiply the term number  i  in (xxv) by 

the  (i  +  1)-th term in (xxiv).  

    It is seen now that the sum of the terms of the product of (xxiv) and (xxv) containing  t
s–n

  will have the form 
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where we ought to take all the values of  i  from  0  to  n  inclusively although under the conditions that the first 

factor be replaced by  1  at  i  =  0  and the second factor, by  1  at  i  =  (nl  –  s)/l  and by  0  at larger values of  

i.  It ought to be remarked that  nl  is the maximal value that  s  can take; this follows from the fact that the sum 

of the numbers {on the cards} cannot exceed the maximal number {on a card} taken as many times as there 

were trials. On the grounds of the above, we conclude that the probability sought can be represented as 
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with   

 

    K  =  E [(nl  –  s)/l]  +  1. 

 

Issuing from here, we find the following expression for the probability  Ps  in the form of a series 
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which breaks off as soon as we arrive at a term equal to  1  or  0. 

    To illustrate, we shall apply this conclusion to dice playing. This {particular} game consists in throwing six 

dice having the form of cubes {of a cube}; numbers  1,  2, …, 6  are cut in their faces and the gain or loss 

according to the condition of the game depends on the sum of the numbers turned up. Since it makes no 

difference whether to throw one die six times or to toss six identical dice only once, we may consider the 

throwing of each die as a trial so that in the case under consideration  n  =  6. 

    The number appearing on the upper face of the fallen die may be assumed to be the magnitude measuring the 

event taking place in some {in the corresponding} trial, so that it is seen that here  l  =  6.  Let us determine 

now the probability  Ps  that the sum of the appeared numbers is  s.  In the case under consideration formula 

(32) becomes 
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(33) 

 

with  K  = E [(36  –  s)/6]  +  1.  The magnitude  s  cannot exceed   36.  Formula (33) provides  P36  =  1/6
6
  =  

1/46 656.  For  s  =  35  and  34,          K  =  1  in both cases and  P  =  (1/6
6
)46  =  1/7776  and  (1/6

6
)4647/2  =  

(7/2)4(1/7776)  =  7/15 552  respectively. 

    In the same way we find that 
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Supposing now that  s  =  30  we have  K  =  E [(36  –  30)/6]  +  1  =  2  and 
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⋅
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66

6
  =  (1/7776) (77  –  1)  =  19/1944, … 

 

    We see thus that the probability  Ps  increases with a decreasing  s. It is not difficult to confirm that 

 

    P36  =  P6;  P35  =  P7;  P34  =  P9  etc.                                                       (34) 

 

Therefore, the probability  Ps  increases with an increasing  s  beginning with  s  =  6  and this increase 

continues until  s  does not take the mean value between  6  and  36,  i.e., until  s  =  21.  And so,  P21  is the 

maximum of  Ps.  At  s  =  21  K  =  E [(36  –  21)/6]  +  1  =  2  +  1  =  3.  Therefore 
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    We have written the equalities (34) as though they were obvious but we shall prove them analytically. To 

this aim, we shall represent the formula expressing  Ps  in a somewhat different form. We have the formula {cf. 

(31)} 
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and, consequently,  
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    Denoting now  ,  +  il  =  s  –  n  so that  ,  =  s  –  n  –  il,  we obtain the following expression for the 

general term of the coefficient of  t
s–n

: 
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The coefficient itself will therefore be the sum of such expressions where  i  takes all the values from  0  to a 

value (not inclusively) at which  (s  –  n  –  il)  becomes negative, i.e., to 

 

    i  =  E [(s  –  n)/l]  +  1  =  H. 

 

However,  Cn
i
  at  i  =  0,  and the fraction at  (s  –  n  –  il)  =  0  should be replaced by unities. Under this 

condition we obtain    
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    When applying this formula to the game of dice we shall reduce it to the following form 
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with  G  =  E [(s  –  6)/6]  +  1.  Substituting now  s  =  36  –  k  into formula (33) we obtain  
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    When however assuming that  s  =
  
6  +  k  in formula (34), we get an identical expression and it is seen now 

that indeed  P36–k    =  P6+k.  This, however, is a particular case of a general theorem because, when issuing from 

formulas (32) and (35), it is not difficult to prove that, in general,  Pln–k    =   Pn+k.  And so, we find that 

 

    P6    =  P36  =  =  (1/6
6
)  =  1/46 656;  P7    =  P35  =  (6/6

6
)  =  1/7776; 

    P8  =  P34  =   (21/6
6
)  =  7/15 552;  P9  =  P33  =  (56/6

6
)  =  7/5832; …; 

    P21  =  361/2592. 

 

    Let us study now several versions of a lottery where gains depend on the appearance of some sums of 

numbers when tossing six dice. We have approximately 

 

    P6  =  P36  =  1/46 656;  P7    =  P35  =  1/7776; P8  =  P34  =  1/2222; … 

 

Suppose now that the lottery is such that a gain of  46 656  corresponds to the sums equal to  6  and  36;  a gain 

of  7776 to sums 7  and  35;  and a gain of  2222, to the sums  8  and  34,  and assume also that no gains are 

attached to the other sums. This version of the lottery can be described by the following table (Table 1). It is 



seen that the expectation {of gain} in this lottery is  6;  therefore, if desiring that it is fair, it is necessary that 

the stake be equal to  6.  Usually {however} it is  10 

 

                                                                                    Table 1 

    Probabilities of gains                   Gains              Expectations 

    P6  =  1/46 656                              46 656                     1 

    P7  =  1/7776                                   7776                      1 

    P8  =  1/2222                                   2222                      1 

    P34  =  1/2222                                  2222                      1 

    P35  =  1/7776                                  7776                      1 

    P36  =  1/46 656                            46 656                      1 

 

                                                        Table 2 

    Probabilities          Gains in lotteries (rubles) 

        of gains            No. 1       No. 2      No. 3 

    P6  and  P36           7776       11 664    23 328 

    P7  and  P35           1296          1944             0 

    P8  and  P34             370.3             0             0 

 

copecks so that for being fair the gains in the lottery corresponding to the sums  6  and  36,  7  and  35,  and  8  

and  34  should be 

  

    (46 656/600)410  =  777.6 rubles;  (7776/600)410  =  129.6r; 

    (2222/600)410  =  37.0r respectively 

 

or, roughly,  780; 130;  and  40  rubles.  

    Actually, however, the person licensed to organize a lottery assigns far lower gains so that the lottery is 

profitable for him and very disadvantageous for its participants. Thus, instead of the  780,  130  and  40r,  78,  

13  and  4r  were for example assigned so that  9/10  of the stakes went to the organizer. Suchlike lotteries were 

therefore abolished in every nation. 

    Let us compare now three lotteries: the first one, as described above; another lottery which includes four 

gains, two of  46 656r each and two other ones of  7776r  each; and a third one with  {only} two gains of  46 

656r each. We assume that the lotteries are fair. The expectation {of gain} in the first lottery, as we have seen, 

is  6.  For the second lottery, it is  4; and the expectation in the third lottery is  2.  Supposing that the stakes are 

identical and equal to  1r, we obtain the following comparative table (Table 2) for these lotteries.  

    We see that the gains in these {improved} lotteries considerably differ one from another. The largest ones 

are in the lottery having the least number of gains, and although the probability of winning at least something is 

different for each lottery, all of them are equally fair because the expectations are the same and {moreover} 

equal to the stake
1
. 

 

    Note 1. {According to Buffon’s reasonable advice, a layman should rather ignore low probabilities (of gain) 

regarding them as non-existent. The same conclusion follows from the concept of moral certainty (of loss) 

which goes back to Descartes, Huygens and Jakob Bernoulli.} 

 

    3.3.19. Let us now consider the case in which  l  in formula (31) becomes very large and finally goes to 

infinity, that is, the case in which we are engaged when determining the probability that a sum of a very large 

or an infinite number of quantities having identical probabilities has a given value. We have {cf. (31)}     
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    We know however that if a function  f (t)  can be expanded into a series 
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Therefore, denoting the right side of (xxvii) by  f (t),  we shall find {since      Ps =  As} that 
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    Noting now that 
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we will find that 
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n

l

l
��
�

�
��
�

�

)2/sin(

)2/sin(

ϕ

ϕ
d*. 

 

But 

 

    exp {[
2

)1( −ln
  –  N] * i}  =  cos {[

2

)1( −ln
  –  N] *}  + 

    i sin {[
2

)1( −ln
  –  N] *} 

 

and consequently 

 

    PN   =  (1/2%) �
π

0

cos {[
2

)1( −ln
  –  N] *}

n

l

l
��
�

�
��
�

�

)2/sin(

)2/sin(

ϕ

ϕ
d*. 

 

    Substituting however  l*/2  =  &  we obtain 

   

    PN   =  (1/%) �
2/ 

0

lπ

cos {[
2

)1( −ln
  –  N] (2&/l)} 

n

ll ��
�

�
��
�

�

)/( sin

sin

θ

θ
(2/l) d&.       (36) 

 

The probability  PN   is thus expressed by a definite integral. Comparing this formula with formulas (32) amd 

(35) we can calculate the value of the integral  

 

    �
2/ 

0

lπ

cos {[
2

)1( −ln
  –  N] (2&/l)} 

n

l ��
�

�
��
�

�

)/( sin

sin

θ

θ
d&.     

  

    We shall now search for the probability that  N  is contained within boundaries  N1  and  N2.  Calling this 

probability  �, we obtain 

 

    ∏
2

1

N

N

=�
2

1

N

N

PN   =     

    (1/%) �
2/ 

0

lπ

�
2

1

N

N

cos {[
2

)1( −ln
  –  N] (2&/l)} 

n

ll ��
�

�
��
�

�

)/( sin

sin

θ

θ
(2/l) d&. 



 

    This is an exact expression of the probability sought. We shall now derive its approximate expression for the 

case in which  l  and  n  are very large. We have 

    PN   =  (2/% l) �
2/ 

0

lπ

cos{[
2

)1( −ln
  –  

l

N2
]&} 

n

l

l
��
�

�
��
�

�

)/( sin

/
)/(sin

θ

θ
θθ d&. 

 

It is seen therefore that for a very large  l  we may approximately suppose that 

     

    PN   =  (2/% l) �
2/ 

0

lπ

cos{[n  –  (2N/l)] &} (sin &/ &)n
 d & 

 

because for very large values of  n  only those elements of the integral influence its value whose  &  is very 

small. Indeed, considering here the integral as the limit of a sum in which the variable  &  varies from  =  to  % 

l/2,  we see that for very large values of  n  those terms of this sum in which  &  has a considerable value will be 

very small because the multiplier,  (sin &/ &)n
, will be very small. It follows that only those terms in which  &  is 

very small will influence the value of the integral. 

    On these grounds, when approximately determining the probability  PN,  we may consider  &  to be very 

small; and in this case, noting that 

 

    (sin &/ &)  =  1  –  &2
/6  + … 

 

and 

 

    ln (sin &/ &)n
  =  n ln [1  –  (n &2

 /6)]  =  –  (n &2
 /6)  –  … 

 

we have 

   

4   (sin &/ &)n
  =  exp [– (n &2

 /6)] 

 

and 

 

    PN   =  (2/% l) �
2/ 

0

lπ

exp [– (n &2
 /6)] cos {[n  –  (2N/l)] &} d&. 

 

    Neglecting now the same integral taken between the limits  % l/2  and  $,  we obtain 

 

    PN   =  (2/% l) �
∞

0

exp [– (n &2
 /6)] cos {[n  –  (2N/l)] &} d&. 

      

Issuing from the formula 

 

    �
∞

0

cos ax exp (– bx
2
) dx  =  (#%/2#b) exp (– a

2
/4b) 

 

we shall find that  

 

    PN   =  (#6/l n π ) exp ��
�

�
��
�

� −−
2

2)]2/([ 6

nl

nlN
 

 

and that therefore 

 



    ∏
2

1

N

N

=�
2

1

N

N

(#6/l n π ) exp ��
�

�
��
�

� −−
2

2)]2/([ 6

nl

nlN
. 

 

    Expressing this sum through an integral, as we also did before, and noting that for very large values of  n  all 

the terms except for the integral {?} will be very small, we may assume that 

 

    ∏
2

1

N

N

=  (#6/l n π ) �
2

1

N

N

exp ��
�

�
��
�

� −−
2

2)]2/([ 6

nl

nlN
dN. 

     

    Substituting now  (#6/l�n) [N  –  (nl/2)]  =  t,  we will obtain 

 

    ∏
2

1

N

N

=  (1/#%) �
2

1

t

t

exp (– t
2
) dt                                                                    (37)                                             

where 

 

    t1  =  (#6/l#n) [N1  –  (nl/2)],  t2  =  (#6/l#n) [N2  –  (nl/2)]. 

 

    Especially remarkable is the case in which  t1  =  – u,  t2  =   u, so that  

 

    �  =  (2/#%) �
u

0

exp (– t
2
) dt.                                                                      (38) 

 

    It is seen now that it is very probable that  N  satisfies the inequalities 

 

    (nl/2)  +  (l#n/#6) u  >  N  >  (nl/2)  –  (l#n/#6) u 

 

or 

 

    (l/2)  +  (lu/ n6 )  >  N/n  >  (l/2)  –  (lu/ n6 ).                                       (39) 

 
    Here,  N  is the sum of the values of all the events {cf. §3.3.17} occurring in  n  trials and we know that only 

one of these events can take place in any separate trial and that, on the other hand, one of them certainly ought 

to occur in each trial. 

    The formula (38) therefore determines the probability that the arithmetic mean of a very large number of 

magnitudes having equal probabilities of taking place in a very large number of trials is contained within the 

boundaries 

 

    (l/2)  +  (lu/ n6 ),  (l/2)  –  (lu/ n6 ).          

 

    Since this probability can be made arbitrarily close to  1,  we might say that 

 

    lim (N/n) n  =  $  =  l/2,  

  

i.e., that the arithmetic mean of a very large number of quantities having equal probabilities tends to the limit, 

as the number of trials increases to infinity, equal to half the number of all the quantities; or, to half of the 

maximal quantity. 

    When desiring to solve the problem of whether an event is random or should it be attributed to certain 

causes, scientists base some of their physico-mathematical investigations on the conclusion to which we have 

arrived. 

    Suppose that event  Ai  is measured by magnitude  ih   so that the events under consideration have 

magnitudes  h,  2h, …,  lh  with  lh  being their maximal value which we shall denote by  a.  Multiplying the 

inequality (39) by  h  we have  

 



    (a/2)  +  (au/ n6 )  >  hN/n  >  (a/2)  –  (au/ n6 ). 

 

    It is seen now that at  n  =  $  the arithmetic mean of all the magnitudes,  hN/n,  has half of the maximal one 

of them,  a/2,  as its limit. Let us apply this result to a problem in astronomy. If the inclinations of the planes of 

the planetary orbits to the plane of the ecliptic were absolutely random; in other words, if the probability that 

the inclination  &  did not depend on  &,  we would have found that the arithmetic mean of all the inclinations 

approximately equalled  90° (one half of the maximal inclination, of  180°),  i.e., the mean plane of the 

planetary orbits would have been perpendicular to the plane of the ecliptic. It occurs however that the planetary 

orbits make very small angles with the ecliptic so that the arithmetic mean of all the inclinations very little 

differs from zero. On these grounds it is concluded that the inclination of the planetary orbits is not 

{inclinations are not} random; that there existed some causes which imparted an approximately the same small 

inclination to all of them
1
. 

 

    Note 1. {See a description of the pertinent work of Laplace in my paper (Arch. Hist. Ex. Sci., vol. 9, 1973).}    

   

    3.3.20. Let us go over to a new and the last issue of the theory of probability. Although it does not concern 

repetitions of events, we insert it in this section because it is very closely linked with the problem considered in 

§3.3.19. 

    And so, we are going over to the determination of the probability that a sum of quantities varying due to 

random causes is contained within given boundaries. Suppose that we have several quantities  x,  y,  z,  etc, and 

assume that  x  can only have the values  x1,  x2, …;  y,  only the values  y1,  y2, …;  z,  only the values  z1,  z2, 

…  

    Denote the probabilities that  x  has value  xi,  by  pi;  that  y  has value  yi,  by  qi;  that  z  has  value  zi,  by  

ri;  etc. It is assumed that  x,  y,  z,  etc certainly have one of their values as stipulated above, so that 

 

    p1  +  p2  + …  =  1,  q1  +  q2  +  …  =  1,  r1  +  r2  + …  =  1. 

 

Then, let 

 

    p1 x1  +  p2 x2  + … =  a,  q1 y1  +  q2 y2  + … =  b,  r1 z1  +  r2 z2  + … =  c; 

    p1 x1
2
  +  p2 x2

2
  + …  =  a1,  q1 y1

2
  +  q2 y2

2
  + …  =  b1, 

    r1 z1
2
  +  r2 z2

2
  + …  =  c1                                                                                                               (40) 

 

so that  a,  b,  c, … are the expectations of the {considered} quantities, and  a1,  b1,  c1, … the expectations of 

their squares. Let us now search for the probability that 

 

    x  +  y  +  z  + …  =  s. 

 

It is not difficult to see that if the probability sought is  Ps,  then 

 

    � Ps t
s
  =  ( )...21

21 ++ xx
tptp 4 ( )...21

21 ++ yy
tqtq 4 ( )...21

21 ++ zz
trtr …     (41) 

 

    Now, so as to simplify the derivation, we suppose that  x,  y,  z, … can only have integer values. Later on, it 

will be possible to remove this restriction by assuming that these quantities are expressed in very small 

fractions of that unit in which we suppose them to be expressed during our deductions. Of course, such an 

approach presumes that  x,  y,  z, … are rational quantities, whereas, for a general solution of our problem, we 

ought to assume them as arbitrary quantities. Nevertheless, we adopt our restriction because we shall only 

search for an approximate value of the probability  Ps.  

    Under the restrictions made we shall find that 

 

    Ps  =  (1/2%) �
−

π

π

[p1 exp (x1*i)  +  p2 exp (x2*i)  + …]4 

    [q1 exp (y1*i)  +  q2 exp (y2*i)  + …]4[r1 exp (z1*i)  +  r2 exp (z2*i)  + …]4 
    e

–s*i
 d*. 

 



    We shall now make approximate conclusions supposing that the number of the quantities  x,  y,  z, … is very 

large. Guiding ourselves by the considerations developed in §3.3.16, we may, when approximately calculating 

this integral, neglect the powers of  *  exceeding the second one. Consequently, noting that 

 

    p1 exp (x1*i)  +  p2 exp (x2*i)  + … =  p1 {1  +  [(x1*i)/1!]  –    

     [(x1
2*2

)/2!]  +  …}  +  p2 {1  +  [(x2*i)/1!]  –  [(x2
2*2

)/2!]  +  …}  + …,  

 

we obtain, on the strength of the equalities (40), 

 

    Ps  =  (1/2%) �
−

π

π

[1  +  a*i  –  (a1*
2
)/2]4 [1  +  b*i  –  (b1*

2
)/2]4 

    [1  +  c*i  –  (c1*
2
)/2]… e

–s*i
 d*. 

 

    But we have 

 

    ln {[1  +  a*i  –  (a1*
2
)/2]4 [1  +  b*i  –  (b1*

2
)/2]…}  = 

    a*i  –  (a1*
2
)/2  –  (1/2) [a*i  –  (a1*

2
)/2]

2
  + … 

    b*i  –  (b1*
2
)/2  –  (1/2) [b*i  –  (b1*

2
)/2]

2
  + … =  (a  +  b  +  c) *i  + 

    [(a
2
  –  a1)  +  (b

2
  –  b1)  +  (c

2
  –  c1)  + …] (*2

/2)  =  A *i  –  B(*2
/2) 

 

where 

 

    a  +  b  +  c  + …  =  A,  – [(a
2
  –  a1)  +  (b

2
  –  b1)  +  (c

2
  –  c1)  +…]  =  B 

                                                                                                                 (xxviii) 

 

    We thus get 

 

    Ps  =  (1/2%) �
−

π

π

exp [– B(*2
/2)] exp (A*i) exp (– s*i) d*  = 

(1/%) �
π

0

exp [– B(*2
/2)] cos [(A  –  s) *] d*.  

    Neglecting the magnitude of the last integral taken within  %  and  $,  which is allowable for sufficiently 

large and positive values of  B,  we arrive at    

 

    Ps  =  (1/%) �
∞

0

exp [– B(*2
/2)] cos [(A  –  s) *] d*  =   

    
Bπ2

1
exp [– (A  –  s)

2
/2B].                                                                      (42) 

 

    In order to justify the approximation made just above, it ought to be proved that  B  >  0  and that, when the 

number of the quantities  x,  y,  z, …  increases,  B increases as well. To this end, it is sufficient to prove that all 

the magnitudes   

(a1  –  a
2
),  (b1  –  b

2
), … are positive. Let us take one of these differences, and what will be said about it will 

also hold for the other ones. We have 

 

    a1  –  a
2  

=  a1  –  2a
2  

+  a
2
  =  p1x1

2
  +  p2x2

2
  +… – 2a (p1x1  +  p2x2  +…)  + 

    a
2
(p1  +  p2  + …)  =  p1(x1

2 
 –  2ax1 + a

2
)  +  p2(x2

2 
 –  2ax2 + a

2
)  + … +  = 

    p1(x1
 
 –  a)

2
  +  p2(x2

 
 –  a)

2
  +  … 

 

This shows that the magnitude  (a1  –  a
2
)  is always positive. 

    We turn now to formula (42) that determines the probability  Ps  that the sum  (x  +  y  +  z  + …)  has a 

given value  s.  Denoting the probability that  s  is contained within the boundaries  so  and  s1  by  �  and 



noting that in virtue of our assumption  B  is very large, so that the sum might be without a perceptive error 

replaced by an integral, we obtain 

 

    �  =  �
1

0

s

s

Ps ds.                                                                                        (xxix) 

 

where  Ps is given by expression (42). 

    Considering this formula, we note that it determines the probability in the form of a homogeneous function 

of degree zero with respect to the quantities x,  y,  z, … Therefore, it will not change if we change the unit in 

which these quantities are expressed. Consequently, the adopted restriction concerning these quantities may be 

abandoned and we shall now suppose that  s  in the formula (xxviii) is arbitrary
1
. 

    Denoting now 

 

    [(s  –  A)/ B2 ]  =  t,  so  =  A  +  to B2 ,  s1  =  A  +  t1 B2   

 

we obtain 

 

    ∏
+

+

BtA

BtA

2

2

1

0

=  (1/#%) �
1

0

t

t

exp (– t
2
) dt. 

 

If  to  =  – u  and  t1  =   u  we get 

 

    ∏
+

−

BuA

BuA

2

2

=   (2/#%) �
u

0

exp (– t
2
) dt.                                                                (43) 

     

    This is the formula that indeed determines the probability that 

 

    A  +  u B2   >  s  >  A  –  u B2  

 

with  A  and  B  introduced in formulas (xxviii). This probability tends to  1  with an increasing  u,  but, on the 

other hand, the interval between the boundaries for  s  will {then} become wider. These boundaries depend also 

on the magnitude  B, which, in turn, depends on the number of the quantities  x,  y,  z, … Denoting this number 

by  n, we find that the formula (43) determines the probability that 

 

  (A/n)  –  (u/#n) nB /2   <  s/n  <  (A/n)  +  (u/#n) nB /2 .   

 

We have already obtained these inequalities and their probability in §§3.2.1 and 3.2.2 where it was shown that  

    

    ∏
+

−

BuA

BuA

2

2

=  1  –  (&/2u
2
)                                                                               (xxx) 

 

where  &  was a proper fraction. Formula (xxx) was proved there absolutely rigorously 
2
. This formula ought to 

be therefore applied in theoretical investigations although it does not allow the {actual} calculation of the 

probability. Formula (43) that provides such a possibility was however derived in a non-rigorous way. The lack 

of rigor in the derivation consisted in that we made various assumptions without determining the boundary of 

the ensuing errors. In its present state, mathematical analysis cannot derive this boundary in any satisfactory 

fashion 
3
. In spite of this, we shall apply formula (43) when expounding the method of least squares to which 

we are now indeed going over. 

 

    Note 1. This already follows from the replacement of the sum by an integral so that  ds  was introduced 

assuming that  s  varied continuously. 

    Note 2. Formula (xxx) can be obtained by substituting  t  =  u#2  in the final formula of §3.2.1. 



    Note 3. Liapunov […] provided quite a rigorous general proof of this so-called {central} “limit theorem of 

the theory of probability”. It is possible that the preceding words of his celebrated teacher had indeed prompted 

him to consider this problem. A. Krylov. 

 

    3.4. Applications of the Theory of Probability to the Treatment of 

Observations 
 

    3.4.1. In the sequel, we shall base our considerations on formula (43) that determines the probability that the 

sum  (x  +  y  +  z  + …)  of quantities varying due to random circumstances is contained within the boundaries 

 

    A  +  u B2   and    A  –  u B2 .                                                            

 

    We shall choose such a value for  u  that this probability determined by the formula   

 

       (2/#%) �
u

0

exp (– t
2
) dt                                                                          (xxxi) 

 

will be equal to  1/2.  This value is approximately 0.48. In this case, we shall call the boundaries indicated 

above probable because the probable boundaries for the sum  (x  +  y  +  z  + …)  are such that it is contained 

with equal probability either within or beyond them. The “width” of these boundaries is approximately  

240.48 B2   =  0.96 B2 .  We know however that for somewhat considerable values of  u,  for example for  u  

=  3, the magnitude (xxxi) is very close to  1 
1
; therefore, if the “width” of the probable boundaries be 

increased six-  or seven-fold, we shall already obtain such boundaries for which we may say with a very high 

probability that the sum                           (x  +  y  +  z  + …)  is contained within them. 

    When considering errors of observation, we shall call them probable if they are contained within probable 

boundaries; that is, between the boundaries      A  –  0.48 B2   and  A  +  0.48 B2 , and we shall always 

assume in the sequel that  u  =  0.48. 

    Before going ahead, let us agree about one more term; we shall say that the observations do not include a 

“constant error” if positive and negative errors are equally probable, i.e., if the expectation of the errors is zero. 

We shall assume that this condition is fulfilled; that is, we shall consider the expectation of the errors equal to 

zero. If however we shall have to study observations corrupted by constant errors we shall make the 

appropriate reservation. It ought to be noted that the equally probable errors are supposed to be those having 

equal numerical values. 

 

    Note 1. For the sake of clearness we append a short table of the values of this integral {omitted}. A. Krylov. 

 

    3.4.2. Suppose that we are concerned with measuring some quantity  V  and that the observations provided 

its following values: L1,  L2, …, Ln.  In this case their arithmetic mean, i.e.,  (L1  +  L2  + … +  Ln)/n,  is usually 

taken as the value of  V;  and, the larger is the number of observations,  n,  the closer we consider it to be to  V.  

We shall now show the grounds on which such opinions are based. 

    Let  71,  72, …,  7n  be the errors of the first, the second, .., the n-th observation. We shall consider those 

errors which increase the real value of  V  as positive and regard those that decrease it as negative. Under these 

conditions we have 

 

    V  =  L1  –  71,  V  =  L2  –  72, …,  V  =  Ln  –  7n                                  (xxxii) 

 

so that 

 

    nV  =  (L1  +  L2  + … + Ln)  –  (71  +  72  + … +  7n), 

    V  =  [(L1  +  L2  + … + Ln)/n]  –  [(71  +  72  + … +  7n)/n]. 

 

    It is seen therefore that, when assuming the arithmetic mean of the observational values as  V,  we make an 

error equal to  

 

    7  =  (71  +  72  + … +  7n)/n. 



 

Let us find the probable boundaries of this error. Applying formula (43) to this case, and denoting  x  =  71/n,  y  

=  72/n,  z  =  73/n, … we have in this case 

 

    a  =  (1/n)� 71(i) pi  =  0;  b  =  (1/n)� 72(i) qi  =  0; … 

 

where  71(i)  is one of the possible errors of the first observation and  pi,  its probability;  72(i),  one of the 

possible errors of the second observation and  qi, its probability, etc. 

    Consequently, we have  A  =  a  +  b  +  c  + …  =  0.  Then 

 

    a1  =  � (71(i)/n)
2
 pi   =  (1/n

2
) � (71(i))

2
 pi   =  k/n

2
 

 

where  

 

    k  = � (71(i))
2

 pi. 

 

    The value of  k  depends on the quality of the observations and it is not difficult to see that the less it is the 

better are the observations because  k  can only be small when the errors are small in numerical value. If all the 

observations are equally good, then  k  is the same for all of them and we will have 

 

    a1  =  b1  =  c1  =  …  =  k/n
2
 

 

so that 

 

    B  =  ( a1  –  a
2
)  +  ( b1  –  b

2
)  +  ( c1  –  c

2
)  + … =  nk/n

2
  =  k/n.  

 

We thus see that the magnitudes 

 

    –u nk /2   and  u nk /2  

 

will be the probable boundaries for  7.  They show that the “width” of the probable boundaries decreases with 

the increase in the number of observations provided that all of them are equally good. This indeed is the basis 

for increasing this number when it is desired to determine the quantity sought “more precisely” through the 

arithmetic mean of the observed values. Let us now go over to another issue. 

 

    3.4.3. Suppose that we are again concerned with determining the quantity  V  for which the observations 

provided the values  L1,  L2, …, Ln.  It is required to find such a combination of these observations as would 

have furnished the most probable value of  V.  This problem can be formulated either as finding the best 

combination out of all the possible ones; or, out of all combinations of a given form. 

    In the first case, the problem is of course much more general, and it can only be solved by applying the law 

of hypotheses 
1
 whereas no deductions made on its basis have adequate rigor. We shall therefore solve this 

problem in its second version choosing the following form of the combinations 

 

    (,1L1  +  ,2L2  + … +  ,nLn)/( ,1  +  ,2  +  … +  ,n).                             (xxxiii) 

 

Here, we shall try to determine  ,1,  ,2, …,  ,n  in conformity with the condition that this combination expresses  

V  in the best way, i.e., that the probable boundaries of the error be the tightest {the narrowest}. Note that the 

arithmetic mean is a particular case of this combination; namely, the case in which  ,1  =  ,2  = … =  ,n.   

    From equalities (xxxii) {multiplying them by  ,i  respectively, etc} we have 

 

    V (,1  +  ,2  +  … +  ,n)  =  (,1L1  +  ,2L2  + … +  ,nLn)  – 

    (71,1  +  72,2  + … +  7n ,n), 

 

    V  =  [(,1L1  +  ,2L2  + … +  ,nLn)/ (,1  +  ,2  +  … +  ,n)]  – 

    [(71,1  +  72,2  + … +  7n,n)/ (,1  +  ,2  +  … +  ,n)] 



 

so that, when assuming the quantity (xxxiii) as  V,  we make an error equal to 

 

    7  =  (71,1  +  72,2  + … +  7n,n)/ (,1  +  ,2  +  … +  ,n). 

 

    We shall now find the probable boundaries of this error. Let 
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In this case we have 

 

    a  =�
n

i

λλλ

λε

+++ ...21

1)(1
pi  =   

nλλλ

λ

+++ ...21
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so that  a  =  b  =  c  =  …  =  0  and, consequently,  A  =  0.  We then have 

 

    a1  =� 2
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    Supposing that all the observations are equally good, we obtain, in an absolutely similar way, 
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and therefore 

 

    B  =  
2

21

22

2

2

1

)...(

)...(

n

nk

λλλ

λλλ

+++

+++
. 

 

so that the probable boundaries are 

 

– u B2 ,  u B2 . 

   

    As already stated, the best combination is that for which the “width” of the boundaries is least so that the 

problem is reduced to the determination of  ,1,  ,2, …, ,n  in accord with the condition that the expression 

 

    W  =  (,1
2
  +  ,2

2
  + … +  ,n

2
) /( ,1  +  ,  + … +  ,n)

2  
                         (xxxiv) 

 

is minimal. 

    It is easy to see however that in such a form the problem is indefinite because the magnitudes  ,1,  ,2, …, ,n  

themselves will not thus be determined, only the ratios between them will be derived. We may therefore lay 

down any {additional} condition between them {connecting them} expressed by one equation. The simplest 

result will be provided by stipulating that   

         

    ,1  +  ,  + … +  ,n  =  1                                                                             (44) 

 

so that 

 

    W  =  ,1
2
  +  ,2

2
  + … + ,n

2
.                                                                  (xxxv) 

 



    The condition that  W  be minimal furnishes the equations 

 

    ,1 d,1
 
 +  ,2 d,2

 
  + … +  ,n d,n  =  0,  d,1

 
 +  d,2

 
  + … +  d,n  =  0. 

 

Multiplying the second one by an indefinite factor  2,  subtracting {the product} from the first one and equating 

then the coefficients of  d,1,  d,2, …, d,n  to zero, we obtain 

 

    ,1
 
 =  2,  ,2

 
 =  2, …,  ,n

 
 =  2. 

 

Together with equation (44) these equations provide 

 

    ,1
 
 =  ,2

 
 =  …  =  ,n

 
 =  (1/n). 

 

We thus see that the minimum of  W  takes place when the magnitudes  ,1,  ,2, … ,  ,n
 
 are equal one to 

another.  

    It is not amiss to derive this {the same result} in another, elementary way. Suppose that 

 

    ,1
 
 +  ,2

 
  + …  +  ,n

 
 =  s. 

 

We have 

 

    [,1
 
 –  (s/n)]

2
  +  [,2

 
 –  (s/n)]

2
  + … +  [,n

 
 –  (s/n)]

2
  = 

    ,1
2
  +  ,2

2
  + … + ,n

2
  –  2(s/n) (,1

 
 +  ,2

 
  + …  +  ,n)  +  (ns

2
/n

2
) 

 

so that 

 

    ,1
2
  +  ,2

2
  + … + ,n

2
  =  (s

2
/n)  +   

    [,1
 
 –  (s/n)]

2
  +  [,2

 
 –  (s/n)]

2
  + … +  [,n

 
 –  (s/n)]

2
   

 

and consequently 
2
 

 

    W  =  (1/n)  +  {[,1
 
 –  (s/n)]

2
  +  [,2

 
 –  (s/n)]

2
  + … +  [,n

 
 –  (s/n)]

2
}/s

2
. 

 

    Since the second term on the right side of this equality is always positive, we see that the minimum of  W  

will only take place when this term vanishes; that is, when   

  

    ,1
 
 =  ,2

 
 =  …  =  ,n

 
 =  (s/n) 

 

or, in accord with the condition that the magnitudes  ,1,  ,2, …,  ,n
 
 are equal one to another. We thus conclude 

that the magnitude (L1  +  L2  + … +  Ln)/n,  

and the arithmetic mean of the observed magnitudes, ought to be taken as  V.   

 

    Note 1. {Chebyshev did not use this term in the relevant sections (§§3.1.6 – 3.1.7) but he obviously thought 

here about the Bayesian approach with an arbitrary choice of the prior distribution. In §3.4.9 he wrongly 

attributed to Gauss the justification of the method of least squares by this law of hypotheses. However, the 

postulate of the arithmetic mean adopted by Gauss in 1809 made the Bayesian approach superfluous; 

E.T.Whittaker & G. Robinson (Calculus of Observations. London, 1924, p. 219n) were the first to indicate this 

point (overlooked by Gauss), and even their remark was forgotten. Also note that Gauss subsequently 

abandoned his initial substantiation of the method. In general, Chebyshev was poorly acquainted with the work 

of the creator of the method of least squares as especially witnessed by his wrong reasoning in §3.4.9, see my 

papers of 1994 in the Arch. Hist. Ex. Sci., vols 46 and 48.}   

    Note 2. {Chebyshev issues here from formula (xxxiv).} 

 

    3.4.4. Having shown that out of all the combinations of the type of (xxxiii) the best one is the arithmetic 

mean of the observed magnitudes, we shall show now on what grounds should we search for the best of all the 

possible combinations. 



    Suppose that we know the function  * (7)  determining the probability that the error has magnitude  7.  In this 

case we can easily determine the best combination of the observations. Indeed, let us assume that  V  can take 

the values  Vo,  V1,  V2, …,  V,, … (which can be arbitrarily close one to another). In order to determine  V  we 

made  n  observations providing the values  L1,  L2,  …,  Ln.  This represents event  E.   

    The various hypotheses under which this event can happen are  V  =  Vo,     V  =  V1,  V  =  V2, …,  V  =  V,, 

…  Knowing nothing about the appropriate probabilities, we suppose that they are equal one to another and we 

denote their common value by  P.  Then  Po  =  P1  =  P2  = … =  P,  = …  =  P.  This assumption is arbitrary 

and none of the subsequent deductions is therefore rigorous. The probability of the event  E  under the 

hypothesis that  V  =  V,,  i.e., that, when determining some quantity  V,  by observations, we got the values  

L1,  L2, …,  Ln,  is   

 

    p,  =  * (L1  –  V,)4 * (L2  –  V,) … * (Ln  –  V,). 

 

    Therefore, the probability that the event  E  took place under the hypothesis  V  =  V,  will be expressed in the 

following way 

 

    
� λλ

λλ

pP

pP
  =  
� −−−

−−−

)()...()(

)()...()(

21

21

λλλ

λλλ

ϕϕϕ

ϕϕϕ

VLVLVL

VLVLVL

n

n    

 

where the sum is extended over all the values of  ,  and is therefore a constant magnitude. 

    The search for the maximum of this probability is thus reduced to the search for the maximum of the 

expression 

 

    W  =  * (L1  –  V,)4 * (L2  –  V,) … * (Ln  –  V,).                                 (xxxvi) 

 

In the case in which the function  * (z)  is known, this condition will indeed provide an equation for 

determining  V,  as a function of the observed magnitudes  L1,  L2, …,  Ln.  This latter function will indeed 

furnish the best combination of the observations because the probability that  V,  is equal to that combination is 

maximal. We thus see that everything consists in determining the type of the function  * (z).  Some theoretical 

considerations which we will discuss below lead to the conclusion that 

 

    * (z)  =  F exp (– gz
2
)                                                                          (xxxvii) 

 

where  F  and  g  are some constant magnitudes. Experimental corroboration of this formula was being 

attempted and it was found out that (xxxvii) rather well expresses the law of the probability of error as a 

function of the change in the value of this error. 

    Assuming the function (xxxvii) as  * (z)  we shall find that 

 

    W  =  F 
n
 exp (– gt

2
), 

 

    t
2
  =  (L1  –  V,)

2
  +4 (L2  –  V,)

2
  + … +  (Ln  –  V,)

2
.                         (xxxviii) 

 

    It is therefore seen that the maximum of  W  will take place when the right side of (xxxviii) where  V,  is 

considered as the independent variable is maximal. The value of  V,  making the expression (xxxviii) maximal 

is determined by the equation 

 

    – 2(L1  –  V,)  –  2(L2  –  V,)  – … –  2(Ln  –  V,)  =  0 

 

which provides 

 

    V,  =  (L1  +  L2  +  …  +  Ln)/n. 

 

The assumption that  * (z)  is expressed by the formula (xxxvii) leads to the conclusion that the best of all the 

possible combinations is the arithmetic mean of the observed magnitudes. 

 



    3.4.5. We shall now show on what theoretical grounds is the determination of the type of the function  * (z)  

founded. Note that when two observations are available it might be assumed as an obvious condition that their 

best combination is the arithmetic mean because in this case nothing empowers us to prefer one of the observed 

magnitudes to the other one. We therefore really ought to decide in favor of the magnitude which would be 

equally distant from each of the observed magnitudes. 

    But the same can not be said about three or more observations. Indeed; suppose that we made three 

observations and that two of them furnished one and the same value for the quantity sought,  V.  In such a case 

we ought to prefer the magnitude which was repeated twice, but should our preference be expressed in taking  

2/3  of the repeated magnitude and  1/3  of the magnitude that occurred {only} once, and in assuming that the 

sum thus obtained is the quantity  V?  Obviously we have no right to assert this. 

    We shall now show that, if the arithmetic mean is taken as the best combination out of three observations, it 

is possible to find the type of the function  * (z).  We saw that the best combination is found from the condition 

of the maximum of the expression (xxxvi). For three observations this will be 

 

    W  =  * (L1  –  V,)4* (L2  –  V,)4* (L3  –  V,). 

 

    The search for its maximum leads to equation 
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Denote  *)(z)/* (z)  =  +(z),  then this equation will take the form 

 

    + (L1  –  V,)  +  + (L2  –  V,)  +  + (L3  –  V,)  =  0. 

 

    Now we ought to express the demand that this equation be satisfied if 

 

    V,  =  (L1  +  L2  +  L3)/3. 

 

Assuming this value, we obviously have 

 

     (L1  –  V,)  +  (L2  –  V,)  +  (L3  –  V,)  =  0. 

 

Therefore, denoting  (L1  –  V,)  =  y  and  (L2  –  V,)  =  y1,  we obtain 

 

    (L3  –  V,)  = – (y  +  y1) 

 

so that we ought to have the equality  

 

    + (y)  +  + (y1)  +  + [– (y  +  y1)]  =  0                                                     (45) 

 

valid for any  y  and  y1.  We may thus consider it as an equation determining the function  + (y). 

    Here we encounter a new mathematical problem: A function is determined not by a differential equation, not 

by an equation in finite differences, but by an equation connecting the values of the function sought 

corresponding to various values of the independent variables somehow connected one with another. Such 

equations are called functional. Some mathematicians concerned themselves with their solution (Abel among 

others), and some are engaged in this problem also at present. However, until now there exist no general 

methods for solving them whereas the existing methods actually consist in that, out of a given functional 

equation, a differential equation is made up by differentiation and elimination of the unknown magnitudes. We 

shall show one of these methods while studying the particular case under consideration. 

    Differentiating the equation (45) with respect to  y  we find out that 

 

    +) (y)  –  +) (– y  –  y1)  =  0. 

 

Differentiating this equation, now with respect to  y1,  we get 

 



    +1 (– y  –  y1)  =  0. 

 

Denoting  – y  –  y1  =  z,  we obtain  +1 (z)  =  0  so that  

  

    + (z)  =  C z  +  C1. 

 

    Making use now of the determined type of the function  + (z),  we shall reduce the equation (45) to the form 

 

    C y  +  C1  +  C y1  +  C1  –  C (– y  –  y1)  +  C1  =  0 

 

so that  C1  =  0.  It follows that 

 

    + (z)  =  C z  =  *)(z)/* (z)  

 

and, consequently, that 

 

    (1/F) ln * (z)  =  C z
2
/2,  * (z)  =  F exp (C z

2
/2). 

 

    Therefore     

 

    W  =  F
3
 exp {(C/2) [(L1  –  V,)

2
  +  (L2  –  V,)

2
  +  (L3  –  V,)

2
]} 

 

and 

 

    dW/dV,  =  CW [– (L1  –  V,)  –  (L2  –  V,)  –  (L3  –  V,)], 

 

    d
2
W/dV,

2
  =  C (dW/dV,) [– (L1  –  V,)  –  (L2  –  V,)  –  (L3  –  V,)]  +  3CW. 

 

    Assuming that  3V  =  L1  +  L2  +  L3,  we find that  

 

    d
2
W/dV,

2
  =  3CW. 

 

Since  W, at the considered values of  V,,  should be maximal, the expression obtained for  d
2
W/dV,

2
  ought to 

be negative. And since  W  is positive (as being a product of three positive multipliers),  C  is negative. 

Therefore, denoting  C  =  – 2g,  we obtain (xxxvii) where F  and  g  are some positive magnitudes. 

    Thus, assuming that the arithmetic mean is the best combination of three observations, we found the type of 

the function  * (z) .  However, as we said already, this supposition is arbitrary and not caused by necessity. 

Note that the assumption that the arithmetic mean is the best combination for two observations is necessary but 

not sufficient for determining the type of the function  * (z).  Indeed, in this case the equation determining the 

best combination will be  
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    Denoting as before  *)(z)/* (z)  =  +(z)  we shall reduce it to 

 

    + (L1  –  V,)  +  + (L2  –  V,)  =  0. 

 

This equation should be satisfied by  V,  =  (L1  +  L2)/2;  expressing this {condition} and denoting  L1  +  L2  =  

2y,  we obtain 

 

    + (y)  +  + (– y)  =  0. 

 

This equation, however, does not determine the function  + (y)  because any odd function satisfies it. 



    If we assume that indeed (xxxvii) holds, we shall easily arrive at the method of least squares. To this end 

denote the error of the i-th observation by  xi.  We have seen however that the probability of some totality of 

errors is determined thus: 
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    Therefore, we ought to assign such magnitudes to the errors 
1
 that the expression 

 

    * (x1)4* (x2) … * (xn)                                                                                (47) 

 

be maximal because the denominator in the preceding expression is a constant magnitude. Given the existence 

of the equation above, this product will be 

 

    F 
n
 exp [– g(x1

2
  +  x2

2
)  + … +  xn

2
)]. 

 

     Consequently, we should assign such values to the errors that the expression   

 

    x1
2
  +  x2

2
  + … +  xn

2
 

 

be minimal; that is, in order to find the most probable errors we ought to find the minimum of the sum of their 

squares. 

 

    Note 1. {Chebyshev did not expressly distinguish between errors and residuals.} 

 

    3.4.6. Very often the observations directly provide not the quantity sought,  V,  but quantities connected with 

it by some equations. We shall consider the case in which the observations furnish the quantities 

 

    '1V,  '2V, …, 'nV. 

 

Here,  '1,  '2, …, 'n  are known numbers and  �iV  is a quantity determined by the  i-th observation. Suppose 

that for these quantities the  n  observations gave such values:  L1,  L2, …, Ln.  the problem consists in finding 

the most reliable magnitude for  V.  When solving this problem we will not search for the best of all the 

possible combinations of the observations, because, as it was shown on a simpler case, this cannot be done in a 

rigorous way. We will {rather} determine the most favorable combination out of those of the type 
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    Denoting the error of the  i-th observation by  7i,  we have 

 

    a1V  =  L1. –  71,  a2V  =  L2. –  72, …, anV  =  Ln. –  7n. 

 

Multiplying these equations by  �1,  �2, …, �n  respectively, and adding up the results, we obtain 

 

    (a1 �1  +  a2 �2  + … +  an �n) V  =   

    (�1 L1  +  �2 L2  + … +  �n Ln)  –  (�1 71  +  �2 72  + … +  �n 7n) 

 

and 

 

    V  =  
nn
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nn

nn
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+++

+++

...

...

211

2211 .           (xl) 

 

It is seen therefore that, when assuming formula (xxxix),  we make an error equal to the second term on the 

right side of (xl).  



    We shall now search for the probable boundaries for  7  and determine   

�1,  �2, …, �n  from the condition that these boundaries are as close as possible to each other. However, if we do 

not {additionally} lay down any condition concerning these magnitudes, the issue will be indefinite. We shall 

therefore assume that   

 

    '1 �1  +  '2 �2  + … +  ' n �n  =  1                                                               (xl1) 

 

from which the generality of the solution certainly will not suffer.  And so, we have 

 

    V  =  �1 L1  +  �2 L2  + … +  �n Ln,  7  =  �1 71  +    �2 72  + … +   �n 7n. 

 

    When determining the probable boundaries for  7,  we shall apply formula (43). To this end we denote 

 

    x  =  �1 71,  y  =  �2 72,  z  =  �3 73, … 

 

and we shall understand  71(i)  as one of the possible values of  71, – that is, as one of the possible errors of the 

first observation, –  72(i)  as one of the possible values of  72, etc. 

    Supposing now that the observations have no constant errors, we have 

 

    a  =� �1 71(i) pi  =  �1� 71(i) pi  =  0, …,  b  =  0,  c  =  0, … 

 

Assuming in addition that all the observations are of an equally high quality, we obtain 

 

    a1  =  � [�1 71(i)]
2
 pi  =  �1

2� [71(i)]
2
 pi  =  �1

2
 k 

 

and, in the same way, 

 

    b1  =  �2
2
 k,  c1  =  �3

2
 k, … 

 

    Thus, we find that 

 

    A  =  0,  B  =  k (�1
2
  +  �2

2
  + … +  �n

2
). 

 

The probable boundaries  for  7  will be 

 

    – u B2   and  u B2 . 

    

The problem is now being reduced to the determination of the minimum of 
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2
  + … +  �n

2
 

 

under the condition (xli). To this end, we derive the equation 

 

    (�1  –  '1 2) d �1  +  (�2  –  '2 2) d �2  + … +  (�n  –  'n 2) d �n  =  0 

 

so that 

 

    �1  =  '1 2,  �2  =  '2 2, …,  �n  =  ' n 2. 

Then, from equation (xli), 

    2  =  1/( '1
2
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) 
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Consequently, the most reliable combination will be 

 

    V1  =  
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    If  '1,  '2, …, ' n  are integers, it might be said about this expression of  V, that, Supposing that we, after 

making  'i
2
  observations, obtained in each of them the magnitude  Li /' i  for  V;  and supposing also that the 

total number of observations was  ('1
2

  +  '2
2
  + … +  'n

2
),  the best combination of the observations will be, as 

we saw, the arithmetic mean of the observed values, hence (xlii). 

    The described method of determining  V,  expressed for the first time by Legendre, is indeed called the 

method of least squares, – not because we search for the minimum of the sum of the squares of the factors  �1,  

�2, …,    �n,  but because, when applying it, the value of  V  imparts the minimal value, as we shall prove now, 

to the sum of the squares of the errors. 

    To prove this, we shall find the value of  V  for which the sum 

 

    71
2
  +  72

2
  + … +  7n

2
   

 

becomes minimal. We have 

     

    71
2
  +  72

2
  + … +  7n

 
 =  (L1  –  '1 V)

2
  +   (L2  –  '2 V)

2
  + … +  (Ln  –  'n V)

2
. 

 

For determining its minimum we obtain the equation      

 

    '1 (L1  –  '1 V)  +  '2 (L2  –  '2 V)  + … +  'n (Ln  –  'n V)  =  0 

 

from which we indeed arrive at (xlii) 

    Further on we shall expound the method of finding the best combinations for determining several unknowns 

from observations; and we shall show that in this case as well the most reliable combinations are those for 

which the sum of the squares of the errors is the least. We note right here that the method of least squares is not 

the only one applied for the treatment of observations. There exists one more method according to which the 

unknown quantity is determined from the observations in such a way that the maximal error is minimal and this 

method is in some cases more advantageous than the method of least squares, but in general the latter should be 

preferred. 

 

    3.4.7. Suppose now that it is required to determine from observations quantities  U  and  V and that in the i-th 

observation we search for the value of the expression ('iU  + (iV)  where  'i  and  (i  are given numbers and 

that this observation provides the magnitude  Li. Denoting the error of the  i-th observation by  7i, we have  

 

    '1U  + (1V  =  L1 –  71,  '2U  + (2V  =  L2 –  72, …, 'nU + (nV  =  Ln –  7n. 

                                                                                                                       (48) 

 

    We shall find the combinations by whose means  U  and  V  are determined with least errors. And, as before, 

we shall only consider linear combinations (with respect to  L1,  L2, …). To this end we ought to proceed as 

follows.  

    Multiply each of the equations (48) by some indefinite factor  ,i  and add up the results; this will provide one 

equation for determining  U  and  V, namely 

   

    ('1,1 +  '2,2 + … +  'n,n)U  +  ((1,1  +  (2,2  + … +  (n,n)V  = 

    (L1,1  +  L2,2  + … +  Ln,n)  –  (71,1   +  72,2   + … +  7n,n). 

 

    We then subject the factors  ,1,  ,2, …, ,n  to the conditions 



 

    '1,1 +  '2,2 + … +  'n,n  =  1,  (1,1  +  (2,2  + … +  (n,n  =  0.               (49) 

 

Consequently, we shall directly obtain an expression for  U 

 

    U  =  (L1,1  +  L2,2  + … +  Ln,n)  –  (71,1   +  72,2   + … +  7n,n). 

 

    Knowing nothing about the magnitude of the errors, we assume for  U  the expression 

 

    U  =  L1,1  +  L2,2  + … +  Ln,n                                                                 (50) 

 

thus making an error equal to 

 

    7 =  71,1   +  72,2   + … +  7n,n.                                                                  (51) 

 

Had we subjected the factors to conditions 

 

    '1,1 +  '2,2 + … +  'n,n  =  0,  (1,1  +  (2,2  + … +  (n,n  =  1,               (52) 

 

we would have obtained an expression for  V. 

    It is seen now that, after finding a final expression for  U,  we can directly write down a final expression for  

V  as well by replacing the letters  'i  by  (i  and vice versa. We shall therefore only discuss now the 

determination of  U,  and everything said about it will also apply to the determination of  V. 

    And so, the issue is reduced to the determination of the best combination of the type 

 

    L1,1  +  L2,2  + … +  Ln,n                                                                  

 

where  ,1,  ,2, …,  ,n  satisfy conditions (49) and we will indeed assume this best combination as  U.  To this 

end let us find the probable boundaries for the error (51). 

    Denoting 

 

    k  =� [71(i)]
2
 pi                                                                                       (53) 

 

and supposing that all the observations are of an equally high quality, we shall find, as we did before, that these 

boundaries are 

 

    – u )...(2
22

2

2

1 nk λλλ +++ ,  u )...(2
22

2

2

1 nk λλλ +++   

     

so that everything is reduced to the determination of the minimum of the expression 

 

    �1
2
  +  �2

2
  + … +  �n

2                                                                                                                     
(xliii) 

 

under the conditions (48). We have the equations  

 

    �1 d�1  +  �2 d�2  + … +  �n d�n  =  0,  '1d�1  +  '2 d�2  + … +  ' n d�n  =  0,   

    (1 d�1  +  (2 d�2   + … +  (n d�n  =  0. 

 

    Multiplying the second of these by  – 2  and the third one by  – A;  adding up the results obtained with the 

first equation; and equating the coefficients of  

d�1,  d�2, …,  d�n  to zero, we get equations of the type      

 

    �i  =  'i 2  +  (i A,  i  =  1,  2, …,  n.                                                           (54) 

 

For determining  2  and  A  we will have on the strength of (49) the equations 

 



     '1('1 2  +  (1 A)  +  '2('2 2  +  (2 A)  + … +  'n('n 2  +  (n A)  =  1,       (55a)       

 

    (1('1 2  +  (1 A)  +  (2('2 2  +  (2 A)  + … +  (n('n 2  +  (n A)  =  0,        (55b) 

 

or, in another form, 

 

    ('1
2
  +  '2

2
  + … +  'n

2
) 2  +  ('1(1  +  '2(2  + … +  'n(n) A  =  1,          (56a)     

 

    ('1(1  +  '2(2  + … +  'n(n) 2  +  ((1
2
  +  (2

2
  + … +  (n

2
) A  =  0.          (56b) 

 

    Having determined  2  and  A  from these  equations, we will find ,1,  ,2, …,  ,n  from equations (54). 

Consequently, we will also find both  U  and the probable boundaries of the error  �  if only we will know the 

magnitude  k  whose determination is explained below.  

    We shall now show that the thus found value of  U  is identical with the one obtained from the condition of 

minimum of the sum of the squares of the errors. We have 

 

    �1  =  L1  –  '1 U  –  (1 V,  �2  =  L2  –  '2 U  –  (2 V, …,   

    �n  =  Ln  –  'n U  –  (n V. 

 

If we assume here that  U  and  V  are their real values, then  �1,  �2, …,  �n  will be constant magnitudes. We 

will however consider them as variable quantities assigning to  U  and  V  not their real values, unknown to us, 

but all possible variable values; and, among these, we will search for such that provide the minimum of  

 

    �1
2
  +  �2

2
  + … +  �n

2
.                                                                              (xliv) 

 

    We have 

 

    �1
2
  +  �2

2
  + … +  �n

2
  =  (L1  –  '1 U  –  (1 V)

2
  +  (L2  –  '2 U  –  (2 V)

2
  +     

    … +  (Ln  –  'n U  –  (n V)
2
. 

 

The condition of minimum of this sum leads to the equations 

 

    '1(L1  –  '1 U  –  (1 V)  +  '2(L2  –  '2 U  –  (2 V)  + …  

    +  'n(Ln  –  'n U  –  (n V)  =  0, 

 

    (1(L1  –  '1 U  –  (1 V)  +  (2(L2  –  '2 U  –  (2 V)  + … 

    +  (n(Ln  –  'n U  –  (n V)  =  0 

     

which are reduced to the form 

 

    ('1
2
  +  '2

2
  + … +  'n

2
)U  +  ('1(1  +  '2(2  + … +  'n(n)V  = 

    '1L1  +  '2L2  + … +  'nLn, 

 

    ('1(1  +  '2(2  + … +  'n(n)U  +  ((1
2
  +  (2

2
  + … +  (n

2
)V  = 

    (1L1  +  (2L2  + …  +  (nLn. 

 

    Multiplying the first of these equations by  2,  the second one by  A,  and adding up the results we get 

 

    U [('1
2
  +  '2

2
  + … +  'n

2
) 2  +  ('1(1  +  '2(2  + … +  'n(n) A]  + 

    V [('1(1  +  '2(2  + … +  'n(n) 2  +  ((1
2
  +  (2

2
  + … +  (n

2
) A]  = 

    L1('12 +  (1A)  +  L2('22 +  (2A)  + … +  Ln('n2 +  (nA). 

 

    Supposing now that  2  and  A  satisfy the equations (56) we will find that 

 

    U  =  L1('12 +  (1A)  +  L2('22 +  (2A)  + … +  Ln('n2 +  (nA) 

 



which coincides with the expression (50) if the factors  ,1,  ,2, …,  ,n  have the values (54) as found above. And 

so,  U  and  V  determined by the best linear combination at the same time make the sum of the squares of the 

errors minimal. 

 

    3.4.8. Let us now consider the general case. Suppose that it is required to determine from observations 

quantities  U,  V,  W, … whose number we will assume to be arbitrary. Suppose that we have the equations 

 

    '1U  + (1V  +  51W  + …  =  L1 –  71,  '2U  + (2V  +  52W  + …  =  L2 –  72, 

    …, 'nU  + (nV  +  5nW  + …  =  Ln –  7n,                                                  (57) 

 

whose right sides are the directly observed magnitudes  L1,  L2, …,  Ln;  71,  72, …,  7n  are their errors whereas  

'1,  '2, …,  'n,  (1,  (2, …,  (n,  51,  52, …,  5n, … are given numbers not depending on the observations and not 

exposed to error. Let us take a number of factors   

 

    ,1,  ,2, …,  ,n                                                                                            (xlv)    

 

and subject them to conditions 

 

    '1,1 +  '2,2 + … +  'n,n  =  1,  (1,1  +  (2,2  + … +  (n,n  =  0, 

    51,1 +  52,2 + … +  5n,n  =  0, …                                                               (58) 

 

    We multiply the equations (57) by  ,1,  ,2, … respectively; adding up the results obtained we get, in virtue of 

these equations,  

 

    U  =  L1,1  +  L2,2  + … +  Ln,n  –  (71,1   +  72,2   + … +  7n,n), 

 

an equation which we will write as    

 

    U  =� Li,i  –� 7i,i. 

 

    It is seen therefore that, when assuming the expression 

     

    L1,1  +  L2,2  + … +  Ln,n  =� Li,i                                                         (59) 

 

as  U,  we make an error equal to 

 

    7  =  71,1   +  72,2   + … +  7n,n  =� 7i,i.                                             (60) 

 

    In order to find probable boundaries of this error we assume, as we did before, that all the  n  observations 

are of an equally high quality and {cf. (53)} denoting 

 

    k  =� [71(i)]
2
 pi                                                                                        (61) 

 

we obtain the probable boundaries 

 

    – u )...(2
22

2

2

1 nk λλλ +++ ,  u )...(2
22

2

2

1 nk λλλ +++                         (62) 

 

    The most probable combination for  U  will be that for which the sum  (xliii) will be minimal. In virtue of 

the conditions (58) we have for determining (xlv) the equations 

 

    �1 d�1  +  �2 d�2 + … +  �n d�n  =  0,  '1d�1  +  '2 d�2  + … +  ' n d�n  =  0,   

    (1 d�1  +  (2 d�2  + … +  (n d�n  =  0,  51d�1  +  52 d�2 + … +  5 n d�n  =  0, …                                                                                         

(63) 
 



from which we find by the known method the expressions of the type  

 

    �i  =  'i 2  +  (i A  +  5i B  + …,  i  =  1,  2, …,  n                                        (64) 

 

with magnitudes  2,  A,  B, … being determined from the equations  

 

    � 'i('i2  +  (iA  +  5iB  + …)  =  1,� (i ('i 2  +  (i A  +  5i B  + …)  =  0,  

    � 51('12  +  (1A  +  5 iB  + …)  =  0, …                                                  (65) 

     

    These equations might be represented in the following form  

 

    2� 'i
2
  +  A� 'i(i  +  B� 'i5i  +  …  =  1, 

    2� 'i(i  +  A� (i
2
  +  B� (i5i  +  …  =  0,                                       (66) 

    2� 'i5i  +  A� 5i(i  +  B� 5i
2
  +  …  =  0, … 

 

Their number is equal to the number of the magnitudes  2,  A,  B, … We thus find that  

 

    U  =  � Li ('i 2 +  (i A  +  5i B  + …)                                                       (67) 

 

with  2,  A,  B, … being determined from the equations (66).  

    We shall now show that the expression (67) is identical with that which is obtained for  U  under the 

condition of the minimal sum of the squares of the errors. We have 

 

    � �i
2
  =  � (Li  –  'i U  –  (iV –  5iW  – …)

2
. 

 

The search for the minimum of this sum leads to the solution of the equations 

    � 'i (Li  –  'i U  –  (iV –  5iW  – …)  =  0,   

    � (i (Li  –  'i U  –  (iV –  5iW  – …)  =  0,    

    � 5i (Li  –  'i U  –  (iV –  5iW  – …)  =  0, … 

 

or, otherwise, of the equations 

 

    U� 'i
2
  +  V� 'i(i  +  W� 'i5i  +  …  =� 'iLi, 

    U� 'i(i  +  V� (i
2
  +  W� (i5i  +  …  =� (iLi,                           (68) 

    U� 'i5i +  V� (i5i  +  W� 5i
2
  +  …  =� 5i Li, …   

 

    Multiplying the first of these by  2;  the second one, by  A;  the third equation, by  B;  etc, and adding up the 

results, we obtain on the strength of the equations (66), which these quantities satisfy,    

    U  =  2� 'iLi +  A� (i Li  + B� 5i Li  + …,                                    (69) 

 

i.e., the expression (67), and the theorem is proved. 

    This is indeed the essence of the method of least squares. We shall show further on how to determine the 

magnitude  k, but now {but first} we offer an example. 

    Suppose that it is required to determine three quantities  U,  V  and  W, and that we made four observations 

which provided quantities  14,  10,  9,  17  respectively for 



 

    3U  +  5V  +  7W,  4U  +  11V  –  2W,   

    5U  +  13V  –  7W,  4U  –  11V  –  13W. 

 

    We search for  U,  V,  W  under the condition that the expression 

 

    (3U  +  5V  +  7W  –  14)
2 

 +  (4U  +  11V  –  2W –  10)
2
  +    

    (5U  +  13V  –  7W  –  9)
2
  +  (4U  –  11V  –  13W  –  17)

2
 

 

is minimal. It  provides equations 

 

    66U  +  80V  –  74W  =  195,  80U  +  436V  +  65W  =  110, 

    74U  +  65V  +  271W  =  – 206. 

 

From these we will indeed find  U,  V,  W  but we shall not dwell on the numerical calculations. 

    Note that the approach to the exposition of the method of least squares as shown in the preceding sections 

assumes that the number  n  of observations is very large because only under this condition it is possible to 

apply the formula (43). 

 

    3.4.9. It only remains to show how to determine the magnitude  k.  Assuming that all the observations 

deserve the same confidence, we have 

 

    k  =� [71(i)]
2
 pi  =� [72(i)]

2
 qi  = … 

 

    Let us apply formula (43) to the case under consideration and assume the magnitude  [71(i)]
2
  as  x;  the 

magnitude  [72(i)]
2
  as  y;  etc. Then (still supposing that the number of observations is  n)  this formula will 

represent the probability that the sum (xliv) is contained within the boundaries  

A  +  u B2   and  A  –  u B2 .     

    In our case 

    A  =  a  +  b  +  c  + …  =� [71(i)]
2
 pi  +� [72(i)]

2
 qi  + …  =  nk, 

    B  =  (a1  –  a
2
)  +  (b1  –  b

2
)  + …  = 

            � [71(i)]
4
 pi  –  k

2  
+� [72(i)]

4
 qi  –  k

2  
+… 

 

    Therefore, denoting    

 

    � [71(i)]
4
 pi  =  � [72(i)]

4
 qi  =   …  =  k1, 

 

we obtain  B  =  n(k1  –  k
2
). 

    And so, formula (43) will determine the probability of the existence of the inequalities 

 

    nk  –  u )(2 2

1 kkn −   <  �1
2
  +  �2

2
  + … +  �n

2
  <  nk  +  u )(2 2

1 kkn −       

or 

    k  –  u )( )/2( 2

1 kkn −   <  (1/n)[�1
2
  +  �2

2
  + … +  �n

2
]  < 

   k  +  u )( )/2( 2

1 kkn − . 

 

It is seen now that 

 

    k  =  lim {(1/n)[�1
2
  +  �2

2
  + … +  �n

2
]} n  =  $ 

 

so that, for a very large number of observations, we may assume that 

 



    k  =  (1/n)[�1
2
  +  �2

2
  + … +  �n

2
].                                                              (70) 

 

    As to the magnitudes of the errors of observations  �1,  �2, …,  �n  which are here included, they may be 

gotten from a series of observations of known quantities by comparing their real and observed values. 

However, it is not always possible to carry out such special observations solely intended for the determination 

of  k.  Therefore, this magnitude is usually derived from the same observations from which we determine the 

unknowns  U,  V,  W,… In this case, instead of the real errors unknown to us we take those which turn out after 

the determination of  U,  V,  W,… by the method of least squares when comparing the results of calculation and 

observation. 

    In other words, considering  �1,  �2, …,  �n  as variable quantities we determine them in this case under the 

condition that the sum (xliv) is minimal and assume their thus obtained values as errors included in the 

expression for  k.  A justification of this procedure is that, if we denote the unknown to us real errors by  �1,  �2, 
…,  �n,  and the values {of errors} obtained by the method of least squares by  �1  +  C1,  �2  +  C2, …,  �n  +  Cn,  

then  C1,  C2, …,  Cn  will be very small as compared with  �1,  �2, …,  �n;  or at least we ought to consider them 

as such because the method provides the most probable result and we may therefore neglect the magnitudes  C1,  

C2, …,  Cn. 

    The magnitude  k  determining the merit of observations is found in this way. The less it is, the better are the 

observations. The magnitude  1/k  which is called  the weight of the observations may therefore serve as the 

measure of their merit. It will be said below how this term is justified, now, however, we note that recently 

some authors have begun to assume the expression 

 

     [1/(n  -  l)] [�1
2
  +  �2

2
  + … +  �n

2
]                                                            (71) 

 

as  k 
1
.  Here,  n  is the number of observations and  l,  the number of quantities determined, – U,  V,  W, … It 

was stated, in favor of this formula, that when the number of observations is equal to the number of quantities 

determined, we may exactly satisfy the conditional equations 
2
  so that, issuing from them, it will occur that  �1  

=  �2  = … =  �n  =  0  (here, the  ��s  are the calculated and not the real errors) and the previous formula would 

have provided  k  =  0.  This cannot be admitted because it would have indicated that the observations were 

absolutely precise whereas formula (71) furnishes here an indefinite expression  0/0  for  k. 

    But the point is that when  n  =  l  we cannot apply those conclusions on which the derivation of  k  was 

founded because we assumed that  n  was a very large number whereas the number of unknowns  l  is always 

supposed to be restricted so that we ought to reject the case in which  n  =  l.  If, however, we assume that  n  is 

considerably larger than  l, it will not matter which formula is being used for determining  k  because we may 

neglect the terms beginning with  l/n
2
  in the expression 

 

    [1/(n  –  l)]  =  (1/n)  +  l/n
2
  +  (l

3
/n

3
)  + … 

 

    Note that the Gauss method based on the law of hypotheses does not demand that  n  be certainly very large. 

When assuming it as the foundation {of the method of least squares} we may also consider the case in which         

n  =  l.  Then it is therefore more opportune to determine  k  by the formula (71). We saw, however, that this 

method is not really reliable, and it is preferable to determine  k  by the formula (70). 

 

    Note 1. {Indeed, some authors,– beginning with Gauss!} 

    Note 2. {Chebyshev did not use this term in the exposition above; he apparently bore in mind equations (50) 

which are, however, called observational. Conditional equations appear in another version of treating 

observations (still by the method of least squares or otherwise).} 

 

    3.4.10. In concluding, we shall show the influence of  k  on the quantity determined while assuming for the 

sake of greater generality that  k  is different for different observations. 

    We had the equations 

 

    U  =  L1  –  �1,    U  =  L2  –  �2, …,    U  =  Ln  –  �n. 
 

Assuming that  U  is defined as 

 

    U  =  L1,1  +  L2,2  + … +  Ln,n     



 

under the condition 

 

    ,1  +  ,2  + … +  ,n  =  1                                                                            (72) 

we make an error equal to 

 

    �  =  �1,1  +  �2,2  + … +  �n,n 

 

whose probable boundaries are, in the general case, the magnitudes 
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    Denoting 

 

    � [71(i)]
2
 pi  =  k1,  � [72(i)]

2
 qi  =  k2, … 

 

we shall impart the following form to these boundaries: 

 

    u )...(2
22

22

2

11 nnkkk λλλ +++ ,  – u )...(2
22

22

2

11 nnkkk λλλ +++ . 

 

    The problem is thus reduced to the determination of  ,1,  ,2, …,  ,n  from the 

condition that the expression under the signs of the radicals is  minimal and we obtain the equations 

 

    k1,1 d,1
 
  +  k2,2 d,2

 
  + … +  kn,n d, n  =  0,  d,1

 
  +  d,2

 
  + … +  d, n  =  0. 

 

Together with the equation (72) they provide 

 

    k1,1  =  2,  k2,2  =  2, …,  kn,n  =  2,  (2/k1)  +  (2/k2)  + … +  (2/kn)  =  1 

 

so that 

 

    ,i  =  (1/ki)/ [(1/k1)  +  (1/k2)  + … +  (1/kn)] 

 

and 
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    This formula is remarkably analogous with the one serving for the determination of {one of the} 

coordinate{s} of the center of gravity if the magnitudes  (1/k1),  (1/k2), … are likened to the weights of material 

points, and  L1,  L2, …, to the values of their coordinate. This is the very reason why  (1/k)  is called the weight 

of the observation. 

    It is not difficult to convince ourselves that the obtained expression for  U  is identical with the one arrived at 

under the condition of the minimum of the sum 

 

    (71
2
/k1)  +  (72

2
/k2)  + … +  (7n

2
/kn)  =   

    (1/ k1) (U  –  L1)
2
  +  (1/ k2) (U  –  L2)

2
  + … +  (1/ kn) (U  –  Ln)

2
 

 

because the value of  U  making this sum minimal is determined from the equation 

 

    (1/ k1) (U  –  L1)  +  (1/ k2) (U  –  L2)  + … +  (1/ kn) (U  –  Ln)
 
 =  0. 

 



    It can be shown that the same will happen as well in the general case in which the quantities  U,  V,  W, … 

are determined by the observations, i.e., that here also such magnitudes are obtained as make the sum 

 

    (1/ k1)71
2
  +  (1/ k2)72

2
  + … +  (1/ kn)7n

2
 

 

a minimum. Thus, the most probable magnitudes are always gotten from the condition that the sum of the 

squares of the errors multiplied by the weights of the corresponding observations is minimal. This represents a 

generalization of the method of least squares. 

    The approach to the method of least squares shown in the preceding sections is due to Laplace. 
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