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Introduction by Compiler 

 
    Following is a collection of papers belonging to statistics or probability 
theory and translated from Russian and German; in some cases, the 
dividing line is fuzzy, as it ought to be expected. They are designated by 
Roman numerals which I am also using just below when providing some 
general remarks concerning them.  
    Authors of some rather long papers had subdivided them into sections; 
otherwise, I myself have done it (and indicated that the responsibility is 
my own by numbering them [1], [2], etc). References in this Introduction 
are to the Bibliographies appended to the appropriate papers. Finally, in 
cases of cross references in the main text, these are such as [V, § 2] and 
the unsigned Notes are my own. 
    I. Mikhail Vasilievich Ptukha (1884 – 1961) was a statistician and 
demographer much interested in the history of statistics, He was a 
Corresponding Member of the Soviet Academy of Sciences. 
    Ptukha describes the elements of sampling in agriculture during the 
period under his study. This could have been dealt with in a much, much 
shorter contribution, but he also tells us which types of estates had applied 
these elements and how exactly was each procedure done to ensure more 
or less reliable data. Of course, much more interesting is the practice of 
sampling for checking the coining in England which is seen in the very 
title of Stigler (1977): Eight centuries of sampling inspection. The trial of 
the Pyx. Sampling in agriculture, however, should also be documented. 
    Ptukha begins by saying a few words about sampling at the turn of the 
19th century. On Kiaer (whom Ptukha mentions) and other statisticians of 
that period, both opposing and approving sampling, see You Poh Seng 
(1951). It is also opportune to add that Seneta (1985) and Zarkovich 
(1956; 1962) studied sampling in Russia during the early years of the 20th 
century.  
    Meaning of special terms and old Russian measures 
    Dvortsovaia: dvorets means palace, and dvortsovaia is the appropriate 
adjective apparently concerning the Czar’s palace. 
    Sloboda: suburb 
    Stolnik: high ranking official at court 
    Tselovalnik: the man who kissed (tseloval) the cross when taking the 
oath of office. In particular, he took part in the judicial and police 
surveillance of the population 
    Voevoda: governor of province 
    Volost: small rural district 
    Votchina: patrimonial estate owned by the votchinnik 
    Chetverik: 18.2 kg  
    Dessiatina: 1.09 hectare 
    Pood: 16.4 kg 
    Sazhen: 2.13 m 
    Sotnitsa: some unit; sotnia means a hundred 
    II. In 1909, Chuprov published his Russian Essays on the Theory of 
Statistics which became extremely popular and at the time, and even now 
Russian statisticians consider it a masterpiece although Druzinin [III] 
critically surveyed his work; my remarks below ought to be supplemented 
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by his paper. Among mathematicians, Markov (1911/1981), provided a 
critical comment. Thus (p. 151), the Essays “lack clarity and definiteness”. 
    Chuprov preceded his Essays by two long German papers (1905; 1906) 
the first of which I am translating below from its Russian translation made 
by his closest student N. S. Chetverikov but I have also checked many 
places of the Russian version against the original and provide the page 
numbers (in bold type) of the original to show that the translation was 
correct. In one case, however, Chetverikov made a mistake and I have 
additionally inserted there my own translation. 
I left out many passages which either seemed not really needed or much 
more properly belonged to philosophy. Indeed, Chuprov’s exposition was 
(and to a certain extent remains in the translation) verbose which was 
possibly occasioned by the author’s wish to satisfy his readers (and 
perhaps corresponded to his pedagogical activities at Petersburg 
Polytechnical Institute) and Markov’s remark is appropriate here also.  
    In 1910 – 1917 Chuprov corresponded with Markov (Ondar 1977) after 
which (and partly during those years) his most important contributions had 
been made in the mathematical direction of statistics; I do not say 
mathematical statistics since that discipline had only begun to emerge in 
those years. Seneta (1982; 1987) described some of Chuprov’s relevant 
discoveries, but my translation gave me an opportunity to provide some 
additional related information. 
    1. Resolutely following Lexis and Bortkiewicz, Chuprov paid much and 
even most attention to the justification of statistics by the theory of 
probability. The problem facing statisticians in those times (also much 
earlier and apparently somewhat later) consisted in that they, perhaps 
understandably, had been interpreting the Bernoulli theorem in a restricted 
form, and even Lexis (below) had wavered on this issue. They contended 
that that theorem was only useful when the theoretical probability (and 
therefore the equally probable cases) really existed.  
    Actually, we may imagine its existence (if only not contradicting 
common sense) given its statistical counterpart. At least towards the end of 
the 19th century the appearance of the non-Euclidean geometry had greatly 
influenced mathematicians who became quite justified to treat imaginary 
objects. Chuprov, although a mathematician by education, had never taken 
a resolute stand; here, his relevant statement in § 3.2 was at least not 
definite enough. Lexis wavered over this issue. At first, he (1877, p. 17) 
stated that equally probable cases might be presumed when a statistical 
probability tended to its theoretical counterpart, but there also he (p. 14) 
remarked that, because of those cases the theory of probability was a 
subjectively based discipline and he (1886, p. 437) later repeated that idea. 
And in 1903 he (p. 241 – 242) confirmed his earliest pronouncement that 
the existence of such cases was necessary for “the pattern of the theory of 
probability”. 
    Another point pertaining to mathematical statistics if not theory of 
probability is Chuprov’s failure to state that the ratios of the different 
measures of precision to each other depended on the appropriate density 
function. True, he only followed the general (including Lexis’) attitude of 
the time, but a mathematician should have been more careful.  
    2. Instead of enthusiastically supporting the Lexian theory of stability of 
statistical series in 1905 (see below), he became its severe critic and 
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finally all but entirely refuted it, which his students soon found out; it is 
strange that his work in that direction is still barely known outside Russia. 
    Chetverikov inserted a special footnote referring to his (although not the 
first) relevant paper. Already in 1914, even before publishing his decisive 
German papers on the stability of series, Chuprov thought about 
abandoning the Lexian theory. In a letter No 135 to him of that year 
Bortkiewicz (Bortkevich & Chuprov 2005) disagreed about “shelving” the 
Lexian coefficient Q. 
    3. Bortkiewicz’ law of small numbers (1898), which he considered (and 
which indeed was) inseparably linked with the Lexian theory, was another 
issue about which Chuprov at least partly changed his opinion. Moreover, 
since the two scientists had been extremely close to each other with 
Bortkiewicz stubbornly clinging to his law, it is even possible that 
Chuprov just did not publicly express his opinion. 
    In 1905, Chuprov approved Bortkiewicz’ innovation but later he 
(1909/1959, p. 284n) listed four possible interpretations of that law; there 
also, on p. 277, he remarked, although without naming Bortkiewicz, that 
 
    The coefficient Q cannot be a precise measure of the deviations of 
stability from its normal level: it does not sufficiently eliminate the 
influence of the number of observations on the fluctuations. 
 
    Then, in 1916 (Sheynin 1990/1996, p. 68), he informed Markov that 
 
    It is difficult to say to what extent does it enjoy recognition of 
statisticians since it is not known what, strictly speaking, should be called 
the law of small numbers. Bortkiewicz did not answer my questions 
formulated in the Essays [see above] either in publications or in writing. I 
did not question him to his face at all since he regards criticisms of that 
law very painfully. 
 
    The title of my paper (2008) explains my understanding of the law of 
small numbers. See also Heyde & Seneta (1977, § 3.4). 
    It was Ondar (1977) who had published the correspondence between 
Markov and Chuprov, but I have since discovered some additional letters, 
see the quotation above. I take the opportunity to add that he, while 
moving from manuscript to publication, made a lot of mistakes whose list 
I adduced in 1990; all or almost all of them were left in the translation of 
that source.  
    4. Chuprov (1905) made strange statements about the law of large 
numbers. He attributed the main merit of its justification (and, as I 
understand him, even of its Chebyshev generalization) to Cournot but had 
not referred to him definitely enough. Later Chuprov (1909/1959, p. 166) 
argued that Cournot had provided the “canonical form” of the proof of that 
law, see [III, Note 5]. 
    5. Chuprov (1905) discussed the method of comparing statistical series 
with each other for deciding whether the two relevant phenomena were 
connected or not. He certainly did not know about rank correlation or the 
Spearman coefficient ρ, but he could have mentioned some previous 
contributions to natural sciences. Thus, in 1865 – 1866 the German 
astronomer, mathematician and optician Seidel (Sheynin 1982, pp. 277 – 



 7 

279) investigated the possible connection between the number of fever 
cases, level of subsoil water and rainfall by the same method and even 
numerically estimated the discovered ties. A bit later, in 1869 – 1870, the 
celebrated English physician (and inventor of the term Hospitalism) 
Simpson investigated several possible connections concerning surgical 
diseases (Ibidem, pp. 263 – 264). 
    6. I am naturally led to a discussion of Chuprov’s attitude towards the 
application of statistics in natural sciences. In 1905, he argued that a 
creation of two different statistical methods for application in sociology 
and natural sciences would be unreasonable and he repeatedly (also 
elsewhere) stated that statistics had recently begun to enter those sciences. 
Later he published two papers on that subject, one in Russian, in 1914, and 
then its German version (1922a), but he never had time to study 
sufficiently that issue, see his Letter 124 of 1913 (Bortkevich & Chuprov 
2005). In 1905, apart from his statement (above), Chuprov did not say 
anything on that subject at all. 
    Actually, statistics had been gradually entering natural sciences from a 
much, much earlier time, see my five papers in the Archive for History of 
Exact Sciences (vols 22, 26, 29, 31 and 33 for 1980, 1982, 1984 (twice) 
and 1985).  
    7. Chuprov (1905) discussed nomological and ontological relations; the 
former applied to certain phenomena universally or at least in general, the 
latter’s action was restricted in space and/or time. Such a distinction has 
been known in natural sciences, for example in gravimetry: pendulum 
observations clearly showed that there existed local gravimetric 
anomalies, so was it really necessary to introduce those terms into 
statistics?  
    Then, Chuprov (1906, §4; 1960, p. 126) specified: statistics is an 
ontological science, but is closely connected with the notion of mass 
phenomena. This seems unnecessarily complicated the more so since he 
(see here, beginning of § 1.3) defined the aim of the statistical method as 
discovering, under its own assumptions, the laws of nature.  
    In 1909, Chuprov continued in the same vein: he discussed the place of 
statistics among other scientific disciplines by means of two other terms 
(nomography, the science of the general) and idiography (the science of 
the particular, the restricted) and pertinent notions borrowed from German 
philosophers, Rickert and Windelband, whom historians of that science 
but definitely not statisticians still remember. There, beginning with the 
second edition of 1910, he inserted an Introduction entitled The Principal 
Problems in the Theory of Mass Phenomena which indirectly defined 
statistics. Then he somehow separated the statistical method (of 
nomographical essence, pp. 129 and 130) from statistics (an idiographic 
study of reality, p. 130) and on p. 301 he largely repeated these ideas and 
also restricted statistics by studying sociology. Nevertheless, he (p. 75) 
somehow held that it was obsolete to believe that the sociological 
phenomena were atypical. See Druzinin [III] for a final verdict, but I have 
something else to say: Chuprov could have noted that the so-called 
numerical method officially introduced into medicine in 1825 (and 
unofficially into other branches of natural sciences much earlier), was 
idiographic (Sheynin 1982, § 4). Thus, compilation of an astronomical 
yearbook is an idiographic study. 
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    8. Another philosophical subject which Chuprov (1905) discussed at 
length was induction. He did not however mention incomplete induction 
whereas Bayes only appeared fleetingly in a footnote and only in respect 
of his “theorem” (actually lacking in his fundamental contribution). 
    I ought to add, however, that Chuprov is mentioned in the Great Sov. 
Enc. (Novoselov et al 1973/ 1977, p. 637): “Mill’s theory of inductive 
inference was subjected to elaboration and criticism, for example in the 
work of […] Churprov”. 
    9. I note finally that randomness was conspicuously absent from his 
writings in general. Chuprov introduced plurality of causes and effects 
which was superfluous and misleading because it ought to be explained by 
the existence of random variables with pluralities of values and 
probabilities.  
    III. Nikolai Kapitonovich Druzinin (1897 – 1984) was an eminent 
Soviet non-mathematical statistician. I met him several times just after he 
had retired from the chair of statistics at the Plekhanov Institute for 
National Economy in Moscow, and am sure that he was an honest man 
and scientist sincerely believing in Marxism. His contribution translated 
below is the only Soviet or foreign writing attempting to analyse 
Chuprov’s general viewpoint on statistics more or less critically, and it 
reveals the weakness of the time, the poor knowledge of the history of the 
application of statistics in natural sciences. 
    A special point here concerns the correct statement that statistics studies 
mass phenomena. Druzinin mentioned it several times (§§ 11, 14 and 16) 
but forgot Chuprov (1909) and apparently did not know about Poisson et 
al (1835, p. 174). Chuprov, in the second edition of his book, inserted a 
special introductory section entitling it Main Issues of the Theory of Mass 
Phenomena, and the French authors wrote: 
 
    Statistics in its practical application, which invariably and definitely is 
the functioning mechanism of the calculus of probability, necessarily 
appeals to infinite masses, to an unlimited number of facts bearing in mind 
not only a most possible approach to the truth, but also, by means of 
known procedures, wishes to destroy, to eliminate as much as possible the 
numerous sources of error so difficult to evade. 
 
    I (1999) have expressed my own opinion about the contents of statistics, 
the statistical method and the theory of errors and about statistics and 
mathematics. 
    Another noticeable point is that Druzinin passed over in silence the 
pronouncements made at a prestigious Moscow statistical conference of 
1954, inconceivable for any statistician worth his salt, see Sheynin (1998, 
§ 5.1). 
    In accord with its title, the author provided many quotations from early 
Russian sources hardly available outside Russia. For that matter, he (1963) 
published a reader on the history of Russian statistics and among his other 
contributions on the history of statistics, apart from the two papers he 
himself referred to, I ought to mention his book (1979).  
    When possible, I have referred to original English editions (and quoted 
them) rather than to their Russian translations, as did the author. 
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    IV. I (1990/1996, pp. 43 – 49) have described Slutsky’s early work, 
Chuprov’s opinion about it and Slutsky’s reasonable response to Markov’s 
criticisms. On Markov’s temporizing attitude see also Ondar (1977/1981, 
pp. 53 – 58), and, finally, see Kolmogorov (1948) for his high appraisal of 
Slutsky’s essay, the Introduction to which I am translating. A concise 
description of the stated above is in Sheynin (2005/2009, § 14.1-4. 
    A few comments. Bearing in mind Slutsky’s subject, it seems natural 
that he had nothing to say about the Continental direction of statistics. 
Without denying the significance of the Biometric school (as it became 
known) in general, and Pearson’s merits in particular, I note that later 
events proved that Fisher in the first place rather than Pearson is being 
remembered alongside the classics of probability of the 19th century. 
Slutsky had not mentioned either Chebyshev, or Markov, or Liapunov 
which I do not quite understand.  
    The first four sections of Slutsky’s pt 1, which he thought most 
important, were devoted to general notions about curves of distribution; 
moments; and measures of deviation and error. 
    V. Slutsky’s essay (rather than a simple review) is noteworthy as being 
at least until many decades later perhaps the most detailed and convincing 
examination of the essence of statistics as a science. It is not faultless and I 
have formulated quite a few relevant remarks in my Notes. Here, I am 
adding a few points. 
    First, Slutsky does not explain what does the third edition of Kaufman’s 
treatise (which earbed a prize of the Petersburg Academy of Sciences) 
mean. In my Bibliography here, I mention the edition of 1912, the German 
translation of 1913 and the reviewed edition of 1916 (later editions are 
here of no consequence), but it is rather unusual to include without 
reservations an edition in a foreign language. True, Kaufman (1909), is 
considered its the first edition, but Slutsky ought to have been more 
attentive here the more so since he refers to the second edition.  
    Second, Slutsky barely documented his account, and I myself supplied 
many references. Third, after politely but strongly criticizing Kaufman 
(but only reviewing him insofar as the relations of statistics and 
mathematics are concerned), Slutsky somehow concludes his work by 
praising him out of any proportion. Fourth and last, Slutsky is rather 
careless; some of his phrases are difficult to understand (partly because 
they are excessively abstract) and he is indiscriminately using two terms, 
theory and calculus of probability. 
    VI. I have not seen the proofs of the original Russian version of this 
paper; many Russian publishers do not deem necessary to allow authors to 
put on airs. Much worse: someone from the editorial office has 
unsparingly mutilated my text so that I may well doubt whether copyright 
exists in Russia (even in Petersburg rather than in a one-horse town). 
    Porter (2004) had recently put out Pearson’s biography which I (2006b) 
severely criticised. Indeed, what may we expect from an author who 
remarks (p. 37) that “even mathematics cannot prove the fourth 
dimension”, calls Thomson & Tait’s most influential treatise (reprinted in 
2002!) “standard Victorian” (p. 199) and forgets that Pearson was elected 
Fellow, Royal Society? 
     For the bibliography of Pearson’s writings see Morant et al (1939) and 
Merrington et al (1983). Many of his early papers are reprinted (Pearson 
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1948) and his manuscripts are being kept at University College London. 
His best biography is E. S. Pearson (1936 – 1937) and I abbreviate both 
that author and his work by ESP. 
    VII. The authors, being the Editors of Anderson’s Ausgewählte 
Schriften (Sel. Works), had also compiled a Vorwort (pp. IX – XI) where 
14 publications concerning Anderson were listed, 13 obituaries and one 
note honouring his 65th birthday; the future co-editors wrote five of these 
obituaries (Strecker, three, and Kellerer, two). To these, I may add my 
own short note (Dict. Scient. Biogr., vol. 1, 1970, pp. 154 – 155). 
    I have met with Professor Strecker who was Editor of my booklet on 
Chuprov (Sheynin 1990/1996), and I ought to add two points. First, that 
booklet was only published after an anonymous donor had covered the 
costs, and it took me rather a long time to figure out that most likely that 
donor was Strecker himself. 
    Second, Strecker was Anderson’s student and he told me that A. had 
frequently and reverently mentioned his teacher, Chuprov, and considered 
himself Chuprov’s son, and that he, Strecker, was Chuprov’s grandson.  
    The Archive of the Ludwig Maximilian University in Munich keeps 
Anderson’s short autobiography written in 1946 (code II-734), and in two 
places I insert additional information from this source identifying it by his 
initials, O. A. 
    My booklet (see above, pp. 58 – 60) contains other archival information 
about Anderson. In a reference for him Chuprov indicated that in 1910 and 
perhaps 1911 he participated in the census of the population of Petersburg 
and “again” proved himself “an excellent worker”. Then, in three letters of 
1924 Chuprov made known that Anderson experienced a hard time in 
Budapest; that he, Chuprov, was “at last able to fix him up” with a 
position in Bulgaria, and that again he, Chuprov, spent more than two 
weeks putting in order Anderson’s calculations in the manuscript later 
published in the Journal of the Royal Statistical Society. Finally, I note 
that Anderson’s Ausgewählte Schriften contain his reminiscences [X] 
about Chuprov written after the latter’s death.  
    Sheynin O. (1990, in Russian), Aleksandr Chuprov: Life, Work, 
Correspondence. Göttingen, 1996. 
VIII. Slavco Sagoroff was an eminent Bulgarian economist and 
statistician, then Director of the Institute for Statistics at Vienna 
University, see Metrika, t. 14, No. 2 – 3, 1969 (a Festschrift 
commemorating his 70th birthday). He died in 1970, see obituary in the 
same periodical (t. 16, No. 1, 1970)  
IX. I have formulated many critical Notes. Here, I ought to add three 
points. First, it seems to be generally known that many Soviet scientific 
contributions had been written carelessly (and published without due 
reviewing), and this particular paper is a good pertinent example. Second, 
the author understandably had not mentioned Anderson’s attitude (1959, 
p. 294) towards the Soviet regime. I quote: 
 
    I could have cited many statisticians as well as promising younger 
students […] of Chuprov much valued earlier in Russia whose names 
suddenly entirely disappeared after 1930 from the Soviet Russian 
scientific literature. 
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In that paper, Anderson severely criticized a Soviet semi-official statistical 
treatise.  
    Third and last, it is nevertheless hardly forgivable that the author has 
not stated that Anderson had become the leading statistician in Bulgaria, 
then in (Western) Germany and kept most favourably mentioning Chuprov 
on every suitable occasion. 
    To the best of my knowledge, Riabikin was the first Soviet author to 
publish a paper on Anderson, and a favourable at that, in the Soviet Union. 
The leading Soviet statistical periodical, Vestnik Statistiki, did not say a 
word about Anderson’s death. True, I preceded the author, but my short 
piece appeared abroad (Dict. Scient. Biogr., vol. 1, 1970, pp. 154 – 155). 
    XIII. In accordance with the source for which this contribution was 
intended, Anderson paid much attention to social statistics. I myself 
(1999) studied the definition and essence of statistics but regrettably 
omitted to mention him. The pertinent point now is that the main 
difference between theoretical and mathematical statistics, as I see it but as 
it was not clearly perceived a few decades ago, consists in that the former, 
unlike the latter, includes preliminary analysis of data (and, in general, 
pays less attention to mathematical aspects of the necessary work as well). 
    Another point concerns medical statistics. It does not belong to social 
sciences, and Anderson did not say anything about it, but, on the other 
hand, it is closely connected with population statistics, so that a certain 
gap seems to exist here. The same is true about public hygiene. 
    Sheynin O. (1999), Statistics, definitions of. Enc. of Statistical 
Sciences, 2nd edition, vol. 12, 2006, pp. 8128 – 8135. 
    XIV. The title of this essay, as it should, really explains its essence. Its 
subject does not belong to the history of probability proper, but is related 
to, and touches it. The author was diligent, but I still had to insert some 
Notes. Here, I say that he had not always provided the dates of the original 
publication of his sources and in a few cases of periodicals he preferred to 
indicate the year for which the appropriate paper had appeared. Then, he 
did not always refer to the latest available edition; thus, Bernoulli (1713) 
is included without indicating 1975. I have attempted to improve all that 
(and abandoned the Russian translations). Quotations from Cayley (§ 5) 
are taken directly from his papers rather than translated back from 
Russian. 
    XV. The Genoise lottery still interests us, witness Bellhouse (1991). 
The author, however, did not study its history in a restricted sense, but 
went on to describe numerical lotteries (or lottos), although not 
comprehensively at all. Todhunter (1865), whom he should have 
consulted, examined the pertinent work of Montmort, De Moivre and 
Laplace which Biermann (in Russian, Bierman) had not mentioned. 
Worse: he stated that lotteries met both with approval and opposition, but 
did not refer either to its harsh criticism by Laplace (1819) or to Poisson 
(1837, p. 68) who noted in passing that the loterie de France was “luckily 
suppressed by a recent law”. 
    Concerning the author’s Bibliography, I indicate that he referred to page  
numbers of the initial publications of Jakob Bernoulli and Euler, an 
attitude certainly discouraging readers. Moreover, the German translation 
of the Ars Conjectandi, for example, additionally carries the page numbers 
of the 1713 edition and Biermann should have all the more referred to it. 
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    XVI. Before Chebyshev, Buniakovsky (1804 – 1889) was the main 
Russian student of probability and statistics, and his book, extracts from 
which follow below, had been widely known. Here is what Markov 
(1914/1981, p. 162) and Steklov (1924, p. 177) had to say about it: “a 
beautiful work”; for its time, “complete and outstanding”. I remark, 
however, that Buniakovsky did not pay attention to Chebyshev’s work: 
after 1846, he actually abandoned probability for statistics. 
    I myself (1991) described his work and appended a list of his 
contributions to both those subjects. Now, I regret that the book itself is 
here hardly available. Nevertheless, I supplemented the translation of the 
extracts by many notes, and will only add that, strange as it is, 
Buniakovsky, while mentioning Buffon, had not indicated that the theory 
of probability owes him the real introduction of geometric probability. 
    I am also translating a very short note on the Buniakovsky method of 
compiling mortality tables and I stress that he was the first to study 
seriously mortality in Russia. 
    XVII. Liapunov’s essay written long ago is certainly not suited to 
appreciate Chebyshev’s heritage; but, apart from being himself a first-
class scholar, he was Chebyshev’s student and his recollections (and, for 
that matter, his opinions) are indeed valuable. 
    Two circumstances ought to be mentioned. First, in 1895, when 
Liapunov wrote his essay, he had not yet studied the theory of probability. 
No wonder that Chebyshev’s relevant achievements are not really 
described, and in § 5 Liapunov even wrote law of very large numbers. 
Second, Liapunov’s own footnote was accompanied by a note by the 
Editor of the source, Chebyshev’s Sel. math. works, N. I. Achiezer, which 
I replaced by a much stronger modern comment. 
    Chebyshev’s almost complete works, although without commentaries, 
appeared in Russian and French, see my Bibliography. Since then, his 
Complete Works in five volumes were published in Russian, and the 
bibliography of his works (obviously complete) in the last volume is also 
mentioned in my Bibliography.  
    XVIII. Aleksandr Aleksandrovich Konüs (1895 – ca. 1991) was an 
economist and statistician actively working in economic statistics (Diewert 
1987). In 1923 he began work under Kondratiev at the Conjuncture 
Institute in Moscow and had been directly engaged in the mathematical 
aspect of economics. The leading figures there were arrested, the Institute 
closed down (and Kondratiev shot in 1938). The general atmosphere in the 
nation began to worsen essentially in 1927.  
    Konüs found himself unemployed and was only able to return to 
successful work in 1945. Not long before his death he explained to me that 
he had escaped virtually unscathed because, although labelled “apprentice 
saboteur” (Komlev 1991), those responsible decided that they could have 
hardly expected anything from a mathematician. While working at the 
Institute, Konüs attempted to combine the Marxist system with the theory 
of marginal utility (Komlev).  
    The author published his paper in a statistical source and, consequently, 
referred to a statistician (§ 1), elucidated to a certain extent the axiomatic 
approach to probability (§ 2) and inserted many passages from 
mathematical works. On the other hand, his most important inference, the 
alleged justification of the frequentist theory (§ 6), was first and foremost 
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mathematical. I suspect that Konüs either did not submit his work to any 
mathematical periodical at all, or had it (its initial version) rejected. 
    Indeed, no such justification is achieved even nowadays, see Khinchin 
(1961). Then, Uspensky et al (1990) discussed the most difficult related 
problem of defining randomness and concluded, in their § 1.3.4, that it 
seemed “impossible to embody Mises’ intention in a definition of 
randomness that was satisfactory from any point of view”. 
    Too late have I found out that the author had also published a certainly 
related paper (Konüs 1984) and regret that it is hardly available. 
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I 

M. V. Ptukha 

 

Sampling Investigations of Agriculture in Russia  

in the 17
th

 and 18
th

 centuries 

 

Uchenye Zapiski po Statistike, vol. 6, 1961, pp. 94 – 100  
 
    [1] The application of sampling for a deep study of phenomena is 
spreading ever wider. The theory of probability provides the theoretical 
principles of sampling, and Laplace was the first to express this idea in 
connection with a sampling census of the population of France timed to 
coincide with 22 September 1802, the New-Years Day according to the 
Republican calendar.  
    A wide theoretical study of sampling has begun at the end of the 19th 
century; in 1895, during the fifth session of the International Statistical 
Institute, Kiaer (1896) initiated its discussion, but a decision was 
postponed until the next session, then postponed once more. In 1901, the 
eighth session had recommended statisticians to turn attention to it, but in 
1903 debates resumed. Nowadays, a single viewpoint concerning the 
numerous types of sampling for all cases of applying them and acceptable 
for all nations does not yet exist. 
    The logical idea of sampling as a method of judging about the entire 
totality of objects and phenomena after being acquainted with its part, has 
been long since inherent in man. When in urgent need, people invariably 
turned to sampling and have been developing practical methods of its 
application for establishing approximate values of the parameters of a 
totality. 
    [2] The cause for the origin and spread of sampling in agriculture in 
Russia was the long ago established system of farming large estates 
belonging to monasteries, nobility, state institutions and of managing royal 
votchinas. Owing to the shortage of manpower and large storehouses for a 
great volume of grain, only a comparatively small part of the harvested 
cereals was being threshed at once with their main volume collected into 
ricks and threshed as needed during the time free from seasonal work. 
    For expediently farming a large estate it was necessary to know the 
entire volumes of the harvest of cereals and of the distribution of the 
unthreshed remainder stored in great ricks. The landowners distributed the 
yield into a currently needed part, the seed-fund and the part to be sold. 
The development of the commodity economy ever more insistently 
compelled the landowners to establish the volume of the grain as precisely 
as possible beginning with the harvesting and until its complete 
exhaustion. Indeed, cereals provided the main inflow of money. 
    The application of sampling assumes the existence of a system of 
statistical stock-taking. And we may suppose that in Russia, before Peter 
the Great, a regulated statistical system had been first of all existing in 
monasteries. They possessed great estates with a numerous dependent 
population engaged in agriculture, handicraft and trade. For a long time 
monasteries had been the centres of enlightenment and culture and the 
monks were certainly able to take stock. The influence of the Byzantian 
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culture possibly somewhat fostered the establishment of a system of 
statistics in the monasteries; Byzantian ideas of management could have 
been transferred there by the ecclesiastical legislation.  
    There exists a lot of writings more or less devoted to studying the 
economic activities of our ecclesiastical institutions, but no summary 
information on the organization and development of statistical registration 
in these bodies is in existence. The common deficiency in these writings is 
that they incompletely and only in passing treat the problem of registration 
and, specifically, they do not dwell in sufficient detail on statistical 
methodology. 
    Much better is the situation with ascertaining the sources for studying 
the votchinas in the 17th and 18th centuries. The sources pertaining to the 
mid-17th century testify that sampling had been ordinarily applied there as 
something usual and well known. It may be therefore assumed that that 
procedure goes back to the 16th century and that it originated in large 
monasteries. I expressed this idea in 1945, and now it had already been 
somewhat confirmed. 
    Instructions of the 18th century essentially differ from the orders of the 
votchinniks to their stewards of the 17th century. Even the best orders did 
not embrace the life of the estate in its entirety, of its management in full. 
And the contents and even the format of the instructions of the 18th 
century favourably reflect the spirit of the reforms carried out by Peter the 
Great. In that century, handicraft and trade became isolated and formed 
independent branches of the national economy, and commodity-market 
circulation had been developing. The general need for statistics is far from 
being as insistent for a natural economy as it becomes after the elements 
of that circulation permeates it.  
    The economic well-being of a landowner in the 18th century more 
strongly depended on the market than it was for a votchinnik in the 
previous century. The landowner had to keep more records of various 
kinds describing his economy, the economy and personal data of his serfs, 
he had to calculate and estimate more than his predecessors. The 
economies of large estates already demanded its own statistics. 
    [3] Sampling in the Votchinas of B. I. Morozov 
    The Boyar Morozov (1590 – 1662), the tutor of Czar Aleksei 
Michailovich, applied a properly developed and thought out statistical 
system (Akty 1940). One of the most interesting pertinent documents 
contains information on the statistics of crop yield and discusses a 
primitive form of sampling. In July 1648 Morozov sent out instructions to 
the stewards of [a certain village of] Nizegorodskaia province […] on 
harvesting and sowing of cereals in proper time and on keeping books on 
reaping, threshing and sowing. The instruction says (p. 100): 
 
    After storing the winter and spring-sown grain, enter in the reaping 
books how much is there in a sotnitsa and of what quality is it, and how 
much quite good, average and bad grain will there be from a sotnitsa after 
threshing, and send the experimental books [registers of sampling]. And if 
you will soon complete the threshing of all cereals, send the reaping, 
threshing and sowing books to Moscow without delay.  
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    Special attention is called here by the expression experimental books. 
The context indicates that such books had been in general use so that the 
term did not need any explanation. These books indicate that in Morozov’s 
votchinas sampling reaping and threshing had been applied, and, for that 
matter, for three different grades of grain.  
    Experimental books were compiled immediately after harvesting and 
sent to Morozov living in Moscow. 
    Threshing of all the harvest could have been ended in a short time, and 
it was in such cases that Morozov demanded that all the three books be 
sent. I think that such a system of agricultural statistics indicates deep 
theoretical thought. Because of one or another circumstance much 
unthreshed cereal could have been left in ricks and barns, and having 
experimental books and the other ones, the votchinnik was able to estimate 
both the gross yield to a certain measure of precision and how much grain 
was still left in the unthreshed cereals. 
    [4] Sampling in the Economy of A. I. Besobrasov 
    Novoselsky (1929) had studied the archive of the stolnik Bezobrazov 
who owned votchinas of average size; the period studied was 1670 – 1680. 
On p. 104 Novoselsky writes:  
 
    Many sowing, reaping and threshing books, although not at all for each 
year and not for all the villages, are extant in Bezobrazov’s 
correspondence with his stewards. Often the final figures for sowing and 
threshing are lacking and only provide information for the time when 
sowing and threshing had not been completed. It is not always possible to 
translate this information into an intelligible language. Yearly summaries 
for the estates are not in existence anymore, possibly they did not exist at 
all. 
 
    [5] The Instruction to Managers of Dvortsovaia Volosts of 1731 
    Many instructions not more in existence or not yet found had been 
certainly compiled in the first half of the 18th century for the managers of 
estates. However, their availability does not yet prove that they had been 
actually applied. The peasants’ resistance to the landowners’ intent on 
registering their economies means that some extant instructions testify to 
statistical thought rather than to actual investigations. 
    Of special significance are therefore the instructions on sampling 
carried out by state bodies. They are both specimens of statistical thought 
and descriptions of practice. 
    The Instruction of 1731 is of much interest because it regulated the 
management of the economy of the dvortsovye peasants over all Russia. 
The first such instruction dates at 1725, but it was of a general nature and 
contained no section on cereals mentioning sampling.  
    The Instruction of 1731 (Volkov 1951, pp. 176 – 178) however states: 
 
    7) Describe exactly after examining and estimating how much threshed 
grain is left for seeds in barns and how many in ricks as measured by their 
size. Compile special threshing books and books registering  quantity and 
enter how much quite good, average and bad grain will be threshed out of 
each sotnitsa separately, also out of the ricks and compare everything with 
previous reaping and threshing lists… 
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    9) When the sown cereal of any kind becomes perfectly ripe, the 
manager will order the peasants to reap and collect it into shocks of one 
and the same number of sheaves. […] And to order the peasants to cart 
the cereal for storage [Stipulated here is registration of quantity by 
tselovalniks both when collecting and storing the cereals.] 
    When storing the cereal a sheaf from each cart should be taken to a 
special barn. And how much was carted, from how many ricks, and the 
length and width of each of these in sazhens, and how many shocks in a 
rick and sheaves in a shock were there should be entered in reaping 
books. 
    And from the separated cereal the manager himself with village elders, 
threshing-ground tselovalniks and elected best peasants and village 
priests will take a hundred sheaves each of quite good, average and bad 
cereal, store them for drying on [?] a barn, and seal it up. After the cereal 
dries off, order the peasants to thresh it, measure the pure grain and the 
chaff to a quarter of a chetverik and write down in experimental books 
how much is threshed and measured out of each sotnitsa and order the 
present village elders, tselovalniks, peasants and priest to sign them. And 
let those people seal up this experimental grain in a special barn. Measure 
the grain separated by winnowing, store it in a convenient place and 
estimate how much grain should there be after threshing. Send the 
experimental reaping books together with the estimates to the Chief court 
office in September and October leaving exact copies countersigned by the 
manager in the department huts. 
 
    The new manager [?] measured the threshed grain anew and determined 
by sampling the probable quantity of grain in the ricks. Elected peasants 
(village elders, collectors [?], tselovalniks) played an important role here. 
The Instruction indicated that they were to be elected yearly from the best 
peasants “in turn from those paying taxes without the help of the village 
community”. 
    These people did not pay taxes, nor did they participate in obligatory 
work which other peasants had been doing instead of them. The 
Instruction thus solved the complicated problem concerning the bodies of 
statistical observation and control. 
    In 1734, about 730 thousand peasants, i. e. more than 6% of the entire 
tax paying population of Russia, had been living in dvortsovye volosts.  
    [6] The Stable Regulations Or Statutes of 1733 (Vtoroe 1834, No. 
6349, pp. 53 – 63)  
    In all probability, the author of the remarkable statistical documents 
concerning the Stable Office was Arseny Petrovich Volynsky (1689 – 
1740). The government resolved to breed horses for the army at state stud 
farms. Entire towns (or administrative units), slobodas, large and small 
villages had been ascribed to that Office. Volynsky, appointed its director 
in 1732, had chosen them after a detailed statistical and economic 
investigation. 
    The Regulations certainly drawn up by Volynsky were published on 16 
March 1733. The most interesting place there is the description of yearly 
sampling for studying agriculture in the localities ascribed to the Office. 
The principles of typological selection are exhibited there clearly and 
properly and the problem of studying [estimating?] the sown area and the 
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crop yield is thought out in a broad sense and solved in a surprisingly 
simple way. Only an exceptionally able man could have formulated so 
clearly the method of applying sampling in agriculture, and Volynsky 
indeed was such a person who back in 1724 had compiled a remarkable 
instruction for the manager of his votchinas. [And here is a passage from 
the Regulations (p. 54):] 
 
    For a better acquaintance with, and establishment of a proper economy 
it is necessary to send yearly groom and backyard [?] stable men from the 
Office at the time of ploughing, sowing, reaping and hay making to all the 
ascribed towns, slobodas, volosts and villages selecting these places in a 
way suitable for them;order them to test everywhere the arable land by 
ploughing several dessiatinas of quite good, average and bad land and 
sowing winter and spring-sowing cereals. Then, during reaping, to reap 
[both kinds of cereals from all the three grades of land]; to estimate how 
many dessiatinas of unreaped cereals there is separately [for the three 
grades of land; then thresh the samples, measure the grain, write it all 
down, sign the compiled document and have it countersigned by the 
manager. The same is to be done with hay, only no mention is made here 
of quite good etc]. 
    In connection with this description of the widely applied sampling I 
ought to mention three circumstances. 1) It goes back to the 17th century. 
2) The probable yields of cereals and hay had been finally estimated at the 
Stable Office itself. 3) Sampling as described in the Regulations had been 
included in the Complete Code of Laws… and could have been widely 
applied in Russia. 
    In the 17th and 18th centuries (until 1775) a certain role in the statistical 
system had been ascribed to the Voevoda (Zaozersky 1937, pp. 53 – 54): 
 
    The Voevoda is naturally mostly responsible for an exact execution of 
the instructions from the capital and therefore for an accurate account of 
managing and conducting the economy. 
 
    The department in charge of the royal votchinas wished to know 
(Vtoroe 1841, pp. 39, 41) 
 
    How much grain is left from previous years, both threshed and 
unthreshed, how much cereals and of what kind was sown in the year 
under review, […] how much was reaped and how many sotnitsas and 
how much should be expected according to the experimental threshing, 
and how many haycocks there is and will be from unmown wasteland 
according to estimation.  
 
    Answers to all these questions indeed form the contents of the so-called 
sowing, reaping and mowing books (Zaozersky 1937, pp. 53 – 54):  
 
    Sending partly precise (concerning everything – M. P.) and partly 
conjectural (experimental) figures pertaining to the entire economic 
activity to the department, the Voevoda had to narrow extremely the 
sphere of his unpunishable professional idle profit and at the same time he 



 19 

was compelled to keep a vigilant watch on the proper execution of 
everything under his administration.  
 
    Such was the statistical system of agriculture in the royal votchinas. 
    [7] In the 18th century ecclesiastical institutions had been owning great 
territories with a considerable population attached to them, and the 
temporal power aimed to seize a part of the clergy’s material resources for 
general state needs. For this reason elements of the statistics of 
ecclesiastical possessions were created during the reign of Peter the Great; 
by the mid-18th century that statistics became established in its final form. 
    On March 6, 1740, an instruction for the members of the Board of 
economics, one of the then existing governmental organs (Vtoroe, see 
1841, No. 8029, pp. 39, 41), called On the Inspection of Bishop and 
Monastic Votchinas, with detailed indications on registering all the 
productive forces and profits of each of them. Its § 2 demanded to compile  
 
    A list providing the quantity of cereals of each kind in the granaries of 
the inspected votchina, the same concerning unthreshed cereals left in 
ricks and barns and how many shocks or sheaves are there in each and 
how many grain should there be after threshing out of a shock or from a 
hundred sheaves. 
 
    The instruction (§ 23) precisely indicates how to estimate the probable 
yield by sampling: 
 
    Immediately after harvesting, each kind of cereal should be sampled in 
the presence of the steward, the village elder and the elected person (if in 
existence) and to be conducted thus. One sheaf is to be taken from each 
cart; and, after all the cereal is transported, these sheaves should be 
threshed and the quantity of grain from a hundred entered into the 
threshing books. According to that experiment, the entire yield of cereal 
should be estimated and the reaping books and books of experimental 
threshing signed by yourself and the steward 
 
and delivered to the Board. 
    The expression from a hundred sheaves ought to be understood as the 
mean not of all the selected sheaves, but only of the given [?] hundred of 
them. 
    [8] In the second half of the 18th century, sampling had been applied in 
large estates for estimating yields and stocks of cereals and forage. The 
Free Economic Society established in 1765 aimed at fostering the 
economic and agricultural development of Russia and worked out a 
specimen of an order to managers of estates.  In 1770 it awarded prizes to 
and published two such orders compiled by Rychkov (1770) and Bolotov 
(1770). 
    Petr Ivanovich Rychkov (1712 – 1777), an educated and knowledgeable 
person, compiled a specimen list of questions pertaining to separate 
homesteads and a detailed instruction comprised of 17 sections. Well 
informed about the practice of managing large estates, he also expressed 
his opinion about sampling. In his § 13 (1770, pp. 41 – 42) he wrote: 
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    Since they ought to estimate the yield of cereals, or the approximate 
quantity of grain, they must order those selected and village elders that 
each peasant, when transporting cereals to the threshing ground, should 
load one and the same number of sheaves onto his cart. How many 
sheaves are stocked in each barn should be written down in the votchina’s 
books, and, to know the quantity of each grade of grain yet more precisely, 
separate sample threshing of the best, the average and the bad [sheaves] 
should be carried out during harvesting in the manager’s presence. 
Having written down the results, an estimate should be done and, come 
the new year, the landowner should be notified so that he will know how 
much grain does he have. 
 
    Andrei Timofeevich Bolotov (1738 – 1833) was one of the most 
eminent agronomists of his time. His specimen of an order is essentially 
more detailed and concrete, more systematized and complete than 
Rychkov’s. He closely connected sampling with regulating the 
management of large estates, planning agricultural production and sale of 
their surplus (1770, pp. 126 – 127): 
 
    A good steward must think about the future and about a better use of the 
yields even when storing the produce. He ought to estimate beforehand 
how much will he have of everything and how much will be left for selling 
after expenditure. He needs to know therefore as soon as possible about 
threshing so that a small amount of each kind of quite good, average and 
bad quality of cereal should be left for experiments. For more convenient 
calculations these three grades should be collected into different ricks 
rather than mixed up and what grade of cereals came from which 
dessiatina and in which rick were they collected should be registered in 
the cereal book. Then, after threshing, it will be possible to estimate how 
much grain will there be of each grade. 
 
    […] Bolotov’s Order is a remarkable attempt to embrace the 
investigation of the productive forces of a large estate by a unified 
statistical system. The empirical types of sampling for estimating the 
entire yield of cereals and forage, methods of periodical censuses of 
homesteads and agricultural statistics pertaining to the current situation 
worked out during many years, were later critically applied by the Russian 
zemstvo statistics.  
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II 

A. A. Chuprov 

 

The Problems of the Theory of Statistics 
 

Die Aufgaben der Theorie der Statistik. Jahrbuch f. Gesetzgebung, 
Verwaltung und Volkswirtschaft im Deutschen Reiche,  

Bd. 29, 1905, pp. 421 – 480 
 

    [0. Introduction] 
    [0.1] After having a look at those sections of statistical manuals that 
have to do with the theory of statistics, it is impossible to deny that 
statisticians have a very peculiar notion about it. Instead of a system of 
propositions we find a medley of pronouncements of most diverse 
contents lacking in any connections between them. Advice based on 
experience about rules which ought to be obeyed when studying large 
totalities; instructions on summarizing and publishing the collected 
numerical data; formulas for fostering the determination of statistical 
regularities given such data but justified by personal tastes rather than by 
generally recognized principles. 
    And, along with all this, and devoid of any theoretical foundation, 
deliberations on the concept of mass phenomena; on the essence of 
statistical regularity; on contrasting the statistically knowable and the 
typical and its close relations with the probable; isolated technical 
directions obeying no theoretical principles and even entirely independent 
from them – this, in short, is the picture that can compel any theoretically 
minded researcher to abandon statistics. 
    The theory of statistics had only looked so hopelessly during the life of 
the previous generation, from the time when the attacks of German 
scientists annoyed by the exaggerations made by Quetelet’s followers  
demolished his elegant building of “social statistics”1. Still, however 
Quetelet’s constructions seem now intrinsically contradictory, his social 
physics had nevertheless been a powerful scientific theoretical system. In 
its philosophical viewpoints, his system rested upon the Comte positivism2 
and methodologically applied the newest mathematical achievements. 
Together with Quetelet’s doctrine of mean values and Average man and 
his inclinations, with the dependence of the characteristics of that being on 
the conditions of the social system and the reduction of statistical 
regularities as well as the methods of their study to the theory of 
probability, – that system had been unique in its peculiarity over the entire 
history of statistics. 
    [0.2] After having defeated Queteletism, the investigative ardour of the 
new generation had been directed towards particular concrete research 
rather than to erecting a building of the theory of statistics from the ruins 
of the demolished system. The immediate achievements were very 
substantial: an immense volume of numerical material of most various 
essence has been gradually amassed; and, at the same time, statisticians 
have become able to treat their data so precisely as was hardly possible 
earlier. 
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    However, more remote results of that turn of events proved not really 
comforting: the more observations had been collected, the more refined 
had the statistical art becoming, the keener felt was the absence of a 
theoretical base. Nowadays, statistics is almost lacking in generally 
accepted principles on whose foundation the correctness of conclusions 
made and the expediency of the methods applied could have been 
established. Debators differing in opinion find themselves in a helpless 
situation. It is impossible to compel the opponent to acknowledge defeat 
and as a rule the controversy remains undecided although points important 
in various aspects are [often] connected with its outcome. 
    The bias of contemporary statisticians towards pure empiricism ought to 
be done away with if only to restrict the researcher’s discretion and the 
results of statistical studies to become obligatory and thus acquire that 
most important property of science. Until recently, most statisticians 
forthwith rejected the demand for a theoretical base as a dream of no 
practical importance.  
    [0.3] However, during the recent years the theory of statistics gained 
many partisans, especially in England3 and it seems that we may hope that 
the next turn of events is not far off. This is all the more true because a 
researcher, the only one among his contemporaries not satisfied with the 
easy victory over Queteletism, has been labouring all his life to erect the 
theory of statistics anew, has become head of the school of theoreticians, 
and has recently published a contribution (Lexis 1903) serving as a code 
of sorts for statisticians of his direction. There, “essential principles of 
population statistics”4 stated by a master are provided in an easily 
accessible form for all advocates of theoretically based statistics. 
    Although Lexis entitled his latest writing (1903) Contributions to the 
Theory of Population and Moral Statistics rather than Theory of Statistics, 
it contains all the essential elements of the latter; his choice of title was 
apparently conditioned by the nature of exposition. The book includes 
papers which Lexis had written over 30 years; he had reworked the 
material and took into account the published investigations made by other 
scientists under his influence. However, he only included those so far as 
they did not go out of the subject matter of his own previous papers, 
otherwise he only considered them more or less thoroughly in footnotes. 
    Thus, the book primarily reflects his own scientific work, but since his 
research is the starting point for all the sources of the development of the 
modern theory of statistics, his contribution contains the elements from 
which that theory is composed. Only some rearrangement of separate parts 
is required for the entire theoretical system to become clear. 
    [0.4] And it is indeed my aim to trace those problems of the theory of 
statistics and the means at the disposal of the statistician for constructing it 
as called forth by the work of Lexis and the researchers who align 
themselves with him. It is necessary [however] to indicate first of all a 
digression [my digression] from the Lexian statistical viewpoint based on 
the principle perhaps explained by his responding to the excessively 
naturalistic way of thought of the adherents of Queteletism, – to the idea 
that “man’s behaviour is in essence individual and falls out entirely 
beyond the bounds of natural regularity”. This Lexian thesis does not 
touch on the inferences from those investigations made by him which 
seem important for statisticians, cf. Bortkiewicz (1904, p. 241n1), and 
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even his closest students hardly share it: statistical methods are being ever 
widely applied in natural sciences when studying those phenomens the 
existence of whose causes is unquestionable and these Lexian notions are 
absolutely insufficient for the creation of a theory of statistics. 
    When wishing to exclude the creation of two theories of statistics, one 
for the social sciences, the other one for natural sciences, the results of the 
Lexian investigations ought to be as though transposed to another 
philosophical key. In reducing statistical regularities to constructions of 
the theory of probability Lexis perceives a replacement of the impossible 
detailed explanation of the causal connections of phenomena. On the 
contrary, we ought to recognize that the theory of probability itself should 
become a means for establishing these connections. New contributions in 
the field of logic of the probable, and I especially mention the works of 
von Kries5, so closely linked that theory with causality that it does not 
seem anymore difficult to throw a bridge across the gulf that separates 
them. 
    1. The Inductive and the Statistical Methods 
    [1.1] The behaviour of man is based on recognizing that everything in 
the world is going on regularly and that like causes bring about like 
effects6. We have only to imagine what our life would have been if this 
assumption did not hold, if one and the same set of phenomena led now to 
one corollary, now to another one; if water sometimes extinguishes fire, 
and sometimes catches it, if heavy bodies either fall down or fly up. We 
would be able to live even in such a world of randomness but only […] 
    However, nature’s general regularity is not sufficient for serving as a 
basis of our conduct; that abstract pattern ought to be filled up with 
definite subject matter. We must know precisely which effects follow 
from a given set of phenomena and what kind of circumstances lead to a 
concrete action. Only after availing ourselves with such knowledge we 
will be able to influence actively the processes going on in the universe 
and to fulfil our plans7. 
 
    The realm of man’s knowledge coincides with the sphere of his power 
because ignorance of causes deprives him of action. Nature can only be 
subdued by resigning to it and causality revealed by contemplation 
becomes the guiding principle of our activities.  
 
    Knowledge is power. We partly acquire such kind of knowledge 
instinctively by building up the so-called experience of life. A child learns 
to walk without thinking about the laws of equilibrium of solids, and for 
learning to swim it is not necessary to acquaint oneself with the results of 
the Archimedean investigations.  
    This path is however very prolonged and difficult. A lot can be 
thoroughly learned in the school of life, but too much will depend on 
chance, and too much and too often we will dearly pay for our knowledge. 
[…] 
    Those sciences which, as contrasted with descriptive sciences, can be 
called nomological, take upon themselves the aim of systematically 
studying the definite connections between phenomena. Logic is called 
upon to show the way which they ought to follow and therefore by issuing 
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from the assumption of nature’s regularity to treat scientifically the 
material collected by experience. 
    [1.2] Experience establishes that in a given locality phenomena A1, B1, 
C1, D1 follow after phenomena A, B, C, D. Granted the assumption 
mentioned above, it is possible to conclude (under some premises which I 
leave aside for the time being) that the same will happen always and 
everywhere. However, for isolating those elements of the initial set which 
are [really] necessary for the appearance of definite phenomena belonging 
to the subsequent set, it is necessary first of all to modify somewhat and to 
develop our ideas of regularity. We must assume that not only does the 
general state of the universe determine its state in the next moment (p. 

426)8, but that phenomenon A is connected with phenomenon A1 in such a 
manner that the occurrence of A is always followed by A1 and that A1 
never happens without being preceded by A. […] 
    It can be shown that, if a number of initial sets has only one common 
element A, and the corresponding series of subsequent sets has only one 
common element A1 then phenomena A and A1 are connected as cause 
and effect. […] Such patterns […] are called inductive methods. […] 
    On the face of it, it seems that they are quite sufficient for discovering 
the laws of nature; […] actually, however, only for constructing abstract 
schemes but not for studying concrete phenomena. The correctness of our 
inferences rests on our tacit assumptions which very rarely come true. The 
first assumption is that the set of observed phenomena ought to be 
exhaustive. […] [which can be wrong.] 
    Other difficulties also exist […] and especially important is Mill’s 
forcefully stressed plurality of causes. […] I will try to prove, however 
paradoxically it seems, that plurality of causes does not really exist in 
Mill’s sense, but that nevertheless a researcher ought to invariably allow 
for plurality of both causes and effects. […] 
    [1.3] The set of methods for investigating causal connections under 
plurality of causes and effects comprises exactly what is usually 
collectively called statistical method 9. In formal logic, the statistical 
method thus understood is earning a position of equal rights with inductive 
methods. Both have the same goal, viz., to discover the laws of nature by 
scientifically treating observational material, but each is only being 
applied when their special assumptions are holding. If we may state that 
the investigated phenomena are inseparably causally linked, then the 
various kinds of induction can be made use of. If however we are unable 
to prove that plurality of causes and effects will not be encountered, we 
ought to apply one or another form of the statistical method. These two 
methods thus supplement each other; when one is found unfit, the other 
one replaces it. 
    2. Notion of Probability. The Law of Large Numbers 
    [2.1] The logical purpose of the statistical method elucidated above 
directly conditions the goals of the theory of statistics. Similar to the 
theory of induction which develops its methods of likeness and distinction 
for studying inseparable causal ties, the theory of statistics has to create 
special methods for revealing incomplete causal connections, for 
indicating how to treat observational material when there exists no 
inseparable link between cause and effect. 
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    In spite of its practical importance, the theory of statistical method 
regrettably lags far behind the theory of induction. On one hand, this 
backwardness is caused by the greater variety and complexity of those 
forms of causal relations which are studied by the statistical method; on 
the other hand, until recently that method had only been applied to study 
mass phenomena of human life.  
    Logicians had been therefore inclined to deny any general significance 
of the statistical method in the same way as for example the methods of 
microscopic investigations. I have indicated however that until recently 
statisticians [themselves] little cared for thoroughly justifying their 
methods. Only after Lexis had investigated the stability of statistical series 
and the substantiation of statistics by the calculus of probability, thus 
showing the possibility of elevating oneself above naked empiricism, did 
they begin to become more interested in statistical theory.  
    The erection of the theory is not yet completed in all its details, but after 
Bortkiewicz, Edgeworth, Kries, Pearson, Westergaard, to mention but a 
few most outstanding names, had joined Lexis10, the essential features of 
the theory of statistics showed through sufficiently clearly and an attempt 
to trace the general outline of the arising building’s façade can be made.  
    The field of the statistical method’s application, as I have sketched it, 
consists of investigating incomplete and not inseparable links so that the 
causes and effects can bring forth other effects and be conditioned by 
other causes respectively. This essentially negative definition is however 
not in general sufficient for constructing methods of statistical 
investigations. It is necessary to distinguish and define more exactly the 
kinds of causal links to be studied. Most important is the kind having 
plurality of effects which therefore can be characterized by the pattern α, β 
→ α1, β1, µ1, ν1.  
    [2.2] We will use it for considering in more detail how a statistical 
investigation is carried out11. First of all, we ought to define precisely the 
connection between cause and effect in a manner fit for application as the 
base of statistical methods. […] 
    The number of various possible effects following a given cause 
immediately suggests itself as the foundation of this definition. When 
throwing a coin, two effects are possible; when throwing a die […]; when 
extracting a ball from an urn containing a hundred various [?] balls, a 
hundred different effects is possible. In many cases, the integers 2, 6 and 
100, or, better, the fractions 1/2, 1/6 and 1/100 can clearly indicate the 
closeness of the link between cause and effect. 
    This principle really serves as the foundation of the statistical methods, 
but it ought to be specified. The number of possible effects conditioned by 
one and the same cause is not definite in itself because it depends on the 
choice of the unity. Suppose that the urn contains 99 black balls and one 
white ball. Then the connection of the cause and the extraction of the 
white ball is characterized by the fraction 1/100. If however we study the 
appearance of a ball of one of the two colours, the connection of that 
effect with the cause will be defined by the fraction 1/2. For our goal of 
defining causal relations such multivalued and unstable indications are 
useless.  
    The notion of equally possible effects following some cause comes to 
the rescue12. […] After establishing the set of equally possible effects 
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corresponding to some cause, their relation to the latter can be defined 
uniquely […] An effect not included in that set can be subdivided into a 
number of equally possible effects. […] 
    For example, the connection between extracting a black ball from the 
urn mentioned above [with its cause] is represented by the fraction 99/100. 
Such fractions which are sometimes expressed by irrational numbers (p. 

441!)are called objective probabilities and they uniquely determine the 
connection between cause and effect. That probability does not 
immediately supplement our knowledge, it only expresses it by a single 
number. […] 
    [2.3] The notion of objective probability is methodologically justified 
by the law of large numbers which establishes the relation between it and 
the empirically discovered frequencies of events. […] All statistical 
inferences rest on that law. […] Even political arithmeticians had divined 
it; thus, Halley indicated that the errors from which his tables of mortality 
were not free, were partly random (p. 442)13 and could have been 
eliminated had the number of years of observation been much larger (20, 
say, instead of 5). The Dutchman ‘sGravesande presented the same idea in 
a more general form14: 
 
    The regularity that often escapes us when considering a small number 
of conclusions reveals itself if a large number of them is taken into 
account. 
 
    Süssmilch illustrated the influence of large numbers by the sex scatter 
of population. For separate families and in small settlements the ratio of 
the sexes fluctuated absolutely irregularly, but in large cities and entire 
countries it was constant.  
    The law of large numbers acquired its precise mathematical definition 
in the works of the great theoreticians of the science of probability, J. 
Bernoulli, Laplace [?] and Poisson15. However, its real substantiation was 
provided by the talented French mathematician, philosopher and 
economist Cournot, who for a long time had remained in oblivion. 
    His proof consists of three parts. First of all, referring to his notion of 
mutually independent elementary causes and effects [§ 39], he inferred [§ 
43] that phenomena whose objective probability was very low, cannot 
occur often. The second, mathematical part of the proof adjoining the first 
one is in the forms of either the well-known Bernoulli theorem or in its 
generalized forms of Poisson or Chebyshev. In essence, these theorems 
reduce to proving that the objective probability of obtaining frequencies of 
a separate kind of effect following some cause essentially deviating from 
their corresponding probabilities is very low given a large number of 
observations and can be made lower than any small magnitude by 
increasing the number of observations.  
    In itself, this proposition is a combinatorial theorem which does not lead 
us beyond the sphere of probability and nothing testifies about the 
behaviour of phenomena in reality. But, coupled with the earlier 
established relation between low objective probability and essential rarity, 
this mathematical theorem leads to the third part of Cournot’s 
deliberations, to the conclusion named above the law of large numbers 
which tells us that for large statistical totalities essential deviations of the 
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frequencies of the various kinds of effects occasioned by a common cause 
from proportionality to corresponding objective probabilities occur very 
rarely16. 
    Which numbers of observations ought to be considered large, and what 
should we understand as an essential deviation, and under which kinds of 
premises does the main proposition hold, i. e., what are the demands 
which the totality of phenomena should obey, – we find all this in the 
mathematical formulation of the second part of Cournot’s proof. They 
establish the connection between the number of observations and the 
degree of precision with which frequencies reflect their underlying 
probability. 
    [2.4] Denote the probability of any event by p, the number of 
observations constituting the totality by M, and the number of occurrences 
of the event by m. The frequency of the event will then be m/M and the 
probability f(u) that the difference between p and m/M will not exceed 
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    The values of f(u) corresponding to different values of u can be found in 
tables included in many statistical contributions, for example in Lexis 
(1903, pp. 252 – 253)17. These tables show that as u increases, f(u) rapidly 
approaches unity. Thus, at u = 3, f(u) is already 0.99998. We may 
therefore be very sure that the difference between p and m/M will not 
exceed 
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[…] The magnitude [the square root in (1) or (2)] is called modulus18 and 
the result obtained can also be thus stated: The difference between the 
objective probability and frequency does not thrice exceed the modulus. 
And since the modulus becomes smaller as m increases, we conclude that 
[…]. This indeed is why statisticians invariably aim at large numbers. 
    The law of large numbers makes it possible to pass from frequencies 
derived from trials on to the objective probability which constitutes their 
foundation and therefore to make inferences about the kind of connection 
of the [studied] phenomenon with the general causes defining the totality. 
[…] If, for example, a proper die the occurrence of whose faces has 
probability 1/6 is thrown 100 times, no face will turn up more than 
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times. And if any face occurs oftener, we may state that the die is faked. 
    Had the roulette wheel in Monte Carlo been quite properly constructed, 
a change of colour would have occurred not oftener than 2236 times in 
4274 rounds; on the contrary, the same colour would have remained twice 
and thrice in succession not less than 984 and 470 times respectively. 
However, Professor Pearson (1894, p. 189), drawing on observations of a 
series of rounds, showed that repeated colours only happened 945 and 333 
times so the construction of the wheel had something leading to an oftener 
change of colour and its lesser repetition than it should have been19. 
    This case is practically important because probability p = 1/2 [how does 
it appear here?] plays an essential methodological part: it means that the 
considered phenomena are independent since each was observed equally 
often whether the other one was present or not. In a great majority of cases 
all that the statistician has to show is that the studied phenomena are not 
mutually independent.  
    For proving it, he can compare the series (see below) and the method of 
applying the law of large numbers just considered is the base of this, 
practically speaking, most important scientific method at the disposal of 
statisticians. The French statisticians Guerry and Dufau had empirically 
developed it in a most possible systematic way.  
    Contrary to this method which refutes independence there is another 
method of affirmatively applying the law of large numbers. Reliable 
conclusions from statistical observations, without their having been 
scientifically treated and therefore [still] based on empirical frequencies, 
cannot be immediately reached. For understanding this, scientific training 
is not needed. If in some locality 12, 345 people had died in a year, and 
12,344 in the next year, it will be clear to each sensible person that it does 
not mean that sanitary conditions had improved. The difference is so 
insignificant as to having possibly [?] been caused by chance. But what is 
chance in this context? Where does it end? When do the differences 
become sufficiently large for us to be able to say that they are not 
accidental?  
    If the answers to these questions are left to the statisticians’ personal 
feelings, a sceptic will overrate the bounds of the accidental, and an 
optimist, underrate it. When aiming, however, to discover a precise and 
obligatory method, the answer can only be found in the law of large 
numbers. […] If we can show that for two statistical totalities the objective 
probabilities of some event, of death for example, are [indeed] different, 
we will have to conclude that the general causes [of death] in these two 
cases are [also] different.  
    Although objective probabilities are reflected in empirical frequencies, 
this reflection is not sharply outlined; depending on the number of 
observations comprising the totality, it always remains more or less 
indefinite. Different frequencies can correspond to the same probability, 
and vice versa, which explains why empirical frequencies cannot directly 
tell us whether the compared statistical totalities were conditioned by the 
same general causes. Consideration of probabilities must always be a link 
in the chain of our deductions. Only when able to prove that the objective 
probabilities are different in these two cases, we may infer that the general 
causes differ as well. 
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    But how to prove that the probabilities are different? There are two 
possibilities. First, drawing on the relation between probabilities and 
frequencies in each case, which is determined by the law of large numbers, 
we can establish the boundaries within which these probabilities are 
included. If these boundaries do not intersect, they, the probabilities, 
obviously cannot be equal. 
    Thus, in Vienna in 1897 33,181 inhabitants out of 1,558,129 died. […] 
In Prague, the same year, 6,392 and 193,097. […] We may state that […] 
in respect of mortality the conditions of life in Prague were less favourable 
than in Vienna. But what in essence does this depend on […] we cannot 
say at once. […] 
    The other possibility is preferable because it restricts randomness more 
tightly. Mathematical theory indicates that, when comparing two 
frequencies with moduli m1 and m2, their difference has modulus 

2 2
1 2m m+ . If therefore the actual difference exceeds thrice that modulus, 

we cannot anymore say that the frequencies randomly deviate from the 
same objective probability; on the contrary, we are then justified in stating 
that the general causes of the two cases were different. 
    3. Theory and Experience: the Study of Stability (Lexis) and the 

Law of Small Numbers (Bortkiewicz) 
    [3.1] Raw empirical frequencies established by statistical observation 
can be scientifically treated and the essence of phenomena cleaned up 
from the dross of the accidental. However, before taking the next step in 
constructing statistical methods and ascertaining how to apply the 
conclusions about the main causes, it is necessary to show that the 
deductively justified notion of the connection between empirical 
frequencies and objective probabilities is a construction not made up of 
thin air, but, on the contrary, substantiated by experience.  
    Do conditions exist under which it is really possible to show that 
connection? And, if so, are the circumstances of given trials of that kind 
[…]? Only after answering both questions affirmatively further 
construction of the theory of statistics makes sense.The first question can 
be answered by referring to experiments on games of chance. Carried out 
thoroughly, […] they utterly correspond to preliminary theoretical 
calculations. […] 
    In accord with a proposal made by De Morgan, a coin had been thrown 
until 2048 heads had appeared; tails had come out 2044 times. Jevons 
threw a coin 20,480 times and the frequency of heads was 0.505. Quetelet 
experimented with an urn containing 20 white balls and the same number 
of black ones. After 4096 extractions there appeared 49.3% and 50.7% of 
them respectively. Westergaard repeated the same experiment with one 
ball of each colour (white and red) and got 5011 and 4989 of them 
respectively.  
   Consider now the Jevons experiment as 2048 series of 10 throws each; 
the frequency 1/2 for heads appeared in 24% of them, with theoretically 
expected 25%. Cases in which the number of heads deviated from 5 by 2 
(say), and thus equalled 7 or 3, occurred 482 times (according to theory, 
480 times). Then, there were 5 series only consisting of heads or tails 
(theoretically, 4)20. It follows, that experiments do not refute our 
theoretical construction; on the contrary, they are considerably important 
for understanding the occurring phenomena because they show how to 
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explain  the unaccountable, on the face of it, negligible fluctuations of the 
empirical frequencies given invariable general causes. 
    [3.2] Nevertheless, before delving into an explanation of that so 
surprising constancy of statistical figures, it is necessary to prove that the 
probabilistic pattern, only compared until now with experiments on games 
of chance, is also applicable for statistically studying mass phenomena. 
Obviously, however, it is impossible to consider each relative figure based 
on observations as an empirical expression of a certain objective 
probability; certain assumptions are here needed. But are these 
assumptions fulfilled in statistical work? We cannot deductively establish 
it because that work encompasses phenomena as well as their causes 
which are not known with sufficient precision. It is necessary to study the 
statistical material itself, and Lexis is greatly meritorious for accurately 
justifying by theoretical considerations the need to apply the calculus of 
probability when studying statistical data, and inventing appropriate 
precise methods.  
    When deciding whether the frequencies correspond to probabilities, 
separate statistical figures obviously cannot help at all. […] There will be 
no way to solve this problem. If, however, we have a number of 
frequencies belonging to different totalities, we can ascertain, as Lexis had 
shown, whether all of them ought to be considered as empirical 
expressions of one and the same probability.  
    Lexis offered two methods. Assuming that separate frequencies were 
empirical expressions of one and the same objective probability, we can 
calculate the modulus 
 

    
2  (1 )p p

M

−
                                                                                   (3) 

 
with p replaced by the mean frequency of the phenomenon over the 
totality or over all the totalities together and to take the mean number of 
events in these totalities instead of M; the separate numbers should not 
considerably differ from each other. 
    Then that modulus is made use of to calculate how would have the 
separate frequencies been grouped around their mean supposing that all of 
them had one and the same objective probability as their base. Indeed, we 
know that no deviations exceeding three moduli should have been found at 
all, and the table of the values of f(u) will show that beyond the bounds of 
two moduli there should be about 0.005 of the frequencies; that 
approximately a half of them will be beyond those that correspond to 
0.4769 of the modulus [to the probable error], etc. 
    If the actual distribution of the frequencies does not correspond to those 
theoretically calculated, we ought to consider as refuted our assumption of 
all of them being based on one and the same probability. In the opposite 
case we may assume that experience had justified our hypothesis. 
    [3.3] The other method created by Lexis applies an obvious criterion 
and is therefore preferable. If the separate frequencies ν1, ν2, …, νn are 
grouped around their mean in accord with theory, we can mathematically 
prove that 
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should be equal to the modulus (3)21. It follows that if the actual 
fluctuations of the frequencies around their mean are exactly such as 
prescribed theoretically, the ratio of these two magnitudes, Q, should 
approximately equal unity22. This ratio plays an essential part in the 
Lexian theory. It indeed provides us with a reasonable measure of the 
constancy of statistical numbers so surprising everyone previously. 
    The stability of statistical figures, their insignificant fluctuations from 
year to year explained the entirely justifiable interest in statistics expressed 
both by specialists and laymen. […] As a rule, figures only significant for 
a certain moment are not determined at all. For example, in Germany, 
owing to the irregular weather in summertime, the proposed census of 
people employed in navigation was abandoned: it was impossible to reach 
an idea corresponding with usual conditions.  
    Actually, the stability of statistical returns serves as the foundation of 
the very notion of society as an organic whole of outwardly uncoordinated 
elements which, in spite of freedom of movement, constitute a general 
totality existing in stable equilibrium23. [I am omitting a piece which 
included relevant short comments on Graunt, Süssmilch and Quetelet.] 
    [3.4] The overrating of stability had led to statements that […] order 
rested on compulsion from the outside which made Queteletism 
vulnerable and stirred up the storm that demolished it. […] The cause of 
the mistake made is obvious. The materialistically minded followers of 
Quetelet made conclusions from statistical regularities which intrinsically 
offended the opponents of Quetelet. Resentment suggested to the 
opponents that not everything in such inferences was proper, but they 
lacked theoretical foundation which would have allowed them not only to 
reject, but to refute those followers.  
    Is the constancy of statistical figures indeed stable? Rehnisch (1876) 
resolutely denied it. Quetelet had been amazed by the stability of the 
figures of the French criminal statistics, but Rehnisch was able to show 
that Quetelet had treated them wrongly; he failed to note that in the middle 
of the period under his consideration the manner of publishing the data 
had changed (p. 454)24. When taking the actually comparable figures for 
the entire period, it would have been necessary to double the data 
pertaining to half of them. And, in spite of such a change, the new series 
of figures displayed the same stability as previously, so how can we say 
that the figures were stable? 
    But what exactly did Rehnisch prove? At best, if any weight at all can 
be attached to his conclusion, his was an argumentum ad hominem which 
compromised the leader of his opponents. Indeed, if an inferior series 
accidentally happened to be weakly fluctuating, it does not really follow 
that the fluctuations of other series are large. An objective measure for 
stability of statistical figures ought to be discovered and only then will it 
be possible to make inferences about their actual behaviour. Many 
examples of diversity of opinion in regard to stability of one and the same 
statistical indicator show how acute is the need for such a measure. 
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[Chuprov provides a long quotation from Lexis (1903, pp. 171 – 172). 
Below, I only partly adduce it.] 
 
    It seemed natural to assume as the test and measure of fluctuation the 
mean deviation of the separate terms of a series from their mean level. 
[…] But that is a purely empirical method and only a theoretical 
investigation of the issue will indicate the boundaries within which it can 
be considered proper. 
 
    [3.5] And so, Lexis himself outlined the starting point of his 
investigations of the stability of statistical series. In connection with his 
study of the applicability of the theory of probability to statistics he was 
really able to discover a general solution to that problem. The magnitude 
Q which is the ratio of (4) or the calculated physical modulus to its 
combinatorial value (3) as described above is indeed the theoretically 
justified and therefore reasonable measure of stability of statistical figures. 
If the actual fluctuations of those figures exactly correspond to theoretical 
calculations resting on the assumption that the base of all the statistical 
totalities is one and the same probability, Q is approximately equal to 
unity25. 
    Lexis called this case normal stability or normal dispersion. The case of 
Q > 1 signifying subnormal stability or supernormal dispersion is only 
possible if the actual fluctuations are greater than theoretically expected. 
On the contrary, the case of Q < 1 in which the fluctuations are smaller 
than those expected on the strength of the calculus of probability, the 
stability is supernormal, or, in other words, the fluctuations are subnormal. 
    Lexis and his students have applied these concepts and methods for 
studying the fluctuations of various statistical series. The investigation of 
the sex ratio at birth showed complete coincidence of the empirical data 
and probabilistic calculations. […] That ratio also evinces normal stability 
when separately considering born in and out of wedlock and live newly 
born and stillborn. 
    Almost complete coincidence was also typical for the sex ratio of those 
dying during the first five years of life and in extreme old age (those above 
80). For other age groups it clearly occurred subnormal; thus, for ages 50 
– 75 years Q did not fall lower than 4. On the contrary, mortality of old 
age males was normally stable and obviously subnormal for children. 
    Complete failure26 also befell the investigators when they attempted to 
apply the same test to the data of moral statistics: all the indicators 
revealed subnormal stability. Thus, when considering the part of various 
civil [social?] states of those entering into marriage in Sweden, we find Q 
= 2.3; the relative number of suicides in Germany, Q = 5. Greater values 
were also encountered: not rarely Q = 10, 20 and even larger (Bortkiewicz 
1898, p. 28). 
    There are thus cases in which empirical values are so close to 
theoretical, that the empirical frequencies may be rightfully considered as 
reflections of one and the same objective probability. However, the 
majority of the studied frequencies revealed subnormal stability: for cases 
in which all of them had been based on one and the same probability, their 
actual fluctuations were essentially greater than theoretically expected. 
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    [3.6] Two important points were here noted. On the one hand, the 
coincidence with theory proved the better the less were the totalities for 
which the frequencies were calculated. For example, the relative 
frequency of suicides in Germany had Q = 5 but for the eight smallest 
German states and female suicides Q = 1.15. Bortkiewicz also proved that 
for small totalities the stability became invariably normal. On the other 
hand, it was established that stability is the closer to normal the greater 
part of the properties of relative probability does the frequency possess. 
Thus, the sex ratio of the dead infants of age less than a year is more stable 
than of boys and girls [of the same age group] considered separately. 
    How to explain this? And what should we conclude if the dispersion is 
normal or supernormal? Why is stability of small totalities higher? Does it 
testify to the applicability of the calculus of probability to statistics or 
refute that possibility? 
    To answer these questions we ought to turn once more to the tested 
method, to studying games of chance. We know already when is normal 
dispersion possible. When throwing a coin or a die, or extracting a ball 
from an urn, the frequencies of heads and tails, of the number of points 
and of the white and black balls in several series of trials are grouped 
around their means in a way we call normal. Poisson proved that the 
scatter also remains normal when, for example, the balls are extracted 
from several urns having differing ratios of balls of those colours provided 
that before each extraction the proper urn is randomly chosen27.  
    Thus, if one urn only contains black balls, and another one is only filled 
with white balls, and their choice is random […], the frequency of the 
white ball after M extractions will be ca. 1/2 in the mean and the 
approximation will be the same as if there were only one urn with an equal 
number of balls of each colour. When repeating that experiment n times 
with an invariable M, the frequencies of the white balls will be grouped 
around their mean just like when extracting the balls from a single urn 
with an equal number of balls of each colour. 
    This generalization of the pattern of normal dispersion made by Poisson 
by means of mathematical calculations but obvious without them as well 
(p. 458)28, is the cause of the appearance of the normal dispersion and 
therefore of very high theoretical significance. It proves the utter 
groundlessness of the notion which assumes that the totality from which 
the frequencies are calculated ought to be homogeneous. […] 
    [3.7] It follows that the normal dispersion does not at all mean that all 
the elements comprising the statistical totality be essentially identical as 
the Queteletists had been inclined to believe. On the contrary, they can be 
worlds apart. […] In their time, while opposing Queteletism, Rümelin and 
then Schmoller rightfully denied, and called “psychologically monstrous” 
the statement that  
 
    It is possible to say to the face of each member of a nation, and even of 
the noblest of them, that his inclination to crime is expressed with 
mathematical precision by the fraction 21/10,000. 
 
    However, these scientists acknowledged that statistics was in the right 
when proclaiming to everyone that “he must die during the next year with 
probability 1/49 and to bemoan heavy losses to the circle of those dear to 
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him with even a higher probability” and that he must “humbly submit to 
the sorrowful truth”. This only shows that their judgement, although 
correct, had been based on indignation rather than on sober and rational 
thinking. Indeed (Bortkiewicz 1894 – 1896, Bd. 10, p. 359n), for his part, 
“The strongest and healthiest representative of the nation” could have 
quite as justifiably “denied as psychologically monstrous the forecast 
made by statistics that he will die with probability equal to its general 
mean value”. 
    To describe clearly the conditions under which appears subnormal 
stability, I make use of the same example with which I had explained the 
Poisson generalization of the pattern of normal dispersion. An urn only 
contains black balls and another one is only filled by white balls. Choose 
the urn for the first extraction by lot and extract all the M balls of a series 
from it. Then repeat all this to obtain the second equally numerous series. 
If n series are thus composed, the mean frequency of white balls over all 
the series, as in the previous case, will approximately equal 1/2.  
    However, the particular frequencies over each series will deviate from 
the mean essentially greater than previously, since, depending on the 
outcome of the random choice of the urn, separate series will wholly 
consist either of black or white balls. In this case, the predominance of 
small deviations from the mean which took place previously is impossible; 
moreover, the only possible deviations are now 1/2 or – 1/2. This is why 
the stability of the entire series will be essentially lower than normal with 
supernormal dispersion.  
    Imagine now a third experiment. If the urn for the first extraction is 
chosen by lot, but the first series of M balls is this time made from both 
urns in turn, the mean frequency of the white balls in n [such] series will 
also be approximately 1/2. However, the grouping of the serial frequencies 
around that mean will reveal something special because for an even M 
there will be an equal number of balls of each colour, and otherwise these 
numbers will differ by unity. The possibility of large deviations from the 
mean is thus excluded and all frequencies will be situated very near to 
their mean. Stability will thus be supernormal with subnormal dispersion. 
    [3.8] When comparing the three examples we get a clear notion about 
the conditions for the appearance of the normal, subnormal and 
supernormal dispersion. If the separate elements are included in a 
statistical totality independently from those previously included (as in the 
first example when before extracting each ball the urn was chosen 
randomly) normal dispersion will appear. If, however, previous results 
influence the following ones (as in the second example when the urn was 
chosen once for the whole series of extractions […]) the dispersion will be 
supernormal. And it will be subnormal if a deviation in one case leads to 
deviation in the opposite direction so that there arises a certain mutual 
compensation (as in the third example […]). 
    Both super- and subnormal dispersion testify that the separate trials 
united into a statistical totality are not independent one from another. In 
one case the results of the trials are more similar to each other than to the 
results in some other totality; in the other case the totality was composed 
in such a way that the deviations of each element from the mean was 
smoothed over by an opposite deviation of another element. Both these 
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cases can be got by a certain choice of the separate trials constituting these 
totalities. 
    Supernormal dispersion can also be obtained in another way without the 
result of one trial influencing those of the other ones. The results in each 
series being based on one and the same probability (differing from that in 
the other series) are interconnected. It is not therefore necessary for the 
trials constituting a series to influence each other because the extractions 
from the chosen urn are made in the usual manner. The dispersion 
however became supernormal because the extractions of one and the same 
series are interconnected by being made from the same urn. 
    As to the subnormal dispersion, it also nevertheless testifies to the 
presence of certain rules regulating the totality’s composition from subsets 
being in exact numerical ratios to each other. Thus, a subnormal 
dispersion of accidents in the army is occasioned because their 
probabilities in infantry, in the cavalry, in artillery and supper units are 
very different whereas the ratios of the strengths of the arms of the service 
to the total strength of the army are stipulated by laws and can be 
considered constant, at least over a long period (Lexis 1903, pp. 228 – 
229). 
    [3.9] It follows that the interpretation of statistical data as applied by the 
Queteletists against the proponents of free will would only have been 
proper for supernormal stability of the indications of moral statistics. 
Indeed, in that case it would have been difficult to reject the assumption 
that “the seemingly arbitrary actions of man” obey the laws establishing 
certain norms of numerical ratios in the studied statistical series. But even 
then such norms could have been interpreted in many different ways. Be 
that as it may, until we are able to establish cases of supernormal stability, 
regularity will accept all the demands which the proponents of free will 
could have ever put forward. 
    Indeed, suppose that the significance of external circumstances of, and 
intrinsic reasons for human behaviour only consisted in determining the 
sole possible way of acting out of an infinite set of those thinkable, and 
that free will had the choice of those acts without being guided by any 
considerations (similar to the ball in the roulette game that stops in one or 
another sector independently from its colour). Then, ultimately, exactly 
the normal stability should appear in the mean29.  
    However, it actually occurs rather rarely, usually stability is subnormal, 
so the Queteletists’ attempt to solve the metaphysical problem of free will 
by simple empirical experimenta crusis (deciding experiments) ought to 
be rejected as obviously unsuccessful. The actual stability of statistical 
figures, even if it most approaches normality, only allows to infer that its 
foundation is the existence of common causes of the statistical totalities 
under comparison. 
    Here is how Lexis (1903, pp. 226 – 227) discusses the real significance 
of the assumptions that the main causes were invariable: 
 
    There exist infinitely many combinations of conditions and 
circumstances leading to the possibility of a 30 years old person to die 
during the next year. Partly they depend on his physical condition and 
partly on external factors of life. It is as though during the next year all 
people of that age contained in a given population are subjected to a test 
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on whether there exists for them a probability to die or not (p. 463: 
whether these possibilities of death will indeed come true for them). 
     This can give us some idea about the probabilities of death during the 
next year for that age and exactly in the same way, as, for example, when 
obtaining an approximate idea about the relief map of the bottom of the 
sea by measuring its depth in many definite places. The bottom remains 
invariable, so that a second series of measurements will give us 
approximately the same picture. However, the physical condition of 
cripples of that age also repeats itself to a certain extent. Although not 
constant, it is similar in respect of the probability of dying during the next 
year. 
    The combinations of conditions and circumstances leading to death can 
change in infinitely many ways, but we will still consider them invariable. 
Just the same, a die on an infinitely differing parts of the surface of a table 
has infinitely many arrangements of that edge around which it rotates 
before falling down and showing the same number of points30. 
    As I mentioned, 30 years old individuals of consecutive observed 
generations are interchangeable in regard to their condition, both 
physiological and pathological, and external circumstances of life. The 
same idea can be extended on human actions interesting for moral 
statistics. They are determined by a combination of conditions caused 
partly by social, economic and other external circumstances of life and 
partly by the psychological and moral peculiarities of the individual. 
However, these types of individuals in spite of their possible infinite 
variety are also sufficiently homogeneous in respect of conditioning their 
behaviour. The totality of external and subjective circumstances in regard 
to a studied event changes comparatively weakly even for various 
individuals replacing each other from year to year and determined to a 
certain extent abstractly which indeed leads to the observed statistical 
regularity. 
 
    If, given a normal dispersion, both the general circumstances of life and 
the structure of the groups of population, homogeneous in respect to the 
studied event, change from year to year not more than it happens under the 
pattern of independent trials in a game of chance, it becomes immediately 
clear why does the majority of statistical series reveal stability lower than 
normal. Events, being united over a calendar year (say), are usually 
independent not to the degree necessary for normal dispersion. Some 
causes among those, influencing the process of events all year long or for 
its considerable part, often act in the same direction, then making way for 
other causes acting in the opposite sense. 
    [3.10] Again, take for instance mortality. In a given year climatic 
peculiarities [?], a random outbreak of an epidemic disease or, on the 
contrary, its cessation lead now to increase, now to decrease in mortality 
in regard to its mean level. It is therefore wrong to consider that the 
objective probability of mortality remains invariable over the whole period 
of many years. The correct conclusion is that each year has its own 
probability and in that regard can essentially differ from the previous year 
and future years.  
    The fluctuations in the empirically established indications of mortality 
are therefore caused by two sets of causes. The first one leads to the 
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distinction between the objective probabilities for separate years and is 
reflected in the fluctuations of the probabilities around their mean level. 
The second set of causes involves the reproduction of the objective 
probability of mortality in each year to occur not precisely, but with 
random deviations. It remains the only acting set when all the objective 
probabilities are the same, and when, consequently, we should have 
expected a normal dispersion. 
    The first set however entails an excess of fluctuations of the empirical 
frequencies over the level of normal dispersion. It is thus easy to 
understand why is the stability of the probability of children’s deaths 
lower than that of others. It is obvious that the climatic peculiarities of the 
year in question stronger influence the delicate health of a child than the 
health of an adult. It is only sufficient to recall here epidemic diseases and 
gastric diseases occasioned by intense heat in the summer. […] 
    It is also clear that the dispersion is the closer to normality the greater 
part of the properties of relative probability does the frequency possess, cf. 
the “second point” in § 3.6. This circumstance can only be explained by 
the more or less equal action of many factors which distinguish one year 
from another one on both groups of phenomena contained in the relative 
probability. These factors therefore only weakly reflect on their ratio. Thus 
(Lexis 1903, pp. 208 – 209), 
 
    The ratios of boys and girls dying in the group of 0 – 1 years old to the 
live newly born of the same sex represent approximate values of absolute 
probabilities. When studying these empirical data over a number of years, 
we discover their supernormal dispersion. This result could have been 
foreseen because we are able to name many external causes (cholera, 
strained circumstances etc) leading to essential changes in the normal 
conditions of mortality. On the contrary, there are no grounds for the 
external circumstances differently influencing the health of boys and girls 
because the way of life of both sexes during infancy is identical. This is 
why the relative probability of death of children of both sexes remains 
constant in spite of the change in the absolute probabilities, which is 
testified by the discovered normality of dispersion of the empirical values 
of that probability. 
 
    The correctness of this explanation is also corroborated by the 
supernormal dispersion revealed by the relative probability of death of 
people of both sexes in certain age groups in which the conditions of life 
of people of different sexes are not anymore identical.  
    [3.11] It remains to explain the following fact unacceptable to the 
majority of statisticians blindly trusting the law of large numbers: the 
stability of statistical figures is as a rule the lower than normal the more 
numerous is the totality made use of when calculating frequencies. There 
are two causes of this circumstance. The first one is an optical illusion of 
sorts. The measure of dispersion in our investigation is the coefficient Q, 
the ratio of the modulus calculated by issuing from the actual frequencies 
to the theoretical modulus corresponding to the normal dispersion. To 
recall, in case of supernormal dispersion (beginning of § 3.10) the 
numerator of the fraction consists of two components, of the fluctuations 
of the objective probabilities from year to year and the random deviations 
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of the empirical frequencies from their corresponding probabilities 
whereas only the second component serves as the denominator of that 
fraction.  
    Therefore, if the first component is greater than the second one, Q will 
essentially deviate from unity; if it is considerably smaller, Q will be close 
to unity. However, the random deviations are known to be the greater, the 
less is the number of observations used for calculating the frequencies. If 
the measure of fluctuations of the objective probability remains invariable 
from year to year, then Q ought to be smaller for a small number of 
observations than for larger numbers. It follows that although the stability 
of a series usually approaches normality given a lesser number of 
observations, no real significance ought to be attached to this result since 
it depends on the method of measurement (p. 486). 
    This explanation is not however exhaustive. Bortkiewicz proved that, 
after eliminating the fictitious influence of small numbers, the stability of 
the repetition of events in that case more closely approaches normality and 
that, on the contrary, when that number becomes ever greater, stability 
becomes ever lower. He also proved that that fact remains partly 
unexplained. 
    Drawing on the Bienaymé and Cournot theory of causes acting in 
concert, Bortkiewicz called this fact law of small numbers31 and rigorously 
justified it. The essence of the matter is this. We have satisfied ourselves 
in that the supernormal dispersion occurs because the elements united in a 
statistical totality are not mutually independent, that there exists some kind 
of affinity between them. We may show mathematically that the excess of 
the dispersion as compared with normality depends on the number of the 
thus interconnected elements. If only two consecutive elements are 
connected, the dispersion deviates from normality not really significantly; 
if, however, there are three or more such elements, the deviations become 
ever greater. The interconnection of the parts comprising the totality can 
occur owing to two causes. One of these is occasioned by peculiarities of 
the studied phenomenon. Consider as an example explosions of steam 
boilers. Fatalities are then not independent one from another because in 
such accidents several persons usually perish at once. The number of those 
killed in such instances of acute solidarity of single cases, as Bortkiewicz 
called them, depends on how many people in the mean are working in the 
boiler rooms.  
    Interconnection can also occur because there exist factors uniformly 
acting on the process of some events during a certain period of time (for 
example, such climatic conditions as heat acting on mortality). 
Bortkiewicz called this kind of interconnection chronic solidarity of single 
cases. When following the wrong path because of a mistakenly understood 
significance of the law of large numbers, and amassing observations, 
collecting single cases over large regions, the totalities become composed 
of large groups of interconnected elements. If, however, you restrict that 
territory to small districts with a small number of [the studied] events 
occurring in each time unit, the volume of the totalities of interconnected 
elements will be the less the smaller are the corresponding district and the 
relevant numbers. 
    Issuing from the Bortkiewicz formulas, I will study sufficiently small 
numbers. As a conclusion it occurs that the dispersion is always close to 
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normality so that the statistical figures will better correspond to 
probabilistic calculations. And this will justify the fact that “mathematical 
probabilities or their functions are the foundation of all figures derived in 
population and moral statistics” (Bortkiewicz 1898, p. 39)32. 
    4. Establishing Causal Connections by Probabilistically Treated 

Observations. The Corrupting Influence of Ontological Connections. 

Comparing Series 
    [4.1] And so, it is hardly possible to question the right to consider 
statistical figures as empirical expressions of objective probabilities (or 
their functions). But how to apply this principle for justifying the rules of 
the statistical method; how, by issuing from it, to study causal connections 
between the studied phenomena? 
    Two cases ought to be distinguished. Statistical totalities at our disposal 
are either directly obtained from observations (for example, by comparing 
indications of mortality in a number of localities), or arbitrarily compiled 
for the investigation with the single cases being brought together into 
totalities in accord with the indication selected in advance. In the first 
case, having established that the distinctions between empirical 
frequencies are real, we immediately turn to induction. Suppose that the 
probability of dying in city A is higher than in city B. This is only 
explained by the difference between the general causes influencing 
mortality. […] To establish such a distinction is however almost as 
difficult as when applying inductive methods in the usual way. True, it is 
not necessary to consider the infinitely many individual particulars in each 
case, but nevertheless the majority of other general causes remains 
practically boundless so that disjunction, the foundation of the inductive 
method, is not exhaustive and the indefiniteness of the retained remainder 
of causes makes conclusions impossible.  
    For example, applying the method of standard population, we have 
established that the differences could not have been occasioned either by 
the age or the sex structure of the populations or by climatic conditions or 
numerous other factors. But the conclusion that the sole cause [differently] 
influencing mortality is the lack of water supply [in city A] will 
nevertheless remain in thin air because it is always doubtful that there are 
no other unnoticed causes. 
    True, there are cases in which numerous consecutive considerations of 
differences and the researcher’s know-how make it possible to eliminate at 
once so many causes that the conclusion seems almost certain. For 
example, Professor Tugan-Baranovsky had studied industrial crises in 
England wishing to establish how did they influence the industrial 
population in the demographical sense. He compared the number of births, 
marriages and deaths in English agrarian and industrial counties both 
during the years of industrial prosperity and crises. That double 
comparison in space and time indeed eliminated all other factors and it 
seems that nothing was left except the influence of industrial crises on the 
only part of the population which they could have affected. 
    [4.2] Such cases are however rather rare. […] On the contrary, when 
artificially composing statistical totalities in accord with the aims of 
investigation, the circumstances are better, or at least so they seem to be 
on the face of it. Here, indeed, phenomena are collected in accord with 
definite indications so that the ensuing totalities can only differ in these or 
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in indications connected with them. Other indications can only randomly 
influence the properties of a totality as is explained by the very notion of 
independence. 
    Therefore, if we are able to establish that the distinctions between the 
totalities are not accidental, we are seemingly justified to conclude without 
any reservations that the sought causal connection between these 
distinctions and the chosen indications [really] exists. However, more 
closely studying this conclusion we establish its wrongfulness (Kries 
1886, pp. 85 – 87). Apart from those casual connections in which we are 
primarily interested, and whose significance is not restricted either in time 
or space, – apart from the so-called nomological connections, – there 
exists an interconnection only occurring during a certain time period and 
over a certain region, resulting, as Mill termed it, from the original 
distribution of causes. Such interconnections are called ontological.  
    The state of the universe in each given moment, even in the opinion of 
those who admit complete determination of every occurrence, is 
conditioned not only by causal connections, but also by the essence of the 
distribution of separate “causal elements” at the assumed initial moment. 
The concept of independence on which the conclusion above rests, only 
considers nomological ties, but the possible ontological connections are 
able to corrupt considerably our conclusions either by strengthening or 
opposing the nomological dependences. 
    [There follows an example concerning the lease of land in Russia after 
the abolition of serfdom.] 
    We always have to do with various causes and deep investigations are 
needed for examining them. And so we fall again into the trap which we 
expected to avoid. There is no other means except applying induction, but 
in such cases, as in other instances, its methods are of little use (p. 472)33. 
The situation is extremely difficult but the knot can be still cut, namely by 
the mentioned method of comparing series. It is based on the following 
principle: If two phenomena are not connected with each other either 
nomologically or ontologically, the presence or absence of one of them 
will not influence the appearance of the other one. If both phenomena 
admit quantitative description and, bar random deviations whose measure 
can be calculated in advance, any value of one of them can with the same 
probability (and therefore with the same facility) coincide with any value 
of the other one. 
    [4.3] This principle can be formulated more precisely in accord with 
various methods of investigation. Practically the most important method 
consists in grouping separate cases in accord with the value of an indicator 
investigated with a view to detect possible connections between two 
phenomena. Then the values of that magnitude (the characteristic) that 
best quantitatively describes the other phenomenon are calculated.  
   Thus, all the villages of a province are separated into 10 groups in 
accord with the mean allotment per capita, and the per cent of those who 
lease additional land is calculated for each group. If the prevalence of 
leases and the size of the owned plot are connected nomologically, and 
there are no opposing ontological connections, we may expect that, as the 
indication applied for grouping the villages increases, the characteristic 
will regularly increase or decrease34. 
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    If, however, the two phenomena are perfectly independent, then no 
regularity (if only it does not occur accidentally) in the variability of the 
characteristic can be detected which shows that the phenomena are 
independent both nomologically and ontologically. In contrary cases it is 
first of all necessary to calculate the probability that the regularity could 
have occurred randomly. […] Our method is certainly unable to reveal the 
essence of the connection between the phenomena [if it exists], whether it 
is nomological or ontological, but that is impossible to achieve not only 
analytically, but even experimentally and under the most favourable 
conditions35. Only when invariably detecting the same connection under 
most different conditions of space and time we may admit its real 
existence and be sure that its essence is nomological. But [even] this 
conclusion only becomes obligatory if we are able to prove that 
ontological connections are lacking or are of the kind which, as is known 
from other sources, are able to compensate the nomological dependence 
and all by themselves must cause an opposite change in the values of the 
characteristic. 
    5. The Collection of Separate Observations into Totalities As the 

Precondition for Comparing Series. The Principles of Constituting 

Totalities 
    [5.1] Minute probabilistic calculations do not lead to immediately 
applicable results and the meagre conclusions ultimately made are as a 
rule arrived at by comparing series. A question therefore arises: Does it 
make sense at all to compose groups, calculate frequencies and determine 
the bounds of objective probabilities since the same method can be applied 
directly to separate observations? The concept underlying it does not at all 
presuppose dealing with totalities and probabilities. Is it not possible to 
spare time demanded by statistical calculations? 
    After a closer scrutiny doubts about the expediency of the statistical 
methods become unfounded. In principle, certainly nothing at all hinders 
the comparison of series given isolated and not statistically treated 
observations, but in practice such an attempt will in most cases prove 
unsuccessful because only very rarely would have been the connection 
between phenomena detected.  
    The point is that a conclusion made after comparing series is based on 
their intimate parallelism which cannot be explained away by random 
coincidences. However, to reveal it (if there exists at all a connection 
between the phenomena) it is necessary for that cause which served to 
arrange the first series in accord with its numerical characteristic, to be 
more significant than the other ones. And, if we consider isolated cases, 
the action of each cause is too often corrupted by other causes which 
either strengthen or hinder it. 
    [There follows an example concerning lease of land.] 
    When grouping observations only allowing for the indication which 
interests us we neutralize to a certain extent the infinitely many factors 
independent from it which corrupt its action since within a group they 
more or less compensate one another. On the contrary, the action of the 
selected indication strengthens similar to what happens when a 
photographer, while attempting to decipher the text of a faded manuscript, 
superimposes several transparent negatives one on top of another. 
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    Grouping aims at detecting connections in those cases in which an 
immediate inference is impossible and it is necessary to detect more 
clearly a regularity to serve as a foundation for conclusions in a series of 
characteristics. 
    The replacement of empirical frequencies by objective probabilities 
underlying them pursues the same aim: we thus exclude the corrupting 
influence of chance. And so, for comparing series successfully a 
preliminary treatment of isolated observations, their gathering into 
totalities and the calculation of probabilities, is necessary. 
    [5.2] Here arises a theoretical problem: how to group observations and 
to select numerical characteristics of both studied phenomena so as to 
achieve best results when comparing series? Innumerable mistakes which 
are made by statisticians day after day testify to the great importance of 
this problem. For example, often a characteristic of the phenomenon is 
chosen on account of a formal arithmetical connection of its values with 
the magnitude of the indication and it cannot therefore serve for proving a 
real dependence between phenomena. [There follows an explanation by an 
example of leasing of land.] 
    Is some real relation between the two phenomena concealed behind the 
formal dependence of numbers established by us ourselves and therefore 
lacking any interest? This cannot be ascertained by such treatment of the 
numerical data [?]. Very much useless labour is being spent on these or 
similar methods of work. Statistics (Knapp 1868, p. 71) 
 
    Busies itself with empirical calculations of relative numbers so much 
that specialists forget to ask themselves, What, indeed, is the meaning of 
those magnitudes from which the relative numbers are calculated? Often 
only the process of calculation is important for statistics, it hardly thinks 
about the results, and, least of all, about the aims and subject matter of 
that work. It had broken the habit of preliminary ascertaining what is 
desirable to investigate and therefore it is often lacking in the need to ask 
[itself] what is the meaning of one or another magnitude for the study. 
 
    An effective means against such squandering of force and time can only 
be created either if each method of investigation used in separate branches 
of statistics be deeply analyzed in respect to its methodological value, or a 
general theory of grouping and of selecting numerical characteristics of 
phenomena to be studied be developed. We do not regrettably have such a 
theory; moreover, even the very problem of creating it was hardly ever 
formulated in a general way36. Still, there exists a branch of statistical 
investigations which is satisfactorily developed in respect of all 
abovementioned demands.  
    [5.3] Because of the successful work of German mathematicians cum 
statisticians during the 1860s – 1870s the statistics of mortality is now so 
well methodologically regulated that only those who had not studied the 
special literature can methodologically blunder. 
    On the contrary, in all the other branches we even nowadays are 
groping our way ahead just as it had been in mortality statistics before the 
works of Knapp, Becker, Zeuner, Lexis and others had appeared37. At 
first, representatives of the mathematical direction in statistics had only 
been engaged in methodological problems connected with investigating 
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mortality. They learned to delimit clearly the various problems; they 
established such sets of those dead and living whose comparison allowed 
to solve theoretically and precisely each of these problems; they showed 
that the passage from the groups usually applied in statistical practice to 
those needed by theory was possible; they discovered a simple method of 
improving statistical practice by separating the dying in a given year both 
by year of birth and age. 
    In general, they created a system of scientific principles which elevated 
mortality statistics to such a high theoretical level which can be hardly 
exceeded. However, broadening the sphere of problems caused by 
studying mortality had not even been attempted. True, migration has 
begun to be allowed for, but it was not considered as a phenomenon 
interesting in itself and only studied insofar as it interfered with the natural 
movement of the population, of Bevölkerungswechsel, as Knapp called 
this new scientific discipline. Only Lexis, who joined the other scientists 
when but little could have been added to it, discovered new paths for 
investigations in this sphere. By generalizing the conclusions from the 
studies made by those of the mathematical direction he showed that they, 
the studies, can be easily extended from phenomena of mortality to 
“changes of status” such as death or birth, marriage or widowhood, 
emigration or immigration. 
    Believing that the main aim of demography consists in studying the 
course of life of the “abstract man”, he ascertained how to apply the 
methods developed by students of mortality to a rational construction of 
demography.  
    On our younger generation falls the problem of continuing the work of 
our teachers and rationalizing the statistical method in other spheres of its 
application. Then perhaps we will be able to fill the gap yet existing to this 
day between our general ideas about the aims of the method and the ways 
to fulfil our work. 
    [5.4] I have attempted to describe in general terms the theory of the 
statistical method as it is apparently being gradually reconstructed out of 
the wreckage of the Quetelet system. I believe that this method serves as a 
substitute of the method of induction, which, having been created for 
investigating continuous causal ties, becomes helpless when treating 
practically more important free connections. 
    I have therefore attempted to show how does the statistician, when 
collecting separate phenomena in statistical totalities, exclude corrupting 
chance from the empirical frequencies, reveal their underlying objective 
probabilities and establish by comparing the obtained series whether there 
exists an interdependence between the studied phenomena. I may hardly 
expect that my attempt to collect various streams of theoretical statistics 
on the basis of the principle of causality into a single whole by broadening 
the sphere of scientifically studied causal connections will find sympathy 
of the creators of that theory. The points of departure of individual 
researchers are too diverse and different. 
    Mathematicians and philosophers are being engaged in creative work 
not less than statisticians whereas natural scientists and especially 
biologists are recently carrying it out with remarkable success. It is 
obviously impossible to say whether all the streams will come together 
exactly at the point which I have outlined above, but come together 
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somewhere nearby they certainly will. Indeed, in spite of all the 
distinctions in the details of building up a methodology and in its 
philosophical underpinning, the common goal of all the attempts is the 
search for the roots of the statistical method in the calculus of probability. 
This general agreement ought to be attributed to the influence of that 
scientist, whose latest work prompted me to compile this paper and whose 
name runs all through its pages. I cannot therefore conclude without 
saying a few words about the significance of Lexis as the creator of a new 
theory of statistics. 
    Bortkiewicz (1904) has skilfully analyzed how Lexis had treated his 
predecessors and it is meaningless to dwell on this point anymore. As to 
his influence on the current development of the theory of statistics, it is 
really sufficient to note that in each country where some activity in the 
field of statistical theory now begins to be felt, its sources issue from the 
Lexian scientific principles. The powerful development of that theory in 
England, the country a short way from becoming the leader [in that 
direction], owes its being not only to Galton, but to Edgeworth as well 
whose work bears obvious traces of his influence. The Dutchman 
Westergaard, the Russian Bortkiewicz, not to mention the German 
students of Lexis, owe him the principles of their scientific approach to 
statistics and the first impulse to their theoretical statistical work. 
    The studies of stability which Lexis published in a separate book (1877) 
and especially those which appeared in the Jahrbücher, had long ago 
become the ABC of sorts for researchers interested in justifying the theory 
of statistics.  
    Now that his papers published in periodicals are included in a single 
contribution (1903) and became available, it will hardly be a mistake to 
expect that the interest, at least to young specialists and even outside 
England in theoretical research will flourish anew and that the circle of 
those joining Lexis will be gradually able to throw critical light on the 
empirical methods of work in statistics and to justify them in a rational 
manner. 
    And if statistics will ever enjoy equal rights with, and become full 
member of the fraternity of other theoretical disciplines, it will testify to 
the essential merit of the courageous man who elevated himself above the 
everyday practical troubles and paved the way to a rational theory of 
statistics through a desert of compiled fruitless prescriptions replacing 
general principles, and who achieved all this at the time when the work of 
statisticians had been completely and exclusively reduced to counting and 
calculations. 
 

Notes 
    1. Chuprov discusses the exaggeration in sociological conclusions based on stability of 
statistical series. N. C. 
    Chetverikov provided no references. I would say: sociological in a narrow sense only 
concerning individuals. 
    2. It is opportune to mention that Comte (1830 – 1842/1877, t. 2, p. 255; 1854, p. 120) 
decidedly opposed the application of the theory of probability to social sciences. He 
(1830 – 1842, 1839/1908, p. 4) also alleged that Quetelet had plagiarized him. See 
quotation in Sheynin (1986, p. 295). I do not see any special merit in Quetelet’s treatment 
of the theory of means (Ibidem, pp. 311 – 312). 
    3. See Note 10 to § 2.1. 
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    4. Both the original German text (p. 423) and its Russian translation state: “principles 
of population and demological (demologische) statistics” which I do not understand. 
    5. See Kries (1886; 1888). 
    6. In the sequel, I am borrowing the ideas of naïve realism since everyone invariably 
uses its language whichever personal point of view he is keeping to and since their 
translation from it into the language of one or another metaphysical or theoretical system 
is usually the easiest. A. C. 
    7. Chuprov inserted here three lines in their original Latin. I translated them from their 
Russian translation provided by Chetverikov who also stated that their author was Francis 
Bacon. 
    8. A strange statement. Where is randomness (and chaos)? Cf. similar statement in § 
4.2. 
    9. The generally accepted indications underlying innumerable definitions of the 
statistical method can be easily deductively derived from my formula. It is, in particular, 
applied for studying numerically described mass phenomena, see below. A. C. 
    10. Later Chuprov himself (1918 – 1919, Bd. 2, pp. 132 – 133) noted the difference 
(already existing in 1905) between the Continental direction of statistics and the 
Biometric school and stated:  
 
    Not “Lexis against Pearson” but “Pearson cleansed by Lexis and Lexis enriched by 
Pearson” should be the slogan of those, who are not satisfied by the soulless empiricism 
of the post-Queteletian statistics and strive for constructing its rational theory. 
 
    Chuprov did not prove that Edgeworth had joined Lexis. In a few years he (1909/1959, 
pp. 27 – 28) described Edgeworth’s work in general terms but had not said anything of 
the sort. In 1896, Edgeworth had criticized Bortkiewicz (1894 – 1896) who answered him 
at the end of his contribution. Chuprov, in Letter No. 5 of 1896 (Bortkevich & Chuprov 
2005) sided with his colleague. 
    11. The same methods can be however applied in other cases as well. Thus, the notion 
of probability, worked out for being immediately used under plurality of actions and 
comprising the base for statistical methods, when generalized on the case of plurality of 
causes serves as the logical subject matter of those propositions of the calculus of 
probability which adjoin the Bayes theorem. […] A. C. 
    12. It was Poincaré who initiated discussions about equiprobable cases, see Khinchin 
(1961/2004, pp. 421 – 422) and von Plato (1983). 
    13. In 1896 Chuprov (Sheynin 1990/1996, p. 95) discussed the possibility of proving 
the law of large numbers in a non-mathematical way with Bortkiewicz and referred to 
Cournot in the same vein as in 1905 (see below). Bortkiewicz, however, called this 
opinion a pipe-dream. A bit earlier Chuprov (1896, p. IV) even mentioned an attempt at 
systematising the theory of probability on the basis of the logical analysis of probability.  
    In 1923, in a letter to Chetverikov, Chuprov (Sheynin 1990/1996, p. 97) expressed a 
different idea:  
 
    Like you, I even now, just as when writing the [Essays (1909)], […] see no possibility 
of throwing a formal bridge across the crack separating frequency from probability. 
 
However, Chuprov (1909/1959, p. 168, also see p. 301) stated there that the law of large 
numbers “establishes the connection between probabilities of phenomena and their 
frequencies”. 
    Chuprov never mentioned the definitely known to him (Ibidem) strong law of large 
numbers. A few years after his death Khinchin (1929, pp. 124 – 125) explained that it, 
rather than the Bernoulli theorem, was the “veritable foundation” of statistics.  
    Halley mentioned irregularities (which could have been occasioned by systematic 
influences) rather than chance. 
    14. Translation of the original Latin from the Russian translation provided by 
Chetverikov. 
    15. Chuprov only mentioned Chebyshev somewhat below, which was hardly proper. 
    16. Instead of choosing such roundabout ways, it was possible to prove directly this 
proposition. However, such attempts would have been unconvincing and, in addition, 
defective in that they do not provide a precise measure of the expected deviations from 
the underlying probability. A. C. This is not clear. 
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    17. Lexis provided a table of the normal law so that Chuprov assumed it without any 
restriction. His formula (2), which originally correctly appeared in a German translation 
by Timerding of the celebrated Bayes memoir (Sheynin 2003), was wrong; the 
denominator should have been M 3/2.  
    18. In addition to the modulus especially popular with English statisticians other 
magnitudes connected with it by simple relations can also be applied for describing the 
precision with which frequency reproduces its underlying probability. Such are for 
example fluctuations equal to the square of the modulus, the mean error = 0.707 of the 
modulus, the probable error = 0.47696 of it or the reciprocal of the modulus. Lexis 
prefers the probable error. A. C. 
    In standard notation, the modulus is σ√2, and the mean error = σ. Chuprov tacitly 
assumed that the frequencies were distributed according to the normal law. Pearson was 
also in the habit of retaining an excessive number of digits, and Fisher may be mentioned 
here as well. See discussion of that practice in Science (vol. 84, 1936, pp. 289 – 290, 437, 
483 – 484 and 574 – 575). 
    19. Pearson’s study certainly attracted attention. Newcomb (Sheynin 2002, p. 160), in 
a letter to him of 1907, asked K. P. whether he had collected any new pertinent 
information. 
    20. See Czuber (1903) for further examples. A. C. 
    21. Chuprov had not explained the meaning of ν (in my notation); it obviously is the 
arithmetic mean of νi. 
    22. Approximately, because for not very large M and n very essential random 
deviations can be expected both in the numerator and denominator of that fraction. For 
the range of random fluctuations of the coefficient Q see Bortkiewicz (1901). A. C. 
    Dormoy (1874) had provided a similar method two years before Lexis but his paper 
had been unnoticed until the latter’s publications. A. C. 
    23. Physicists, working on the kinetic theory of gases, have developed the notion of 
totality consisting of irregularly moving components unrestrained by any interrelations 
directed to re-establish equilibrium but remaining essentially invariable. Sociologists 
however are applying that concept without bothering to deliberate about the logical 
structure of the concept of [thermo]dynamical equilibrium. A. C. 
    But how to explain Chuprov’ own words (above) about the society’s stable 
equilibrium? In the Soviet Union, Starovsky (1933, p. 279) called Süssmilch, Quetelet, 
Bowley as well as Bortkiewicz and Chuprov theoreticians of bourgeois statistics who had 
attempted to prove the firmness of the capitalist system and the stability of its laws. 
    24. Quetelet did not account for a law which, in particular, had reduced the number of 
capital offences. Furthermore, Rehnisch quoted official sources concerning the increase 
in suicides. See Sheynin (1986, pp. 299 – 300). 
    25. Chuprov (1922) essentially restricted that proposition. N. C. 
    26. Failure seems to be an unfortunate term here. 
    27. Poisson had nothing in common with the Lexian theory. Chuprov mentioned him 
several times more in the same vein. 
    28. Does this really mean that the Poisson law of large numbers did not demand 
“calculations”? 
    29. In 1858, C. Lewis, the celebrated English writer, applied this simple but deciding 
argument in his review of Buckle in the Edinburgh Review. Nevertheless, surprising as it 
is, the opponents of Queteletism never attempted to rest on the theory of probability if 
only the hardly successful reasoning of Drobisch be discounted. A. C. 
    Chuprov had only quoted Drobisch (without offering a proper reference) as saying 
“The study of moral statistics leaves a sting of doubt in each scientifically and 
philosophically minded person”. I left out this quotation together with the relevant 
fragment. 
    30. This is not sufficiently definite. 
    31. Bortkiewicz only referred to them in his later contributions. 
    32. For simplifying the exposition as much as possible, I have only considered 
empirical frequencies and their underlying objective probabilities because the statistical 
method in its simplest form is [only] applied for investigating such magnitudes which in 
essence are probabilities. In his practical work, the statistician has often to deal with 
magnitudes which could be reduced to probabilities but nevertheless are only their 
functions (in the mathematical sense). These functions can be known; for example, the 
number of newly born boys corresponding to 100 newly born girls considered as a 
function of the probability of a male birth. In such cases this circumstance does not lead 
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to essential changes in the methods of statistical work. The decisive significance here is 
the mathematically proved proposition: If y = f(x), the modulus of y equals the modulus 
of x times f ′(x). On the contrary, if such functional dependences are unknown, which as a 
rule happens in anthropology [anthropometry], deeper changes in the methods of work 
are needed, but these are out of place here. A. C. 
    33. As formulated, induction becomes entirely useless! 
    34. It should not be thought however that the ratio between these two magnitudes will 
always be exactly the same, as it appears owing to the very notion of causal dependence. 
[…] As a rule, we will have to do with magnitudes only somehow depending on the 
numerical values of the considered causes and actions. […] A. C. 
    35. Previous theoreticians of statistics had been inclined to contrast the statistically 
knowable (man and society) and the typical (nature). Insofar as this understanding 
contains a methodologically valuable kernel, it can be reduced to the idea that a natural 
scientist can immediately perceive nomological connections by treating observations. “A 
physicist, after observing that a drop of mercury freezes at – 40°C [– 39°C], does not 
doubt that other drops of that metal will always and everywhere freeze at the same 
temperature”. […] This conclusion is only valid under the condition ceteris paribus (all 
other circumstances being the same). The circumstances supposed invariable ought to 
include the various ontological relations. […] A. C. 
    […] When considering atypical phenomena, we ought to allow for the discrepancies 
between observations […]. Later Chuprov (1909/1959, pp. 69 – 70) stated his views on 
the same subject: “Nowadays the doctrine of typicalness of natural phenomena and 
atypical essence of human communal life can be thought irrevocably obsolete”. N. C. 
    Again in his Essays, Chuprov (1909/1959, p. 75) provided the missing reference to the 
physicist: Gabaglio (1888, t. 2, p. 54). 
    36. I (1904) have attempted to collect some of the related material and allow myself to 
refer readers wishing a more thorough development of the abovementioned reasoning to 
this paper. A. C. 
    37. Among the new contributions to this sphere I ought to indicate especially the works 
of Professor Bortkiewicz. They differ from earlier studies mostly devoted to the methods 
of composing the groups by treating in the first place the choice of indicators. A. C. 
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III 
N. K. Druzinin 

 

Scientific Contents of Statistics in the Literature of the 20
th

 Century 
 

Problemy Teorii Statistiki (Issues in the Theory of Statistics).  
Moscow, 1978, pp. 5 – 32 

 
    [1] In the first half of the 19th century statistical science had been 
marked by such an important event as the publication of Quetelet’s 
contributions in which he had put forward fundamental concepts of that 
science. The end of that, and the beginning of the next century had also 
left a noticeable trace in the history of theoretical statistics. New ideas had 
then been formed on Russian soil and were connected with the Petersburg 
Professor Chuprov, who may be rightfully called one of the most 
prominent theoreticians not only in the Russian, but also in the world 
statistical science. 
    His merit consisted in an attempt to throw new light on the theory of 
statistics in regard to its main logical issues and to allow for its part in the 
common family of science. He thought it necessary because, in his opinion 
(1909/1959, p. 17), that theory was in a disastrous state: 
 
    There are periods in the life of each science when the specialists 
scornfully reject the attempts to analyse theoretically its principles. […] 
Such feelings prevailed in statistics until recently. After the downfall of the 
Quetelet theoretical system under the blows dealt by German criticisms, 
years of extreme empiricism ensued in statistics.  
 
    And he (p. 18) therefore believed that a “new building of statistical 
theory out of the ruins of the Quetelet doctrine” should be erected1. When 
appraising the actual situation, Chuprov undoubtedly exaggerated. The 
Quetelet doctrine was not at all reduced to entirely useless “ruins”, only its 
German critics thought that it did not contain something resembling a 
stone to be laid in the foundation of the new building. In reality, its general 
methodological concept advancing  the statistical study of mass 
phenomena as the object of statistical studies, firmly entered the theory of 
statistical science. While Quetelet had been building up his doctrine, 
statistics did not yet gain sufficient practical experience resting on which it 
would have been able to form a more perfect system of the statistical 
theory. And the general state of both sociological and natural sciences had 
not allowed it either whereas the whole history of the concepts of the 
theory of statistics did not foster the creation of such a system.  
    And still, Chuprov could have certainly discovered material suitable for 
using it for compiling his own system in the writings of Quetelet and of 
later theoreticians as well. For the theory of statistical science, Chuprov’s 
ideas nevertheless acted as fresh air also because in his time statistics had 
essentially advanced both in theory and practical applications and because 
of the general development of scientific knowledge in particular in natural 
sciences into which statistics had been extensively entering2. 
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    [2] When building his statistical doctrine, Chuprov issued from the 
Neo-Kantian philosophy which the representatives of the Baden school [a 
direction of that philosophy], Rickert and Windelband, had been 
developing. In accord with its agnostic concept Chuprov numbered 
statistics among the so-called idiographic sciences, or sciences of 
individuality whose subject was the knowledge of the concrete rather than 
the general, and contained in definite boundaries of time and space. 
    There exists the necessity of such knowledge because the “struggle 
against the immense universe”, if carried on by the nomographic sciences 
by simplifying reality and constructing general notions cannot completely 
satisfy the cognizing mind. The idiographic nature of statistics constituted 
one of the main propositions of Chuprov’s statistical doctrine and 
apparently corresponded to recognizing it as an empirical discipline. This, 
indeed, was the firm idea of statisticians of the 19th century working under 
the criticisms of the Quetelet system and the influence of Mill who had put 
forward the concept of empirical laws. That Chuprov turned to other 
philosophical notions for justifying his point of view did not essentially 
change anything. 
    When explaining why was statistics interested in idiographic 
knowledge, Chuprov (1909/1959, pp. 70 – 71) did not contradict the main 
principle of the theory of statistical science established from the time of 
Quetelet and stating that the subject of statistical studies is mass 
phenomena:  
 
    Leaving aside all the inherent peculiar features of the objects on which 
it is concentrated except for a few and without looking for precise data 
about each of them individually, statistics is interested not in an individual 
object, but in “totalities”. An individual horse does not interest the 
statistician even if it is a stallion costing a lot of money. […] He is only 
interested in the horses of a given uezd (district), province and state. A 
Dreadnought has no bearing on statistics; its only subject is the totality of 
ships, a fleet. 
 
    In his time, Quetelet stated the same, only in another wording. He wrote 
that, when studying phenomena of social life, “we ought to leave aside the 
man taken be himself, and only to consider him as part of mankind”, to be 
interested not in the individual, but in the totality of men.  
    Chuprov indicated that the statistical approach to the phenomena in the 
real world also created peculiar logical forms of knowledge connected not 
with the essence of the object, as it was generally thought, but with the 
viewpoint from which we consider it3. This is one of the initial principles 
of Chuprov’s doctrine. However, before describing its main propositions, 
it is necessary to indicate that his subject was the statistical method in 
itself rather than statistics as an independent science. 
    [3] Concerning the existence of such a science, Chuprov held to that 
dualistic notion which had been developing in the German literature as 
well as by some Russian theoreticians in the second half of the 19th 
century according to which the statistics as a science should be 
distinguished from the statistical method. He (1906/1960, p. 127) therefore 
believed that statistics as an independent science ought to be a discipline 
studying social phenomena because the generally recognized cultural and 
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practical values primarily had to do with the society: “This only allows the 
birth of a statistical science restricted in its subject”. He also expressed 
himself in the sense that also in future the preservation of statistics as an 
independent science can only be imagined in the form of a descriptive 
science similar to the Staatswissenschaft (or University statistics) of old.  
    In a review of a book by Zizek Chuprov (1922, p. 339) wrote:  
 
    Zizek convinces me in the correctness of the opinion that the future of 
material statistics lies in the sharp advancement of idiography, in a 
systematic return to the old descriptive Staatswissenschaft. […] Statistics 
as an independent science will assume the form of a systematic description 
of remarkable facts, of various social formations precisely restricted in 
time and space. […] Otherwise it will be entirely unable to enjoy the 
significance of an independent science. 
 
    Here, Chuprov mixed up two different aims of statistics, the collection 
and systematization of statistical data, of great practical importance for the 
work of contemporaneous statistical organizations, but not properly 
speaking of a scientific nature, and the analytical problem posed by the 
researcher applying statistical methods4. Chuprov’s views testify once 
again how strong in science is sometimes the influence of previous 
delusions and we ought to agree with Chetverikov (Chuprov 1960, pp. 3 – 
4) who remarked on this point that “Nowadays the defence of such 
reactionary directions in statistics is not anymore possible”. 
    While developing the theory of the statistical method, Chuprov declared 
that the statistical forming of notions ought to be connected not with the 
essence of the studied object, not with the real distinctions between 
phenomena, but with our viewpoint concerning them [see previous note]. 
He formulated this thesis wishing to refute the traditional concept yet 
existing in the relevant literature that the statistical method was allegedly 
mostly applicable for studying phenomena of the society and only plays a 
restricted and subordinated part in natural sciences.  
    [4] This concept is known to be based on metaphysically contrasting the 
individuality of social phenomena and typicality of natural phenomena. 
The first to state it in Russian writings on the theory of statistics was 
Poroshin (1838): in the “moral” world there is development and “life 
endlessly renews its forms” but the movement in nature is only circular 
along “forever invariable” paths and the general might be therefore 
directly cognized in the particular. 
    Chuprov mostly attempted to refute this metaphysical viewpoint by 
pointing out a number of branches of natural sciences into which statistical 
methods of research had already entered. He (1909/1959, pp. 75 – 76) also 
corroborated this negative attitude by general considerations indicating 
that natural sciences had abandoned the trust in that under any conditions 
it was possible to form a general conclusion from a single observation 
considered as “typical” and that any doctrine stating that natural 
phenomena are typical and the sociological phenomena are atypical “can 
be thought irrevocably obsolete”. 
    Accordingly, Chuprov insisted that the statistical method was universal 
and that the “statistical forming of concepts” should not be restricted to the 
phenomena in social life. Believing that the way of thinking about an 
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object determined the statistical approach to phenomena, he (1909/1959, 
pp. 77 – 78) wrote: 
 
    To keep nowadays to the opinion that the essence of the statistical 
method is in any measure connected with peculiarities of man and society 
as an object of study is only possible for a statistician who does not follow 
the development of scientific thought beyond the sphere of his speciality. 
The aim of the investigation, the statistician’s viewpoints on approaching 
the studied phenomena rather than the features of the material define the 
unification of separate phenomena into totalities. 
 
    According to him (1909/1959, p. 75) the traditional doctrine of the 
typicalness of natural phenomena and atypical phenomena of society was 
not only theoretically wrong, it did not foster the successful building of the 
theory of the statistical method either: 
 
    To subordinate the peculiar distinctions of the statistical methods of 
scientific work to the features of society considered as an object of study 
had led, on the one hand, to the logicians’ scornful attitude towards the 
problems of statistical methodology. Their peculiarity, as it seemed, had a 
technical rather than general significance caused by the essence of the 
material and deserved a place in the general theory of science as little as 
for example the theory of microscopic technique. On the other hand, it 
tore statistics away from natural sciences and hindered the introduction of 
methods developed in sociology into the sphere of similar problems in 
those sciences. As a result, logic, the general theory of statistics, and the 
separate disciplines applying statistical methods had been suffering5. 
 
    Even before Chuprov the writings on the theory of statistics had 
indicated that the statistical methods were entering various branches of 
natural sciences. Some theoreticians noted that in many cases the 
typicalness of natural phenomena was only apparent, that what seemed to 
be a dynamical law (in the philosophical language) was actually a 
regularity of a mass phenomenon hidden behind randomness. Thus, A. 
Wagner (Drobisch 1867, p. 141), an eminent German statistician of the 
19th century, wrote that “even the law of the fall of a body actually lacks a 
quite exact expression since it presumes vacuum and is modified by air 
resistance, friction etc”. Drobisch (Kaufman 1928, p. 7), another 
celebrated German statistician, also indicated that “in a rigorous sense” 
even the Keplerian laws, strictly speaking, are included among those 
deduced from a large number of cases “because they only determine the 
mean planetary paths from which the planets continually deviate now in 
one direction, now in another one”6. 
    However, before Chuprov no one stated that the principle of the 
universality of the statistical method alone which presupposes a “statistical 
formation of notions” only in connection with the viewpoint on the studied 
object allows to reveal the logic of that method, that the theory of statistics 
lacking in the mentioned principle is impossible. 
    [5] To appreciate Chuprov’s standpoint it is necessary to bear in mind 
that he published his contributions at the time when the general principles 
of science had changed. The reasoning about the typicalness of the natural 
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phenomena which restricted the application of statistical methods in that 
field could have seemed convincing for his predecessors, but at the turn of 
the 19th century, because of the general development of natural sciences, 
that position became groundless.  
    It was Darwin, the creator of the evolutionary theory, in the first place, 
who refuted the former notion about the invariability of species (Engels 
1873 – 1882/1985): 
 
    Darwin, in his epochal contribution, issues from the most general 
factual basis which rests on randomness. Exactly these infinitely many 
accidental distinctions between individuals of the same species can 
intensify until they find themselves beyond the bounds of the species’ 
indication. Their immediate causes can only be established in rarest cases 
and exactly they compel him to doubt the previous foundation of any 
regularity in biology, the idea of a species in its previous metaphysical 
ossified and invariable form.  
 
    Engels also noted that in the 19th century natural sciences had changed 
their essence, becoming a science not of invariable objects, but rather of 
their origin and development, a science of processes. 
    Apart from the Darwinian evolutionary doctrine other great discoveries 
were made in the second third of that century which have indeed been 
changing natural sciences into a science of processes, viz., the cell theory 
and the discovery of the law of conservation and conversion of energy. 
And by the very end of the century, in the mid-1890s, there occurred, as 
Lenin expressed it, “the newest revolution in natural sciences”. In 
particular, it was marked by the discovery of the first laws of the quantum 
theory. Given this situation, natural sciences really had to abandon the 
“trust in the possibility of formulating a general conclusion valid under 
any conditions on the basis of one single observation considering it 
typical”7. 
   This meant that in their experimental work natural sciences should have 
inevitably turned to statistical methods in spite of sometimes meeting 
opposition to that innovation8. Chuprov (1909/1959, pp. 21 – 22) stated 
that  
 
    After a fierce battle, statistics invariably held the captured place. 
Meteorology and anthropometry (together with anthropometry) were the 
first to submit. Then came psychology (physiological psychology) and the 
biological sciences. In botany and zoology, the development of a number 
of main problems gradually passes on to the statistical sphere. Nowadays, 
in its empirical foundation, the theory of evolution rests mostly on the 
material of mass observations. […] And during the latest years 
statisticians belonging to the mathematical direction, encouraged by the 
success in the field of biological sciences, raise the hand against 
astronomy as well9. At the same time statistics is celebrating victory in 
some branches of applied natural sciences, especially in agronomy where 
ever more weight is being assigned to mass observation, ever clearer 
becomes the insufficiency of a single experiment for firmly justifying 
conclusions and the complicated methods of calculations not even 
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avoiding the mathematical theory of probability are spreading ever 
broader. 
 
    Chuprov could have therefore rightfully claim that the statistical method 
was universal and that only allowing for that fact was it possible to 
ascertain its logical nature. 
    [6] Turning to the logic of the statistical method, Chuprov indicates that 
when studying mass phenomena it should replace the usual rules of 
inductive logic whose application presupposes unique connections 
between phenomena. In reality, conditions of scientific work, necessary 
for inferences based on these rules, are lacking, and Chuprov (1903, p. 34) 
states: 
 
    The researcher always ought to suppose that he is treating a connection 
defined by plurality of causes and actions, a free connection as we will 
call it, so that one and the same cause can lead to several different 
consequences, and several different causes can precede one and the same 
consequence. He is only justified in admitting that the connection which he 
aims at establishing is continuous, is such that neither a cause without its 
consequence, nor a consequence without its cause can occur, when 
obtaining a direct proof of that fact. But inductive methods provided by 
logic are unsuitable for establishing free connections. 
 
    It followed (1903/1960, p. 34; [II, § 1.3]) that such new methods of 
investigation were needed which did not rest on the peculiar features of 
continuous connections:  
 
    The set of such methods of studying causal connections and suitable for 
the case of free connections constitutes exactly what is usually called the 
statistical method. 
 
    Its defining distinction, as Chuprov believed, was its being based on the 
theory of probability [II, § 5.4]: 
 
    I have therefore attempted to show how does the statistician, when 
collecting separate phenomena in statistical totalities, exclude corrupting 
chance from the empirical frequencies, reveal their underlying objective 
probabilities and establish by comparing the obtained series whether 
there exists an interdependence between the studied phenomena. 
 
    The statistician, while treating statistical data and grouping them in 
accord with the values of one or another indicator, 
 
    Excludes the corrupting chance from the empirical frequencies, reveals 
their underlying objective probabilities and establishes by comparing the 
obtained series whether there exists an interdependence between the 
studied phenomena. 
 
    The entire investigation is here based on the law of large numbers, 
which, as Chuprov expressed it, serves as a bridge of sorts thrown between 
empirical frequencies and the objective probabilities which can only be 
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determined a priori10. Such, as he imagined, were the logical functions of 
the statistical method which replaces the usual inductive methods when 
dealing not with continuous, but with free connections, more important for 
scientific research.  
    Even before Chuprov some statisticians indicated that the logical aspect 
of the statistical method was peculiar and distinct from the canonical 
methods of inductive logic as formulated long ago by Bacon and Mill. 
Kaufman (1928, p. 274)11 remarked that unique connections cannot be 
reflected by contradictory statistical indications varying under the 
influence of different chance factors: 
 
    It was noted a long time ago […] that in the sphere of those phenomena 
studied by the statistical method induction presents some essential 
features so that the pertinent inferences are not as firm and indisputable 
as those rendered by induction. 
 
    And even in the 19th century G. Rümelin (Yanson 1879, p. 171), an 
eminent German statistician, while ascertaining the peculiarities of the 
statistical method, stressed that it “asserted itself exactly where induction 
was unable to derive conclusions by considering a typical concrete case 
suitable for other ones”. 
    Also before Chuprov, Reichesberg (1893/1898, p. 117), a Swiss 
statistician, considered the distinction of the statistical method from the 
usual rules of inductive logic: 
 
    In our opinion, the statistical method ought to be considered as 
enabling to understand the complicated mechanism of mass phenomena of 
every possible kind when it is impossible to infer either inductively from 
the particular to the general, or deductively from the general to the 
particular. 
 
    He (Ibidem) also referred to A. Onken who even previously, in 1870, 
stated that, when applying the methods of usual logic, mass phenomena 
remained incomprehensible. All these remarks, however, were only made 
in passing, whereas, for the first time in the history of theoretical statistics, 
Chuprov vividly elucidated the logical aspect of the statistical method. 
    [7] Chuprov’s idea about plurality of causes and effects is the pivot of 
his entire doctrine and it is close to the propositions of materialistic 
dialectics on the interconditionality and interconnection of phenomena. 
However, he indicated that the problem of plurality of causes occurs in the 
researcher’s mind since he is unable to establish completely and 
thoroughly the complicated previous phenomena which he aims to connect 
with the considered action. This renders his entire concept metaphysical 
and subjective and leads away from correct ideas about real objective 
connections.  
    It also leads to a wrong explanation of the interconnection of 
phenomena as a simple sum of pairs of elementary causes and effects 
provided that the researcher had been able to derive them. An imaginary 
simplification of reality which leads the researcher in each separate case to 
decide about the existence of a causal connection occurs not by a simple 
separation of the elements of causation from their sum, as Chuprov 
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believes, but by tearing the studied phenomenon from its natural or 
historical ties. 
    Be that as it may, the idea of plurality of causes and effects (actions), 
the base for Chuprov’s logical conception of the statistical method, 
enabled him to present clearer its features. Indeed, the canonical rules of 
the so-called [!] complete induction can misfire when applied to a 
statistical study12. The general inference is known only to be made there 
after having collected such isolated data that exhaust all possible cases of 
the given kind, the researcher unites them in some logical group. […] But 
in a statistical investigation, when, as Kaufman expressed it, “a full list of 
causes and effects is lacking”, complete induction is useless. 
    [8] However, since complete induction is impossible for studying free 
connections (as Chuprov calls them), incomplete induction is still at our 
disposal and conclusions are made when only having a repetition of a part 
of the needed and are therefore stochastic. […] When discussing the 
notion of probability Chuprov nevertheless slides off into the sphere of 
ideas corresponding to the agnostic Neo-Kantian Weltanschauung which 
he follows in his philosophical premises and statistical doctrine. He 
(1924/1960, pp. 188 – 189) believes that probability is objective, but not 
because it expresses some relations between real events:  
 
    It is not more real than a centre of gravity of a body, the Greenwich 
meridian, than the equator. But, like that centre, it is objective in the sense 
of being the outcome of theoretical thought free from an admixture of the 
feature of subjectivism peculiar to an individual cognizing mind. 
 
    Thus, for him, probability remains a method of study, of arranging the 
chaos of the complicated phenomena of the Universe by the human mind 
rather than a quantitative expression of an objectively existing possibility 
of the occurrence of an event. But he correctly understands the action of 
the law of large numbers, which, as he (1909/1959, p. 143) wrote, was a 
bridge connecting objective probabilities with the empirical frequencies: 
“It expresses those complicated half-nomographic and half-idiographic 
interlacing of events in the form of a free causal connection”. 
    [9] I cannot pass over in silence Chuprov’s attitude to the problem of 
stability as put forward by the German statistician W. Lexis and, almost at 
the same time [a bit earlier] by the French mathematician E. Dormoy. 
Even the early researchers among the political arithmeticians are known to 
have been surprised by those regularities which they were able to establish 
in statistical figures13. Graunt, Petty, Süssmilch, the founders of that 
science, indicated some regularities revealed in studied events when 
sufficient statistical data were at hand. This is certainly an important fact 
for comprehending the history of the origin and development of the 
statistical science. 
    Such discoveries made by means of numerical data had been able to 
prompt an idea of whether the researchers were dealing with something 
possibly forming a new science distinct from the previous knowledge. Had 
not a thought already then appeared of replacing the merely descriptive 
Staatswissenschaft by a new direction enabling to reveal and explain some 
regularities peculiar to society?14  
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    Quetelet is known to have put forward such an idea in the first half of 
the 19th century. He clearly and minutely stated what the political 
arithmeticians had been vaguely feeling about establishing the regularities 
of social phenomena; it was necessary to study them in the mass rather 
than in isolation. And, drawing on concrete statistical material, he also 
attempted to show what kind of regularity can exist.  
    It follows from his deliberations and investigations that the discovered 
regularities were expressed by stability of statistical figures weakly 
changing in time. Exactly that problem of stability became the issue of the 
dispute that came about between German statisticians, opponents of the 
statistical determinism allegedly denying free will, and vulgar materialists 
following Quetelet. 
    [10] That dispute over the problem of such importance for 
comprehending the logic of the statistical method had only been 
speculative and therefore fruitless until Lexis and Dormoy attempted to 
indicate a concrete way of solving it. Lexis is known to have introduced a 
special indicator, Q, the coefficient of dispersion (of divergence) for 
measuring the stability. It allowed to compare the empirical dispersion 
with its theoretical counterpart by tentatively equating them over the 
whole series of observations. […] 
    Chuprov certainly had to consider that problem of stability since it 
directly bore on the fundamental principles of the statistical method. He 
(1909/1959, p. 295) stressed first of all that the stability of statistical 
figures was a phenomenon changing together with the conditions of the 
environment of life. He thought that normally stable series did not actually 
exist, only relatively stable phenomena changing comparatively slowly 
can be found, and he also pointed out that the circumstances leading to one 
or another degree of stability of the studied phenomena were intricate:  
 
    We are able to indicate definitely such circumstances in the conditions 
of the existence of the society that are inclined to raise over the norm the 
stability of mass phenomena as well as such that raise their fluctuations. 
As a rule, these conflicting influences do not however act separately but 
are continually intermixing so that each separate mass phenomenon bears 
the stamp of their mixed set. 
 
    When interpreting the problem of stability, he thus attempted to issue 
from reality with which the most important problems of the theory of the 
statistical science were connected rather than from the philosophical 
disputes about statistical determinism and free will. For explaining the 
very mechanism of the origin of one or another degree of stability, he 
reasoned on the presence or absence of connections between separate 
trials15. The pertinent propositions threw additional light on the action of 
the law of large numbers on dependent trials and at the same time led to a 
deeper development of the main principles of the theory of sampling, 
which the British statisticians later achieved by means of their concept of 
within-class correlation. 
    [11] Chuprov’s contributions certainly clarified the logical aspect of the 
statistical method. When abandoning the false and in essence unneeded 
references to the Baden philosophical school, his doctrine connecting the 
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statistical method of research with stochastic logic constituted an 
important period in the development of the statistical theory. 
    But did it end those debates over the scientific contents of statistics so 
widely spread during the second half of the previous century? This did not 
happen because statistics contained controversial points as well. Of 
course, much should have been cleared up here in the 20th century since it 
became possible to take into account all the previous development of the 
theory of statistics and the essential experience in applying statistical 
methods gained both in scientific investigations and practical work. 
    As I will show below, the idea that statistics is a doctrine of the methods 
of quantitatively investigating mass phenomena has been winning an ever 
greater place in the writings of Russian and foreign theoreticians of 
statistics. But the search for other answers to the question of What is 
indeed statistics as an independent science was continuing. Sometimes it 
led to a restoration of principles which were put forward almost a century 
ago and apparently could have been irrevocably abandoned as obviously 
unfounded.  
    At the beginning of the 20th century, some theoreticians also attempted 
to restore the idea, prompted by Quetelet’s notions and developed by his 
followers, that statistics is a science of sciences of sorts among other 
disciplines studying society, is a science studying phenomena of social life 
in the widest sociological aspect. The eminent statistician A. Fortunatov 
was the most fervent representative of this direction in the Russian 
literature. In an inaugural lecture read in 1897 in the Novoaleksandrovsky 
Institute [Novoaleksandrovsk, Stavropol krai (territory)] but only 
published in 1905, he (1909, pp. 9 – 15) bluntly called statistics the “elder 
sister of sociology”. True, he also added a qualifying remark: “In future, 
when sociology shows its ability to forecast scientifically, statistics must 
become its younger sister”. 
    Elsewhere, while reasoning on various social sciences, or, as he called 
them, parts of social sciences, Fortunatov (1900, p. 11) wrote: 
 
    Some of these parts are restricted by a single aspect of social life. Thus, 
political economy aims at studying economics; jurisprudence busies itself 
with laws and ethics studies morality. Other parts of social sciences strive 
for embracing the entire sphere of social life and in any case from various 
sides. Such are history and its own sister, statistics. 
 
    Other Russian statisticians of the beginning of this century, for example 
A. N. Kotelnikov (1908, pp. 30 – 31) expressed similar thoughts. He also 
contrasted statistics as a most general science embracing various 
manifestations of social life, and particular sciences studying some of its 
separate aspects: 
 
    The analysis of general distinctive properties of social phenomena and 
the formulation of general laws of social life ought to belong to the 
statistician. It follows that statistics is a science of social elements, of 
general principles and general laws concerning all that is occurring in 
society, that it is the main science about society. 
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    He then stressed that exactly statistics is such a main science rather than 
sociology falsely thought of having precedence: 
 
    Although the names of really outstanding authorities are connected with 
such an idea, we cannot admit it because not a sociologist but the 
statistician is applying the statistical method, is formulating some 
problems for statistically studying society. To him therefore belongs the 
problem of studying society as a whole. 
 
    Such ideas about statistics […] had been justified in its time by the very 
novelty of statistical investigations allowing to establish some regularities 
in social life, by enthusiastic feelings about the new science apparently 
opening up extremely wide possibilities of such investigations. Even at the 
time when Yu. Yanson [1835 – 1893], for example, had been active, it 
was possible to state that statistics was a universal social science studying 
“everything happening in society”. However, it is difficult to explain why 
were those old and obsolete ideas restored even in the beginning of the 
20th century after the scientific contents of statistics had been debated for 
almost a hundred years and the boundaries of the applications, and the 
very nature of the statistical method were sufficiently clearly determined. I 
can only say that such a setback was one of the causes for the continued 
delay in ascertaining the true situation during the entire course of the 
development of theoretical statistics. 
    [12] The dualistic concept to which Chuprov had been keeping (see 
above) was another brake. In this part of his doctrine he followed a 
number of his predecessors, those among German statisticians in the first 
place. I have remarked that the inherited ideas of forerunners, even if 
obsolete and abandoned by the development of science, can strongly 
influence the viewpoints of a scientist. Chuprov, who dared at the same 
time demolish another traditional concept, not less harmful for the 
progress of the statistical science, about the typicalness of natural 
phenomena, was deluded and his mistake certainly ought to be attributed 
to a peculiar inertia of thought. On this point he obviously contradicted 
himself, opposed the very spirit of his generally speaking progressive 
ideas. 
    However, in spite of his mistake, it would seem that later theoreticians 
of statistics should have surmounted it; actually, it occurred extremely 
persistent and along with other points had been preserved in a number of 
their writings and continued to swerve statistics from the proper path. As 
to the Russian theoreticians at the beginning of the 20th century, their such 
an eminent representative as N. A. Kablukov (1922, p. 33 ff) had 
continued to support the concept of dualism. He was inclined to consider 
the results provided by the statistical method in studying social 
phenomena, or, as he expressed it, the material part of statistics, as a 
special branch of knowledge. He also advanced the idea of statistics as a 
method, as a doctrine of that method. 
    He indicated that mass phenomena were the contents of statistics as an 
independent material science and believed that, being independent, it 
belonged to the group of social sciences with the statistical method as the 
method mostly studying phenomena of social life. 
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    Not less clearly was the concept of dualism represented by the 
Ukrainian statistician K. G. Vobly (1918, p. 8). Supposing that statistics 
was “a science numerically studying mass phenomena of social life” he at 
the same time mainly restricted the sphere of application of the statistical 
method by these phenomena: 
 
    When investigating physical phenomena the quantitative (the statistical 
– N. D.) method is sometimes applied, but as compared with the 
observation and study of isolated objects, its significance is only 
secondary. 
 
    It is difficult to distinguish his pronouncements from the relevant 
considerations found in the writings of German and some Russian 
statisticians of the 19th century. 
    [13] Finally, addressing the past was also that treatment of the scientific 
contents of statistics that can be found even in modern textbooks on the 
theory of statistics (Statistika 1969, pp. 14 – 35). It consists in that 
statistics is an independent social science which, unlike political economy 
engaged in general laws of social phenomena under definite conditions of 
the given social and economical structure, quantitatively studies these 
phenomena under definite conditions of time and space.  
    When recalling that even Quetelet and his contemporary, Moreau de 
Jonnès (1847) expressed similar ideas, it becomes clear that the authors of 
the above definition had not advanced the comprehension of the scientific 
contents of statistics as compared with their remote predecessors. 
    Almost a century and a half ago, Moreau de Jonnès (1847/1859, pp. 2 – 
3), while wishing to distinguish political economy connected with 
statistics “by tightest ties” and statistics proper, wrote that “political 
economy is a transcendental science bravely turning to the elevated field 
of speculative systems” whereas statistics is “only a science of facts”.  
    This interpretation of the contents of statistics as an independent science 
is mistaken since it is impossible to classify sciences as integral systems of 
knowledge belonging to definite fields and at the same time to separate 
them into theoretical and empirical since this is philosophically 
unfounded. To insist that political economy studies the essence of social 
phenomena and the general laws of their development whereas statistics, 
existing alongside as an independent science, provides their concrete 
numerical illustrations, is a denial of one of the main principles of 
dialectical materialism on the indissoluble unity of the qualitative and 
quantitative definiteness of objects and phenomena16. Such an uncritical 
repetition of the mistakes made by remote predecessors is obviously 
anachronistic (Druzinin 1952; 1961). 
    [14] In this century, did the theoreticians of statistics attempt to 
formulate anew the problem of the contents of statistics as an independent 
science? Yes, some Russian and foreign statisticians had indeed made 
such attempts. One of them, Ptukha (1916, p. 28ff), a noted Russian and 
Soviet theoretician and historian of statistics, excludes economic 
phenomena from the sphere of statistics and therefore only acknowledges 
population and moral statistics as the independent science of statistics. He 
justifies his opinion in the following way.  
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    In the economic activities of man “separate individual cases […] are so 
homogeneous that they are explained by one or another single cause or by 
their set”, so mass observations are not needed for their study. In addition, 
when invading economical phenomena, statistics forfeits its significance 
of an independent science; indeed, for such a science to exist, “it is also 
necessary that the same phenomena are not scientifically discussed by any 
other science” whereas the results of economical statistics do not satisfy 
that demand and only represent a “supplementary branch” of social 
politics, or management of the economy of the nation.  
    Actually, only concrete mass phenomena pertaining to the person or to 
his actions constitute the only sphere for the results of investigations made 
by statistical methods to build up an independent material science. As to 
the statistical method proper, Ptukha indicates that it acquires special 
significance exactly in the sphere of mass phenomena of social life, but he 
also admits that it can be applied to natural sciences as well in spite of 
their additionally possessing another method, “the natural scientific 
method precisely establishing causes and measuring the power of their 
actions”. 
    [15] The attempt to represent statistics as an independent science on 
population and behaviour of man was obviously unsuccessful. In each 
case in which statistical methods are applied, the studied phenomena 
belong to the field of the pertinent science. In demography, statistical 
methods are only studying processes constituting the subject of that 
science, the science on the laws of population in various social systems. 
Just the same, moral statistics is a means for concretely investigating 
problems posed by sociology. The proposal made by Ptukha only to 
recognize population and moral statistics as an independent science 
apparently ought to be also regarded as an attempt to return to the past. 
Indeed, in its time, it was exactly the statistical investigation of man’s 
behaviour that served as a basis for declaring the origin of a new science, 
of social physics, as Quetelet named it. In addition, Ptukha’s viewpoint 
undoubtedly includes traces of a dualistic concept. 
    Among eminent Russian statisticians attempting to define the subject of 
statistics as an independent science I also ought to name Slutsky [V, § 5] 
as well. He believed that that problem can be solved by analyzing those 
theoretical principles which are the base of the statistical methodology: 
 
    Isolating that which relates to the properties of, first, judgements and 
concepts, i. e., to logic, and then of the properties of quantitative images 
upon which it (statistics – N. D.) is operating17, i. e., of mathematics, we 
nevertheless obtain some remainder for which no acknowledged sanctuary 
is in existence, which remains uncoordinated and homeless until we 
perceive its special theoretical essence and provide it with the missing 
unity in the system of judgements fully deserving the name of theoretical 
statistics. 
 
    Slutsky names the doctrine on the properties of totalities, on curves and 
surfaces of distribution, on mean values etc. as playing the role of such a 
remainder which, as he supposes, can form an independent statistical 
science (Ibidem): 
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    All this is not a logical doctrine of the world of judgement and concepts, 
but statistical doctrines of the world of phenomena in [the entirety of] 
their forms and mutual conditionality. 
 
    Slutsky’s viewpoint is very close to the idea about the scientific 
contents of statistics held by Fisher (1925/1990, pp. 1 – 2), a famous 
British statistician and mathematician whose writings strongly influenced 
the development of mathematical statistics in this century18:  
 
    The science of statistics is essentially a branch of Applied Mathematics 
and may be regarded as mathematics applied to observational data. 
 
And, when defining the contents of statistics as a science, he held that  
 
    Statistics may be regarded as (i) the study of populations, (ii) as the 
study of variation, (iii) as the study of methods of the reduction of data. 
 
    Fisher added vague explanations, but it is difficult to understand, does 
he consider statistics an independent science or a universal method. Thus, 
he writes: 
 
    In a real sense, statistics is the study of populations, or aggregates of 
individuals, rather than of individuals. Scientific theories which involve 
the properties of large aggregates of individuals […] such as the Kinetic 
Theory of Gases, the Theory of Natural selection, or the chemical Theory 
of Mass Action, are essentially statistical arguments. […] Statistical 
methods are essential to social studies, and it is principally by the aid of 
such methods that these studies may be raised to the rank of sciences. This 
[…] has led to the painful misapprehension that statistics is to be 
regarded as a branch of economics […].  
 
    It can hardly been thought that Fisher was able to approach 
satisfactorily the solution of the issue of the scientific contents of statistics. 
His and Slutsky’s viewpoints do not represent quite successful results of 
studying the pertinent sphere. All that, which they attribute to the contents 
of statistics actually belongs to it not as to an independent material science 
but rather as to a doctrine of methods.  
    The doctrine of totalities and their properties certainly cannot consist in 
a description of the concrete totalities encountered in statistical practice in 
all their infinite variety. The contents of that doctrine is the establishment 
of the general principles guiding the separation of such totalities for being 
statistically analysed and the determination of the methods of that 
analysis. And, as Fisher himself justly remarked, the idea of a totality is 
here applicable not only to a collection of [human] beings or simply to 
material objects, it can also refer to the mass results of any measurements. 
And here the researcher enters the field of the theory of errors which 
belongs not to statistics, but to mathematics (to the theory of 
probability)19. Again, the doctrine of totalities is connected with the 
distribution of values along with [the probability of] variations. 
    These problems are also methodological and again theoretically 
justified by the theory of probability. And, finally, the doctrine of means 
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which, as Slutsky believes, is also a component of statistics as an 
independent science, bears on the concrete methods of calculating them, 
and, in the aspect of the theory of knowledge, is an issue connected with 
the action of the law of large numbers whose interpretation is the most 
fundamental element of the entire statistical methodology. 
    [16] Thus, it is quite obvious that we infer that the scientific contents of 
statistics is the doctrine of methods applied for quantitatively studying 
mass phenomena. In truth, this is a fully logical conclusion from all the 
prolonged discussion which has been going on since the formation of that 
theory had begun. 
    It is therefore not surprising that in the 19th century some theoreticians 
of statistics (A. Guerry, A. Wagner, and, among the Russians, D. 
Zuravsky) were keeping to this view and that in the next century it had 
won a number of partisans (the Russians A. A. Kaufman and R. 
Orzentsky, the British statisticians G. U. Yule and M. G. Kendall, the 
noted American economist and statistician F. Mills, the most eminent 
Polish statistician O. Lange, the French scientist R. Dumas, the eminent 
Italian statistician R. Boldrini). 
    In the Russian statistical literature, this methodological direction had 
begun to form at the very end of the 19th century. Relevant 
pronouncements can be found in the writings of L. Hodsky, L. 
Fedorovich, G. Ster and I. Miklashevsky20. The first two, while still 
considering statistics an independent science, indicated that the doctrine of 
methods constituted the theory of that method. Since it is the theory that 
determines any science, there remained only one step to acknowledging 
statistics just as a methodological science (Hodsky 1896) whereas Ster 
(1898) simply denied the possibility of forming statistics as an 
independent science and thought that all the factual material with which 
statistics has to do was distributed among the relevant sciences. He was 
inclined to define statistics as a methodological science and in essence, 
Miklashevsky (1901) generally sided with Ster. 
    Among Russian statisticians who even at the end of the 19th century had 
promoted the viewpoint that statistics was a doctrine of method, we may 
name A. I. Chuprov (1895) since he considered the acquaintance with “the 
means of applying the statistical method when studying social 
phenomena” as the main goal of that science. 
    Various arguments had been put forward in favour of recognising 
statistics as a doctrine of methods and of the impossibility of representing 
it as an independent material science. However, that statement was mainly 
justified by indicating that a material science ought to possess its special 
subject of study whereas statistics actually does not have it since all the 
data which it investigates belonged to other sciences.  
    As I indicated, such was the position of Ster and we also find the same 
idea in Kaufman (1928, p. 12): 
 
    The main and decisive argument against acknowledging statistics as an 
independent science is that statistics undoubtedly has no subject of its 
own. The advocates of the opposite opinion believe that this subject is the 
totality of those facts whose significance can only be established by 
quantitative mass observation. But the same facts also constitute the 
subject of political economy and criminal law, hygiene and the financial 
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science […]. The subject of statistics is therefore both broader and 
narrower than that defined by Yanson, Lexis, Mayr, Conrad et al; broader 
because phenomena not included in the field of social sciences are being 
studied by the statistical method and in ever higher considerable degree; 
narrower because all problems on which statistics dwells in that field, 
such as those concerning the structure, constitution and life of the society, 
are also studied by a number of other sciences. […] Each of them more or 
less makes use of the statistical method which does not prevent them to 
remain by themselves and does not at all unite them into a single science, 
into statistical sociology or simply statistics. 
 
    [17] Another eminent Russian statistician and a partisan of the 
viewpoint that statistics is a methodological discipline was Orzentsky. He 
(1914, pp. 1 – 2) put forward similar arguments in his textbook on 
mathematical statistics: 
 
    As a material science, statistics should have possessed it own special 
subject of study. However, the data obtained statistically belong to 
phenomena included in the field of other sciences. […] The treatment of 
that data naturally demands special relevant knowledge, and, when the 
materials are being collected for practical purposes, their application 
presupposes special acquaintance with applied issues. It is clear therefore 
that statistics as a special material science does not exist. 
 
    And here is his definition of the scientific contents of statistics: 
 
    On the contrary, the study of the method itself is a special and 
independent problem which does not coincide with studying nature or the 
laws of some special field of knowledge. It constitutes the subject of a 
special and independent methodological science, of statistics. 
 
    The usual objection to such an understanding of statistics is that it thus 
becomes some science devoid of an object and, in addition, acquires the 
features of a supplementary discipline serving other sciences. It is in this 
manner that Kaufman, when identifying the concepts of doctrine of 
method and supplementary science, called it. He thought that in that role 
statistics can be considered a science just as rightfully “as the doctrine of 
measuring devices which belongs to the sphere of special education”. 
    Lange et al (1971, p. 57) also call statistics “a supplementary science” 
for political economy and add that “This […] also takes place in respect to 
the relation of statistics to other sciences studying mass phenomena”. This 
obviously false statement is continuing to serve as a foundation for current 
criticisms of the methodological concept. 
    In addition, it is possible to say the following. When keeping to the 
bourgeois agnostic philosophy, and only recognizing the scientific method 
as a purely subjective notion, only as a totality of methods and rules 
arbitrarily created by the mind for convenient cognition, – then the 
possibility of regarding some doctrine of method as an independent 
discipline ought to be really rejected.  
    However, according to the dialectical materialistic point of view on the 
theory of knowledge, a scientific method should be considered as an 
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objective notion, as a most important part of logic. Method is what is 
extracted from the science itself in the course of its development. Both the 
scientific cognition itself and the method created by it are reflecting the 
essence and connections of objective reality. The forms of the organisation 
and movement of matter being the object of study of a given science 
demand that a suitable method be applied as well. On the one hand, the 
development of the doctrine of method is only possible when advancing 
the science to which it is being applied. On the other hand, the history of 
science testifies that the perfection of the method itself is a powerful 
impulse to develop science. A science poses a problem causing a search 
for one or another appropriate method [of its solution], and statistics, in 
addition to the doctrine of such methods, acquires its own subject although 
mediated by that science. 
    The Soviet philosopher Rakitov (1965, p. 96), for example, describes 
the role of method in science: 
 
    Any method of scientific cognition is known to be secondary since its 
structure is determined by the objective essence of the studied processes 
and phenomena and because this method represents the means of their 
cognition and reflection. However, scientific methods, in addition, insofar 
as they are created and really exist, are not arbitrary and contain 
indications of objectivity. Having to do with methods of cognition checked 
by experience and ensuing an objective value of knowledge derived by 
applying them, their contents is objective. 
    Exactly in this respect scientific methods can serve as an object of 
cognition and in such cases no elements of subjectivism are contained in 
the statement that certain methods of cognition are the object of one or 
another scientific discipline. 
 
    [18] Some theoreticians of statistics considered it a methodical 
discipline mostly belonging to the sciences of society. Thus, even in the 
19th century Bruno Hildebrand (Kaufman 1928, p. 3) called statistics the 
art “of measuring political and social phenomena”. A. I. Chuprov (see 
above) thought that the doctrine of methods was the main object of the 
statistical science but he also bore in mind the study of phenomena of 
social life by these methods. However, the developing scientific 
knowledge, accompanied by the ever wider penetration of the statistical 
methods into investigations of the phenomena of both society and nature, 
inevitably had to lead to the recognition of the universality of that method. 
In this century, all theoreticians of the statistical science while 
acknowledging its methodological essence are keeping to this viewpoint. 
Kaufman (1928, p. 8), for example, wrote: 
 
    Statistics or the statistical method is interlaced with political economy 
and economical politic, criminal law, medicine and hygiene, linguistics, 
meteorology; the statistical method is being applied in civil and military 
management, taxation, famine relief, insurance business, drawing-up and 
critical consideration of electoral laws etc. The sphere of its application 
has therefore no clearly defined boundaries. … Statistics is the method of 
measuring or calculating social and a number of other kinds of mass and 
in general complicated phenomena. 
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    The celebrated British statistician Bowley (1926/1930, p. 2), wishing to 
stress this wide-ranging significance of statistical methods in scientific 
investigations, thus expressed this idea:  
 
    Statistics is not a section of political economy and is not restricted to 
any single science. Its knowledge is similar to the knowledge of foreign 
languages or algebra, it can prove itself useful at any time and under any 
circumstances. 
 
    The statement that the statistical method is not playing any role in 
concrete investigations either in social or natural sciences would have 
nowadays ring hollow. And insofar as social and economic investigations 
are concerned, Lenin’s economical contributions provide classical 
examples of applying statistical methods21. While describing the role of 
statistics in such studies, he is known to have called it one of the most 
powerful tools for cognition. And, when stressing that statistical methods 
themselves are greatly important for the development of science, he 
(Polnoe…, vol. 24, p. 281) indicated that properly compiled statistical 
tables can “really overturn the science of economics of agriculture”. 
 

Notes 
    1. Quetelet had not left any doctrine; his innovations were bold but not properly 
thought out (Sheynin 1986). 
    2. See my Introduction II. 
    3. This is a very strange principle. Herschel (1817/1912, p. 579), without knowing that 
the stars belonged to different classes, and that their sizes tremendously differed one from 
another, reasoned about their mean size, – about a meaningless magnitude. 
    True, Markov (1908/1924, p. 2) said something similar to Chuprov’s statement:  
 
    Various concepts are defined not by words, each of which can in turn demand 
recognition, but rather by [our] attitude towards them ascertained little by little. 
 
    4. Druzinin left out Chuprov’s important specification to the effect that the new form 
of the olden qualitative Staatswissenschaft will primarily have to do with numerically 
described mass phenomena, so that he did not foresee a resolute return to the past. 
Chetverikov did quote Chuprov in full but somehow paid no attention to that qualifying 
remark. 
    5. I do not believe that natural science had been “suffering” because of that attitude. 
On the contrary, many natural scientists, e. g., Poinsot (Sheynin 1973, p. 296), opposed 
the application of the statistical method beyond their field. 
    6. Wagner was hardly acquainted with the appropriate literature. Just one example: that 
water boiled at various temperatures depending on the air pressure had been known at 
least since the 18th century. And deviations of the planets from their mean paths are 
caused by random disturbances; anyway, in this example Drobisch discussed treatment of 
observations inevitably corrupted by errors, as was known to a certain extent even to 
Ptolemy. 
    7. See previous Note. Also, the law of conservation and conversion of energy had been 
repeatedly specified for each knew form of energy studied. 
    8. This problem deserves more attention. Physicists (and especially Boltzmann) 
naturally attempted to describe their findings in terms of classical mechanics, i. e., quite 
rigorously which was impossible by means of the statistical method. 
    9. Chuprov’s description of the “battles” was faulty, cf. my Introduction II.6. In 
particular, it was Humboldt who had suggested the term anthropometry to Quetelet who 
put it into circulation thus taking away the appropriate sphere from anthropology. 
    10. If at all possible. See also [II, Note 13]. 
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    11. Druzinin should have noted that Kaufmann’s contribution did not appear before 
Chuprov’s writings, as implied by the context. 
    12. Logicians are distinguishing between mathematical and complete induction. 
Indeed, Novoselov (1970/1976, p. 257) discussed the latter which occurred patently 
different from the former and the Enc. Brit (14th edition, vol. 12, 1964, p. 278 of the item 
Induction (pp. 278 – 281) indicated that complete induction means complete enumeration 
of cases. 
    13. Political arithmeticians had been happy rather than puzzled. Indeed, as they 
believed, regularities reflected Divine care for mankind. 
    14. At the time of Graunt and Petty the Staatswissenschaft had not yet been really 
developed. 
    15. It was Lexis who first introduced connections into his theory of stability of series. 
    16. It follows that statisticians ought to work together with mathematicians, or be 
mathematically qualified themselves. For a long time Soviet statisticians had been, 
however, quoting that materialistic principle as an excuse to deny mathematics, to 
preserve Marxism in its initial form (Sheynin 1998, especially §§ 3.5 and 5.1). 
    17. I am translating Slutsky’s paper [V] and indirectly note there that Druzinin’s 
decision that it means statistics seems wrong; I would say, logic. Properties of concepts 
rather belong to philosophy. 
    18. The very origin of mathematical statistics is closely linked with Fisher. 
    19. The stochastic theory of errors had been a most important chapter of probability 
theory from the mid-18th century to the 1920s but mathematical statistics borrowed its 
principles of maximum likelihood and minimal variance from the error theory. Today, the 
stochastic theory of errors is the application of the statistical method to the treatment of 
observations. Incidentally, when defining statistics, Fisher (see above) forgot about it. 
There also exists the determinate theory of errors. 
    20. Chuprov (Bortkevich & Chuprov 2005, Letters 28, 1897, and 54, 1900) had an 
extremely low opinion of all the mentioned statisticians. Bortkiewicz agreed with his 
colleague in regard to Ster and Hodsky (Ibidem, Letter 29, 1898). 
    21. For a sober opinion about these contributions see Kotz & Seneta (1990). 
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IV 

E. E. Slutsky 

 

Theory of Correlation  

and Elements of the Doctrine of the Curves of Distribution
∗∗∗∗ 

 

Introduction 

 
Kiev, 1912,  

Izvestia Kiev Kommerchesky Institut, Book 16 
 
    During the two latest decades, theoretical statistics has greatly 
advanced. Perfection of old methods; discovery and development of new 
ones; appearance of excellent works on biology and social sciences 
illustrating methods and proving their unquestionable scientific 
significance; finally, creation of a yet small personnel of scientists 
systematically applying and developing the new methods further, – all 
this, taken together, allows us to say that a new era has originated in 
statistics. 
    This movement had started and has been developed in England, and it is 
only beginning to penetrate other nations. Initiated by the recently 
deceased celebrated Francis Galton, it grew out of the demands of 
contemporary biology. Galton, however, was not a mathematician, and the 
merit of theoretically developing new ideas and establishing a school must 
almost solely be credited to Karl Pearson whose name will remain in the 
history of our science alongside those of Laplace, Gauss and Poisson1. In 
all fairness, the new school ought to be therefore called after Galton and 
Pearson. 
    The general awakening of interest in theoretical statistics allows us to 
expect that not in a very remote future the ideas of the new school will 
spread over all nations and all fields of their possible application, and I am 
humbly aiming at fostering that natural and inevitable process. The 
application of the new methods is comparatively easy and not difficult to 
learn. For making use of formulas, it is sufficient to understand their 
meaning and be able to calculate what they indicate, a task simplified by 
applying special tables also compiled on Pearson’s initiative. 
    However, it is impossible to manage without breaking from routine. 
Unforeseen details can be encountered in each problem, and the 
boundaries of the applicability of a method, and the significance of the 
results obtained can perplex a student. Not only prescriptions for 
calculation are therefore needed, it is also necessary to comprehend the 
spirit of the theories and of their mathematical justification. Life itself thus 
raises a most important demand before those working at statistics: A 
statistician must be a mathematician because his science is a mathematical 
science. 
    It is for this reason that I had paid so much attention to formulas and 
mathematical proofs; nevertheless, one more point also played a certain 
role. Dry prescriptions are only good enough for being applied in old and 

                                                 
∗ A report read 5 April 1912 at the sitting of the Society of Economists 
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firmly established spheres. I believe that no success can be expected in 
planting new methods in new soil without justifying them. 
    The sphere of mathematical knowledge needed for understanding most 
of the provided derivations and proofs is comparatively small. Most 
elementary information on analytic geometry and differential calculus as 
can be acquired in a few days is sufficient for understanding the elements 
of the theory of correlation. Further generalization in that area as well as 
the first part of my work dealing with curves of distribution demand 
somewhat wider mathematical knowledge.  
    I have attempted to satisfy different groups of possible readers and the 
proofs are therefore simplified as much as a rigorous description allowed 
it. Those mathematical derivations which I thought understandable to least 
prepared readers are provided in more detail than necessary for 
accomplished mathematicians. Finally, I attempted to elucidate the 
material in such a way that the reader, even after skipping a difficult place, 
will be able to pick up the lost thread and understand the meaning of the 
formulas and the manner of applying them. I do not however flatter myself 
by hoping to have solved that problem quite satisfactorily.  
    My main subject is the theory of correlation but I did not feel it possible 
to avoid the theory of the curves of distribution which I described far, 
however, from comprehensively and possibly even too concisely, in pt. 1. 
I advise readers poorly acquainted with mathematics and only mainly 
interested in the method of correlation, to go over to pt 2 immediately after 
acquainting themselves with the first four sections of pt. 1. 
 

Note 
    1. Where are Chebyshev, Markov, Liapunov? 
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V 

E. E. Slutsky 

 

Statistics and mathematics. Review of Kaufman (1916) 
Statistichesky Vestnik, No. 3 – 4, 1915 – 1916, pp. 104 – 120 

 
    [1] Kaufman’s treatise, now in its third edition, is certainly an 
outstanding phenomenon in our educational statistical literature, and not 
only in our as testified by the reviews of its German edition (1913) written 
by the most notable representatives of the European statistical thought1. 
This third edition will also obviously find many friendly readers the more 
so since in its main parts and especially in its first theoretical part it is 
entirely recast as compared to 1912. 
    However, those who attentively followed the evolution of Kaufman’s 
work will not fail to note that at least in one respect this third edition is not 
a simple development of the previous one but as though some new stage in 
the author’s statistical Weltanschauung. Indeed, the author intended both 
the second and the third editions as a manual for those wishing to prepare 
themselves for working in statistics but lacking that mathematical 
background necessary for entirely mastering statistical theory and 
methods. 
    The author (1912, p. 235) believed (and believes) that 
 
    It is hardly possible to master consciously the principles of the 
statistical theory […] without [its] connection with the main principles of 
the theory of probability. 
 
He therefore devoted sufficient efforts and place to provide his readers 
with a possibly more distinct idea about both the theory of probability and 
its application for solving fundamental issues of the theory of statistics. As 
to the practical application of the formulas and tricks of the higher 
statistical analysis, the author (p. 236) properly and tactfully warned those 
insufficiently prepared: 
 
    Thoroughly perceive the boundaries of your competence. […] In 
particular, certainly abstain from mechanically applying final formulas 
provided by mathematical statistics without being quite clearly aware of 
their intrinsic meaning and sense, otherwise misunderstanding can often 
result. 
 
    For consoling his readers he (p. 235) stated that he was sure that “In its 
current state, statistics still leaves for them an infinitely broad area of 
activity”. True, he (p. 234) apparently did not entirely got rid of his serious 
doubts about the issue of the interrelations between statistics and 
mathematics and while acknowledging that “It is hardly possible to 
resolve the difference of opinion among the representatives of the 
statistical theory (my italics), he even avoided any attempt to clear up this 
matter in his manual. Given these circumstances, his practical way out, as 
mentioned above, to which he became inclined, could have only been 
welcomed. This is all the more so since the general outline of his 
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introduction to the theory of statistics and a number of other instances 
(see, for example, his very indicative remarks on pp. 131 and 132) allow 
to think that it were considerations about the difficulties of mathematical 
methods rather than doubts about the principles themselves that compelled 
the author to hesitate. 
    [2] That practical dualism is not at all specifically peculiar to statistics 
and is observed in other sciences and reflects the distinction between the 
individual features of the researchers and the subjects of their work 
(theoretical and practical astronomy, theoretical and experimental physics 
etc). However, in this third edition it became transformed into a dualism 
different in principle, the dualism between statistical theory and practice 
(p. 148): 
 
    As a rule, because of the very properties of this [statistical – E. S.] 
material statistical analysis does not allow, and because the structure 
based on that data is coarse and at the same time complicated, does not 
demand the application of formulas of the calculus of probability. 
However, this does not at all contradict the fact that each such structure is 
entirely based on the principle of probabilities. 
 
    But the author (p. 153) also keeps to his previous divide between 
statisticians who “follow and will follow the routes demanding application 
of more or less complicated forms of mathematical analysis” and others 
who “while treating […] statistical material and interpreting its results, 
may restrict their efforts by elementary methods of calculation”. 
    This motif now seems rather inconsistent with the previous. Indeed, 
how is it possible to reconcile the right of a purely practical distinction 
only founded in essence on the division of labour between the researchers 
and the abovementioned standpoint negative in principle, or the author’s 
statements (p. 152) that such procedures as the construction of frequencies 
of distribution, adjustment of series etc “not only do not help to elucidate 
the real features of the studied phenomena, but, on the contrary, can 
provide ideas corrupting reality” and that “the method of correlation does 
not add anything essential to the results of elementary analysis”. 
    Choose one or the other: either these procedures and methods are 
useless and therefore harmful and ought to be altogether abandoned; or, 
they are useful, but demand an understanding of their essence, meaning 
and boundaries of application which is at least partly possible even in a 
treatise intended for readers lacking sufficient mathematical background. 
    The dualism of the author’s point of view which is not objectively 
resolved in those texts becomes nevertheless somewhat explained after 
reading that (p. 147) 
 
    The issue of our right to apply [in the area of general statistics – E. S.] 
the methods of the calculus of probability is in any case left open, or, as he 
adds, open for me. 
 
    Objectively speaking, this pronouncement certainly only confuses the 
matter since the reader remains ignorant of the basis on which, as the 
author believes, his own arguments against applying the calculus of 
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probability are weakened and he is led to adopt it in the practical sense on 
the one hand and to candidly ignore it on the other.  
    And still, if I am allowed to express my general feeling, I ought to say 
that the main and the specific for the author is apparently at present not 
this previous hesitation and doubts which reflected the former stage of his 
scientific evolution, but the formed and almost firmly established 
conviction in that the statistical analysis does not either allow or demand 
probability theory. 
    I have thus returned to the quote from p. 148 with which I started to 
describe the present viewpoint of Professor Kaufman and I think that after 
all stated above I am compelled at least conjecturally to adopt it as the 
expression of the real opinion of the author, to assume it as the starting 
point and main object of my critical remarks below. 
    However, I have to begin elsewhere. Indeed, I am sure that the indicated 
dualism between statistical theory and practice is rooted much deeper, i. 
e., not in the author’s understanding of the role of probability theory, but 
in his ideas about the essence of statistics, and that issue is not yet clarified 
in contemporary literature in any sufficient measure.  
    [3] Kaufman adheres here to the now apparently dominant point of view 
that statistics is a method or methodological doctrine and not at all a 
science with its own special subject of research. And I personally would 
have been prepared to adjoin somewhat the critical aspect of his 
considerations, provided he had sharpened his reasoning to allow for 
Chuprov’s view whose idea of statistics as an ideographic science2 he does 
not regrettably even mention in spite of its certainly being the most 
powerful argument possessed by the camp which Kaufman criticizes. 
True, I think that even that argument cannot be upheld, but Kaufman did 
not prove that. I will not dwell on this difficult point because of lack of 
space and the more so since here I am not really at any variance with 
Kaufman. 
    Distinctions between us start further on, and exactly where Kaufman 
believes to have concluded the issue, where he recognizes the 
methodological essence of statistics. Let us ask ourselves whether it is in 
essence indeed indifferent, as he (p. 17) thinks, whether “to discuss 
statistics as a supplementary science, or simply as a methodological 
doctrine”. When allowing for the author’s considerations, we, as it seems 
to me, ought to conclude, first of all, that he does not sufficiently clearly 
distinguish between the various versions of the term statistics (see his pp. 
15 – 18) and does not follow up to conclusion the reasoning on the place 
of the statistical method in the system of logical knowledge.  
    I begin with the issue of the method itself. As a method, statistics is 
certainly not a science, but a technique, that is, a system not of reasoning, 
but of tricks, rules and patterns of practical cognizing work, whether 
applied systematically or not, conscientiously or unconscientiously, for 
scientific or practical goals. Just the same as addition and subtraction 
remain arithmetical operations independently from who is applying them 
and what for. This will become quite clear after analysing the contents of 
statistics as a methodological doctrine. We will find there, in particular, a 
number of propositions concerning even the most simple procedure of the 
statistical technique, enumeration of the elements of a totality and its 
necessary conditions and forms. 
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    The methodology of enumeration based on the analysis of its very 
nature, allows us to see how practice is conditioned by the general 
properties of totalities on the one hand, and the properties of known 
logical operations on the other. To oppose, as Kaufman (pp. 13 – 14) does, 
statistical method and statistical art by issuing from indications external in 
regard to operations themselves, i. e., from the aims of the work, is in 
essence wrong even without allowing for the difficulty of drawing the 
necessary boundary which he mentions.  
    Whether the enumeration of social masses, say, is applied practically 
(for the aims of administration, say, as statistical art according to 
Kaufman) or for knowledge (statistical method) is of no consequence. Not 
technically, as the author believes, but according to its essence the nature 
of the operation will be the same as will be the conditions for it to be 
properly done; consequently, the corresponding reasoning belonging to 
statistics as a methodological doctrine will also be the same in both cases.  
    And the last inference: since this reasoning does not change with the 
aims of the operation, it follows that the location of the boundary depends 
not on Kaufman’s decision or otherwise, but on the essence of the matter. 
And, incidentally, this means that a discussion of the issues concerning the 
contents of a science is not idle, is not to be decided by opportunistic 
considerations of expediency; no, it is important and, if properly 
formulated, fosters the deepening and the solution of the most general 
problems of science. 
    [4] I think that it is just as impossible to agree with Kaufman’s 
arguments about the nature of statistics as a methodological science. As a 
system of considerations, statistics, understood in that sense is necessarily 
either a science or its part. Kaufman (p. 16) compares it with the doctrine 
of measuring devices which allegedly cannot be isolated as a special 
science. However, if that doctrine is not a special science, it is a part of 
another one, – of which, it ought to be asked, of the science which it 
provides with the means of research, or of that on which it is logically 
based?  
    Both alternatives fall away almost at once; the former, because 
measuring devices such as clocks and microscopes serve all or many 
sciences and purely practical needs as well, and the latter, since a complete 
theory of one and the same device as of an ideographic item demands the 
application of many sciences, such as mathematics, mechanics, physics, 
chemistry, psychology (recall the personal equation in astronomy) rather 
than one, etc. 
    After thinking it over, the entire issue of attributing the theory of 
measuring devices to a certain theoretical science becomes absolutely 
mistaken because the peculiar logical structure of such a doctrine is 
overlooked here. The considerations constituting that doctrine are united 
into a system in a manner absolutely different than in any theoretical 
science. Here, the systematic connection is conditioned not by the 
objective relations between things and their various aspects but by their 
teleological function with these things being seen as the means for 
attaining the aims of the researcher. 
    Hence the natural grouping of separate technical disciplines according 
to the pursued goals intersected with their partition for the sake of 



 76 

achieving maximal possible homogeneity of the contents according to the 
essence of the underlying theoretical doctrines. 
    And it is now also understandable why in the process of teaching and 
elucidating some technical disciplines are more closely adjoined to those 
sciences from which they derive their theoretical elements (for example, 
the doctrine of physical measurements) whereas others are in the 
neighbourhood of those sciences which make use of their results (e. g., the 
doctrine of devices for psychological measurements). Finally, still other 
disciplines in addition possess external independence (metallurgy or the 
doctrine of fibrous substances). All this, however, is an issue of teaching 
and elucidation and has no direct bearing on the logical essence of the 
relevant doctrines. 
    [5] These considerations justify the independence of statistics as a 
technical or practical science which according to some tests admits in 
addition of separation into statistical methodology and statistical technique 
and at the same time leads us real earnestly to the problem of statistics as 
an independent theoretical science. Indeed, any practical doctrine, as 
Husserl (1900 – 1901) had discovered in an inimitable masterly way, 
certainly assumes some underlying theoretical doctrine justifying its 
propositions. Indeed, for proving the possibility of some goal by definite 
means we ought to perceive the connection between means and goal as 
between cause and effect. And the study of such connections leads us to a 
totality of considerations constituting a system whose main point is the 
essence and properties of the subject rather than of the goals. 
    We thus arrive at an analysis of the theoretical considerations on which 
statistical methodology is built. Isolating that which relates to the 
properties of, first, judgements and concepts, i. e., to logic, and then of the 
properties of quantitative images upon which it [logic]3 is operating, i. e., 
of mathematics, we nevertheless obtain some remainder for which no 
acknowledged sanctuary is in existence, which remains uncoordinated and 
homeless until we perceive its special theoretical essence and provide it 
with the missing unity in the system of judgements fully deserving the 
name of theoretical statistics. 
   All the existing various propositions of the doctrine of totalities and their 
general properties only provisionally adjoining methodological problems 
will belong here. We will thus have first of all the doctrine of the main 
formal properties of totalities; then, of their quantitative and structural 
forms (which now constitutes an essential part of the so-called 
Kollektivmasslehre, that is, of the doctrine of frequencies and surfaces of 
distribution, of means etc); then, also included will be a generalized 
formal doctrine of population, or, more correctly, of totalities of a 
changing composition, whose elements emerge, change their state and 
disappear, be they [individuals of a] population, trees in a forest or atoms4. 
    Finally, here also belongs the doctrine of the machinery of causes 
determining the frequency of phenomena rather than of separate events. 
All this is not a logical doctrine of the world of judgement and concepts, 
but statistical doctrines of the world of phenomena in [the entirety of] their 
forms and mutual conditionality. 
    Whether to separate them as a special subject for elucidation and 
teaching, certainly depends on our arbitrary opinion, but a special science 
emerges not by arbitrariness but intrinsic ties [of the appropriate 
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components], cognized as something objectively compelling, as 
establishing a systematic likeness and unity of the corresponding relations 
as well as of the considerations expressing our knowledge of their 
properties and ties [between them]. 
    [6] And now we approach the issue of the relation of the calculus of 
probability to statistics. It only suffices to compare the contents of some 
purely mathematical treatise on the former with statistical reasoning on 
probability; for example, the contribution of Markov with the writings of 
von Kries [1886] or Chuprov, and the deep intrinsic heterogeneity of the 
problems, methods and of the very spirit of these writings becomes 
striking. And further considerations will show that these distinctions are 
based on the difference between the subjects. 
    Calculus of probability is a purely mathematical science5. How 
something is occurring is of no consequence to it; it deals not with factual 
but possible frequencies, not with their real causes but their possible 
probabilities. And the concept of probability itself is there quite different, 
is generalized and abstract. As soon as some number is arbitrarily assigned 
as the weight of each possible event and a number of definitions is made 
use of, the basis is prepared for building in a purely abstract way infinitely 
many purely abstract castles of combinations in the air, and of going over 
from those weights to the weights of various derivative possibilities (for 
example, of some groups of repeated occurrences of events). 
    For the calculus of probability, any enrichment of the concept of 
probability as compared with the above is useless, it would have nothing 
to do with it. Throwing a bridge from that ethereal atmosphere of 
mathematical speculations to the region of real events is only possible by 
abandoning the ground of the calculus of probability and entering the 
route of studying the real world with its machinery of cause and effect. 
Only thus we obtain knowledge about the ties between frequency and 
probability, justify [experimentally] the law of large numbers and find the 
basis for applying the calculus of probability to studies of reality.  
    Chuprov investigates free causal connections6; von Kries discovers the 
causal underpinning of games of chance and the actual justification for the 
tendency of frequencies to coincide with probabilities; Venn and 
Edgeworth attempt to build the very notion of probability on the concept 
of frequency7; – but nothing mentioned has any relation to the 
mathematical science of the calculus of probability. Here [in statistics], the 
mind operates not with ideal forms and quantities but with real things and 
phenomena although considered from an extremely general viewpoint8. 
    Above, I did not add anything to the essence of the doctrines of 
theoretical statistics, I had not even demanded the creation of such a 
science (always a somewhat dangerous enterprise) and only mentioned a 
number of existing doctrines and their intrinsic ties [with each other?]. If, 
however, it occurred that these doctrines constitute the main theoretical 
contents of statistical methodology, then I will hardly be mistaken when 
stating that statistics as a theoretical science does exist, that collective 
items, totalities considered as such, to whichever area they belong, are its 
subject. 
    Incidentally, it also follows all by itself that since statistics studies 
quantitative properties which we cannot ignore because of their part in the 
relations and ties peculiar to the subject of statistics, statistics should be 
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indeed considered a mathematical science, i. e., one of those sciences in 
which mathematical methods are essential and unavoidable9. 
    Then, it is natural that also in practical applications of theoretical 
statistics and statistical methodology, that is, in the practice of concrete 
statistical work on empirical data, mathematical methods are also 
unavoidable, and that there exists no essential boundary between various 
chapters of statistical practice in regard to the subject of study. It is only 
possible to distinguish in each chapter more elementary and more 
complicated problems, and, in general, problems of one and another 
theoretical type. 
    [7] The study of Kaufman’s viewpoint only corroborate, as I believe, 
these considerations. Indeed, after formulating his essential objections to 
the application of the theory of probability to statistics he finally arrives at 
a conclusion whose considerable significance I ought to deny decisively. 
He (p. 147) assigns as the area of such application the set of simplest 
phenomena of population statistics and a certain part of phenomena in 
natural sciences, then (true, somewhat hesitatingly, see above) refuses to 
agree that the calculus of probability is applicable to general statistics.  
    It is impossible to be satisfied by such a decision. Indeed, general 
statistics (an expression that the author himself writes in inverted commas) 
is obviously a heterogeneous group of problems lacking any intrinsic ties. 
And, if only the theory of probability can at all be applicable to analysing 
reality, the necessary boundaries and conditions can depend not on the 
concrete properties of the totalities, but on their formal properties on the 
one hand and on the properties of the problems to be solved on the other. 
It is exactly in this direction that a manual of statistics ought to guide the 
beginners. 
    Kaufman (p. 147) expresses himself in the sense that for the areas 
mentioned (population statistics etc)  
 
    The existence of the prerequisites for the [application of] the theory of 
probability can be considered justified a posteriori, and the application of 
its methods here does not in principle excite objections anymore. 
 
    That the author is hardly in the right here can be already seen by the 
quotations from Markov and von Kries that he provides there. Indeed, 
even in the area where “the validity of applying the elements of the 
calculus of probability is least doubtful” (Kaufman, p. 145, his italics), the 
former denies the right of statisticians to justify in principle their practice 
(tables of mortality whose usefulness he does not deny) “by referring to 
the formulas of the calculus of probability”. 
    As to the latter, since he is against the application of those formulas, his 
viewpoint concerns not one or another area of statistics (population or 
general statistics), i. e., not real objects but formally traced problems. 
    [8] Turning to the essence of the matter, inasmuch as it is possible in the 
boundaries of this paper, I am issuing from Markov’s demand, that is, 
from the need to ascertain in each separate case whether the trials were 
independent, the probability was invariable and [the appropriate cases] 
equally possible. Under such restrictions, all the applications of the 
calculus of probability to statistics are partitioned in two main groups: in 
one of them, the applicability is justified a posteriori by proving that those 
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conditions are fulfilled at least approximately; and in the other one, 
applications are substantiated a priori. 
    In the first instance we are dealing with predicting probable frequencies 
of some phenomenon by known frequencies of other facts (urn 
experiments, heredity, insurance etc). In the second case we have to do 
with comparing reality with a theoretical pattern for which Markov’s 
demands are postulated a priori. Simplest examples here again are 
experiments with urns, coins etc only considered in their different logical 
aspect.  
    Here, we compare the actual frequency with its value expected with one 
or another probability under the conditions of constancy, independence (or 
a definite dependence) and equal possibilities. And we do not act 
differently when studying the fluctuations of the sex ratio at birth or death 
etc. by the Lexian or any other similar method. 
    The same standpoint underlies the method that Kaufman discusses 
under a somewhat unfortunate name differential. Thus, when comparing 
for example the percentage of peasants without a horse of their own in two 
different localities so as to find out how significant is the difference, the 
real basis for the comparison is some imagined totality of individual 
farms, some imagined nation where the conditions determining the 
number of horseless peasants are assumed to be everywhere the same and 
the distribution of the farms over the territory is purely accidental10. And, 
issuing from that image, we calculate the probability that the difference 
mentioned could have been not less than in reality.  
    We are thus able to imagine at least the order of the probability of a 
correct judgement about whether the observed difference may be 
explained as being purely accidental, or whether we should assume as its 
basis either some detectable in principle causes or the insufficient 
accuracy of the data. 
    Kaufman correctly states that for such a conclusion it is not necessary to 
determine invariably the value of the appropriate probabilities, but he fails 
to notice that practitioners are infinitely many times guilty, also in our 
zemstvo statistics, of absolutely unfounded decisive inferences made from 
insufficient data. To oppose such arbitrary conclusions and to train 
systematically the feeling for the digits (so valued by the author), the 
calculation of probabilities or estimation of their order by determining 
mean square or probable errors and other measures of probable deviations 
ought to be practised incomparably oftener than it is done now. 
    Incidentally, it should be noted that Kaufman, when referring to von 
Kries for corroborating his views, hardly noted that that he (p. 244) 
discussed that very method of applying the calculus of probability to 
statistics calling it Untersuchende Methode. He allowed its application for 
studying mass social phenomena even in case of large numbers (in 
erhebliche Umfange). Kries very highly appreciates the investigations of 
Lexis and argues that they simply constitute a variety of that same method. 
    I believe that the contemporary statistical literature (above, I myself did 
not say anything essentially new)11 sufficiently justified the application of 
the method under discussion to statistics and that, according to the train of 
thought leading to that substantiation, no partition whatsoever of statistics 
into areas, as Kaufman attempts to accomplish, can hardly be supported by 
any perceptible logical foundation12. 
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    [9] Not less shaky is the author’s understanding of the application of the 
patterns and formulas of the theory of probability to sampling. As von 
Knies rightfully remarked, its embryos in the conjectural statistics13 of 
political arithmeticians developed by mathematicians (by Laplace!) failed 
to be sufficiently justified by an exhausting criticism of the empirically 
applied methods of isolating the sample. The work of Kiaer [at the turn of 
the 19th century] which in a sense marked a new stage suffered from the 
same shortcoming. 
    But Kaufman himself (p. 98) demands sampling with mechanical 
selection, that is, as I understand him, with a purely accidental choice, and 
he admits that such a procedure “provides a full guarantee of typicality, of 
representativeness of the results of sampling”. This, however, is indeed 
what is needed for a justified application of the calculus of probability to 
sampling. Yule and Bowley deal only with this method [of sampling] and 
I am unable to understand how Kaufman (p. 97) could have concluded 
that, according to the Bowley method, it was indifferent whether to snatch 
at random 100,000 indiviual farms of a province or to select as the sample 
the entire population of its two uyezds [districts], or of an entire 
longitudinal strip. 
    This statement, may the author excuse me, is a misunderstanding pure 
and simple. And when he comes to deny the importance of the sample size 
(already gaining the upper hand also in our practice) as opposed to its 
relative size I cannot but perceive here the results of the same 
misunderstanding14. 
    I will dwell, for example, on his (Ibidem) reproach of sampling for 
extinguishing those qualitative nuances, those varieties of phenomena 
which exist in real life when considered in large masses, and are exhibited 
ever more distinctly with their increase. This is of course true, but we must 
not overlook that, on the other hand, the more considerable is the mass, the 
simpler and more curtailed usually ought to be the programme [of its 
investigation] so that in most cases, on the contrary, only sampling can 
allow us to approach reality from so different sides and therefore to 
perceive it more or less fully and distinctly in all its variety, see for 
example Westergaard (1890, pp. 205, 207 and some other places). 
    Then, for recognizing any nuance a corresponding absolute size of the 
sample is needed so that, having formulated beforehand definite cognitive 
theoretical or practical goals, we will be able to determine the 
corresponding sample size. No flair will help here since it did not 
guarantee even such an experienced investigator as Kaufman15 against an 
entirely mistaken recognition of the decisive importance of the relative 
size of the sample. Only a systematic application of tests provided by the 
calculus of probability, if, certainly, the researcher possesses all the other 
qualities peculiar for a good worker, can ensure the success of sampling. A 
critical discussion of the experience already at hand could have indicated 
all this with indisputable clarity. 
    I ought to add that this issue is by no means academic only. Exactly for 
the practitioner the problem of establishing the number of elements to be 
described, invariably connected with financial considerations, often 
determines whether the investigation will take place or not. 
    [10] My paper has already become too lengthy and I cannot consider in 
detail separate propositions made by the author concerning particular 
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issues. Although unable to agree with many of them, I must abandon his 
views on separate methods of mathematical statistics and will only point 
out some of his shortcomings. Thus, I am inclined to believe that the 
uninitiated will be put to difficulties by the three definitions of probability 
(by Laplace, Bortkiewicz and Vlasov [1909]) with which the author (p. 
49) begins his exposition, and that such readers will understand them the 
less the more they will ponder over them. As it seems, this is especially 
true in regard to Laplace’s definition provided out of the author’s context.  
    Just the same (pp. 50 – 51), Czuber’s definition is not understandable 
without a long explanation. I imagine that it would have been more 
advantageous to expound the principles of the theory of probability by 
examples with balls etc making use of the most elementary concept of 
probability as the ratio of the favourable cases to all of them and only to 
deepen this idea afterwards by indicating other possibilities. Here, 
however, the “logical foundation of the notion of probability” cannot be 
avoided since otherwise the reader will be confused by those various 
definitions rather than assimilate them. Moreover, the discussion of these 
issues (the viewpoints, say, of Venn, Cournot, von Kries, Chuprov) are 
much more important for understanding the beginnings of the theory of 
statistics than many other parts of the author’s exposition, and, in addition, 
they are more readily understood.  
    Thus, I think that the derivation of the probability integral (pp. 76 – 78) 
could have been omitted since the reader will not be able to conclude it; it 
would have been better to explain instead the general train of thought 
leading to it and its significance and meaning. The author (p. 81) provided 
the appropriate approximate calculations, but it would have been better to 
choose an example allowing in addition to calculate the same probability 
in an elementary way by adding up probabilities of separate cases. For the 
beginner, this would mean much and it will also clearly indicate that the 
integral only provides approximations. Then, I think that the 
generalization of the law of large numbers (pp. 82 – 83) based on the 
[Bienaymé –] Chebyshev inequality can also be omitted, but, on the 
contrary, that it would have been apparently better to prove the Bayes 
theorem and to explain it in more detail. Indeed, it was the source of so 
many logical sins! 
    [11] And in general, it seems to me that for the goals attempted by 
Kaufman the volume of mathematics could have been lessened, but that 
the selected minimal information should have been worked out in rather 
more detail. Then, it would have been easier for the reader to learn how to 
calculate and to use the formulas of the calculus of probability at least at 
the minimal possible level as well as to apply the table of the probability 
integral which would have been useful to adduce at least in an abridged 
form as was the case with Chuprov (1909) or even in a more abridged way 
as Westergaard did.  
    Among the minor shortcomings […]. These, however, are trifles which 
will hardly dumbfound a shrewd reader. More essential, as it seems to me, 
is the statement (pp. 121 – 129) that the naturalism of the coincidence of 
the empirical so-called check of the formulas of the calculus of probability 
with the theoretically predicted for games of chance is explained because 
“the law [of random deviations – E. S.] itself was, after all, derived from 
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the results of such experiments and games”. This, however, seems to be an 
accidental lapse. 
    Then, the author unjustly attributes to Bortkiewicz (to the law of small 
numbers) the ascertaining of the “theoretical distribution of the 
fluctuations” of small numbers without mentioning that the appropriate 
main formula is due to Poisson. Finally, I would argue against the use of 
the expression method of moments not in regard to the method competing 
with least squares for drawing a curve, but to the calculation of means by 
issuing from data grouped into intervals of equal length (p. 531). This will 
result in the use of an absolutely definite term in an extraneous manner 
which is hardly sufficiently justified. 
    Some probabilities are calculated wrongly […], 0.995 instead of 0.95, 
0.999979 instead of 0.997. The figure on p. 566 is scarcely vivid since 
only a quarter of the correlation diagram is shown, but the exposition of 
the calculation of the correlation coefficient itself seems to be sufficiently 
clear even for a beginner which of course was not easy to attain. I only 
think that the author with his knowledge of explaining could have 
included in his lengthy treatise rather more practical advice on, and 
patterns of calculation and not to refer readers so often to other sources 
either only helpful to a few because of linguistic difficulties (Yule) or 
insufficiently suited for the beginners (my own contribution of 1912) or, 
finally, to those entirely unsuited for his aims because of mistakes made 
(M. B. Gurevich). 
    In particular, I bear in mind the calculation of means, index numbers 
and more elementary methods of smoothing series which the author also 
admits for certain purposes. The inclusion of the formulas and tables due 
to Pareto and provided by Benini16 transforms the application of the 
method of least squares to calculating smoothing curves of the first four 
degrees into a childish occupation possible perhaps even for a school 
student of the third form and it would have compelled many practitioners 
to thank the author heartily. And this is desirable to see in the likely 
deservedly soon to appear next edition of his generally speaking excellent 
treatise.  
 

Notes 
    1. I mention Lexis (1913). Kaufmann’s contribution “fills an important gap” and 
occupies “a special place” in the German statistical literature. He manages [makes do] 
with elementary mathematics which is a favourable circumstance. Then, Lexis believes 
that the theory of probability assumes equally possible cases and that the law of large 
numbers ought to be justified by empirical data. In short, I do not discern here a pioneer 
in the field of statistics. 
    Slutsky did not say anything about previous studies of the same subject but later he 
refers to several authors. However, it is opportune to add a few lines (Sheynin 1999). 
Slutsky mentions, and italicizes the term theoretical statistics but avoids mathematical 
statistics, a term that appeared at least in 1869 (Zeuner), and he did not define statistics. 
That statistics is a method (see his text a bit below) was stated in 1860 (Fox); and 
Pearson’s maxim (1892, p. 15) certainly comes to mind: “Unity of all science consists 
alone in its method, not in its material”. And it was Alphonse DeCandolle who first 
stated, in 1833, that statistics was a branch of mathematics. I note finally that later 
scholars, Pearson and Fisher, held that statistics was (“essentially” – Fisher) a branch of 
applied mathematics. 
    2. According to Chuprov (1909), who followed the German philosophers Windelband 
and Rickert, various sciences are either ideographic or nomographic (rather than 
nomothetic, as those philosophers called it). The former described reality (history), the 
latter studied regularity.  
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    Late in life, in his reviews of several books, Chuprov again stated that statistics was an 
ideographic science although mostly having to do with quantitative data (which is not the 
case with history, allegedly an ideographic science). However, the literature concerning 
philosophy of probability does not anymore mention those philosophers and anyway even 
history is not a science without discussing regularities. For more detail see my 
Introduction to this collection where I refer to Chuprov’s German paper of 1905 (also 
translated here). 
    3. Judgements and concepts rather belong to philosophy. The it in the next sentence is 
not altogether clear (cf. Druzinin’s opinion [III, § 15] who quoted this passage) and is 
only one example of Slutsky’s careless style. And  in § 10 Slutsky mentioned definitions 
of probability offered by four authors whereas they really were either general 
considerations or comments. 
    4. Atoms do not disappear. 
    5. Yes, purely mathematical, but, at that time, not yet belonging to pure mathematics. 
    6. Chuprov (1909/1959, p. 133) set great store by free causal connections but I am not 
at all satisfied by his considerations. Their existence, as he reasoned, led to an 
unavoidable recognition of the need for probabilities, but he did not metnion either 
correlation or randomness. 
    7. At the time, Mises had not yet formulated his frequentist theory of probability. 
    8. Venn (1866/1888, p. 88) expresses this idea very distinctly:  
 
    There is, it seems to me, a broad and important distinction between a material science 
which employs mathematics and a formal one which consists of nothing but mathematics. 
 
    And on p. 40:  
 
    During these […] chapters we have been entirely occupied with laying what may by 
called the physical foundations of Probability. 
 
    See also pp. 41 and 265 – 266. I quote Venn because both von Kries and Chuprov, as it 
seems to me, were not altogether just in respect to him. His empiricism is not at all as 
coarse as can be judged by their opinion and in any case he is not guilty of simply 
identifying probabilies with emipirical frequencies. E. S. 
    9. It seems to me that these considerations answer Kaufman’s objection (p. 151) to my 
statement that statistics “is a mathematical science”: “This is certainly not the case. 
Statistics is not mathematics”. I agree with the latter words, but hope that he will also 
agree that neither is physics the same as mathematics. E. S. 
    10. Slutsky several times uses this not quite acceptable expression obviously having in 
mind a uniformly distributed random variable. 
    11. I believe that it is superfluous to corroborate this statement by quotations and 
references or name some names since any such attempt may be objected to by saying that 
all this is a mathematical school. In regard to at least this issue the essence consists not at 
all in opposing a school. When the debate is about a substance of something, it would be 
strange to group authors into schools according to their attitude towards propositions 
sufficiently clearly established by most authoritative scholars from, let us say, Laplace to 
leading contemporary figures of statistical thought.  
    I should hardly qualify this statement by adding that, when referring to experts, I do 
not wish to doubt that hesitations and debates are justifyable. E. S. 
    12. Also here I indicate that the description of the differential method (pp. 139 – 141) 
is hardly understandable to a beginner, and in essence hardly correct. The interpretation 
of the formula [without consulting Kaufman’s treatise the following lines will not be 
clear. In essence, the matter is rather elementary]. My remark (1912) concerning the 
probable error of the difference of dependent variables Kaufman (pp. 140, 143, 146) 
interprets to his advantage, but wrongly, without allowing for my statement elsewhere 
(1912, p. 100). […] E. S. 
    13. Bortkiewicz (1904, p. 825) used the same expression in the sense of sampling. 
    14. I take the opportunity to remark that it seems wrong to attribute to Bowley, as 
became usual apparently because of Chuprov [1912], the principle of composing the 
sample from purely accidentally snatched elements. The point is that this is the only 
method of sampling prompted by the calculus of probability and it was known long ago; 
in any case, Laplace had used it. As to the statistical aspect of the problem, it consists not 
in the principle of randomness as such, but in the technical tricks needed to achieve a 
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purely accidental selection of observations, and here the last word is far from being 
pronounced. In 1903, at the Berlin session of the International Statistical Institute, March, 
as the author of a resolution on Kiaer’s report adopted by its demographic section, quite 
rightly, as I believe, objected to him by connecting the only correct version of sampling 
with Laplace’s investigations rather than with Bowley. E. S. On the history of sampling 
see You Poh Seng (1951). 
    15. Kaufman had indeed published many concrete statistical investigations, but I doubt 
that they were ever seriously reviwed. 
    16. Chuprov (1925) later also referred to Benini (1906) and noted that he was unable to 
get hold of the relevant Pareto memoir (which he did not name either). 
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Karl Pearson 150 Years after His Birth 
 

Rossiiskaia i Evropeiskaia Ekonomicheskaia Mysl: 
 Opyt Sankt-Peterburga, 2005  

(Russian and European Economic Thought: the Experience of Petersburg). 
Petersburg, 2007, pp. 97 – 119 

 
    1. Youth. Broad Interests 
    Karl Pearson (1857 – 1936) became an applied mathematician and 
philosopher, but in the first place he is remembered as the creator of 
biometry, the main branch of what was later mathematical statistics. In 
1875 he obtained a scholarship at King’s College Cambridge and took his 
bachelor’s degree with honours in mathematics in 1879. 
    As a student, he refused to attend divinity lectures under compulsion, 
then continued voluntarily after regulations were softened. Already then 
he thus refused to comply with established by-laws. In 1877 K. P. took 
interest in finding his own way in religion and in studying philosophy, 
especially (in 1880 – 1883) Spinoza and German authors. True, in 1936 he 
(ESP vol. 28, p. 196) thought that Spinosa was “the sole philosopher who 
provides a conception of Deity in the least compatible with scientific 
knowledge”. 
    Until 1884 Pearson had also been studying literature, history and 
politics and came, perhaps independently, without being influenced by 
Mach, to comprehend science as description of phenomena. 
    In 1880 Pearson began to consider himself a socialist, entered into 
correspondence with Marx and even offered to translate (the first volume 
of) Das Kapital into English (Marx did not agree). He spent about a year 
in the universities of Heidelberg and Berlin (in the former, he read 
physics), studied the social and economic role of religion, especially in 
medieval Germany, and decided to deliver a course in German history and 
literature.  
    In 1882 – 1883, K. P. indeed gave lectures, in particular, in Cambridge, 
on the history of Germany during the Middle Ages and Reformation, and 
on the role of science and religion in society, and in 1884 he continued 
lecturing, this time in London, on Lassalle and Marx. 
    Pearson could have quite possibly become an outstanding historian, but 
his inherent mathematical ability was apparently stronger. Actually, he 
never forgot about mathematics: in 1881 – 1882, substituting for a staff 
professor, he taught mathematics in King’s College and in 1881 and 1883 
he unsuccessfully attempted to gain appointment to a professorship in 
mathematics. At about the same time K. P. (ESP, vol. 28, p. 200) had been 
“engaged on his first considerable piece of mathematical work” connected 
with physics. 
    In 1884 Pearson was finally appointed professor of applied mathematics 
at University College London. In the next year or two he gave a few 
lectures on the Women’s question and established the Men and Women’s 
Club that existed until 1889 for free and unlimited discussions of 
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everything concerning the relations between the sexes. Thus, Pearson 
thought that unmarried women should be allowed sexual freedom, and he 
certainly did not shirk from the eternal problem of combining job and 
family either. And (Haldane 1957, p. 305/1970, p. 429),  
 
    If today association with prostitutes is generally regarded as degrading, 
while seventy years ago it was generally condoned and not rarely 
approved, we owe it largely to men like Karl Pearson. 
 
Here also we witness his refusal to accept without question the moral 
norms of his time. 
    2. Physics. Philosophy of Science 
    All through those early years and until about 1893, Pearson actively 
studied physics on which he expressed some extremely interesting ideas. 
Thus, “negative matter” exists in the universe (1891, p. 313); “all atoms in 
the universe of whatever kind appear to have begun pulsating at the same 
instant” (1887b, p. 114) and “physical variations effects” were perhaps 
“due to the geometrical construction of our space” (Clifford 1885/1886, p. 
202). He did not, however, mention Riemannian spaces whereas it is 
nowadays thought that the curvature of space-time is caused by forces 
operating in it. 
    Remarkable also was Pearson’s idea (1892, p. 217), although 
subjectively expressed, about the connection of time and space: 
 
    Space and time are so similar in character, that if space be termed the 
breadth, time may be termed the length of the field of perception. 
 
And (Ibidem, p. 103) here is another example of a similar perception of 
nature:  
 
    The law of gravitation is not so much the discovery by Newton of a rule 
guiding the motion of the planets as his invention of a method briefly 
describing the sequences of sense-impression which we term planetary 
motion. 
 
    This is correct insofar as that law does not explain the essence of 
gravitation. Mach (1897, Introduction) mentioned K. P. in the first edition 
of his book which appeared after 1892:  
 
   The publication [of the Grammar of Science] acquainted me with a 
researcher whose erkenntnisskritischen [Kantian] ideas on every 
important issue coincide with my own notions and who knows how to 
oppose, candidly and courageously, extra-scientific tendencies in science. 
 
Again in the same contribution we find Pearson’s celebrated maxim 
(1892, p. 15): “The unity of all science consists alone in its method, not in 
its material”. 
    In 1896 K. P. was elected Fellow of the Royal Society, which, in 1898 
(ESP vol. 29, p. 194) awarded him, as proposed by Weldon, the Darwin 
medal. He declined it since the medal “must go to encourage young men” 
as he explained in a letter of 1912 on another such occasion, a refusal of 
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the Weldon Memorial Prize in Biometry (ESP vol. 29, p. 194). From 1912 
to the end of his life he (Magnello 2001, p. 255) continued to refuse 
prizes, medals, a knighthood and, finally, the Guy Medal of the Royal 
Statistical Society. 
    Newcomb (Sheynin 2002, p. 163, Note 8), who presided at the 
International Congress of Arts and Sciences (St. Louis, 1904), invited 
Pearson to speak on Methodology of Science, undoubtedly because of the 
Grammar of Science. Pearson declined citing financial difficulties and fear 
of leaving his Department of applied mathematics under “less complete 
supervision”. He only became Head of the Department of applied 
mathematics in 1907. The Congress was successful; among speakers there 
were Boltzmann and Kapteyn.  
    In 1916, Neyman (ESP, vol. 28, p. 213) read the Grammar of Science 
on advice of his teacher at Kharkov University, S. N. Bernstein, and the 
book greatly impressed “us”. Wilks (1941, p. 250) called the same 
Grammar  
 
    One of the classics in the philosophy of science. In it, he attacked the 
dogmatism of the past and stressed the need of eliminating from science 
any jurisdiction which theology and metaphysics may claim. 
 
Wilks was a most eminent American statistician, and his initials, S. S., 
were being interpreted as Statistician Supreme. 
    Neither did Lenin (1909/1961, pp. 190 and 174) fail to notice Pearson, 
calling him a “conscientious and honest enemy of materialism” and “one 
of the most consistent and lucid Machians”. Pearson’s lectures had also 
been lucid – and intelligent, and, in turn, he (1887a, pp. 347 – 348) 
expressed his opinion about revolutions in general and about Lenin in 
particular (1978, p. 243): 
 
    We invariably find that something like the old system springs again out 
of the chaos [of revolution], and the same old distinction of classes, the 
same old degradation of labour, is sure to reappear. […] You may accept 
it as a primary law of history, that no great change ever occurs with a 
leap.  
 
    Petersburg has now for some inscrutable reason been given the name of 
the man who has practically ruined it. 
 
    In that latter source Pearson (p. 423) also said a few words about 
Kerensky, the Prime Minister of the Russian Provisional Government in 
1917: 
 
    Men of liberal ideas, in particular liberal scientists have not the 
foresight and the strength which are needed to control a revolution. As 
Kerensky was to Lenin, so was Condorcet to Robespierre.  
 
    3. Statistics, Eugenics, Biology 
    When lecturing on statics, Pearson widely applyed graphical methods 
and began to study the same methods in statistics, perceiving them as a 
general scientific tool answering his not at all received ideas about the 



 88 

need to provide a broad mental outlook to students. Soon, however, 
discussions of the issues of evolution with Weldon as well as the writings 
of the much older Galton (1822 – 1911), turned his attention to biology 
and eugenics and to their study by statistical means (in the first place, by 
applying the nascent correlation theory). All this happened in spite of his 
being extremely busy: in 1891, without leaving the University College (in 
which he continued lecturing until 1911) he became professor of geometry 
in the celebrated Gresham College in London but had to abandon that new 
position in 1894 because of overwork. 
    Here are two of his statements on eugenics (Pearson 1887a, p. 375; 
MacKenzie 1981, p. 86):  
 
    Shall those who are deceased, shall those who are nighest to the brute, 
have the power to reproduce their like? Shall the reckless, the idle, be they 
poor or wealthy, those who follow mere instinct without reason, be the 
parents of the future generations? Shall the phtisical father not be socially 
branded when he hands down misery to his offspring and inefficient 
citizens to the state? It is difficult to conceive any greater crime against 
the race. 
 
    Do I […] call for less human sympathy, for more limited charity, and 
for sterner treatment of the weak? Not for a moment. 
 
    The first pronouncement made in 1909 concerns negative eugenics 
which involves subjective and controversial matter (New Enc. Brit., 15th 
edition, vol. 19, 2003, p. 725 of the item on Eugenics and Heredity). And 
in any case I denounce the abominable statement (Boiarsky & Tsyrlin 
1947, p. 74) that Pearson’s racist ideas “had forestalled the Goebbels 
department”. This is where the influence of the (Soviet) environment in 
general and of the troglodytes of the Maria Smit stamp (see § 6) had 
indeed been felt. Finally, a preliminary ascertaining of hereditary illnesses 
by genetic means can also be attributed to eugenics.  
    In 1913 – 1914, and then intermittently in 1921 – 1929, Pearson and his 
collaborators delivered lectures for the general public on subjects of 
eugenics; he himself also published several related papers on the influence 
of tuberculosis, alcoholism and mentally illness on heredity. At times, his 
inferences were surprising and led to embittered debates. In 1925 Pearson 
established the periodical Annals of Eugenics and had been editing it for 
five years. In an editorial in its first issue, he indicated that the journal will 
be exclusively devoted to studying race problems and favourably regard 
the statement (Galton) that eugenics was based on probabilities. It is 
perhaps significant, however, that in 1954 the periodical changed its name 
into Annals of Human Genetics. 
    Weldon died in 1906, and Pearson had been compelled to solve 
biological problems alone. Still, it was Weldon and Galton who 
established the Biometrical school for statistically justifying natural 
selection, and Pearson became its head and the chief (for many years, the 
sole) editor of its celebrated periodical, Biometrika.  
    I insert a passage from the Editorial in its first issue of 1902 but after 
quoting Weldon (1893, p. 329) as reprinted by ESP (vol. 28, p. 218): 
 



 89 

    It cannot be too strongly urged that the problem of animal evolution is 
essentially a statistical problem: that before we can properly estimate the 
changes at present going on in a race or species we must know accurately 
(a) the percentage of animals which exhibit a given amount of abnormality 
with regard to a particular character [three more points are listed]. These 
are all questions of arithmetic; and when we know the numerical answers 
to these questions for a number of species we shall know the direction and 
the rate of change in these species at the present day – a knowledge which 
is the only legitimate basis for speculations as to their past history and 
future fate. 
 
    The problem of evolution is a problem in statistics. […] We must turn to 
the mathematics of large numbers, to the theory of mass phenomena, to 
interpret safely our observations. […] May we not ask how it came about 
that the founder of our modern theory [of … hypothesis] made so little 
appeal to statistics? […] The characteristic bent of C. Darwin’s mind led 
him to establish the theory of descent without mathematical conceptions 
[…]. But […] every idea of Darwin – variation, natural selection […] – 
seems at once to fit itself to mathematical definition and to demand 
statistical analysis. […] The biologist, the mathematician and the 
statistician have hitherto had widely differentiated fields of work. […] The 
day will come […] when we shall find mathematicians who are competent 
biologists, and biologists who are competent mathematicians. 
 
    Had Weldon not died prematurely, he would have been able to do much 
more; K. P. understood this well enough and in any case he published a 
paper (1906) honouring Weldon’s memory. For that matter, he compiled a 
contribution (1914 – 1930) on Galton’s life and achievements, a 
fundamental and most comprehensive tribute to any scholar ever 
published. It testified to its author’s immense capacity for hard work. 
    The immediate cause for establishing Biometrika seems to have been 
scientific friction and personal disagreement between Pearson and Weldon 
on the one hand, and biologists especially Bateson, on the other hand, who 
exactly at that time had discovered the unnoticed Mendel. It was very 
difficult to correlate Mendelism and biometry: the former studied discrete 
magnitudes, the latter investigated continuous quantitative variations. 
    It is somewhat questionable to what extent had Pearson acknowledged 
Mendelism, but in any case he (1904, pp. 85 – 86) almost at once stated: 
 
    In the theory of the pure gamete there is nothing in essential opposition 
to the broad features of linear regression, skew distribution, the geometric 
law of ancestral correlation etc. of the biometric description of 
inheritance in populations. But it does show that the generalized theory 
here dealt with is not elastic enough to account for the numerical values of 
the constants of heredity hitherto observed. 
 
To recall, gametes make possible the development of new individuals and 
the transmission of hereditary traits from the parents to the offspring. 
    And here is Pearson’s statement of 1913 (ESP, vol. 29, pp. 169 – 170):  
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    Mendelism is being applied wholly prematurely to anthropological and 
social problems in order to deduce rules as to disease and pathological 
states which have serious social bearing. […] To extrapolate from theory 
beyond experience [which was apparently practised by some Mendelians] 
in nine cases out of ten leads to failure, even to disaster when it touches 
social problems. 
 
    And ESP himself (vol. 28, p. 242) stated:  
 
    A myth regarding some essential error in the biometricians’ approach 
has persisted to this day. […] But Pearson saw clearly, as most of his 
critics did not, that no theory of inheritance could discredit certain 
established facts following from a statistical analysis of observational 
data. 
 
    Continental statisticians had not then thought about biology. Much 
earlier Quetelet (1846, p. 259), who lived until 1874 but never mentioned 
Darwin, stated that “The plants and the animals have remained as they 
were when they left the hands of the Creator”. Knapp (1872), an eminent 
German statistician, when discussing Darwinism did not mention 
randomness and said nothing about statistically studying biological 
problems. Later K. P. (1923, p. 23) owned that  
 
    We looked upon Charles Darwin as our deliverer, the man who had 
given a new meaning to our life and to the world we inhabited. 
 
    The speedy success of the Biometric school had been to a large extent 
prepared by the efforts of Edgeworth (1845 – 1926), a peculiar scholar 
whose works have recently appeared in three volumes (1996) and have 
been described in general terms by Chuprov (1909/1959, pp. 27 – 28), 
Schumpeter (1954/1955, p. 831) and Kendall (1968). I quote Chuprov: 
 
    The pioneers of the new statistical ideas to a large extent owe their 
rapid success to the fact that the soil for the propagation of their sermons 
had been prepared: an authoritative ally, […] Edgeworth, met those 
pioneers in the bowels of the Royal Society. For two decades he had been 
popularizing there the mathematical methods of statistics. […] However, 
those representatives of the statistical science, to whom he had applied, 
blocked his efforts by a lifeless wall of inertia. […] His voice had found no 
response.  
    Edgeworth is too special in every way, […] he is a lone figure […], 
disciples he has none. […] Nevertheless, his activities had not been futile.  
 
    Pearson’s results in statistics include the development of the elements of 
correlation theory and contingency; introduction of the Pearsonian curves 
for describing empirical distributions; and a derivation of a most important 
chi-squared test for checking the correspondence of experimental data 
with one or another law of distribution, as well as the compilation of many 
important statistical tables. 
    K. P. devised his curves for practical application as the solution of some 
differential equation with four parameters but had not quite properly 
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justified them theoretically. In one particular case that solution led to the 
normal law, and, in all, 12 more curves thus appeared and at least some of 
them really proved themselves useful.  
    Pearson’s posthumously published (by ESP) lectures (1978) examined 
the development of statistics in connection with religion and social 
conditions of life. On the very first page we find there the statement about 
the importance of the history of science: I do feel how wrongful it was to 
work for so many years at statistics and neglect its history. However, in 
spite of his historical studies, K. P. had not mentioned the Continental 
direction. True, he only discussed previous events, but it would have been 
easy and opportune to say a few pertinent words. Then, he (1925, p. 210) 
provided a patently false appraisal of the Bernoulli law of large numbers: 
 
    It is somewhat a perversion of historical facts to call [that law] by the 
name of the man who […] had not gone further than the crude values […] 
with their 200 to 300 per cent excesses. Bernoulli saw the importance of a 
certain problem; so did Ptolemy, but it would be rather absurd to call 
Kepler’s or Newton’s solution of planetary motion by Ptolemy’s name!  
 
    He had not noticed Bernoulli’s solution of his own philosophical 
problem: the proof that in principle induction was not worse than 
deduction; K. P. evidently did not set high store on theorems of existence 
(in this case, of a certain limit), and he inadmissibly compared Bernoulli’s 
result with a false system of the world. 
    Pearson (1926) reasonably held a high opinion about De Moivre and, as 
also later in his lectures, stressed the social roots and religious incentives 
of eminent statisticians and philosophers: 
 
    Newton’s idea of an omnipresent deity, who maintains mean statistical 
values, formed the foundation of statistical development through Derham, 
Süssmilch, Niewentyt, Price to Quetelet and Florence Nightingale. […] 
    De Moivre expanded the Newtonian theology and directed statistics into 
the new channel down which it flowed for nearly a century. The causes 
which led De Moivre to his Approximatio [the memoir of 1733 in which 
De Moivre proved his limit theorem] or Bayes to his theorem were more 
theological and sociological than purely mathematical […]. 
 
    Maintaining mean statistical values means, as I understand it, regularly 
readjusting the system of the world which is being gradually corrupted by 
(random) mutual perturbations. 
    Pearson’s laboratories deserve special notice. He had been head of the 
Biometric laboratory from 1895, of the eugenic laboratory (established in 
1906 by Galton) from 1908. They were amalgamated in 1911 and in 1933 
K. P. (ESP, vol. 29, p. 230) submitted his final report to the University of 
London in which he noted the “development in the last ten years” of 
Continental laboratories “on the lines” of that amalgamated entity, i. e., 
the work on “the combination of anthropometry, medicine, and heredity, 
with a statistical basis”. Since Pearson mentioned medicine, it is opportune 
to add that physicians had recognized his merits by electing him, in 1919, 
Honorary Fellow of the Royal Society of Medicine (ESP, vol. 29, p. 206). 
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    During World War I “the laboratories under your [his] charge” rendered 
“very valuable assistance […] to the Ministry in general, and to this 
Department in particular” […]. This is a quote from a letter of 14th 
February, 1918, to K. P. by Vice-Admiral R. H. Baker of the Munitions 
Inventions at the Ministry of Munitions (ESP, vol. 29, p. 244). 
    Biometry had been created by the efforts of Pearson and his school (and 
he himself had invented that term) and paved the way for the development 
of mathematical statistics. 
    I add a few words on Pearson’s later (much later than the appearance of 
his Grammar of Science) attitude towards science in general and religion. 
In 1922, in a rare source, he (ESP, vol. 29, p. 237) argued that  
 
    New phases of philosophy, new phases of religion will grow up to 
replace the old. But [?] the cultivated mind can never regard life and its 
environment in the same way as men did before those days of Darwin and 
before these days of Einstein. The ‘value’ of words, the ‘atmosphere’ of 
our conceptual notions of phenomena, has been for ever changed by the 
movement which began with Darwin and at present culminated in 
Einstein. 
 
    ESP (vol. 28, p. 194) left a few relevant, but, regrettably, too general 
words:  
 
    In the life of Karl Pearson we may trace all the signs of a struggle for 
freedom, of a period of uncertainty and trial, of the development of a new 
faith and of the blending of this faith with his outlook on science. 
 
    I can only add Pearson’s statement (1936, p. 33 note 2) made at the very 
end of his life which once more testifies to his independent outlook: 
  
    Stripped of its formalism and tribalism, the Jewish Unitarianism seems 
to me personally a higher form of religious faith than the Gentile 
Trinitarianism. 
 
    4. Other Branches of Science 
    Pearson attempted, often successfully, to apply the statistical method, 
and especially correlation theory, in many other branches of science; he 
had not, however, dwelt on the kinetic theory of gases, apparently because 
it demanded stochastic rather than statistical underpinning. Here is his 
interesting pronouncement (1907, p. 613):  
 
    I have learnt from experience with biologists, craniologists, 
meteorologists, and medical men (who now occasionally visit the 
biometricians by night!) that the first introduction of modern statistical 
method into an old science by the layman is met with characteristic scorn; 
but I have lived to see many of them tacitly adopting the very processes 
they began by condemning. 
 
    Later, in 1920, K. P. compiled (and possibly disseminated) a note (ESP, 
vol. 29, p. 164) explaining the aims of the Biometric school, cf. the 
Editorial in the first issue of Biometrika in my § 3: 
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   To make statistics a branch of applied mathematics […], to extend, 
discard or justify the meagre processes of the older school of political and 
social statisticians, and, in general, to convert statistics in this country 
from being the playing field of dilletanti and controversialists into a 
serious branch of science. […] Inadequate and even erroneous processes 
in medicine, in anthropology [anthropometry], in craniometry, in 
psychology, in criminology, in biology, in sociology, had to be criticized 
[…] with the aim of providing those sciences with a new and stronger 
technique. 
    The battle has lasted for nearly 20 years, but there are many signs now 
that the old hostility is over and the new methods are being everywhere 
accepted.  
 
    Pearson studied almost all of these sciences (disciplines). I have 
mentioned the correlation theory above, and ought to say that he attempted 
to apply it in astronomy (1907, pp. 517 – 518): 
 
    Astronomers have been guilty of a considerable amount of circular 
reasoning. They start from the hypothesis that [star] magnitude is very 
closely related to parallax, and when the statistician shows that the […] 
parallaxes show no continuous relationship between parallax and 
magnitude, they turn around and say: Yes, but our stars were selected 
because they had big proper motions. They thereby screen entirely the fact 
that the fundamental hypothesis that the brighter stars are much the 
nearer as yet awaits statistical demonstration. 
 
    Nevertheless, by that time astronomers had been doubting the 
connection between magnitudes and distances (or parallaxes). Or, more 
precisely, doubting that the mean proper motion of stars of a given 
magnitude (which indirectly indicated their mean distance) had a certain 
meaning. Newcomb (Sheynin 2002, pp. 160 – 161), in a letter of the same 
year (1907), politely criticized Pearson (I have not found the latter’s 
answer). He noted that  
 
    The known relations between magnitudes, distances and parallaxes 
must be taken as the basis of the investigation. […] No general result […] 
can be reached by pure induction. 
 
    Unlike statistics, the theory of errors has to do with constants, and 
Pearson (1920/1970, p. 187) apparently had considered it rather one-
sidedly: 
 
    There is not a word in their innumerable treatises [on the method of 
least squares and adjustment of observations] that what is really being 
sought are the mutual correlations of a system of correlated variables. The 
mere using of the notation of the correlational calculus throws a flood of 
light into the mazes of the theory of errors of observation. […] The 
Gaussian treatment leads (i) to a non-correlated surface for the directly 
observed variates, (ii) to a correlation surface for the indirectly observed 
variates. This occurrence of product terms arises from the geometrical 
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relations between the two classes of variates, and not from an organic 
relation between the indirectly observed variates appearing on our direct 
measurement of them. […] There is no trace in Gauss’ work of observed 
physical variables being – apart from equations of condition – associated 
organically which is the fundamental conception of correlation. 
 
    The notion of connection (dependence) in the theory of errors is indeed 
different. From the time of Gauss (possibly earlier than that, and without 
reference to him, but mostly intuitively) the dependence between two 
empirical magnitudes is being estimated there by the presence/absence of 
common initial observations. Kapteyn (1912) stressed this point, and, 
having been dissatisfíed with (statistical) correlation, had introduced his 
own correlation coefficient. He had not mentioned Gauss either, and his 
paper had apparently been barely noticed. In any case Eisenhart (1978, p. 
382), supplementing Pearson’s opinion cited above, stated: 
 
    When Karl Pearson and G. Udny Yule began to develop the 
mathematical theory of correlation in the 1890s, they found that much of 
the mathematical machinery that Gauss devised […] was immediately 
applicable in correlation analysis in spite of the fact that the aims of 
correlation analysis are the very antithesis of those of the theory of errors. 
 
    A curious result (Pearson 1902) related to many types of measurement 
can be cited: For two persons, the results of halving a segment with naked 
eye were not independent. 
    Not later than by mid-19th century meteorologists had established that 
the densities of the daily distribution of meteorological elements were 
often asymmetrical and for that reason Meyer (1891, p. 32) stated that the 
theory of errors was not applicable to that science. Pearson (1898), 
however, made use of Meyer’s data for illustrating his theory of 
asymmetric curves.  
    Finally, Pearson (1928) studied Laplace’s sample determination of the 
population of France. Laplace was the first to estimate the precision of 
such attempts, and Pearson’s paper was apparently his only incursion into 
population statistics. 
    Let N and n be the known yearly births in France and in some of its 
regions, and m, the population of these latter. Laplace naturally assumed 
that the population of France was M = (m/n)N; important, however, was 
his estimation of the precision of that estimate. For his part, Pearson 
indicated that (m; n) and (M; N) were not independent samples from one 
and the same infinite totality (as Laplace tacitly thought) and that the very 
existence of such a totality remained doubtful. 
    5. Pearson As Seen by Others 
    Kolmogorov (1948/2002, p. 68) criticized the Biometric school:  
 
    Notions held by the English statistical school about the logical structure 
of the theory of probability which underlies all the methods of 
mathematical statistics remained on the level of the eighteenth century. 
[…] Rigorous results concerning the proximity of empirical sample 
characteristics to theoretical related only to the case of independent trials. 
[…] In spite of the great […] work done […], the auxiliary tables used in 
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statistical studies proved highly imperfect in respect to cases intermediate 
between small and large samples. 
 
    Anderson (1914, p. 269; English translation Sheynin 1990 (1996), p. 
121), see my § 6, had indicated the first of the deficiencies mentioned 
above, and a few years later Chuprov himself (1918 – 1919, 1919, pp. 132 
– 133; English translation: Sheynin, Ibidem), seconded the opinion of his 
student: 
 
    The disinclination of English researchers for the concepts of 
mathematical probability and mathematical expectation caused much 
trouble […], obscured the stochastic statement of problems; on occasion, 
it even directed the attempts to solve them on a wrong track. If, however, 
this attire [this approach], so uninviting to the Continental eye, is shed and 
the discarded is picked up, it will be distinctly seen that Pearson and Lexis 
often offer different in form but basically kindred methods for solving 
essentially similar problems.  
 
    Fisher (1922, p. 311) expressed similar feelings: 
 
    Purely verbal confusion has hindered the distinct formation of 
statistical problems, for it is customary [for the Biometric school] to apply 
the same name, mean, standard deviation, correlation coefficient, etc., 
both to the true value which we should like to know, but can only estimate, 
and to the particular value at which we happen to arrive by our methods 
of estimation. 
 
    To recall, the development of the Continental direction of statistics had 
begun in the 1870s with the appearance of the work of Lexis on the 
stability of statistical series (on the constancy of the probability of the 
studied event and on the independence of the separate trials). 
    Kolmogorov could have added that neither had Laplace based his 
investigations on the notion of random variable. Even its heuristic 
introduction (hesitatingly made by Poisson) and the pertinent notation, ξ 
(say), which Poisson had not adduced, could have methodologically 
converted densities of distribution and characteristic functions into 
mathematical objects and thus prepared a transformation of the theory of 
probability. 
    Possibly because of his Machian outlook, Pearson had not done 
anything of the sort either, and criticism did not change anything. True, 
Chuprov (Sheynin 1990/1996, pp. 54 and 55) had privately informed him 
about mistakes in Biometrika, and Pearson (1919a) finally acknowledged 
them, but this apparently had no bearing on the problem under discussion. 
    Chuprov (Ibidem) also informed his correspondents that Continental 
statisticians (especially Markov) did not wish to recognize Pearson. Here 
is one of his letters (undated, written after Markov’s death in 1922): 
 
    It seems that Pearson is unaware of the extent to which the 
mathematical forms of his researches hamper an appropriate appraisal of 
his contributions […]. Because of Pearson’s insufficiently rigorous, to 
their taste, approaches to mathematical problems, Continental 
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mathematicians look down on him to such an extent that they do not even 
bother to study his works. How many lances did I have occasion to brake 
because of Pearson while substantiating the considerable scientific 
importance of his oeuvre […]! 
    Markov regarded Pearson, I may say, with contempt. 
 
    Markov himself, in a letter of 1910 (Ondar 1977/1981, p. 5) stated: 
“Neither […] nor […] nor Pearson has done anything worthy of note”. 
And, against this background, Slutsky’s foresight (his letter to Markov of 
1912, see Sheynin 1990/1996, p. 45) is all the more interesting:  
 
    I believe that the shortcomings of Pearson’s exposition are temporary 
and of the same kind as the known shortcomings of mathematics in the 17th 
and 18th centuries. A rigorous basis for the work of the geniuses was built 
only post factum, and the same will happen with Pearson. 
 
    Slutsky naturally referred to his own book (1912) which Markov, unlike 
Kolmogorov (1948), had not understood properly. For Russian readers, 
exactly that contribution had remained perhaps for 15 years the only 
serious source of pertinent knowledge. During that time, Markov had been 
completing his study of dependent magnitudes (the Markov chains) and 
began to fall behind the development of mathematical statistics and even 
probability theory, cf. Sheynin (2006a, § 5.4), in particular due to his 
purely mathematical rather than more general scientific outlook (see 
above). 
    I am now adducing the opinions of other scientists about Pearson. 
    1) Fisher, letter of 1946 (Edwards 1994, p. 100):  
 
    He was singularly unreceptive to and often antagonistic to 
contemporary advances made by others in [his] field. [Otherwise] the 
work of Edgeworth and of Student, to name only two, would have borne 
fruit earlier. 
 
Anyway, about 1914 Pearson (Sheynin 1990/1996, p. 124) stated, in a 
letter to Anderson, that Student “ist nicht ein Fachmann”, although 
Student, had by that time published five papers in Biometrika! 
    Fisher (1937, p. 306) also seriously accused Pearson: Pearson’s  
 
    Plea of comparability [between the methods of moments and maximum 
likelihood] is […] only an excuse for falsifying the comparison […].” 
 
    2) And now a testimony of a contrary nature: Mahalanobis, letter of 
1936 (Ghosh 1994, p. 96):  
 
    I came in touch with [Pearson] only for a few months, but I have always 
looked upon him as my master, and myself, as one of his humble disciples. 
 
    3) And Newcomb, who had never been Pearson’s student, in a letter of 
1903 to him (Sheynin 2002, p. 160):  
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    You are the one living author whose production I nearly always read 
when I have time and can get at them, and with whom I hold imaginary 
interviews while I am reading. 
 
    I (Ibidem) have also collected similar pronouncements of that eminent 
scholar. 
    4) Hald (1998, p. 651) offered a reasonable general description of one 
aspect of the Biometric school:  
 
    Between 1892 and 1911 he [Pearson] created his own kingdom of 
mathematical statistics and biometry in which he reigned supremely, 
defending its ever expanding frontiers against attacks. 
 
    5) Fisher (1956/1990, p. 3) again:  
 
    The terrible weakness of his mathematical and scientific work flowed 
from his incapacity in self-criticism, and his unwillingness to admit the 
possibility that he had anything to learn from others, even in biology, of 
which he knew very little. His mathematics, though always vigorous, were 
usually clumsy, and often misleading. In controversy, to which he was 
much addicted, he constantly showed himself without a sense of justice. In 
his dispute with Bateson on the validity of Mendelian inheritance he was 
the bull to a skilful matador. […] His activities have a real place in the 
history of a greater movement.  
 
    I left out much of Fisher’s statement only because the source is readily 
available. Fisher began his description of the work of Pearson on p. 2, and 
there, in particular, is the phrase: “Pearson’s energy was unbounded”. 
    A genius is hardly able to appreciate properly lesser scholars, and it is 
scarcely possible to describe the mathematical quality of work (if not 
downright bad) done during several decades in a single phrase. And 
though in biology Pearson “new very little”, he nevertheless essentially 
contributed to that science. Thus (ESP, vol. 28, p. 230):  
 
    The value of statistical method has been almost universally accepted 
among biologists, and tools which trace their origin to Pearson’s 
workshop are applied along widely spreading lines of research 
investigation. 
 
    ESP, vol. 28, p. 230, describes Bateson’s criticism of Pearson’s long 
article of the same year (of 1901), and quotes his remark:  
 
    It is impossible to write of [it] without expressing a sense of the 
extraordinary effort which has gone to its production and of the ingenuity 
it displays. 
 
Again, in a letter to Pearson of 1902 the same Bateson wrote (ESP, vol. 
28, p. 204 note):  
 
    I respect you as an honest man, and perhaps the ablest and hardest 
worker I have met, and I am determined not to take up a quarrel with you 
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if I can help it. I have thought for a long time that you are probably the 
only Englishman I know at this moment whose first thought is to get at the 
truth in these problems […]. 
 
    To conclude with Fisher, I note that he could have well added that 
Pearson had paved the way for him. 
    6. Pearson in Russia and the Soviet Union 
    I begin with his contemporaries. His attitude towards Slutsky proved 
hardly satisfactory (Sheynin 1990/1996, pp. 46 – 47). In 1913, Pearson 
rejected both manuscripts submitted by Slutsky whereas the author called 
the objection raised to one of them “an obvious misunderstanding”. Acting 
on Chuprov’s advice, Slutsky sent it to the Journal of the Royal Statistical 
Society where it was indeed published (in 1914). ESP (vol. 29, p. 202), 
stated that Pearson’s own paper (1916) was devoted to a problem “for 
which the immediate suggestion was no doubt [that last-mentioned paper 
of Slutsky]”.  
   I (Sheynin 2004, pp. 222 – 240) published the three relevant letters of 
Slutsky to Pearson in their original English which Slutsky did not master 
sufficiently well; his German was perfect, but he obviously had not known 
that Pearson would have certainly preferred good German. 
    Anderson published two papers in Biometrika (1914; 1923), and one 
more, in 1926 – 1927, being by that time an emigrant. In the first one he 
(Sheynin 1990/1996, p. 121) stated that  
 
    The English statistical school neglects a method which is often used by 
Russian and German scientists […] and which besides being quite 
rigorous and exact enjoys the advantage of being very elementary – 
namely, the method of mathematical expectations. 
 
    Pearson had objected to this statement in a private letter and then 
expressed his thoughts publicly (1919b, p. 285): “The remark of Dr 
Anderson […] seems based on a misunderstanding of the moment 
method”. Anyway, Pearson had been indeed applying that method for 
determining parameters of empirical distributions. 
    Chuprov’s paper (1918 – 1921) obviously played a serious role in his 
election, in 1923, to honorary fellowship of the Royal Statistical Society. 
After his death, the Society passed a Resolution of Condolence published 
in a rare source but reprinted (Sheynin 1990/1996, p. 126). And Pearson 
had indeed honoured his memory by inserting his portrait in Biometrika 
(vol. 18, 1926, before p. 233); the only other similarly honoured Russian 
scholars were Chebyshev (Ibidem, vol. 22, 1930) and Markov (vol. 24, 
1932). Pearson also intended to publish an obituary of Chuprov (Heymons 
1926/2004) which, however, never appeared. 
    In 1923 – 1936 Romanovsky published six papers in Biometrika. His 
correspondence with Pearson (Sheynin 2008) testifies that Pearson 
rejected one more paper only because the author, acting in good faith, had 
published its abstract in the C. r. Acad. Sci. Paris. Pearson rejected yet 
another manuscript related to one of his own papers in spite of his wish 
because of financial difficulties, see Biometrika, vol. 17, 1925, p. 199. 
    Soviet statisticians denied the significance of Pearson’s work (see 
below), but Romanovsky continued keeping to an opposite opinion and 
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called him the head of modern mathematical statistics (Bolshaia Sov. Enz., 
1st edition, vol. 38, 1938, p. 409). A conference on mathematical statistics 
(Resolutsia 1948, p. 314/2005, p. 183) denounced “servility and kow-
towing to outlandish ideas”, worryingly noted that “methods of bourgeois 
statistics were sometimes popularized and applied” and put on record that 
Romanovsky had acknowledged his earlier ideological mistakes. 
    Lenin’s criticism of Pearson’s philosophical outlook (§ 2) was in itself a 
sufficient cause of the extremely negative Soviet attitude towards Pearson. 
Maria Smit’s statement (1934, pp. 227 – 228) was its prime and vulgar 
example: his curves are based  
 
    On a fetishism of numbers, their classification is only mathematical. 
Although he does not want to subdue the real world as ferociously as it 
was attempted by […] Gaus [her spelling], his system nevertheless only 
rests on a mathematical foundation and the real world cannot be studied 
on this basis at all.  
 
In 1939, Smit was elected corresponding member of the Soviet Academy 
of Sciences… Recall also the abominable statement of Boiarsky & Tsyrlin 
in my § 3. 
    The second edition of the Great Sov. Enc. (vol. 33, 1955) declared that 
Pearson “advocated reactionary, pseudoscientific “theories” of race and 
blood” etc, etc, and that Lenin “destructively” criticized him. The tone of 
the same item, Pearson, in the third edition of the same source (vol. 19, 
1975/1978, p. 366) was quite different: he “considerably contributed to the 
development of mathematical statistics” and Lenin criticized his 
“subjective-idealistic interpretation of the nature of scientific knowledge”. 
    7. Egon Sharpe Pearson (1895 – 1980) 
    For his biography see Bartholomew (2001), who however provided a 
wrong date of his birth. ESP was Karl Pearson’s son. His mother, Maria, 
neé Sharpe, died in 1928 (and K. P. married for the second time). In 1936, 
after his father’s death, ESP became Editor of Biometrika and continued in 
that capacity until 1966. He was a very successful statistician and 
especially remarkable was the Neyman – Pearson theory of testing 
hypotheses. He also studied the application of statistics to industrial 
standardization; in 1933 – 1936 he published several articles on this 
subject and a book (1935), edited statistical tables and had been seriously 
engaged in the history of statistics. It was ESP who edited the posthumous 
book Pearson (1978). In 1966 ESP was elected to the Royal Society. 
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Oskar Anderson, 1887 – 1960 
 

O. Anderson, Ausgewählte Schriften, Bd. 1.  
Tübingen, 1963, pp. XIII – XIX 

 
    [1] Oskar Johann Viktor Anderson was born 2 August 1887 in Minsk 
[capital of Byelorussia] as a son of Baltic German parents. He descended 
from a family of scientists; his father, Nicolai Carl Adolf Anderson, was 
Professor of Finno-Ugric languages at Kazan University; his brother 
Wilhelm later worked as Professor of theoretical physics at Dorpat 
[Tartu], and his brother Walther, as Professor of comparative folklore at 
universities in Dorpat, Königsberg and Kiel.  
    After attending a gymnasium in Kazan, Oskar A. for one term studied 
mathematics and physics at the celebrated mathematical faculty of Kazan 
University where the great mathematician Lobachevsky had been teaching 
in the first half of the 19th century. In 1907 Anderson entered the 
economic faculty of the Polytechnical Institute in St.-Petersburg which at 
that time enjoyed an outstanding reputation both in Russia and abroad.  
    Already during his student years, Anderson began his scientific 
activities: he became an assistant of his teacher, A. A. Chuprov the 
younger (1874 – 1926), and custodian of the library of the statistical and 
geographical room. After defending his diploma, the Faculty accepted his 
dissertation, On the application of the coefficient of correlation to time 
series, and resolved to publish it at its own expense. At the end of 1912, it 
bestowed upon him the degree of Candidate of economic sciences which 
roughly corresponded to the German Doctor of Staatswissenschaften. 
Only somewhat later Anderson passed a state examination at the law 
faculty of the Petersburg University which also granted him the right to 
become an articled clerk. 
    In addition to his duties as assistant, Anderson, beginning in 1912, had 
for a long time been teacher of economics, economic geography and law 
at a commercial gymnasium in Petersburg; according to Russia’s laws, he 
was therefore exempted during the war from military service.  
    [2] In summer 1915, a momentous event occurred in the life of the 
young scholar. As a participant in a state scientific expedition to the 
artificially irrigated region of the West Middle Asia, he directed both the 
preparation and implementation of a sample survey, the first one in the 
history of statistics1, – a representative sampling of agricultural work in 
the basin of Syr-Daria, a region of almost a million hectares. The wide 
expanse of that land compelled Russian statisticians, long before 
American, English etc specialists, to involve themselves actively in 
consolidating the theory of sampling which in those times had been stuck 
in its infancy, and Anderson achieved pioneering results in that field. 
    From the end of 1915 Anderson had been appointed to the state fuel 
management control and remained there until the downfall of the 
Kerensky Provisional Government. He then moved to Southern Russia and 
started working at the section of economic research of a large local 
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cooperative office. At that time, under his direction and with his active 
participation, a series of monographs on the economic situation of that 
region had been compiled. 
    At the end of 1918 A. qualified as professor of methods of research in 
mathematical statistics at the Kiev Commercial Institute and, at the same 
time, was appointed assistant head of the Demographic Institute of the 
Kiev Academy of Sciences2. In 1920, the Soviets captured all Southern 
Russia, and Anderson decided to leave Russia with wife and children. In 
1912, he married Margarethe Natalie, née von Hindenburg-Hirtenberg, 
also a Baltic German.  
    [3] After a short stay in Constantinople, A. found his first refuge in 
Budapest. There, he resumed his scientific work, and, in particular, 
published his paper (1923) in Biometrika. There also already appeared 
(1914) an extract from his dissertation which, in particular, was the first 
description of the variate-difference method of analysing time series 
connected in the literature with the names of Oskar Anderson and W. S. 
Gosset (Student), who developed it independently from each other. In 
1919, during the Civil War in Russia, the dissertation itself together with 
all the calculations involved and various luggage had been left at the quay 
in Novorossiisk and lost.  
    In autumn 1924 Anderson was appointed extraordinary professor at the 
Higher Commercial School in Varna (Bulgaria). There, he gave lectures in 
theoretical statistics, economic geography, finances, commercial policy, 
banking and monetary systems as well as the cooperative system. In 1929 
he became ordinary professor of economics and statistics.  
    [4] Scientifically those years had been especially fruitful. A number of 
his important monographs and papers in periodicals had appeared, and, 
among them, further contributions to the difference method one of which 
we are mentioning (1926 – 1927). Above all, however, during the same 
period A. published a large number of indicative writings on the method 
of sampling quite decisive for his general recognition. We only mention 
the larger contribution (1929a) translated from Bulgarian into German in 
1949 according to the desire of the Deutsche statistische Gesellschaft. 
    Anderson became generally known because of his basic investigations 
in which he separated himself from the entirely empirically oriented 
studies of conjuncture. He especially rejected the uncritical decomposition 
of time series as practised at the end of the 1920s by Warren M. Persons 
and his collaborators and known as the Harvard Barometer. He supported 
the idea of constructing an adequate model for the connection between the 
involved classes of causes before any such decomposition (1927; 1929a; 
1929b). Not least because of these the Christian Albrechts University in 
Kiel bestowed upon him the title of Doctor of Staatswissenschaften. 
    He also was member and correspondent for Bulgaria of the International 
Conference of Agricultural Economists (O. A.). 
    And, finally, during the same period Anderson published one of the first 
ever econometric study, a pioneer work in the field of checking economic 
theory by statistical methods (1931). In 1930, A., as member of the 
International Conference of the Agrarian Commission at Cornell 
University in Ithaca, was invited to review the subject of Theory of 
probability and economic research.  



 105 

    [5] In the following years the first contacts with American scientists led 
to Anderson’s participation in the standard American Encyclopedia of 
Social Sciences (1934). Together with Irving Fisher, Ragnar Frisch, 
Tinbergen, Schumpeter and others, he was an initiator and founder 
member of the Econometric Society established on 29 December 1930. 
This Society, and the papers in its periodical, Econometrica, decisively 
contributed to the development of econometrics, a bordering field between 
theoretical economics, mathematical statistics and mathematics. 
    At the end of 1933 Anderson received a grant from the Rockefeller 
Foundation which he made use of for visiting Germany and above all 
England where he had been able to work in many libraries. As a result, he, 
among other achievements, compiled the manuscript of his book (1935) in 
which he put down his most important findings and through which he 
became the successor of the late A. A. Chuprov and L. von Bortkiewicz as 
the most eminent representative of the Continental school of mathematical 
statistics. 
    In 1935 Anderson was appointed full-time director of the just 
established and partly financed by the Rockefeller Foundation Statistical 
Institute for Economic Research at the Sofia University. At the same time 
he became the scientific advisor of the Bulgarian General Direction of 
Statistics; from 1924 he had been member of the national Supreme 
Statistical Council. In these capacities he was the Editor of the 
Publications of the Statistical Institute for Economic Research (appearing 
in Bulgarian with translation into a foreign language, mostly into English) 
and co-editor of the Revue trimestrielle de la Direction générale de la 
statistique (appearing in Bulgarian with translation into a foreign 
language, mostly into French). 
    49 important monographs had appeared in the Publications until the 
outbreak of World War II as well as a number of contributions on various 
problems of the statistical method and the Struktur (1936). The great 
praise which Anderson had earned in Bulgarian official statistics and 
economic research were acknowledged a few years later in a special way 
when Czar Boris decorated him with a Commander Cross for Civil Merit.  
    [6] Anderson’s activities reached far beyond Bulgaria. In 1936 he gave 
guest lectures at the London School of Economics; in 1935 – 1939 he had 
been member of the International Union of Conjuncture Institutes, and, 
from 1936 to 1939, associated member of the Committee of Statistical 
Experts of the League of Nations. Accordingly, he published his first 
critical comments on the theory of indices. Especially notable there were 
many statements about the problems of the so-called scissors of prices, of 
the measurement of real rates of exchange in foreign trade, compilation of 
“seasonal indices of the cost of living” and of constructing internationally 
comparable indices of industrial production. 
    In 1942 Anderson received an offer of professorship from the Christian 
Albrecht University in Kiel. Connected with that work was the leadership 
of a section of Ostforschung (study of Eastern countries) at the Institut für 
Weltwirtschaft. Already in Kiel he began turning to the problem which 
during the next decade became near to his heart, the elevation of statistical 
teaching at the economic faculties of German colleges to the level of 
international standard. He is meritorious for imparting significance to the 
application of the methods of mathematical statistics in the theory and 
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practice of social sciences in Germany thus ending a standstill of many 
decades. He devoted many reports and papers to this subject. 
    In 1947 Anderson was appointed to the new chair of statistics at the 
Ludwig Maximilian University in Munich. Until receiving the emeritus 
status in 1956, he had successfully taught the theory of statistical methods 
and its application to thousands of economists and business managers3. In 
addition, he surrounded himself by a closer circle of students a number of 
which nowadays represent modern statistics in colleges, statistical offices, 
economic research, in economy and administration. Professional 
statisticians have coined and are using the expression Munich school. 
    During Anderson’s years in Munich, he published contributions to the 
field of probability theory, theory of index numbers, propagation of 
systematic errors, and, first of all, to distribution-free methods of testing. 
He devoted many papers to the development of a stochastic foundation in 
social sciences starting from his earlier notion of social-statistical 
probability as the “relative frequency in the totality of a higher order” 
(1947; 1949). He especially turned his attention to the often overlooked 
fact that the data on social statistics was usually corrupted by systematic 
errors. And, time and time again, he recommended to take into account the 
so-called propagation of errors so as to avoid untenable conclusions (1951; 
1954b). 
    [7] During his last years, he once more devoted himself to problems of 
statistical investigation of causality in social sciences (1953). 
Nevertheless, most of all he aimed at developing distribution-free methods 
of testing. In social statistics, it is only rarely possible to adopt the 
hypothesis of normal parent distribution; just the same, the characteristics 
of samples taken from a totality of a higher order cannot always be 
assumed normal, so that distribution-free procedures are very important 
(1954a; 1955; 1956). 
    In an astounding and fruitful manner Anderson’s statistics and 
economics unite to form a synthesis aspired to by contemporary research. 
He described his scientific statistical creed in a textbook (1954a, 1957, 
1962) which we may perceive as a culmination of his work in Munich. 
This fundamental contribution ought to4  
 
    play the role of a pilot in mathematical statistics, and its goal is to 
provide the reader with the possibility of making his first independent 
steps in applying modern higher methods of investigation in mathematical 
statistics. 
 
    There, as in each of his earlier works, Anderson attributed great 
importance to clarity of the main notions and of an exact formulation of 
the assumptions stipulated by the applied methods. He especially and 
repeatedly indicated that  
 
    mathematical methods of statistics not only make it possible to conclude 
better and more precise inferences from the data, but in addition quite 
often provide brakes by indicating that the collected material is not yet 
sufficient for leading to more or less certain results. 
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    That Anderson’s scientific work has found recognition both in Germany 
and abroad is also expressed by the numerous honours bestowed upon 
him. He was 
 
    Honorary Doctor of Vienna University 
    Honorary Doctor of the Wirtschaftshochschule Mannheim 
    Honorary Fellow, Royal Statistical Society 
    Honorary member and member of the board, Deutsche statistische 
Gesellschaft 
    Fellow and founder member, Econometric Society 
    Member, International Statistical Institute 
    Fellow, American Statistical Association 
    Fellow, Institute of Mathematical Statistics 
    Fellow, American Association for the Advancement of Science 
    Member, Bulgarian Economic Society – O. A. 
 
    Oskar Anderson died on February 12, 1960, in the 73rd year of his life, 
after six weeks of serious illness.  
 

Notes 
    1. Kiaer is known to have practised sampling in Norway from the turn of the 19th 
century, and in 1906 Kapteyn initiated the study of the starry heaven by stratified 
sampling. 
    2. More precisely, the Ukrainian Academy of Sciences. 
    3. Anderson’s students obviously included future statisticians as well. 
    4. Both quotations below are apparently extracted from the book just mentioned. 
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VIII 

S. Sagoroff 

 

Oskar Anderson. Obituary 
 

Metrika, Bd. 3, 1960, pp. 89 – 94  
 

    [1] On 12 February 1960 Oskar Anderson died in Munich. With him 
Metrika lost one of its founders and editors. Silent mourning fell upon our 
scientific community and obliged us, loving friends, to commemorate our 
great teacher and honoured colleague. Death released him from his long 
physical suffering and allowed us to appreciate his work without any 
suspicion of wishing to flatter or please him. 
    Anderson was born of German parentage in Minsk, Byelorussia, in 
1887 and grown up in the vast Russian world in the traditions of thorough 
German scientific circles. His father was a university professor of Finno-
Ugric languages, his brother, also a university professor of philology. He 
spent his youth in Kazan where he finished a gymnasium top of the class 
in 1906, then studied physics and mathematics at the university there and 
later, in 1912, graduated from the Economic Faculty of the Petersburg 
Polytechnical Institute as a student of Chuprov, a famous representative of 
the Continental school of mathematical statistics, and defended his 
dissertation in economics on the application of the correlation theory to 
time series. In 1914 he passed a state examination in jurisprudence at 
Petersburg University. 
    [2] Being 25 years old, Anderson began his scientific work and 
professorial life as a teacher. In 1912 he became assistant at the Statistical 
Institute [?] of the Polytechnical Institute and at the same time teacher of 
economics, economic geography and law at a Commercial school in 
Petersburg. 
    The world war drew the young scientist into economic life and 
formulated for him his first research tasks. At first, in 1915, he was 
appointed a leading post in the state board of fuel, then, in 1917, in a head 
office of a cooperative in southern Russia. 
    In 1915 Anderson experienced something that especially enriched his 
statistical practice and revealed him the pleasure of research: participation 
in a statistical scientific expedition to Turkestan in West Middle Asia. He 
directed one of the first representative surveys in the history of statistics, 
the statistical observation of agricultural works in the artificially irrigated 
oases in the upper and middle reaches of Syr-Daria. 
    In the autumn of 1918 Anderson qualified in statistics at the Kiev 
Commercial Institute and began teaching there mathematical statistics as 
Privat-Dozent. In 1920 radical political changes in Russia compelled him, 
however, to emigrate together with his family. Constantinople and 
Budapest were stages of a difficult section of his life on which, already 
during his escape from Russia, he lost his only daughter.  
    His life experienced a happy turn when in 1924 he received an 
invitation to the Commercial High School in Varna, Bulgaria, as 
extraordinary professor of statistics and economics. Five years later he 
became full professor, and, after five years more, he was called to Sofia 
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University. There, from 1935 to 1942 he directed its State Institute for 
Economic Research.  
    [3] In 1942 Kiel University invited him as ordinary professor of 
statistics. There, at the same time he directed the sector of Ostforschung 
(study of East European countries) at its Weltwirtschaft institute. The 
devastation of the city by air raids and the death of one of his sons in a 
battle in Tunisia shook him morally and in general weakened him 
corporally so that in 1947 he left Kiel with a feeling of deliverance to 
follow an invitation from Munich University. 
    [4] The eighteen years that Anderson spent in Bulgaria constituted the 
richest period of his theoretical work. His creative spirit followed two 
directions: he sometimes built, and sometimes proceeded critically. His 
numerous contributions about the notions and methods of mathematical 
statistics were of the first type. They began with the creation of the so-
called differential method, see especially his papers (1926 – 1927), and 
reached its peak in his main work (1935). That method independently 
worked out by Anderson and Student (Gosset) became rightfully 
recognized in science, although it did not yield to a generalization into a 
universally applicable analytical method as for example correlation 
analysis.  
    His book (1935) represented an extremely rare example of statistical 
literature as being both original and systematically composed in a unified 
manner. Formally and roughly speaking, it may be compared with 
Laplace’s Théorie analytique des probabilités or Mises’ 
Wahrscheinlichkeitsrechnung. In spite of its merit, this contribution did 
not ensure him a proper place in the development of statistical theory and 
in my opinion this may be put down to two circumstances.  
    First, the unfavourable time of its appearance in the dominant twilight 
atmosphere on the eve of and during the world war in Europe in which 
science found itself. Second, its main concept, the attempt to develop the 
general statistical theory on a special case, on the notion of social 
statistical probability. 
    May we reproach Anderson therefore? Criticize him? I would 
decisively say no, with a capital n. Statistics is a bridge between the world 
of the feelings of material sciences and the imaginary realm of 
mathematics. Anderson wished to be nearer to the finite and discrete social 
and economic reality than to mathematics with its infinity and continuum. 
His incorruptible love of truth as he saw it and his yearning for 
independent judgement directed him to the path which, although not 
wrong, was not as broad and open as the route followed by modern 
mathematical statistics. 
    [5] The contributions written by Anderson, all of them without 
exception belonging to statistics, had been sufficient to make him 
internationally famous. And his critical works were of fundamental 
importance for science in general, and especially for econometrics. He was 
happy to work at the time when studies of conjuncture had emerged and, 
in addition, to belong to those few scholars who possessed all the 
important qualities for being an econometrician: the mastery of the 
morphology of economics, economics itself and mathematics as well as of 
pure and applied statistics. 
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    The study of conjuncture which originated in the 1920s in the United 
States and came into blossom in the 1930s in Europe1, attempted to insert 
mathematics into it. It was thought at first that that goal could be reached 
in a purely empirical inductive manner, but the downfall of the Harvard 
conjuncture barometer led to sobering. It was Anderson who discovered 
by applying mathematics the great definiency of that approach. 
    In a number of publications following one another (1927; 1929a; 
1929b) he showed the arbitrariness of the then prevailing methods of 
partitioning series. The ground from under the mechanistic conception of 
the essence of conjuncture was thus cut clearing the path for radically 
comprehending the perceptive reality; namely, for recognizing that 
without theoretical hypotheses a scientific understanding of that reality 
was impossible.  
    From the new standpoint there emerged the modern theory of economic 
process, the building of econometric models. Today, it is self-evident to 
distinguish between theoretical and empirical values of the magnitudes 
inserted into a model. This difference, which, incidentally, takes place for 
all material sciences, appeared in the 1940s as a discovery connected with 
the names of Haavelmo and Koopmans although Anderson had worked at 
the issue of empirically formulating the theoretical relations some ten 
years earlier (1931). 
    [6] During his years in Bulgaria, Anderson’s role as a theoretician had 
been founded whereas his German years had been decisive for his part in 
the development of statistics in that country. After the death of 
Bortkiewicz mathematical statistics taught as a doctrine in German 
universities became for a decade extinct and it was Anderson who then 
carried the banner of the Continental school of mathematical statistics. His 
appointment after the war to the largest German university offered him 
many possibilities to break lances for the dissemination of mathematical 
statistics by reports and publications. Out of Munich he influenced the 
teaching and the theoretical thought in German universities as well as the 
German official statistics. If that discipline in Germany is today most 
important as a doctrine, it is to a large extent his merit. 
    When determining Anderson’s place in statistical science, it is possible 
to say that he was the last representative of the Continental school of 
mathematical statistics brought forth by Lexis, Bortkiewicz and Chuprov. 
Considering it together with the old English school founded by Pearson, 
Bowley and Yule2 as the classical school of mathematical statistics, 
Anderson must be called one of its last classics. He was really prepared for 
the advances in statistics. He especially admired the contributions of 
Fisher and incorporated them into his lectures in their entirety [?], but 
he did not stay as near to the direction taken by Neyman and E. S. 
Pearson.  
    The only restriction which Anderson introduced into modern 
mathematical statistics consisted in that the statistical methods proper for 
natural sciences cannot be immediately transferred to social sciences.  
   In each nation in which Anderson worked, he cultivated tight ties with 
official statistics. This was in accordance with his opinion about the nature 
of statistics as partly being pure theory, a formal science, and partly, in the 
theory of producing data (Betriebslehre), a doctrine of statistical 
production, a material science. 
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    [7] That the stochastic representative method became very early 
introduced into the Russian official statistics was especially favourable for 
him. Indeed, it is too little known that a sample census of population was 
first made in Russia, in 1916 – 1917. (Its materials had not been processed 
and lost in the turmoils of the revolution.)  
    Anderson brought the Russian tradition of sampling to Bulgaria. As a 
member of the Supreme Statistical Council (1926 – 1942) and scientific 
advisor of the Bulgarian General Direction of Statistics, he had been able 
to introduce sampling into official statistics. Under his leadership the 1926 
general census of population and industry was processed both in its 
entirety and following the representative method so as to test the reliability 
of mathematical methods. The results of the comparison were amazingly 
good. Later, in 1931/1932, a sampling investigation of agricultural 
industry and production was carried out. After moving to Munich 
Anderson collaborated with the Bavarian statistical board; that the 
mathematical methods of statistical observation and processing had been 
introduced there also is to a large extent due to him and his successor, 
Professor Kellerer. 
    Anderson’s successful work over many years both in theory and 
practice [of statistics] brought him many honours. [The author lists his 
fellowships, see [VII, § 7], and in addition reports the following:] Shortly 
before he died, the Law and Statecraft (Staatswissenschaftliche) Faculty of 
Vienna University bestowed upon him the degree of Honorary Doctor of 
Staatswissenschaft. He had not received the diploma, but had been able to 
dictate a thank-you letter and express his feelings which inspired him all 
his life3. 
 

Notes 
    1. The author apparently did not know anything about Kondratiev; see Schumpeter 
(1954/1955, p. 1158) who favourably mentioned him, provided references to available 
commentaries but did not describe the essence of Kondratiev’s work. 
    2. The Biometric school was not old, at least not if compared with the Continental 
direction of statistics. And Bowley and Yule were not its cofounders.  
    3. Sagoroff did not mention that Anderson had greatly influenced statistical thought in 
Bulgaria (not only directing it to sampling investigations). However, his note is important 
as providing a somewhat new dimensions as compared with similar publications. 
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IX 

V. I. Riabikin 

 

Oskar Anderson, Chuprov’s Student 

 
Uchenye Zapiski po Statistike, vol. 26, 1976, pp. 161 – 174 

 
    [1] The outstanding role of Chuprov’s statistical school in the 
development of statistics the world over is determined above all by a 
rational combination of precise mathematical propositions and empirical 
investigations. The typical feature of Russian statistics is that theory and 
practice are mutually supplementing and enriching each other rather than 
contrasting one another1. 
    The German scholar Oskar Anderson (1887 – 1960) was Churpov’s 
eminent student and follower. In 1907 – 1915, both had been working at 
the Petersburg Polytechnical Institute where Anderson was Chuprov’s 
assistant and custodian of the library of the geographical & statistical 
room2. Anderson was a professionally trained mathematician (he studied 
mathematics and physics at Kazan University), statistician and economist 
and he had been teaching the appropriate disciplines in various universities 
in Russia and Europe3. He also carried out practical statistical 
investigations. Thus, in 1915 he directly participated in preparing and 
implementing a scientific expedition for an agricultural census in the basin 
of Syr-Daria. For many years its scale, and, what is the main point, its 
representativeness left behind similar work in the USA and Europe. 
    Along with I. Fisher, Frisch, Tinbergen, Schumpeter and others, he was 
the initiator and founder member of the celebrated Econometric Society 
whose member he had remained until the end of his life. And the problems 
with which he busied himself are topical to this very day.  
    Anderson’s dissertation, On the application of the coefficients of 
correlation to dynamical series, stemmed from Chuprov’s correlation 
theory as applied to time series4. Anderson had been developing the 
methods of correlation analysis in conjuncture investigations, see e. g. his 
writing (1929a). For example, he stated that, when analysing dynamical 
series and calculating the appropriate coefficients of correlation, the 
problem had usually been reduced to eliminating the trend either by 
preliminary adjusting the series and calculating the deviations, or by 
introducing a variable (time). These methods can lead to differing results 
and their reasonableness entirely depends on the successful choice of the 
initial function for the adjustment or description of the mutual connections 
between dynamical series. Anderson stressed that at the same time any 
function selected as a basis of a dynamical series was only an ersatz of 
reality so that the most important point here was a correctly formulated 
and economically justified aim of the study corresponding to the initial 
conjuncture indications5. […] 
    Anderson pointed out a special structure of time series, their total lack 
of correspondence with non-variational series which demanded special 
methods of their analysis. To achieve that, he developed an original way, 
the variate-difference method, making use of the classical theory of 
interpolation6. He proved that for two series the function [chosen for 
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preliminarily adjusting them] includes, as a rule, three types of correlation 
coefficients two of which are heterogeneous. One of these types is most of 
all important for describing a time series and his method allows to 
calculate it.  
    Assumptions and theoretical mistakes made when choosing a function 
for dynamical series lead to mistakes of principle like those made by 
Persons who had applied methods of mathematical statistics for 
conjunctural predictions. Anderson critically considered the Harvard 
Barometer, and, applying the variate-difference method, proved that it was 
not suitable for the aims which the Harvard school had attempted to 
achieve before the world crisis of 1929. His work and conclusions made 
testify to the theoretical correctness of his methods and to his intuition in 
economics, see Anderson (1929b). And we ought to agree with him in 
that, when describing a statistical idea in economics, formulas can only 
serve as supplementary means. 
    [2] Another direction of his work was a theoretical and practical 
justification of the representative method in economics and sociological 
investigations, see in particular his paper (1947) on posterior and prior 
probabilities. The problem actually consisted in combining mathematical 
statistics with the practice of statistical studies. It was twofold: 
    1) Was it necessary to study sample frequency and mean issuing from 
statistical probability and expectation derived from the parent distribution? 
    2) Was it possible to conclude, on the contrary, from sample to parent 
population? 
    Anderson showed that these points were not contradictory; and that, 
quite the opposite, new theoretical indicators were derived when issuing 
from the data. And the conditions arising in practical statistical 
investigations (for example, sampling without replacement), compel to 
develop the theory. Indeed, along with the work of the German statistician 
Keller [H. Kellerer], Anderson published a number of papers on the theory 
and practice of sampling7. And he was one of the first to indicate that 
systematic errors were seriously dangerous for statistical calculations. 
Nowadays this issue is sufficiently studied by Morgenstern (1950). […] 
    Anderson (1951) also believed that the influence of systematic errors 
ought to be allowed for when calculating indices after a representative 
selection of the appropriate data. For our [Soviet] statistics this issue is not 
especially typical8, but it is impossible to deny its elements, and therefore 
actuality. It is not out of the question that systematic errors corrupt the 
indices of the cost of living, international comparisons and chain indices9. 
[…] 
    [3] Anderson very critically appraised the Anglo-American statistical 
schools not only, as indicated above, in connection with the Harvard 
Barometer and its underlying statistical concepts. He invariably indicated 
the special structure of the totalities occurring in economics and sociology, 
and it is for this reason that during his last years he (1956) turned his 
attention to non-parametric statistical methods.  
    In that report, as in all of his publications in general, in which the 
influence of Chuprov’s school is clearly perceived, he criticized the 
contemporary state of mathematical statistics and econometrics. Here are 
his main propositions made there which show him as the follower of that 
school. He mentioned his direct participation in the establishment of the 
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Econometric Society and its significance for the application of 
mathematical methods in economics. He then indicated that many 
representatives of that Society had been leading econometrics along a 
route quite different from the one envisaged by its founder members, 
along the path of mathematical abstractions only nominally concerning 
economics. 
    If suchlike investigations, even, as Anderson expressed it, were 
supported by a parade of figures, they have little in common with practice 
and turn out to be either useless or harmful. As an example, he cited the 
works of Modigliani [to a work of Modigliani & Sauerlender] in which the 
correlation coefficients were applied for analysing stock exchange 
indicators and the t-distribution was made use of for describing totalities 
in which there were no, and could not have been any normal distributions 
or stochastic estimates [in general]. 
    Anderson listed and explained a number of points necessary for those 
mathematicians who attempt to apply their methods in economics and 
sociology. They include the finitness and, not rarely, the small size of the 
general totalities encountered by the economist and sociologist. Then, 
wars and crises corrupt cycles and tendencies in the economic 
development of nations so that a more or less reasonable mathematical 
statistical analysis is only possible for 15 – 20 years; general totalities are 
asymmetric, multimodal and have a number of gaps in frequencies.  
    Even such a gala example provided by many statisticians as 
demographic indications testifies to corruptions in the structure of the 
general totality, of the population, when considered dynamically. Finally, 
along with random errors which statisticians easily cope with, there are 
systematic errors. […] 
    [4] Anderson therefore concludes that non-parametric methods were 
needed in economic studies, He compared the σ rule which follows from 
the normal distribution with the [Bienaymé –] Chebyshev inequality and 
its strengthened form according to the formulas of Guldberg – Pearson and 
Cramer – Chebyshev10. Assuming the normal distribution, the σ rule 
provides confidence intervals of [– ασ; ασ] with α = 1.96, 2.58 or 3. The 
[Bienaymé –] Chebyshev inequality for the deviation of a random variable 
from its expectation is 
 
    P(|ξ – Eξ| ≤ tσ) ≥ 1 – (1/t2) 
 
whereas, according to the formulas mentioned, 
 
    P(|ξ – Eξ| ≤ tσ) ≥ 1 – (β2/t
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Here, β2 is the excess and µ4 the fourth moment. 
    Anderson considers formulas (1) and (2) as [practically] distribution-
free. In economics and sociology the probabilities and the corresponding 
confidence intervals are sometimes the main indicators for a correct 
decision. […] Thus, both the [Bienaymé –] Chebyshev inequality and 
formulas (1) and (2) are more robust with respect to the normal 
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distribution than the Laplace formula and are more preferable. The further 
development and application of the statistical methods corroborated that 
inference. 
    Very remarkable is Anderson’s opinion about the choice of probabilities 
in the applications of one or another test. The representatives of the 
Anglo-American school11 (Yates 1949) argue that the 5% level of 
significance is sufficient in all cases which is not however altogether true. 
[…] 
    Anderson devoted special attention to the issue of modelling in 
econometrics. The errors in the model itself, i. e. its deviation from reality, 
together with errors in the data can corrupt the appropriate “law” of 
distribution beyond recognition. The correct way out here is the 
application, as the least evil, of the classical methods of Markov and 
Chuprov12. 
    [5] One more of the Anderson’s contributions ought to be mentioned13 
[…]. 
    A synthesis of sorts of Anderson’s achievements is his book (1954). It 
is methodologically advantageous on a number of points, and in essence it 
provides sailing directions for applying methods of mathematical statistics 
in economics. […] 
    Anderson describes the main methods and indicators (including 
parameters of distribution and indices, also the index of the cost of living), 
statistical errors, the concepts of probability and expectation (with a 
discussion of the propositions made by Kolmogorov, Khinchin and 
Gnedenko), the law of large numbers, statistical hypotheses and their 
appraisal, induction and deduction in economics and sociology14. […] 
    The notion of equipossibility of events is very subjective and the 
demand of infinitely many trials for approaching mathematical probability 
is unrealistic. Anderson therefore believed that the theory of probability 
was justifiably applied for studying social economic phenomena of being 
considered from the point of view of axiomatics15. […] 
 

Notes 
    1. It was preposterous to elevate Russian statistics which had for several decades been 
governed by ideology (Sheynin 1998). 
    2. This is misleading; Anderson had only been a student, and, for that matter, not a 
trained mathematician at all: he only studied mathematics for one term. 
    3. In Russia, Anderson only taught at a commercial school (Petersburg) and 
commercial institute (Kiev), see [VII, § 2]. 
    4. At the time, Chuprov had no such published theory, but see [X, § 8]. 
    5. The author describes the treatment of time series but specialists are acquainted with 
it whereas uninitiated will not understand him. 
    6. The variate-difference method was at least to some extent also developed by Student 
(Gosset). 
    7. I have not found them in Anderson’s Selected Works (see Bibliography). 
    8. Indeed, various indices, even if calculated by Soviet authorities, had not been known 
to the public. 
    9. There follows a quite elementary discussion of systematic errors. 
    10. Since formulas (1) and (2) are not distribution-free, they only strengthen the 
Bienaymé – Chebyshev inequality under a certain restriction, see below. 
    11. Above, the author mentioned Anglo-American schools (plural). Anyway, Anderson 
was certainly better acquainted with this point, see [XIII, § 2.2]. 
    12. Where did the author find these methods? 
    13. The author discusses the book Das Konjunkturtest-Verfahren und sein Beiträge zur 
empirischen Untersuchung der ex ante – ex post Problematik. München, 1957. It is not 
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mentioned in the list of Anderson’s publications provided at the end of Bd. 2 of his 
Ausgewählte Schriften but included in the Gesamtverzeichnis des deutschsprachigen 
Schrifttums 1911 – 1965. I think that its author was Oskar Anderson junior. 
    14. Here follows a discussion on the lines of Chuprov’s Essays (1909), see my 
Introduction. 
    15. Those interested in this issue ought to look up Anderson himself (but where 
exactly?). I, for my part, am certainly doubtful since statisticians hardly ever followed 
him. See also the very end of [XVIII]. 
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X 

O. Anderson 

 

To the Memory of Professor A. A. Chuprov Junior 
 

Archiv za Stopanska i Sozialna Politika 
2nd year, No. 3, 1926, pp. 291 – 299  

Also in author’s Ausgewählte Schriften, Bd. 1.  
Tübingen, 1963, pp. 28 – 38  

 
    [1] Professor Aleksandr Aleksandrovich Chuprov died in Geneva on 
April 19, after a serious heart disease lasting six months1. His death in full 
flowering of his mental powers is a powerful blow not only for the 
Russian statistical school but for the entire statistical science in which the 
deceased occupied one of the first places along with Pearson and 
Bortkiewicz. 
    [2] Chuprov’s life was not especially rich in external events and can be 
described in a few words. The only son of a well-known Moscow 
professor of political economy and statistics, he received a splendid 
education at home, then for a comparatively short period attended the last 
classes of a gymnasium. His main scientific interests had been in the field 
of social sciences, but he graduated from the mathematical faculty of 
Moscow University because of being convinced that the phenomena 
belonging to them should be studied by the statistical method which 
needed, however, a deeper philosophical and in the first place 
mathematical basis. 
    After very successfully finishing the university, Chuprov went abroad 
for extending his economic and philosophical education, at first to Berlin, 
then to Strasburg, to Professor Knapp. There, he defended his dissertation 
(1902) which in a natural way turned to him the attention of specialists. 
Chuprov then passed with distinction an examination in Moscow for the 
Russian master degree in political economy and statistics. By the autumn 
of the same year he was appointed Dozent of statistics at the economic 
department of the just established Polytechnical Institute in Petersburg.  
    In that capacity he actively participated in the life of the really 
remarkable educational institution, the favourite creation of Count Witte. 
In 1909 Chuprov published his Essays whose first edition of 1200 copies 
was sold out in less than a year. For a scientific contribution this was 
strange and already during the next year, 1910, a second still larger edition 
became necessary. 
    On 2 December 1909 Chuprov brilliantly defended his dissertation in a 
public discussion at Moscow University, and what was even more seldom 
in Russian circumstances, the faculty skipped the master degree and at 
once bestowed upon him the degree of Doctor of political economy and 
statistics. After that Chuprov from being a Dozent was directly appointed 
full professor at the Polytechnical Institute. 
    He became the generally acknowledged head of a scientific direction 
and the circle of his followers and admirers became ever wider and a 
group of his own students formed around him. And thus the so-called 
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Chuprov school had come into being, but war and revolution put an end to 
this development. In 1917 Chuprov left Russia. 
    Some savings allowed him to live several years extremely modestly as a 
private researcher at first in Stockholm, then in Dresden. For Chuprov, 
those years were a period of unusual creative scientific achievement but 
they also finally undermined his probably always delicate health. 
Separated by shortest intervals of time, his remarkable monographs had 
been appearing in Biometrika, the Journal of the Royal Statistical Society, 
Metron (Padua, Italy, edited by Gini), Nordisk Statistisk Tidskrift, 
Skandinavisk Aktuarietidskrift, Ekonomichesky Vestnik, Russkii 
Ekonomichesky Sbornik [both edited by Prokopovich], Trudy Russkikh 
Uchenykh za Granitsei [Berlin] etc. and a book (1925).  
    [3] These publications became the foundation of Chuprov’s wide 
international reputation. The Royal Statistical Society honoured him, the 
Corresponding Member of the Petersburg Academy of Sciences and a 
long-standing member of the International Statistical Institute, in a manner 
extremely rare when concerning a foreigner, by electing him Honorary 
Fellow.  
    [4] In the summer of 1925 Chuprov’s personal savings had finally dried 
up and he decided to take a professorship in a foreign university. Oslo 
(Christiania), Heidelberg [in Germany], Prague, Riga and even the Soviet 
Union offered him chairs. He chose Prague, but it seems that this decision 
was unfortunate. Some bureaucratic delays and difficulties, so dangerous 
for his weakened heart, and perhaps overwork brought about the first 
attacks of the fateful disease. As he wrote me in mid-August of 19252, 
 
    These last weeks I am feeling extremely bad. Acute insomnia wore me 
completely down. My head does not want to work and, in responding to 
my attempts to compel it, it answers by rushes of blood and rises of 
temperature up to 38° and higher. And as though on purpose, much work 
has piled up. Teubner had finally energetically begun printing my book 
[1925] so that during the three last weeks I have been overloaded with the 
proofs. I dream very much of a holiday and hope to return back to my 
normal track. 
 
    And Chuprov went South to his beloved Italy but there he did not feel 
any better either. At the end of December, already quite ill, he managed to 
come to Geneva. Heart specialists pronounced his situation hopeless and 
the end came in the morning of April 19: Chuprov died in his sleep 
without waking up. 
    [5] Chuprov’s scientific works are unusually numerous even if we only 
take into account what he himself allowed to publish. The same amount or 
even more is contained in his sketches and manuscripts and we ought to 
hope that they will be arranged and published. Chuprov worked, in his 
own words, “on the border between statistics, mathematical theory of 
probability and logic”.  
    However, he permanently wandered in all directions from there making 
more or less remote journeys. That happened especially often in the 
beginning of his scientific activities with the excursions being made into 
the field of logic and philosophy, but at the end of his life he felt himself 
most powerfully attracted by the theory of probability and mathematics in 
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general. And, as he himself admitted, work in mathematics allowed him to 
forget all that formerly distressed him. 
    [6] The main goal of Chuprov’s scientific work consisted in 
constructing a unified scientific system encompassing the entire theory of 
mass phenomena and in uniting the different directions of statistical 
thought not rarely hostile to each other due to misunderstanding in an item 
of a higher order; namely, the Anglo-Saxon direction headed by Galton 
and Pearson, the Continental direction of Lexis and Bortkiewicz, the 
philosophical direction connected with Windelbrand and Rickert etc3.  
    And exactly because of that he devoted his Essays to a deeper 
philosophical justification of the statistical method, then at once beginning 
to inspect all its main procedures. The theory of stability of statistical 
series brilliantly popularized (and deepened at the same time) in the 
Essays was developed anew and logically completed in a number of his 
monographs published during his last years. 
    In this connection he derived many new, often important indeed 
formulas, formulated and solved many most difficult problems belonging 
to probability theory, for example finding the expectation of a quotient of 
two [random] variables, investigating the so-called problem of moments4 
etc. 
    Chuprov’s final inferences were in a certain respect sensational and 
strongly changed, and left over pretty little of the traditional Lexian 
doctrine with its celebrated dispersion coefficient. He undertook a detailed 
and deep investigation of stochastic interrelation and its distinction from 
functional relation, or, less precisely but therefore more easily 
understandable, of the problem of comparing two statistical series and 
clarifying their interrelation. 
    [7] In a number of (sometimes extremely difficult in the mathematical 
sense but therefore especially interesting) monographs completed in his 
last book (1925) Chuprov had been able to unite the Pearsonian 
correlation theory with the standpoint of the Continental mathematical 
statisticians. These specialists previously held a sceptical if not altogether 
negative opinion on the somewhat mathematically confused and not 
invariably sufficiently rigorous considerations of the English school.  
    Chuprov deepened, enriched and specified their doctrine in such a way 
that even Bortkiewicz, not at all a follower of Pearson and his school, 
perceived in that last book a direct supplement and conclusion of the 
Essays5. 
    Then, we are obliged to Chuprov for his perceptive investigations of 
other problems of statistical methodology, some of them most highly 
significant. I recall, for example, the really important for the practising 
statistician theory of sampling, some problems of insurance statistics, of 
the theory of calculating mortality, of the sex ratio at birth. 
    Purely economic subjects were not alien to him either although he only 
treated them incidentally. There is only one subject which Chuprov, as far 
as I know, never touched in his published writings although being 
interested in it, the partition of complicated series pertaining to economics 
into components. I am not sure although have every reason to suspect that 
this restraint was caused by Chuprov’s delicacy in scientific relations. 
Two of his students including me had chosen that subject for their research 
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and Chuprov apparently did not wish to interrupt undesirably the ripening 
fruit of their investigations6.  
    [8] In Chuprov’s writings it should be stressed first of all the crystal 
clarity and harmony of his thought coupled with an unusually rich 
acquisition of knowledge. He felt himself equally at home in philosophy 
as in exact sciences, in economics or theoretical or practical statistics. He 
did not like the last-mentioned discipline, but definitely respected it. 
Because of his remarkable ability to scientific work he easily appropriated 
any branch of human knowledge which for any reason awakened his 
interest. 
    The eminent Ostwald is known to have separated all scientists in his 
work about great personalities into two diametrically opposed types of 
equal value, classics and romantics7. Chuprov unquestionably belonged to 
the former (and just as undoubtedly P. B. Struve, for example, was among 
the latter). However strange it may seem, Chuprov, in spite of his unusual 
gift, worked very slowly. He dealt with his scientific ideas for years since 
he thought them over from all sides, examined and analysed them in every 
possible way. Unripe ideas not entirely thought out even if fruitful which 
is not rare but typical for a romantic, Chuprov did not stand either in his 
own works or not and pursued them especially stubbornly in cases 
concerning his students.  
    And he detested, as he himself formulated it, “mixtures of different 
styles” because he regarded printed words unusually strictly and expected 
from each author a clear picture of for whom and what does he write. For 
himself, Chuprov only allowed two styles: either the traditional scientific 
of the type of the Essays, understandable by each intelligent reader and 
outstanding by elegance, or a compressed description of the results of his 
own research (mostly mathematical symbols) only understandable by 
specialists but also delicate in a special way, possessing logical clarity, 
consistency and perfection causing all the initiated to admire it. A 
monograph of this kind on the moments [of a random variable] compelled 
even Pearson, the proud Englishman, to publish an Editorial in his 
Biometrika under the significant title Peccavimus! [we were guilty]8. 
Chuprov’s work of this kind about the coefficient of dispersion inspired 
Keynes, who even explained that among German and Russian 
mathematical statisticians only the form of Chuprov’s papers can give 
aesthetic pleasure. 
    How carefully Chuprov prepared has publications can be perceived 
from the following. Two thirds of the main contents of his Essays, as I 
myself had convinced myself, could be found in his Moscow student 
Composition written at least ten years previously9, and we, his students, 
had already heard the significant part of his last monograph (1925) in his 
lecture of 1910. On the other hand, the remarkable course in insurance 
statistics, about which Chuprov had written me already a few years ago 
that it was almost prepared for publication, did not yet appear.  
    And his outstanding lectures on the general theory of statistics, which 
he had been reading each year at the Petersburg Polytechnical Institute 
from 1902 to 1907, incessantly extending and perfecting it, had not been 
published. It alone would have probably ensured for Chuprov the first 
place among all contemporary theoreticians of our science. In my opinion, 
he would have needed at least ten years more to prepare for publication 
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that what he already started and completed in its main features. It would 
be a crime pure and simple if those now in possession of the manuscripts 
of the deceased will not compile and publish his literary heritage. Even if 
the form will not be as accomplished as it would have been if done by him 
himself, it is still important that the contents of his creative thought are not 
lost. 
    [9] In spite of the method of his scientific work and the rigid boundaries 
which he set for himself in this sense, Chuprov had not at all resembled 
the dry German scientists who isolated themselves in the narrow confines 
of their speciality. On the contrary, he always was a cheerful, friendly and 
fascinating interlocutor (at least for those selected) and the field of his 
interests was unusually large, and just as unusually large was the region of 
his learning in all the branches of human knowledge. As one of the 
managers of the professorial newspaper Russkie Vedomosti, Chuprov 
attentively followed Russian political and economic life and not rarely 
compiled his own meaningful articles10. As far as I remember, he never 
discussed his pertinent activity with his students entirely separating his 
public writings from the field of work of an eminent scholar. 
    Chuprov had been greatly interested in music and belles lettres; he is 
known to have been the first who acquainted Russia with the Spaniard Bl. 
Ibanez. We even suspected that he secretly wrote verses but I do not know 
whether this is true11. In any case, since being responsible for acquisitions 
for the large library of the statistical-economic Room managed by 
Chuprov, and therefore having had permanent contacts with ordinary and 
second-hand bookshops, I very often located for him rare editions of 
classics, for example of Pushkin whom he especially loved. Once I even 
bought for Chuprov Beliy’s Symbolism [collected articles, 1910] and was 
properly reprimanded by him for my insufficiently respectful assessment 
of that, as I thought at the time, apparently hardly sensible writing. 
    [10] When looking at that bearded and imposing man with light-
coloured hair combed smooth to the right side of his wide forehead; seeing 
how he kindly glanced at the audience through his glasses; noticing his 
cheerful smile often accompanying his words; hearing his exemplary 
fluent speech in the perfect Moscow accent with a merry joke inserted 
now and then invariably followed by a noisy and merry echo from the 
huge audience, – we, students, believed that we had before us a rarely 
robust man born by the grace of God to be a speaker able to lecture 
effortless.  
    In truth, however, these lectures gave him a lot of trouble and his health 
was always really delicate. Only after some years had passed, I understood 
how much the preparation of those lectures must have cost him and how 
even the three or four weekly lecture hours strained him. Chuprov himself 
confessed to me that during his first years of pedagogical work he had felt 
himself completely worn out after a one-hour lecture and had to rest on a 
divan all day long, and rather often thought of quitting teaching altogether. 
Each public speech deeply excited him and there were cases when this 
outstanding speaker just read out the always prepared beforehand speech 
to his usual audience. 
    It is evident that such a delicate and nervous organism, which could 
have perhaps go on living several decades more, had soon burnt out under 
the rough and relentless conditions of life of an emigrated professor. 
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    [11] Chuprov was unusually kind and warm. Anyone requesting his 
advice or help on some personal occasion could have reckoned on an 
attentive and friendly participation. For his students and for all those 
whom he considered scientists, actual or prospective, Chuprov literally 
spared neither time nor efforts without likes and dislikes12. I remember, 
for example, how he helped one of the students, Kushin [Kuchin?], to find 
a job and saved him from an entirely justified as I ought to add, police 
accusation, although during one of our stupid student strikes that very 
Kushin had led a group of rowdy students who removed Chuprov from his 
lectern and unashamedly abused him. I remember also Chuprov’s 
unchanged benevolent attitude to me myself after I had twice extremely 
radically argued with him about his, as I believed then, unnecessary strict 
scientific demands. 
    [12] Again, Chuprov, who had in his paternal home met many 
Bulgarians, knew Bulgaria fairly well and loved it, led me to accept an 
invitation to a chair in the Higher Commercial School in Varna in that 
country13. I am still keeping his letter in which he expressed trust in the 
future of that nation and asked me to disregard unfavourable rumours 
about it. I also remember that as a specialist he held a really high opinion 
about the Bulgarian official statistics and believed that under K. Popov 
their General Direction of Statistics had reached the level of Western 
Europe. 
    [13] In my time, that is, between 1907 and 1915, among those teaching 
at the Economic faculty, were professors M. Kovalevsky, N. I. Kareev, P. 
B. Struve, M. A. Diakonov (academician), Yu. S. Gambarov, I. I. 
Ivanniukov, A. S. Posnikov, B. E. Nolde, B. M. Gessen and many other 
scholars and lecturers of the first rank. And still, rarely had anyone of 
them for a long time an audience as well packed as Chuprov had. I think 
that no other professor with the possible exception of Struve was beloved 
as much as Chuprov. Almost all the economists of the [graduated from 
the?] Polytechnical Institute had attended his lectures, and a considerable 
part of them met with him afterwards in connection with their own 
scientific work, or at the sittings of the optional seminar for those 
qualified, in his apartment on the fourth floor of the professorial house, or 
on the marvellous premises of our statistical-economic Room. Therefore, 
so many previous polytechnicians until now consider themselves students 
of the teacher devoted to that dry, and in addition mathematical statistics! 
    Nevertheless, Chuprov always had only a small number of students in 
the narrow sense of that word. He selected them very cautiously among 
those who already had some previous experience in mathematics or were 
prepared to deepen themselves earnestly in the study of higher 
mathematics. Being ascetically strict in his own scientific work, Chuprov 
was relentlessly demanding in respect of his students, and it was not at all 
easy to satisfy him.  
    However, he never encroached upon our scientific freedom and did not 
spell out any scientific activity in accordance with some definite 
programme. And it was a misfortune, pure and simple, if the Council 
decided to publish a certain statistical dissertation at the Institute’s 
expense. Without bothering about time, whether his own or not, he 
compelled the unfortunate author to rewrite his work several times over 
since he corrected and discussed not only its general outline and manner of 
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presentation, but literally each of its thought and phrase. Even that was 
insufficient: he personally read each of the proofs from beginning to end 
and conclusively corrected them. 
   I recall how Chuprov in his study had once entered into a heated debate 
with his beloved student, M. M. Vinogradova (who died much 
prematurely from typhoid shortly after the Revolution) about whether one 
single digit, an eight, belonged to the same script as the entire text or 
should it be replaced by the same digit of the appropriate typeface. I was 
also called in the discussion which really could have hardly been resolved 
without a magnifying glass14. On the other hand, anyone who had 
experienced such a test became accustomed for all his/her life to the habit 
of exact and serious scientific work and kept feeling deep admiration for 
the unerring and selfless teacher. 
    [14] Many of us, former students and admirers of Chuprov, today find 
ourselves on this or that side of the chasm separating Soviet and anti-
Soviet Russians and much bitterness and mutual misunderstanding 
between us has built up. But I still believe that all of us, White and Red, 
are united today by a common feeling of deep mourning for the premature 
death of our esteemed teacher in the prime of his life, who left us in full 
power of his mental capacities without concluding even a half of what he 
could and should have done. 
   The entire scientific world grieves together with us. 
 

Notes 
    1. The author mistakenly added “being 53 years old”; actually, 52. 
    2. At about the same time Chetverikov (Sheynin 1990/1996, p. 104) and Bortkiewicz 
(Bortkevich & Chuprov 2005, Letters NNo 207 – 209) received similar letters. 
    3. There was no etc. 
    4. Posssibly: study of densities by derived moments. 
    5. Anderson possibly had in mind Bortkiewicz’ letters to him about which nothing is 
known. 
    6. Chetverikov also studied that subject although perhaps after graduation (Manellia 
1998, p. 95). 
    7. Ostwald (1853 – 1932) is mostly remembered as the initiator of the series Ostwald 
Klassiker der exakten Wissenschaften. 
    8. The Editorial, indeed published in Biometrika (vol. 12, 1919, pp. 259 – 281), 
corrected factual mistakes and inaccuracies mostly indicated by Chuprov whom Pearson 
acknowledged. 
    9. That Composition (1896) is kept by an archive in Moscow. I have read it, and 
believe, contrary to Anderson, that by 1909 Chuprov should have changed much. 
    10. I have traced more than 60 of Chuprov’s articles there (Sheynin 1990/1996, pp. 
129 – 131), but, apart from Anderson, no-one mentioned that Chuprov was “one of the 
managers”. 
    11. One of his verses was recently published by Dmitriev (Eliseeva et al 1996, p. 62). 
    12. Apparently in 1922 Anderson sent Chuprov a manuscript for the Journal of the 
Royal Statistical Society, obviously of his future paper (1923) or even for (1927). 
Chuprov (letter of 1922 to Chetverikov; Sheynin 1990/1996, p. 60) “spent a good two 
weeks on his calculations”, informed Anderson about the changes done after which he 
“completely lost heart”. 
    13. Did Anderson know that Chuprov “at last” had been able to “fix him up with a 
post” [in Varna]? See Ibidem Chuprov’s letter of 1924 to Chetverikov.  
    14. I do not understand this at all, and the less so since late in life Chuprov allowed 
himself to use monstrous notation difficult for printing and horrible for the reader.  
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XI 

Oskar Anderson 

 

Ladislaus von Bortkiewicz
1
 

 
Z. f. Nationalökonomie, Bd. 3, 1932, pp. 242 – 250 

Also in author’s Ausgewählte Schriften, Bd. 2.  
Tübingen, 1963, pp. 530 – 538 

 
    [1] On 15 July 1931, in Berlin, Professor Ladislaus von Bortkiewicz 
died from a heart disease. His sudden death carried him off in the prime of 
his mental abilities and at the time of his fruitful scientific activity, when 
his capacity for work had hardly decreased. The international science, 
which lost in his person an outstanding economist and one of the really 
eminent scientists in the field of mathematical statistics, experienced a 
powerful blow. 
    Ladislaus von Bortkiewicz was born 7 August 1868 in Petersburg. Of 
Polish descent, he nevertheless grew up in an entirely Russian cultural 
milieu2, and there also, in Petersburg, he studied in the university. The first 
significant contributions of the young scholar appeared in the beginning of 
the1890s (1890a; 1890b; 1891) and somewhat later (1894 – 1896). In 
those years, he signed his name in quite the Russian manner: Bortkevich. 
    Having been supported by Lexis and Knapp, he was able, in 1895, to 
become a Dozent at Strasburg University and for two years taught there 
insurance of labourers and theoretical statistics. The same period 
witnessed the beginning of his close scientific relations with another 
eminent Russian statistician, Chuprov, six years his junior, who then 
received a doctorate under Knapp. Their friendship ended when Chuprov 
prematurely died in 1926. 
    Upon returning to Russia, Bortkiewicz became, in 1899 – 1901, Dozent 
at the prestigious Aleksandrovsky Lyceum in Petersburg out of which a 
number of most prominent Russian statesmen had come. In 1901 
Bortkiewicz received an invitation to fill the position of extraordinary 
professor of economics and statistics at Berlin University to which he had 
been remaining loyal all the 30 years until death. Nevertheless, he only 
became full professor in 1920. 
    [2] Bortkiewicz’ scientific lifework can be described thus. In theoretical 
statistics he was an acknowledged master and head of the school, or more 
precisely, of a stream known as Continental. It originated with a few 
papers published by Lexis in the 1870s, but certainly would not have 
acquired its present significance without Bortkiewicz’ innovative studies. 
Our (younger) generation of statisticians is hardly able to imagine that 
mire in which the statistical theory had got into after the collapse of the 
Queteletian system, or the way out of it which only Lexis and Bortkiewicz 
then managed to discover. 
    We are very much obliged to Bortkiewicz for clearing up the 
philosophical and cognitive fundamentals of the theory of the statistical 
method. He is meritorious for clearly indicating the essential significance 
of the Poisson form of the law of large numbers for statistics, and he also 
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completed in a certain logical way the theory of the coefficient of 
dispersion Q2 thus enabling its further development. 
    [3] In addition, Bortkiewicz essentially improved the methodology of 
mathematical statistics and introduced a number of new effective 
procedures. Here, the method of so-called mathematical expectations 
should be mentioned, a tool whose paramount importance is now being 
ever more widely recognized. Among his separate contributions the law of 
small numbers [1898]3 had in its time attracted special attention, but its 
practical value occurred lower that originally thought. Then, exceptionally 
significant were his deep investigations in the theory of index numbers as 
well as his last work on the mathematical analysis of the statistics of 
income (1930) presented the same year to the Tokyo session of the 
International Statistical Institute. Bortkiewicz also thoroughly and very 
commendably engaged in mathematical insurance and population and 
moral statistics.  
    His ideas essentially enriched statistical studies in Italy, Scandinavia, 
Russia and France. Even in the Anglo-Saxon statistical world which went 
ahead along its own route under Karl Pearson seemingly contradicting the 
Continental direction, Bortkiewicz’ influence had been unquestionable. 
Only among the anti-mathematical German statisticians he did not excite 
any serious response. Nevertheless, it appears that there also a new 
livening of mathematical statistics is approaching so that they will perhaps 
recall him again. 
    [3] In the field of economics I ought to mention first of all Bortkiewicz’ 
fruitful debates with Walras – Pareto, his consideration of the work of 
Marx, Bohm-Bawerk and Knapp in which he discussed all the main 
theoretical issues to such a considerable extent. Although not at all an 
eclectic and combative in other areas, Bortkiewicz kept here to a more 
conciliatory standpoint and calmly acknowledged the sensible kernel in 
the doctrines of both debating sides concerning such serious 
disagreements as between objectivism and subjectivism in the theory of 
value, between the nominalistic and metallistic theories of money etc. 
    He is also meritorious in fostering the economic theory in Germany at 
the time when it was seriously neglected in almost all universities. For 
mathematics, Bortkiewicz is important first of all as a first-rate researcher 
in the field of the theory of probability and his book (1913) is of lasting 
importance for physics. 
    [4] Striking in personal contacts with Bortkiewicz and also perceived in 
all his writings was his unusually sharp, and, as it is almost possible to 
say, merciless analytical mind which did not stand scientific errors or 
blunders, either his own or not. He quite surprisingly endured checks of 
numerical examples and derivations of mathematical formulas. For him, 
even a smallest [inaccuracy] in his own work was never insignificant, so 
that his examples and formulas are absolutely certain and at the same time 
the main features and ties are there sufficiently worked out4. 
    The breadth of Bortkiewicz’ knowledge was immense. He felt himself 
equally sure in all areas of theoretical statistics and economics as well as 
in insurance, mathematics and some chapters of physics. The style of his 
work was peculiar and resembled Edgeworth’s manner and in any case it 
occurred entirely unusual for some German economists. 
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    During his scientific activities which lasted more than 40 years, 
Bortkiewicz published a lot of separate investigations but did not create 
any system, had not systematically summarized in a single contribution the 
results of his own work and the writings of other authors in any wide area 
of science, and did not compile even a single extensive book [except 
(1913) and (1917)]. 
    However, when attentively considering his research as a single whole, it 
is easily seen, as I mentioned above, that he investigated almost all those 
important problems which interested theoretical economics and statistics 
in our time. From the point of view of Ostwald’s5 generally known 
classification who separated all talented scholars into romantics and 
classics, Bortkiewicz certainly belonged to the first group. 
    In spite of his love of approaching each problem from his own special 
side, he needed a certain prompting for starting up the incomparable 
machinery of his mind. Not rarely the scientific investigations of other 
authors served as such a point of departure. He first thought them over, 
then wove further, reconstructed, and sometimes completely rejected the 
original structure. And it is not at all accidental that his best and deepest 
works he always began as usual reviews. Thus, Die Iterationen (1917), for 
him a book of quite an exceptional volume of 205 pages, emerged from a 
review of Marbe (1916) and simply crushed that author. In a similar way, 
three papers on index numbers (1923 – 1924) resulted from a review of 
Fisher (1922) who was nevertheless much more mildly damaged6.  
    In his reviews Bortkiewicz not rarely refuted those very ideas that had 
prompted him and initiated his response, but later became unacceptable. 
To a large extent this explains the strictness and sharpness of his 
judgement which sometimes alienated and in any case offended the 
authors. 
    According to the general opinion, Bortliewicz was a harsh and acerbic 
judge and even the most prominent scientists took into consideration his 
statements. It was maintained not altogether jokingly that his scientific 
significance consisted in that he not only put forward one or another 
theory or influenced this or that researcher, but that he also led authors of 
quite a lot of weaker contributions to fear his destructive criticism and 
avoid publishing them which was certainly very advantageous for science. 
    However, we should never forget that Bortkiewicz’ judgement had 
always been factual and remained impartial; no scientist had been 
personally closer to him than Chuprov, but there occurred scientific 
duelling between them with exchanges of very painful blows. In his 
immediate surroundings Bortkiewicz could have been charming and his 
home in Berlin remained a place of pilgrimage for scientists the world 
over coming to express themselves and receive advice. 
   [5] As Chuprov’s student, I belong however to the younger generation in 
which eyes Bortkiewicz seemed a distant Olympian, but I also could have 
reported much about the patient kindness of the strict master and the many 
valuable stimulations in his letters to me7. 
    Bortkiewicz did not write for a broad circle8 and was not at all good at 
popularizing his own ideas. Then, he made great demands on the 
educational background and intelligence of his readers. With stubbornness 
conditioned partly by his asceticism and partly indeed by the romantic 
type of his scientific mind he refused to accept the advice of the classic 
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Chuprov and to choose an easier form for his publications. The applied 
mathematical machinery with which Bortkiewicz occasionally all but 
shone, made it especially difficult for German economists inclined against 
mathematics to penetrate the deeper essence of his theories. 
    Add to this that the titles of, and sources for his publications definitely 
were not always in accordance with what the reader would have justly 
searched for. For example, which statistician would have expected to find 
important theorems about the Lexian coefficient of dispersion and, really 
at the same time, the theory of the Pearsonian chi-squared test in 
Bortkiewicz’ paper (1922) published, moreover, in a mathematical 
periodical? On the other hand, which mathematician will search for 
valuable articles on the theory of probability in the Jahrbücher für 
Nationalökonomie und Statistik?  
    His contributions are scattered over a lot of German and foreign 
periodicals a part of which now became difficult to come by. Out of his 54 
lengthy statistical monographs only four are books or booklets, which had 
long ago disappeared from the book market. The rest 50 contributions are 
contained in 27 different German, Austrian, Russian, Swedish, Italian, 
Swiss etc journals and series. 
    Almost the same happened with his 23 long economic contributions. 
And I have not even included either a load of annotations and reviews 
which Bortkiewicz had written over the years, or his shorter items in the 
great Russian Brockhaus & Efron Encyclopedic Dictionary9 or similar 
reference books. 
    [6] I never had the advantage of being present at his lectures, but, as far 
as I know, Bortkiewicz had been preparing them studiously and diligently. 
Nevertheless, he was unable to gather a circle of students around himself 
either in Berlin or, for that matter, in Germany. Perhaps, as Altschul 
(1931) believes, this disconcerting fact can be explained by 
acknowledging that pedagogic activities were “not to his liking” which, 
however, should rarely be the case with romantics.  
    Another possible cause is that, although Bortkiewicz had spent almost 
half of his life at Berlin University, he invariably remained there almost an 
alien element which did not properly fit the conditions of work or 
traditions of German economic faculties. On the face of it, he had been 
indeed coldly approached with deep respect but was internally rejected. 
And Bortkiewicz’ death certainly stronger impressed the scientific world 
in Italy, Scandinavia, Russia10 etc than inside Germany where the younger 
generation seems even to know him but little. 
    [7] Everyone aware of the real significance of the life work of this great 
researcher will therefore lively welcome at least a first step towards his 
discovery and, as it occurred with Edgeworth11, a publication of his 
statistical and stochastic papers in a volume of collected works. If not in 
Germany, could not a publisher be found among the rich Scandinavian 
institutions?  
    A few years ago, a German publishing house had offered Bortkiewicz 
an opportunity to put out a collection of his more important investigations, 
but nothing came of it because he preferred new research to processing 
prior work. As he informed me at about the same time, he staked 
everything on leaving nothing half-finished. And still, dying unexpectedly, 
he left behind probably the most [of such work]. 
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    For making easier to acquaint the reader with Bortkiewicz’ work, I 
adduce a preliminary list of his larger scientific publications. Annotations 
and reviews are not included and the list can also have many gaps12.  
 

Notes 
    1. I also mention the author’s previous paper (1929) as well as his very short obituary 
which I (2001) reprinted. There also, I quoted archival documents from the present 
Humboldt University. 
    2. For Bortkiewicz, German was a mother tongue along with Russian which is seen in 
his publications and perceived as well since he delivered lectures in German and 
obviously experienced no linguistic difficulties while living in Germany. In 1905 he 
wrote to Chuprov (Bortkevich & Chuprov 2005, Letter No. 79) that he was feeling 
himself “perfectly well in regard to the kind, the conditions and the place of work” in 
Berlin. 
    It is probable that German was the language spoken in Petersburg in the family and 
that the main language in the gymnasium which he attended was also German. 
    3. Anderson was one of only a few statisticians apparently even then dissatisfied with 
the law of small numbers, cf. my paper (2008). 
    4. I strongly disagree, see for example Sheynin (2008). 
    5. Concerning Ostwald see [X, Note 7]. 
    6. Woytinsky (1961, pp. 452 – 453) reported that publishers had quit asking 
Bortkiewicz to review their books. 
    7. Nothing is known about these letters. 
    8. Winkler (1931, p. 1030) quoted a letter from Bortkiewicz (without adducing its 
date): he was “glad” to find in Winkler one of his five expected readers! 
    9. Only one contribution (1897) to that Enz. Slovar is known.  
    10. Bortkiewicz certainly corresponded with Soviet statisticians; their and his extant 
letters are kept in his papers at Uppsala University (Sweden) and partly published in 
Russian. However, no obituary appeared in Russia; Vestnik Statistiki, the leading 
statistical periodical, had been suppressed for many years (including 1931). True, the first 
edition of the Bolshaia Sovetskaia Enziklopedia (Great Sov. Enc.), see vol. 7, 1927, p. 
198, acknowledged his work in various areas of statistics but in 1933, the same edition 
(vol. 63, pp. 279 – 283) called both the Biometric school and the Continental direction of 
statistics bourgeois. In the second edition (vol. 5, 1950, p. 605) the appraisal was also 
extremely negative.  
    11. In 1925, his collected papers on economics had appeared (one volume). In our time 
(in 1996), his Writings were published in three volumes. 
    12. I do not reproduce it. My own Bibliography of Bortkiewicz’ writings is in Sheynin 
(2001) to which I (2007, pp. 276 – 282) added many of his reviews. 
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XII 

Oskar Anderson 

 

On the Notion of Mathematical Statistics 
 

Einführung in die mathematische Statistik. Wien, 1935, pp. 1 – 2 
 

    Mathematical statistics is not a robot, and it is not always possible to 
stick statistical material into it, and, after some mechanistic 

manipulations, to read the result as though from a calculator 
 Charlier (1920, p. 3) 

 
    Little experience is sufficient to show that the traditional machinery  

of statistical process is wholly unsuited to the needs of practical 
 researches. Not only does it take a cannnon to shoot a sparrow,  

but it misses the sparrow! 
Fisher (1932, p. vii) 

 
    Mathematicians playing statistics can only be 

 overcome by mathematically armed statisticians  
Chuprov (1922, p. 143) 

 
    The aim of statistical work is to turn the collected observational 
material into numbers and number series. And one of the most important 
problems of the statistical methodology consists in showing how to 
process these numbers by summing, abstracting, dividing etc so as to 
arrive at certain conclusions about the observed mass phenomena. Since 
the four arithmetical operations likewise obviously belong to the field of 
mathematics, it is hardly possible from a purely logical viewpoint to draw 
a clear and incontestable line between the general and the so-called 
mathematical statistics. 
    The latter term is as a rule understood as the chapter of statistical 
methodology that is represented by the aid of the calculus of 
infinitesimals, higher algebra and analytic geometry. It remains therefore 
incomprehensible for the average economist and statistician whose 
mathematical education ended with graduation from the secondary school. 
From this point of view and presuming the usual forms of presentation of 
the theory we ought to attribute to mathematical statistics a number of 
really heterogeneous sections and in the first place most applications of 
the theory of probability, the [Lexian] theory of dispersion, the theory of 
means and analysis of variance, the Pearsonian and other frequency 
curves, sampling investigations, theory of correlation, partition of series, 
harmonic analysis, theory of interpolation and adjustment, of index 
numbers, the formal theory of population, insurance mathematics and 
similar subjects. 
    Still, this opinion is considerably disadvantageous in that the essential 
contents of a scientific discipline depends on how is the mathematical 
school curriculum composed; moreover, it can change from country to 
country and from year to year. Considering this, it is exactly among the 
aims of this book to show how a number of the received theorems of 
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mathematical statistics can be easily proved or at least made 
understandable only by means of elementary school mathematics. 
    It would be much more likely to agree that the term mathematical 
statistics denotes that part of the statistical theory which is closely 
connected with the theory of probability and can almost be considered as 
its applied part. And this is, roughly speaking, the viewpoint chosen in this 
book. We think, however, that it is senseless to include the so-called 
formal theory of population with the closely connected insurance 
mathematics even if it is (as it does not always happen) tightly associated 
with the theory of probability. In respect to the subject of study and 
training the profession of actuary has already separated their young 
generation from other mathematical statisticians so that it is practically 
useless to pay special atttention to the former in a book mainly intended 
for economists and statisticians. 
    Thus outlined, in different countries the methodology of mathematical 
statistics in its entirety occupies very differing positions in the science of 
statistics. In the English speaking world it is seen under the influence of 
the Pearson school as almost the statistical theory, but apparently in the 
Soviet Union in spite of the initial success of the Chuprov school 
statisticians are ever more turning away from it, see e. g. the Introduction 
to the latest Russian textbook Boiarsky et al (1931)1. And concerning the 
German nations, today mathematical statistics finds itself in general in a 
really difficult position. 
    The reaction of real statisticians concerning mathematicians playing 
statistics is described by the three epigraphs.  
 

Note 
    1. Anderson apparently had not wished to add the political dimension here. He (1959, 
p. 294), see also Sheynin (1998, p. 533), did so later by quoting that source thus showing 
the horrible situation then prevailing in Soviet science in general. He also remarked that 
the textbook was not up to contemporary statistical knowledge. 
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XIII 
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Mathematical Statistics 
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    1. The Concept 
    Opinions differ about what should be understood as mathematical 
statistics. Neither the statistician, nor the economist can get along in his 
theoretical or practical work without applying the four arithmetical 
operations. Arithmetic, however, represents a mathematical science par 
excellence so that strictly speaking statistics in its entirety is 
mathematical. In that sense some modern Anglo-Saxon authors only 
perceive statistics as a part of applied mathematics which means that they 
certainly leave out the theory of business statistics in its proper sense 
(planning, investigating, preparing the work) which belongs to social 
statistics. Others, like M. G. Kendall, do not use the term mathematical 
statistics at all and obliquely describe its subject as advanced theory of 
statistics. If this expression becomes established, the situation in statistics 
will be to a certain extent similar to circumstances in physics, where 
theoretical physics was previously called mathematical. 
    Another important question is, where then should the border between 
elementary and advanced theories of statistics be. Some authors, 
especially German, perceive it to be already in the application of relatively 
simpler algebraic formulas and symbols whereas Anglo-Saxon textbooks 
of Elementary statistics, of its Elements, and of Introductions to the theory 
of statistics do not shy away from substantially applying algebra, 
analytical geometry and the main notions of the calculus. 
    If the not unquestionable expression mathematical statistics will hold its 
ground at all, it could be understood as meaning that part of the general 
statistical theory  
    1) Whose comprehension demands a certain higher level of 
mathematical knowledge 
    2) Which is closely connected with the theory of probability and from a 
certain standpoint can simply be regarded as applied probability theory 
    In the first case the subject of a scientific discipline will directly depend 
on the contemporary school curriculum, in the second instance certain 
higher parts of the statistical theory will be left aside. 
    2. History 
    2.1. The beginnings. Insofar as mathematical statistics is built on the 
theory of probability, the history of their emergence cannot be separated, 
and the names of Jakob Bernoulli (1654 – 1705), Laplace (1749 – 1827), 
Gauss (1777 – 1855) and Poisson (1781 – 1840) will belong to one of 
them just as to the other.  
    Certain elements of mathematical methods in social and especially 
population statistics already existed by the end of the 17th century in 
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political arithmetic, in the works of Graunt and Halley, and later 
Süssmilch (1707 – 1767). For the first edifice of mathematical statistics in 
the proper sense we are grateful to a student of Laplace, Quetelet (1796 – 
1874)1. Mostly because of the harsh reaction against the deterministic 
exaggerations made by the Queteletians, to which the young Adolph 
Wagner also belonged [and of the ensuing downfall of Queteletism], there 
appeared in the 1870s a German school of mathematical statistics whose 
most important representatives were Lexis (1837 – 1914) and Bortkiewicz 
(1868 – 1931). Their preferable field of study formed the theory of 
stability of statistical series and its practical re-examination. 
    This school has played an important role, especially in the building of 
population statistics and the theory of insurance. In spite (and, partly, also 
because) the most eminent German economists, Schmoller and Knapp in 
the first place, had actively participated in the struggle against 
Queteletism, the mental climate in our universities had been hardly 
favourable to the further development of the Lexis – Bortkiewicz 
direction. In a similar way, the statistically based investigations made by 
the psycho-physiologist Fechner, whom Lexis had only mentioned in 
passing, did not influence the theory of social statistics to any considerable 
extent. 
    The work of Knapp’s student Chuprov (1874 – 1926)2 brought to a 
certain conclusion the theory of the German school of mathematical 
statistics. Incidentally, he strove for some synthesis of that theory with the 
Biometric school, and at the same time he was the founder of the Russian 
school of mathematical statistics. 
    2.2. The development of the modern theory of mathematical 
statistics. It essentially began with investigations of heredity by the 
English biologist Galton (1822 – 1911)3 and the lifework of his younger 
colleague Pearson (1857 – 1936) with the previous work of Edgeworth 
making the speedy acknowledgement of their theories in England 
considerably easier. In the course of time an ever increasing circle of 
students and people allied to them had been gathering around Pearson and 
Biometrika, the periodical established in 1901 by Weldon, Galton and 
Pearson, which he edited. 
    At first, their field of studies was restricted to mass phenomena in 
biology, but very soon it expanded to include other scientific spheres, in 
particular social sciences (Bowley, Yule). In many cases there certainly 
existed valuable prior work made partly by older mathematicians and 
physicists and partly by the followers of Quetelet, but at that point it was 
the train of thought of the Pearsonian school that determined the further 
development of the appropriate disciplines. The investigations of Fisher 
ensured a new stage of the progress of mathematical statistics with wide 
theoretical prospects4.  
    Nowadays the direction taken by Pearson and Fisher is dominating in 
mathematical statistics but its certain national versions can differ. Next to 
the English school and the closely related to it American and Indian 
(Mahalanobis, Rao) direction it is especially necessary to mention the 
Italian (Gini), Scandinavian (Charlier, Cramér, Wold), Russian (Chuprov, 
Slutsky, Romanovsky)5 and French (Darmois, Fréchet) schools. In 
Germany, during the 20th century the theoretical achievements of the Lexis 
– Bortkiewicz school became forgotten to such an extent, that some of 
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them had to be discovered in England once more. Thus, as Kendall 
correctly noted, Lexis (1879)6 contained the essence of the Fisherian 
analysis of variance. Then, Helmert (1876) had derived both the law of 
distribution of the squared sum of random errors of observation7 which 
Pearson (1900) discovered in connection with his chi-squared test, and the 
precise expression for the variance of the mean error in case of the normal 
distribution found once more by Fisher in 1920. 
    Bortkiewicz (1898) had applied the Poisson formula for the frequency 
of random events in various directions, but then Student (1907) 
“discovered” it anew. Bortkiewicz certainly did not see many possible 
applications of the Poisson formula in the field of biological sciences and 
especially bacteriology, but, for example, the priority of statistically 
treating the counts of blood corpuscles belongs to Abbe (1876) rather than 
Student (1905) to whom the Anglo-Saxon literature usually attributes it.  
    The relatively modest attempts to revive mathematical statistics in 
investigations belonging to social sciences, which became noticeable in 
Germany after World War I, were again destroyed by the events of 1939 – 
1945 when a number of its representatives had been forced to leave 
Germany and Austria for good8. A new period of gradually adopting the 
body of thought in mathematical statistics established meanwhile abroad 
has begun after 1945. An essential part of the related scientific 
terminology was borrowed in the English wording or in German back 
translation from English whereas for a number of terms there had already 
existed expressions coined and applied by German scientists, – 
mathematicians, physicists and statisticians, – for a whole century. This is 
especially true for the modern opinion research and partly for the 
statistical control of industrial production. In applications of statistics to 
medicine, biology and physics the break with tradition is less pronounced 
and there also the resistance to the mathematical methods of statistics was 
never as radical as in social sciences. Nowadays a special subcommittee 
under the German Committee of Norms is being occupied with 
standardizing terminology in mathematical statistics. 
    3. Fields of application 
    The essence of statistical investigations consists in 
    1) Defining the object of study 
    2) Establishing the features to be ascertained 
    3) Fixing the exact limits in time and space 
    4) Choosing the suitable objects 
    The appropriate statistical method is everywhere applicable when 
statements about whole collectives or totalities are needed so that it is not 
at all restricted to mass social phenomena. This conclusion is especially 
true in regard to the stochastic part of the theory of statistics.  
    The theory of probability emerged in the mid-17th century as some kind 
of a gentleman’s science. At first, its subject was only the estimation of 
the chances of winning in games of chance, then came, – and, incidentally, 
met with very little success, – the application to the evaluation of 
testimonies9.  
    Gradually, however, the stochastic point of view, in the closest possible 
manner connected with the statistical thought, fought its way in most 
various sciences: insurance and the appropriate part of population 
statistics, theory of astronomical, physical and geodetic measurements 
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(theory of errors), physics (kinetic theory of gases, thermodynamics, 
quantum mechanics, atomic theory), meteorology, biology, agronomy, 
anthropology and anthropometry, medicine, experimental psychology and 
psycho-physiology, linguistics and folklore, sociology, economic theory 
(econometrics), and various other parts of social sciences. One of the latest 
conquests made by the stochastic statistical methodology is the control of 
the quality of industrial production and the ensuing Wald sequential 
analysis. 
    Seen from this perspective, mathematical statistics certainly does not 
belong to social sciences and scientists working in that field and applying 
higher mathematical means are carrying on the study of fundamentals thus 
providing a theoretical foundation for a number of disciplines. However, 
the mass social phenomena possess some properties which distinguish 
them and make it desirable to develop a special applied theory of 
mathematical statistics.  
    First of all, these phenomena are special in that they are more or less 
intensively developing in time so that the obtained relative numbers, 
means and other mass indicators, are only stable for a short time and over 
a small region. In addition, the distributions of the masses are very 
complicated, often unsteady and of a mixed form and only rarely allow to 
assume that the parent distribution is normal which still is the dominant 
hypothesis in the modern theory of mathematical statistics. 
    The law of large numbers on which the theory of statistics is built, is not 
at all a purely mathematical theorem. According to Cournot and Chuprov, 
it can be derived in the following way: 
    1) For a sufficiently large number of trials, larger deviations of the 
observed relative frequency or mean from their expectations, which are 
calculated by issuing from the stochastic model in question, possess low 
probabilities. 
    2) Events with low probabilities occur seldom. 
    3) Therefore, the larger deviations are seldom. 
    Theorem 1) is a proposition of pure mathematics whereas 2) is after all 
founded on the collected evidence about the real events having occurred in 
our macroworld during several centuries10. However, the figures with 
which biologists and especially modern physicists are dealing, are 
incomparably larger than those that can be recorded for the objects of 
social statistics. […] Therefore, when a modern physicist applying 
statistics bases his theorem on the law of large numbers, the statistician 
working in social statistics really has, on the contrary, every reason to 
complain about the law of insufficiently large numbers.  
    It follows from the described difference that a number of modern 
methods of mathematical statistics and tests, that quite satisfyingly prove 
their worth in the field of natural sciences, are more or less useless when 
applied to mass social phenomena. On the other hand, various special 
methods can be developed only for social sciences. Taken together with 
mathematical statistics of natural sciences, the general stochastic structure 
persists as well as the possibility to assume, given a large statistical mass, 
an approximate normal distribution for at least the relative frequency and 
mean. 
    This circumstance concerning the mean is especially significant for the 
application of the representative method. On the contrary, the possibility 
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of applying the theory of small samples as well as the usual nowadays 
form of the analysis of variance and design of experiments remains 
doubtful. 
    4. Contents 
    Looking from the standpoint of the theory of insurance [?], the essential 
contents of the methodology of modern mathematical statistics in the field 
of mass social phenomena can be summarized as follows. 
    4.1. The theory of business statistics. It has to do with planning and 
execution of statistical observations as well as with treating and presenting 
the obtained data, demands sampling and the application of the theory of 
probability and is therefore included in mathematical statistics. 
    4.2. The doctrine of totalities. Following Fechner, we understand this 
theory as that part of the general statistical methodology which has as its 
subject the description of various indicators of the collective, for example 
relative numbers and means. Therefore, the theory of certain complicated 
measures of scatter and covariance (the Pearsonian moments, Fisherian 
cumulants, Thiele’s semi-invariants, the general theory of frequency 
distributions and their parameters, – skewness, excess, – as well as the 
formal theory of indices in the sense of Irving Fisher and Bortkiewicz), 
belong to the field of mathematical statistics when it is simply understood 
as the mathematically higher theory. 
    In this connection we may mention those various statistical 
constructions which attempt to meet the requirements of modern 
econometrics: the theory of empirical curves of supply and demand, 
problems of identification and aggregation etc. If, on the other hand, 
mathematical statistics is only understood as the stochastic part of the 
theory of statistics, then in any case the entire area of calculating the best 
or most effective11 measures of the collective will belong to it. This 
means, when deriving by sampling, such estimators which relatively least 
deviate from their respective expectations corresponding to the parent 
distribution, the deviations being measured by their variance. These 
problems directly belong to estimation. 
    4.3. Estimation. Bearing in mind the true and the estimated values of 
statistical figures, two cases ought to be distinguished first of all from each 
other.  
    1) The differences between them, or the errors of estimation are not 
seen to be random but result, for example, from the incompleteness of the 
material, poor investigation or deliberate falsification of the object. 
    2) The deviations may be considered random, as though obeying the 
assumptions of the stochastic theory of errors. 
   The first case, with which the German non-mathematical theorists deal 
almost exclusively, may still, if need be, considered mathematical when 
the statistical figures corrupted by error are connected one with another by 
addition, subtraction, multiplication or division because of the 
propagation of errors, a phenomenon which in Germany is not usually 
taken into account. […] 
    An experienced statistician who really understands the appropriate mass 
phenomena is usually able to estimate approximately the possible interval 
of error of the estimate and not rarely the sign of its error. It is therefore 
possible, under certain circumstances, to choose the method of calculation 
or the respective indicator in a manner that prevents the often occurring 
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snowballing of the relative error after each additional arithmetic operation 
[…]. 
    In the second case, when the errors are random, the application of partly 
involved methods of mathematical statistics is at once necessary. It ought 
to be pointed out, however, that the concept of randomness in 
mathematical statistics is stricter, i. e. defined in a more restricted way 
than according to its usual understanding in life12. […] 
    As to the choice of the most reliable or presumable estimate, this should 
be either the value which appears when the trials are repeated many (or 
infinitely many) times under the same arrangement and the appropriate 
arithmetic mean is taken, or the value which will occur then most often. 
Under certain additional assumptions the second alternative leads to the 
Fisherian likelihood concept. The principle of maximal likelihood in its 
proper sense amounts to choosing among various hypotheses or models 
that, which possesses, given the observed event or their combinations, the 
highest mathematical probability. 
    4.4. The study of causality. Among the various methods of such 
studies in mathematical statistics we should name 
    4.4.1. Various methods for establishing whether the difference 
between two numbers describing a collective or two distributions etc 
might still be only attributed to chance, or is it too large so that we ought 
to suspect an essential difference between the underlying complexes of 
causes. The appropriate methods of checking or tests are, according to 
Kendall, subdivided (not exhaustively) in the following way. 
    a) Tests for ascertaining whether the presumed value of a number can 
still be adopted as the true value of a parameter. The value 0 is often 
ascribed to the appropriate hypotheses (a null hypothesis as for example 
when judging a coefficient of correlation)13. 
    b) Tests of the agreement between a theoretically expected and an 
observed numerical series (the Pearsonian chi-squared test). 
    c) Tests of the homogeneity of two or more statistical masses or 
totalities. The opposite case concerns the discriminate analysis. 
    d) Tests for distinguishing between a random and a non-random 
appearance of a series of statistical numbers. This can be done, for 
example, by some measures or coefficients of autocorrelation. The tests 
themselves can be either parametric or distribution-free. In the first case 
the law of distribution of the parent population and its parameters are 
entirely or partly known. In the second case the derived tests do not 
depend on such assumptions. 
    4.4.2. Certain aspects of contingency and correlation theory. The 
modern theory attempts first of all to discover the causal, or functional 
dependence between the observed statistical number series, that is, the 
appropriate equation of regression and only applies the coefficients of 
correlation for estimating the influence of the disturbing random or non-
random remaining complex of causes. The analysis of variance and 
covariance pursues similar aims. 
    4.4.3. Various methods for decomposing or adjusting statistical 
series. Here, the aim is to decompose a given series into separate parts 
each reflecting the influence of certain groups of causes. 
    5. Significance 
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    Mathematical statistics is only a part of the general statistical theory. As 
such, its immediate goal is to develop mathematically higher or stochastic 
methods allowing to obtain more complete and precise knowledge from 
given numerical data as compared with elementary methods. We must not 
forget, however, that mathematical statistics has yet another not less 
important aim, to serve as a brake, to provide by proper tests timely 
warnings about the insufficiency of the data at hand for arriving at some 
important conclusion. 
 

Notes 
    1. I believe that Fourier, the Editor of the fundamental Recherches statistiques … 
published in 1821 – 1829, influenced Quetelet incomparably more than Laplace. 
    2. In this context, it was not Knapp but Markov with whom Chuprov 
corresponded in 1910 – 1917. 
    3. Galton was indeed a biologist, certainly not by education but since he successively 
studied heredity. 
    4. Even in Anderson’s context Fisher deserved much more attention. 
    5. The Russian school included many more representatives. 
    6. References such as Lexis (1879) are not included in the appended Bibliography. 
    7. Anderson only mentioned Abbe later and in another connection. 
    8. I do not understand this mild statement. Anderson himself (1954/1962, p. 3n) 
discussed various estimates of the number of exterminated Jews and mentioned unsere 
deutsche Schande (our German shame) which did not lessen even if it only amounted to 
four million. 
    9. But where is insurance (Halley, De Moivre)? A few lines above Anderson 
mentioned a gentleman’s science, but had not qualified his statement: from the very 
beginning (Pascal, Huygens) scientists had perceived there the emergence of a new 
branch of mathematics. 
    10. Yes, statisticians may insist that practice had justified the law of large numbers, but 
its rigorous mathematical proof is not therefore made superfluous. Then, sufficiency of 
data (cf. the last lines of Anderson’s paper) is estimated, among other possibilities, by the 
mathematical (certainly not by the statistical) law of large numbers. 
    11. Here and in § 4.4.1 effective bears no relation to effective estimators in the strict 
sense.  
    12. Statistics only attempts to distinguish randomness from necessity by special 
stochastic tests. 
    13. I would say, symbol 0 is ascribed etc. 
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From the History of the Combinatorial Analysis. 

 On the Development of the Method of Generating Functions  

until the Mid-19
th

 Century 

 
Istoria i Metodologia Estestvennykh Nauk, vol. 25, 1980, pp. 121 – 131  

 
    The methods of enumeration comprise an essential and earliest part of 
the combinatorial analysis. Main among them is the method of generating 
functions1 and a vast literature is devoted to its description and 
application, but, nevertheless, its origin and development are not yet 
sufficiently studied. It is usually held that that method goes back to Euler 
and Laplace, see for example Berge (1968, p. 6), although some authors of 
contributions on the history of probability (Seal 1949, p. 209/1977, p. 67) 
state that De Moivre was the first to apply it. 
    I am briefly outlying the prehistory, origin and development of the 
method of generating functions up to the mid-19th century from the 
standpoint of its applications to solving combinatorial problems in various 
branches of mathematics. I shall use a shorter, although not altogether 
precise expression, method of generating functions in the combinatorial 
analysis. 
    1. The prerequisites for creating the method of generating functions 
    The origin of that method was determined in a natural way by the 
accumulation and development of various methods of solving enumerative 
combinatorial problems which for a long time had been embracing almost 
the entire contents of combinatorics. Elementary combinatorial 
propositions are known to have emerged very long ago (Kutlumuratov 
1964, Chapter 8; Rybnikov 1972, Chapters 1 and 2); their appearance 
occurred approximately during the first stages of the forming of theoretical 
mathematical notions. For a long time combinatorial facts were being 
collected and applied thus making possible the establishment of the theory 
of combinatorics. During the 17th century, isolated combinatorial problems 
solved by particular methods became considered from a general 
theoretical point of view. The forming of combinatorics had been going on 
via many paths, and I am studying this process by following a typical 
example, i. e. by examining problems of counting the number of possible 
outcomes of a throw of several dice, an appropriate model for many 
combinatorial problems in probability. 
    The first known pertinent calculations belong to the 10th – 11th centuries 
(Maistrov 1967/1974, p. 15)2. From that time onward, many authors had 
been solving isolated problems on the possible number of one or another 
outcome of a throw of an ordinary die or two or three such dice. Galileo 
(date of his note is unknown) was apparently the first to provide a 
complete systematic solution of this problem3. His table (see Table 1)  
 

Table 1. Galileo (1718, posthumous/1962, p. 194) 

Outcomes of throws of three dice. Explanation in text 
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shows the possible number of points (columns) and the corresponding 
number of ways of the outcomes (lines). As Galileo noted, the second half 
of the Table (for the outcomes from 11 to 18) was “similar” to the first 
one. 
    Later, and independently from him, Huygens in 1657 had published a 
similar solution reproduced in Bernoulli (1713/1899, pt 1) who offered a 
better method of dealing with that problem by means of a special table 
which I adduce here in an abbreviated form (Table 2). He offered an  
 

Table 2. Jakob Bernoulli (1713/1899, p. 27) 

1) Outcomes of throws of dice. Number of points (columns) 

and number of dice (lines) 

2) Number of ways for various throws (columns) 

and number of dice (lines) 

Extreme right not reproduced 

 

 
 

example: 4 dice. 1 way to throw 4 (or 24) points, 4 ways to throw 5 (or 23) 
points etc. He constructed his table inductively proceeding from the case 
of (n – 1) to n dice, gave some explanation and noted the symmetry of his 
table. I stress that Bernoulli 
    1) Applied his table not only as a means for systematizing and keeping 
the results obtained, as was done by Galileo, but mainly for deriving them, 
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and in this respect it was similar, for example, to the generally known 
Pascal triangle.  
    2) The recurrence method of constructing the table exactly conforms to 
consecutively calculating the coefficients of the expansion of (x + x2 + … 
+ x6)n by issuing from the expansion of (x + x2 + … + x6)n–1 and only a 
step was left from the idea of a generating function. 
    Bernoulli however did not take it. His method made unnecessary a 
direct enumeration of the possible combinations, which the preceding 
authors had not been able to avoid; nevertheless, it demanded the 
compilation of a rather awkward table containing a whole mass of results 
even if only one number was needed. 
    Further progress could have been achieved by introducing generating 
functions since everything was already prepared both in the combinatorial 
and general mathematical sense: methods for solving of combinatorial 
problems were collected and developed, letter symbols were widely used, 
methods of dealing with formal power series promoted, the binomial 
theorem generalized. 
    2. The first applications of the method of generating functions 
    To the best of my knowledge, the earliest formulation of the idea of a 
generating function is due to Leibniz, to the founder of combinatorics as a 
separate science. In a manuscript of 1676 or 1700 we find the following 
reasoning (Knobloch 1973, p. 229): 
 
    The sought number of permutations of a given kind coincides with the 
value of the coefficient [of the term] of the same kind of a homogeneous 
polynomial raised to a [certain] power. If, for example, x = a + b + c + …, 
then x6 = a6 + 6a5b + 15a4b2 + … and 6 and 15 are the numbers of 
permutations of the kind of a5b and a4b2. 
 
    Montmort (1708/1713, p. 34) independently arrived at the same result: 
 
    The coefficients of some polynomial q raised to the power of p [(a + b + 
c + …)p with q terms – P. P.] coincide with the number of various 
combinations of some number p of dice having q faces; this is a new and 
very important theorem which I extensively apply […] to calculate the 
number of cases in dice [games] and to the theory of combinations and of 
polynomials raised to an arbitrary power. 
 
    Note that the “new and very important theorem” was indeed its general 
case of an arbitrary polynomial. Its particular case for the binomial was 
apparently known much earlier, and not only to Montmort, but, for 
example, to Arbuthnot (1712) and De Moivre (1712), see Sheynin (1973, 
p. 276). 
    In modern language the case dealt with applying the usual generating 
function of many arguments; Montmort did not go any further, he had not 
sufficiently grasped the possibilities of that method. He (p. 46) offered a 
general formula for the number of times p points to appear in a throw of d 
dice with f faces, obtaining it by a witty but awkward and laborious 
method. He wrote out all the possible combinations for three dice in a 
special table and noted the general regularities for that particular example. 



 146 

    Only 20 years later De Moivre (see § 3) provided a much simpler 
derivation of that formula by means of a generating function of one 
variable. And Montmort (p. 62) was not at all able to solve a more difficult 
problem of determining the number of cases for the outcome of p points 
when choosing three cards out of 30, of three decks containing 10 cards 
each numbered from 1 to 10, and only offered a method for compiling a 
list of every possible combination.  
    The solution of this problem follows as a particular case of the results 
achieved 30 years later by Euler who applied a generating function of two 
variables (§ 3). I note finally that the Leibniz – Montmort theorem can be 
applied both “to calculate the number of cases in dice, to the theory of 
combinations” (that is, as some analytical combinatorial method) and to 
the theory of “polynomials raised to an arbitrary power” (that is, as a 
combinatorial method applied to formal analytical calculations). 
    The first direction corresponds to the development of the method of 
generating functions. The second culminated by the end of the first quarter 
of the 19th century in the Hindenburg combinatorial school whose 
approach is known (Kutlumuratov 1964, Chapter 3; Rybnikov 1972, 
Chapter 8) to be special in that general formulas were derived enabling to 
avoid recursions when raising series to a power or inverting them, etc.  
    When searching for these formulas, Hindenburg applied combinatorial 
methods; when, for example, multiplying series, the coefficients of the 
product were derived as combinatorial items formed from the coefficients 
of the factors. Depending on the kind of series involved, those items 
occurred to be combinations of various types: with repetitions, having a 
definite sum, etc. I do not consider this second direction. 
    3. The further development and application of the method of 

generating functions in the 18
th

 century 
    De Moivre (1730, pp. 191 – 197) applied that method to prove the 
formula for obtaining p points in a throw of d dice with f faces. In modern 
notation it is 
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    De Moivre proved that the value of that expression coincided with the 
coefficient of r p–d in the expansion 
 

    1(1 ... )  = (1 ) (1 ) .f d f d dr r r r− −+ + + − −  

 
He then applied the binomial formula to both multipliers obtained. 
Interesting is his interpretation (p. 192) of the variable r: 
 
    Let us imagine a die with only one face marked 1, and as many faces 
marked 2 as there are units in r; as many marked 3 as units in r2 etc. 
 
De Moivre thus thought that r was a natural number although he never 
allowed for this restriction and considered r as an abstract algebraic 
symbol. 
    Following him, Simpson (Seal 1949, pp. 211 – 213/1977, pp. 69 – 71) 
applied the method of generating functions in the theory of errors for the 
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discrete case4 and made use of the similarity of that problem with studying 
a given outcome of a throw of a certain number of dice having an 
appropriate number of faces. 
    I ought to dwell especially on Euler’s Introduction (1748/1988, Chapter 
16). On 27 August 1740 Philippe Naudé the junior5 proposed two 
problems to Euler: 
 
    1) To find the number of different ways in which a given number can be 
obtained by summing a given number of unequal integral numbers. 
    2) To find the number of different ways in which a given number m can 
be partitioned in µ equal or unequal parts or integral numbers. 
 
    Euler (Bashmakova et al 1972, p. 108) gave an analytical solution in his 
reply of September of same year and his method of solution was based on 
applying generating functions. Namely, the number of ways for 
representing a number n as a sum of m different terms of the sequence α, 
β, γ, δ, … was sought as the coefficient of xnzm of the expansion of 
 
    (1 + xαz) (1 + xβz) (1 + xγz) (1 + xδz) … 
 
The sequence can be assumed to be that of natural numbers. Similarly, the 
number of ways in which n can be represented by m equal or unequal parts 
was the coefficient of the same product in the expansion of 
 
    (1 – xαz)–1 (1 – xβz)–1 (1 – xγz)–1 (1 – xδz)–1 … 
 
    If, however, the number of parts was not specified, the sought number 
of ways was equal to the coefficient of xn in the appropriate expansion 
where, as a preliminary, z = 1 was assumed. Euler’s results easily lead to 
the solution of the Montmort problem (§ 2): the sought number of ways is 
equal to the coefficient of xpz3 in the expansion of 
 
    [(1 + xz) (1 + x2z) … (1 + x10z)]3. 
 
    Euler applied his method for proving a series of theorems on 
partitioning of numbers into summands and compiled appropriate tables 
showing the number of the partitions. He also indicated the connection 
between the numbers in his tables and figurate numbers, but he did not 
comment on the essence of the variables x and z. Indirectly, he assumed 
them to be formal symbols with defined formal operations on them 
(addition, multiplication etc) possessing natural algebraic properties. 
Issues concerning the convergence of series were here of no consequence. 
    And so, Euler apparently arrived at the method of generating functions 
independently from his predecessors, essentially developed it, and 
systematically applied it for solving rather difficult and previously 
unyielding problems. 
    Lagrange (1776) applied the method of generating functions to the 
theory of errors and made use of such functions not only, like Simpson, of 
one variable, but also, in Euler’s spirit, of two variables as well. With the 
exception of the Newton binomial theorem, he had not referred to his 
predecessors but he very often wrote as is known. Like Simpson, he made 
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use of the similarity with throwing dice, and the style of his reasoning is 
essentially Eulerian. The appropriate contributions of Euler and Simpson 
were then already published, and we can be almost sure that he was 
acquainted with them. Apparently novel (1776/1868, p. 209) was the 
application of a formal differentiation for determining the coefficients of 
expansions. I note that Euler (1788) commented on the Lagrange 
contribution but did not say anything about the connection of that memoir 
with his own previous studies (see above)6. 
    During the same period other mathematicians had also applied the 
method of generating functions. Thus, Lambert (1771) made use of 
generating functions 
 

    
1 1

,  
1 1

n n

n n
n n

x nx

x x

∞ ∞

= =− −
∑ ∑  

 
for determining the number of divisors of a given n and their sum 
respectively. 
    From this and the preceding section we may infer that  
    1) The method of generating functions had originated long before 
Laplace (1782) introduced the term itself, and essentially earlier than the 
appearance of the works of Euler and even De Moivre (1712). 
    2) During the 18th century, that method had been applied rather often 
and was developed to a comparatively high level. 
    4. The Laplacean theory of generating functions 
    Laplace first formulated his theory in his memoir (1782). He 
(1782/1894, p. 1) began it by stating that the theory of series was a most 
essential subject of analysis since all the problems which are reduced to 
approximations and therefore almost all applications of mathematics to 
nature depend on it. He proposed a method for dealing with series  
 
    Based on considering that which I call generating functions. It is a new 
kind of calculus which might by called calculus of generating functions. 
 
    Laplace went on to indicate that it was possible to apply that calculus 
for interpolating series, integrating difference and differential equations as 
well as for the “analysis of chances”. And here is his definition (Ibidem, 
pp. 5 – 6): 
 
    Let yx be some function of x; form an infinite series 
 

2 1
0 1 2 1     ... +  ... + x x

x xy y t y t y t y t y t+ ∞

+ ∞+ + + + +  

 
and designate its sum, or what is reduced to the same, the function whose 
expansion forms that series, by u. Then that function will be what I call the 
generating function of the variable yx. Thus, a generating function of some 
variable yx is some function of t, and, after being expanded into a power 
series of t, has this variable yx as the coefficient of tx. Similarly, the 
variable corresponding to some generating function is the coefficient of tx 
in the expansion of that function in powers of t. 
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    He defined the generating function of two or more arguments, that is, 
for sequences with many indices, in a similar way and considered the 
transformations of that function when the variable yx was being 
transformed. I adduce his results in a tabular form. 
 

Table 3. Laplace (1782/1894, pp. 5 – 6) 

Dictionary of the generating function for different variables 

 

                      Variable                                           Generating function 

 

 
 
    It is not difficult to convince ourselves in that the variables in the left 
column are the coefficients of tx in the corresponding expressions of the 
right column.  
    Laplace stated that those relations were also valid for fractional and 
even irrational values of i, s and r. He offered no explanation, but 
apparently for non-integral i, s, r the last expression in the left column 
should be understood as the corresponding term in the development, if this 
is possible, of the right side. He mostly devoted his memoir to the theory 
of series.  
    In his lecture On probability Laplace (1795/1912, pp.154 and 157 in 
1912) explained how he understood the subject of the theory of generating 
functions and formulated a new and wider interpretation of the term 
calculus of generating functions: 
 
    The subject of this theory is the correspondence between the coefficients 
of the powers of some indefinite variable in the expansion of some function 
of that variable and the function itself. 
 
    The theory of generating functions and the theory of approximation for 
the formulas which are functions of very large numbers7 may be 
considered as two branches of a single calculus which I call the calculus 
of generating functions. 
 
    Then, Laplace (1809/1912, p. 178), in a section of that memoir called 
On the calculus of generating functions, wrote: 
 
    The subject of that calculus is the reduction of all the operations 
touching differences, and especially integration of equations in finite and 
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partial differences, to simple expansions of functions. This is the main 
idea. 
 
    Later, Laplace (1811/1898, p. 360), after repeating his earlier 
pronouncements, dwelt especially on the application of generating 
functions to the theory of probability: 
 
    The calculus of generating functions is the basis of some theory of 
probability which I intend to publish soon. Problems concerning random 
events are most often easily reduced to difference equations, and the first 
branch of that calculus provides their most general and simplest solutions. 
 
    Laplace included all his studies of generating functions in his Théorie 
analytique des probabilités (1812); see Sheynin (1973) for considering to 
what extent had the generating functions become the basis of his theory of 
probability. 
    From the viewpoint of the general combinatorial theory, the 
significance of the Laplacean theory of generating functions consists in 
that he was the first to formulate explicitly the concept of a generating 
function, considered some of its general properties, introduced the 
appropriate terminology and a symbolic machinery. His work concluded 
the first stage of the development of the method of generating functions, 
but 
    1) He did not aim at developing that method as a means for solving 
combinatorial problems. He considered his theory almost as a basis for the 
entire mathematical analysis (and, later, for the theory of probability) and 
only assigned an illustrative role to its combinatorial applications. 
    2) As formulated by him, the theory of generating functions was very 
vulnerable: in mathematical analysis, the variable t could not certainly be 
anymore considered as a purely abstract symbol. The convergence of the 
appropriate series ought to be studied which Laplace had not done. 
    Wronski (1819), Laplace’s junior contemporary, devoted an entire book 
to criticizing the Laplacean theory of generating functions. He correctly, 
for those times, indicated that the knowledge of series was insufficient and 
that the case of negative, fractional and irrational values of x was still 
vaguer and unjustified, see the Laplacean definition of the generating 
function. However, as Wronski argued, a theory claiming to form the basis 
of the entire analysis ought to allow maximal generality. As to specific 
discrete combinatorial problems solved by means of generating functions, 
Wronski considered them too unimportant for analysis and mathematics in 
general. 
    5. On the method of generating functions in the combinatorial 

analysis in the beginning and mid-19
th

 century 
    The algebra of usual generating functions of one variable is named after 
Cauchy (Bell 1923; Riordan 1958; Rybnikov 1972). These authors 
apparently bear in mind his theorems on the convergence of sums and 
products of series (Cauchy 1821/1897, p. 140): 
 
    Theorem 3. Suppose that at some value of x two series8 
 
    a0, a1x, a2x

2, …, anx
n, …; b0, b1x, b2x

2, …, bnx
n, … 
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converge and that their sums are S1 and S2. Under these conditions 
 
    a0 + b0, (a1 + b1)x, (a2 + b2)x

2, …, (an + bn)x
n, …  

 
will be a new convergent series and its sum will be (S1 + S2). 
    Theorem 4. Let the conditions of the previous theorem be valid.[…] 
Then 
 
    a0b0, (a0b1 + a1b0)x, (a0b2 + a1b1 + a2b0)x

2, …,  
    (a0bn + a1bn–1 + … + anb0)x

n, … 
 
will be a new convergent series and its sum will be S1S2. 

 
    I ought to add that these theorems are obviously related to the issue of 
isomorphism between the algebra of sequences and of their generating 
functions; Cauchy, however, did not construct any algebra of generating 
functions, and, although he applied them to a certain extent, did not even 
make use of the appropriate term. For example (Ibidem, p. 434):  
 
    The coefficients of consecutive powers of x in the expansions of the 
expressions 
 
    (1 + x)–2, (1 + x)–3, (1 + x)–4, … 
 
are called figurate numbers du premier, du second, du troisième ordre etc. 
 
In other words, these expressions are generating functions of the figurate 
numbers mentioned.  
    Application of the method of generating functions is also seen in the 
writings of other mathematicians of the 19th century. Thus, Abel (?/1839, 
p. 224)9 referred to Euler and effectively wrote out the exponential 
generating function for the Bernoulli numbers: 
 
    If we expand the function [1 – (u/2) cot(u/2)] into a series of integral 
powers of u, and set 
 

    
2 4 2

1 21 cot  ... +  + ...,
2 2 2 2 3 4 2 3 4 ... 2

n

n

u u u u u
A A A

n
− = + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

 
the coefficients A1, A2, A3, …, as is known, will be the Bernoulli numbers. 
 
    And in one of his posthumous memoirs Abel (?/1839, p. 77) mentioned 
the term generating function although in respect to other matters:  
 
    The generating function φ is connected with the defining function f by 
the integral transformation 
 

    ...φ( ; ; ;...) ( ; ; ;...) ...xu yv zpx y z e f u v p dudvdp+ + += ∫  
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    Legendre (1830) briefly expounded Euler’s results from the Introductio 
concerning the partition of numbers into summands derived by means of 
generating functions. He did not apply the term itself. 
    Buniakovky (1846) systematically applied generating functions but not  
the term itself, and only mentioned their Laplacean theory (and his 
contribution to the theory of probability in general) in a historical essay at 
the very end of his book (p. 273) and abstained from any comment. 
    The further development of the method of generating functions in 
combinatorial analysis began in the mid-19th century. It was essentially 
stimulated by the application of the methods of the theory of 
decomposition to enumerating invariants and covariants in the theory of 
algebraic forms, especially in the works of Cayley and Sylvester. 
    I am only considering the very beginning of that process by following 
Cayley. His works are very indicative in this respect and in addition they 
strongly influenced the further development of the theory of generating 
functions in combinatorial analysis. In particular, we find the following 
reasoning in his work (ca. 1856/1889, p. 260): 
 
    The number of terms of the degree θ and of the weight q is obviously 
equal to the number of ways in which q can be made up as a sum of θ 
terms with the elements (0, 1, 2, …, m), a number which is equal to the 
coefficient of xqzθ in the development of 
 
    [(1 – z)(1 – xz)(1 – x2z) … (1 – xmz)]–1; 
 
and the number of the asyzygetic [independent] covariants of any 
particular degree for the quantic (x; y)m can therefore be determined by 
means of this development. In the case of a cubic, for example, the 
function to be developed is [equal to the previous fraction with m = 3], 
which is equal to 
 
    1 + z(1 + x + x2 + x3) + z2(1 + x + 2x2 + 2x3 + 2x4 + 2x5 + x6) + … 
 
    His other contribution of about the same year (ca. 1855/1889, p. 235) 
was specifically devoted to the partition of numbers: 
 
    I propose to discuss the following problem: To find in how many ways a 
number q can be made up of the elements a, b, c, … each element being 
repeatable an indefinite number of times. The required number of 
partitions is represented by the notation 
 
    P(a; b; c; …)q, 
 
and we have, as is well known, 
 
    P(a; b; c; …)q = coefficient xq in [(1 – xa)(1 – xb)(1 – xc) …]–1 
 
where the expansion is to be effected in ascending powers of x. 
 
    Cayley then expounds his method of solution which included the 
decomposition into partial fractions. 
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    A little later he also applied the method of generating functions to 
enumerative problems of the not yet existing graph theory, namely for 
enumerating trees which is similar to enumerating decompositions. I 
consider the first of his relevant writings (1857/1890). He introduced trees 
for carrying out analytic calculations. Suppose that there are operators 
 
    , , ,... of the type of ...P Q R A x B y∂ + ∂ +  

 
where A, B, … are functions of x, y, …, i. e. operands (operandators, as 
Caley called them) and the operators are also operands. Let U be a usual 
operand; it is easy to show that  
 
    QPU = (QxP)U + (QP)U. 
 
    However, it is rather difficult to derive a similar expression for RQPU. 
Caley indicated the action of the operands by marked trees although he did 
not formally define tree, root, branches, etc, he thought that their meaning 
is obvious given the figures appended.  
 

  
 
The problem was thus reduced to constructing the trees, but for being sure 
that all of them are constructed, a method for determining their number 
beforehand is needed.  
    Let An be their number having n branches. Cayley compiled an equation 
for the generating function 
 

   31 21 2 3 4 2 3 4
1 2 3 4(1 ) (1 ) (1 ) (1 ) ... 1 ...AA Ax x x x A x A x A x A x−− −−− − − − = + + + + +  

 
and derived An for n = 1, 2, …, 10. And, in the same way, he found the 
number of trees Br with r free branches from the equation for the 
generating function 
 

32 41 2 3 4 2 3 4
2 3 4(1 ) (1 ) (1 ) (1 ) ... 1 2 2 2 ...BB Bx x x x x B x B x B x−− −−− − − − = + + + + +  

 
    Finally, Cayley indicated that Sylvester’s studies in differential calculus 
touching on substitution of independent variables had prompted him to 
consider the explicated theory of trees. Note that for a long time he had 
not been using the term generating function. Later he (Cayley 1873 – 
1874/1896, p. 188) did use it and wrote out the (exponential) generating 
function 
 

    

2/2 /4

1 2  ...  ... .
2 1 2  ... 1

n x x

n

x x e
u u x u u

n x

+
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    Caley also discovered ever more applications for his theory of trees. 
Here is a small extract (Cayley ca. 1875/1896, p. 427): 
 
    As regards the paraffins CnH2n+2, we have n atoms of carbon connected 
by n – 1 bands, under the restriction that from each carbon-atom there 
proceed at most 4 bands (or […] we have n knots connected by n – 1 
branches), in the form of a tree; for instance, n = 5, such forms (and only 
such forms) are 
 

 
 
    The numbers are those of the hydrogen atoms connected with the 
appropriate atom of carbon. In the same paper Caley applied the method 
of generating functions and the term itself denoting it by GF. 
    And so, we see that the further development of the method of 
generating functions as a means for solving combinatorial problems was 
called forth by the appearance of new fields of application. And in this 
connection we ought to stress the role of the graph theory whose 
enumerative problems have been a wide area for such applications and, at 
the same time, a powerful stimulus for the further development of the 
theory of generating function. It is opportune to note that the classical 
Polya theorem of that theory of generating functions is also a classical 
theorem of the graph theory (and was formulated for solving its problems). 
 

Notes 
    1. The usual generating function of a sequence a0, a1, …, an, … is the formal sum 
 
    A(t) = a0 + a1t + … + an t

n + … 
 
    An exponential generating function of the same sequence (Riordan 1958, p. 19) is the 
formal sum 
 
    E(t) = a0 + a1t + … + an t

n/n! + … 
 
    From the very outset of their writings, many authors consider t a real or complex 
variable and specify that the appropriate series are convergent. P. P. 
    2. Maistrov did not substantiate this statement. 
    3. English translation of his note: Galilei (1718, posthumous/1962). I copied Table 1 
from that source rather than from Maistrov (as the author did). 
    4. The theory of errors did not exist then (and neither in 1776, see below the author’s 
discussion of the work of Lagrange). Next year (in 1757) Simpson in a general analytical 
way considered the limiting continuous case. 
    5. The author quoted from F. Rudio’s comment inserted on p. 310 of the Russian 
edition of 1961 of Euler’s Introductio. 
    6. Lagrange’s memoir contained findings of general mathematical interest. He was the 
first to use integral transformations, derived (in Problem 6) the equation of the 
multivariate normal distribution, introduced the term courbe de la facilité des erreurs and 
anticipated characteristic functions by considering a “generating integral” (Seal 1949, p. 
214/1977, p. 72; Freudenthal & Steiner 1966, p. 170; Sheynin 1973, § 2). 
    7. These were functions of the type 
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    (1 )p qx x dx−∫  

 
where p and q were large numbers (e. g., the number of boys and girls born in France 
during many years) and the limits of integration were defined by the Bayesian approach 
to problems in probability. 
    8. As written here and below, the “series” are actually sequences.  
    9. In many cases, here also, the author did not provide the date of the original 
publication. Abel’s Oeuvres Complètes (1839) were reprinted in 1881, perhaps with some 
change, and I was unable to find the appropriate place there. The same happened in the 
second instance (see below). 
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XV 

Bierman K.-R. 

 

Problems of the Genoese Lotto  

in the Works of Classics of the Theory of Probability 

 
Istoriko-Matematicheskie Issledovania, vol. 10, 1957, pp. 649 – 670 

 
    1. Among problems occurring in games of chance, such as games of 
dice, heads or tails, cards, and considered in fundamental works of the 
classics of the theory of probability (see e. g., Biermann 1955), those 
concerning numerical lotteries had very soon occupied a certain place. The 
game of chance described here had first been called lotto whereas lottery 
meant the drawing of lots for a determined number of winners among an 
established number of participating tickets. Gradually, however, it became 
usual also to call a numerical lotto a numerical lottery, and I do not 
distinguish these two terms. 
    The exact date of the origin of the numerical lotto is not known; it is 
only certain that even before 1620, which is believed to be the year when 
that game had first occurred (Cantor 1892/1900, p. 336; Wahschauer 
1885, p. 7)1, bets were being made in Italy, the cradle of the lotto, during 
elections and other events attracting the attention of the public.  
    Lotto was first mentioned in a document on February 9, 1448 (Weidlich 
1922)2. In the second half of the 16th century the arrangement of betting in 
Genoa (sponsiones Genuenses) became a business of sorts. The occasion 
for them was the yearly elections by lot of five out of the hundred senators 
to the Serenissimo Collegio (The Highest Board)3. The gambler named the 
senators who, in his opinion, will be thus elected, and, if one or several of 
them were indeed 
chosen, he got a firmly established sum, a multiple of his stake; otherwise, 
he lost his money. 
    In 1620 the 100 names of senators were replaced by numbers from 1 to 
90, and that game became known as the Genoese lotto. At first, the rich 
merchants (mercatores opulenti) had been carrying out the lotto; soon, 
however, the state had perceived that source of revenue and took over the 
business. After 1620 the numerical lotto had spread extremely widely over 
Italy; for details see Weidlich (1922), and after some time it also became 
rooted beyond that country4. 
    On August 18, 1751, a concession of the first numerical lotto was 
granted in Vienna (Sieghart 1898, p. 11). In 1757 that lotto was introduced 
in Paris, on February 8, 1763, in Berlin, and by 1771 there already were 26 
numerical lottos in Germany (Warschauer 1885, p. 12). 
    At the same time, opposition against that game had been strengthening. 
Thus (Rodotà 1769, p. 27), the origin of its “already unquenchable fire” 
was attributed to the pernicious talent of a certain arithmetician whose 
name and nationality remained unknown. In many localities life became 
centred around the lotto. Thus, in 1795 (Warschauer 1912, p. 59ff) the 
game rush in Luckenwalde5 was so intensive, that the populace did 
nothing except interpreting and discussing the lotto numbers. Drawing on 
an official source, that author reports that wives had been getting into debt 
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behind their husbands’ back so as to buy lotto tickets whereas men spent 
money and excused themselves by stating that the Holy Spirit had 
appeared to them at night and wrote the next winning numbers on the wall. 
    A special weekly called Lottologie had been put out in Hamburg in 
1770 and 1771 (cf. Endemann 1899, p. 75). 
    Pope Benedict XIII, 1649 – 1730, forbade Catholics from participating 
in lottos, but his successor, Pope Clement XII, 1652 – 1740, established 
his own numerical lottery. In spite of the spread of the game rush, 
common people understood the essence of lotteries. In Italy, it was the talk 
of the town (Sieghart 1898, p. 5) that the devil carried off a city counsellor 
Benedetto Gentile from Genoi for having invented the lotto.  
    In Berlin, a song was on everyone’s lips (Warschauer 1885, p. 61): 
 
    Nature provided the East with the plague, 
    Never is it unjust, 
    So it provided numerical lotto  
    To the West. 
 
In 1810, in Preussia, the numerical lotto was closed down after 799 
drawings (Warschauer 1912, p. 52), and in 1861 the last German 
numerical lotto in Bavaria was abolished. The same occurred in Hungary 
in 18976, but it continued to exist in Italy and Austria. Under new 
conditions, numerical lottos have recently been established in Germany 
anew, two of them in Berlin and one, very popular, in the German 
Democratic Republic. There, about 15 mln indications of future winning 
numbers are made weekly. 
    2. It is necessary to distinguish between three different types of 
conditions of the game as described below. Note, however, that my 
mathematical study only concerned the first two of them, whereas the third 
one is mentioned for the sake of comprehensiveness the more so since it is 
being applied until now. 
    A. According to the initial conditions, a gambler bets on five chosen by 
him candidates or numbers. His winnings depend on whether his choice 
coincides with the drawings on one or several (not more than five) 
occasions and on the established beforehand multiplier of the stake which 
is the greater the more coincidences he scores. Nothing and nowhere was 
it stated about restricting the number of indications made by a single 
gambler. Such bets were common during the first period of the Italian 
lottery. 
    B. Later, the following rules, roughly speaking, had been established 
everywhere. A gambler may choose one or several of the following 
versions of indications. Participation in a certain version did not prevent 
him from taking part in other ones. 
    B1. He states that his chosen number will be included in the five to be 
drawn. This version of the game was called, in Italian, estrado simplice 
(simple extraction; French: extrait simple; German: einfacher Auszug, or 
unbestimmter Auszug or Ruf). 
    B2. The conditions are as above, but the gambler also names the place 
of his chosen number among the five to be drawn. Suppose he chooses 3 
and the fifth place, and numbers 4, 28, 15, 88 and 63 are drawn, – he wins. 
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This version was called estrado determinato, extrait déterminé, 
bestimmter Auszug or Ruf, respectively, and also Nominate. 
    B3. The gambler chooses two numbers. In Latin, this version is called 
ambo (both); in France, there also existed an ambo déterminés, i. e., a 
fixed ambo. 
    B4, B5, B6. Three, four or five numbers were chosen (terno, quaterno, 
quinterno). Not each country allowed the last two mentioned versions, but 
the least possible stake was established everywhere just as in some places 
the maximal stake. The winnings had been fixed, roughly speaking, as 
follows 
 

Table of Winnings 

    Versions of participation                             Times the stake 
    Estrado simplice                                                      14 – 15 
    Estrado determinato                                                70 – 75  
    Ambo                                                                    240 – 270  
    Terno                                                                  4,800 – 5,500 
    Quaterno                                                          60, 000 – 75,000 
    Quinterno                                                     1,000,000 
 
    I have not included either the extremely low winnings, as those, for 
example, in the Papal State, or the extremely high winnings in Sardinia7. 
    C. In the abovementioned contemporary German numerical lotteries the 
gambler indicates the five numbers to be drawn out of 90 and is free to 
repeat his indications without any limit. So far, the condition is the same 
as it was in the original lottery. Other conditions are, however, different in 
principle. The stake for an indication is now not higher than 1/2 of the 
German mark; there is no established rate of taxation so that the winnings 
depend on the number of indications. They are distributed according to 
four classes from the first to the fourth: coincidences of all five numbers; 
of four, three, or two numbers and there is no risk for the business. 
Keeping to the boundaries of my subject, I am not discussing the 
distinction existing now between the lotteries in Germany and I do not 
provide any arguments in favour of them or against the rules which had 
existed in the past.  
    3. Now I go over to the studies concerning the Genoise lotto made by 
the classics of the theory of probability. In the first place, the work of 
Niklaus I Bernoulli, 1687 – 1759 (1709)8 should be named since he 
touches there, in particular, on the “extremely celebrated Genoise lotto”. 
He begins by stating the conditions A: the gambler indicates five from the 
100 candidates and deposits his stake. After the drawing, if one or more of 
his chosen senators is/are elected, he receives his winnings from the rich 
merchants and he wins the more the more coincidences occurs.  
    Niklaus determines the just winnings in the following way. Suppose 
that the stake is a (= 1, as he assumes), gi, i = 1, 2, …, 5 are the just 
winnings in case of one, two, …, five coincidences, e0 is the number of 
cases with no coincidences, and ei, i = 1, 2, …, 5 are the number of cases 
in which there are 1, 2, …, 5 coincidences. Thus, there are e5 cases in 
which someone can win g5, e4 cases in which someone can win g4, etc.  
and e0 cases in which there is no winner at all. The [just] expected winning 
is therefore 
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                                                       (1)  

 
    Bernoulli then sets 
 
    e5 + e4 + … + e1 + e0 = e.                                                                   (2) 
 
    The values of e5 etc, as he indicates, are calculated “according to the 
known rules of combinations” but he does not directly indicate how. He 
knew those rules since his uncle had provided them (1713). Indeed, in pt. 
29 we find the solution of this problem: Combinations are formed from n 
elements, r at a time, without repetition. Among the elements m are 
somehow marked and required is the number of combinations containing p 

and only p elements out of m. His answer was .p r p
m n mC C −

−  In our case, n = 

100, m = 5, r = 5 and p = 0, 1, 2, …, 5. Therefore, 
 

    55 :  p e= = 5 0
5 95 1,C C =  4 1

4 5 954 :  475,p e C C= = =  

    3 2
3 5 953:  44,650,p e C C= = =  2 3

2 5 952 :  1,384,150,p e C C= = =  

    1 4
1 5 951:  15,917,725,p e C C= = =  0 5

0 5 950 :  57,940,519.p e C C= = =  

 

    And, according to equality (2), e = 75,287,520. I check: 5
100.e C=  

Formula (1) provides 
 
    e5g5 + e4g4 + … + e1g1 + e00 = e5a + e4a + … + e1a + e0a 
 
and, since a = 1, equality (2) leads to the left side being equal to e. 
    The winning ought to be proportional to the number of coincidences 
achieved, so that g5 is the maximal, and g1, the minimal winning. If g5 is 
unknown, the other gi can be expressed in the following way: 
 

    e5g5 = e4g4 = … = e1g1; 5e5g5 = e, 5 5
4

4

 etc.
e g

g
e

=                         (3) 

 
    Therefore 
 

    5 5 5 5

5

75, 287,520
15,057,504  since 1.

5 5 1

e
g e g e

e
= = = = =

⋅
 

 
[The author explains in detail the calculation of g4, g3, g2 and g1 getting 
 
    g4 = 31,7004/475, g3 = 3375,227/22,325 “rather than 6,227 [in the 
fractional part ] as N. Bernoulli”, g2 = 10608,002/692,075,  
g1 = 15,057,504/15, 917,725 of the stake.] 
 
    Niklaus then applies his results to show how the merchants carrying out 
the Genoise lottery had been duping the public: as a rule, they paid out 
10,000, 1,500, 300, 10 and 1 gold coin(s) for five, four, …, one 
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coincidence respectively10. He substituted the derived magnitudes e5, e4, 
etc and g5, g4, etc as established by the merchants into equation (1) and got 
[…] 2,925,115/5,019,168 of the unit stake, i. e., instead of the gold coin. 
The merchants had thus been misappropriating [the difference]. 
    Laplace (1814/1995), 1749 – 1827, another classic of the theory of 
probability, also calculated the just winnings in his celebrated, and, as we 
call it nowadays, popular scientific exposition of the principles and results 
of the theory. He assumed a lottery with 90 numbers carried out under 
conditions B and concluded that the just winnings were 
 
    18, 400.5, 11,478, 511,038 and 43,949,268 
 
times the stake for the versions B1, B3, B4 and B5 respectively. 
    His explanation was very concise; as throughout the Essai, he avoided 
formulas which never simplifies the exposition and does not invariably 
assist its understanding, so that I describe his considerations (1814/1995, 
pp. 15 – 16) in a mathematical language. 
    For r = 1, 2, …, 5 there can be  
 

    90 90,  4,005,  117,480,  2,555,190,  43,949,268rC =  

 
combinations for the number of estrado simplice, ambos, ternos, quaternos 
and quinternos respectively11. Out of the five numbers drawn there are, 
respectively, 
 

    5 5,10,10,5,1 combinations.rC =  

 
    Calculating the ratio of the favourable cases to all the possible ones, we 
get, according to the Laplace definition of probability, the following 
probabilities of the just winnings, and, at the same time, the just winnings 
themselves [for a unit stake]: 
 
    1/18, 1/400.5, 11/11,748, 1/511, 038, 1/43,949,268. 
 
Laplace (1814/1995, p. 92 and 93) returned to the numerical lottery and 
the disadvantages of the gamblers’ ratio of their chances to those of the 
lottery holders12. There also he mentions the widespread delusions: 
 
    When one number has not been drawn for a long time in the French 
lottery, the mob is eager to bet on it. […] Under an illusion contrary to the 
preceding ones, one may look in previous draws of the French lottery for 
the numbers that have most often been drawn to form combinations on 
which one believes one’s stake may advantageously be placed. […] I have 
analysed several of these drawings and I have constantly found that they 
fall within limits about which, under the supposition that all numbers are 
equally likely to be drawn, there can be no doubt. 
 
    Another series of problems concerning the numerical lotto is connected 
with determining the probability of two or more consecutive numbers (of a 
sequence) in the same drawing. For example, 17, 3, 76, 35, 16 include a 
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sequence of two numbers, 16 and 17; or, if 61, 62 and 63 are among the 
five numbers, they form a sequence of three numbers etc. 
    Euler, 1707 – 1783, investigated that problem, very complicated, as he 
(1767) himself remarked, because it involved greatest difficulties. By that 
time, only two years had passed since the number lottery was established 
in Berlin, but its conditions were generally known so that he did not 
describe them. 
    Euler began by calculating with r = 2, went on until r = 6, provided the 
general solution and applied it for the case of r = 7. He also gave a 
numerical answer for r = 5, i. e., for the numerical lottery itself. Here are 
the general solutions inductively derived by Euler and the pertinent 
numerical values for the lotto. 
    The probability that no sequence will occur among the r numbers of a 
drawing is 
 

    1( )( 1)( 2)...( 2 2)
.

( 1)( 2)...( 2)

r
n r

s r
n

Cn r n r n r n r
P

n n n n r C
− +− − − − − − +

= =
− − − +

 

 
404,957

For 90 and  = 5 
511,038sn r P= =  

 
and the probability of at least one sequence is  
 
    Pc = 1 – Ps.                                                                                       (5) 
 
    The probability that among the r numbers of a drawing there will be α 
sequences of a numbers, β and γ sequences of b and c numbers etc, is, as 
Euler stated, introducing the notation α(a), β(b), γ(c), etc, 
 

    
( 1)( )( 1)...( 2)

: ,          (4)
α!β!γ!...

r
n

n r n r n r n r k
P C

− + − − − − − +
=  

 
    k = α + β + γ + …, α(a) + β(b) + γ(c) + … = r. 
 
    It followed that [the author provides a table of the number of various 
sequences and their probabilities. The sequences are 1(5); 1(4) + 1(1); 1(3) 
+ 1(2); 1(3) + 2(1); 2(2) + 1(1); 1(2) + 3(1); and 5(1).]. 
    For explaining that table I adduce calculations for case 4, i. e. for 1(3) + 
2(1), which means one sequence of 3 numbers and 2 isolated numbers, for 
example, 5, 6, 7, 65, 83; the order of these numbers is of no consequence. 
Here α = 1, β = 2 and k = 3. Substituting these values in formula (4), we 
get 
 

    
86 85 84 1 2 3 4 5 3,570

.
1 2 90 89 88 87 86 511,038

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ =

⋅ ⋅ ⋅ ⋅ ⋅
 

 
    And the sum of all such probabilities for the appearance of at least 1(2), 
of one sequence of two numbers, is 106,081/511,058 which is equal to Pc, 
see formula (5).  
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    [The author similarly deduces the probabilities of the occurrence of at 
least one sequence 2(2), 1(3), 1(4) or 1(5).] 
    We ought to explain why exactly cases 1 – 7 correspond to r = 5. The 
question is obviously identical with the one concerning the number of 
possible partitions of number 5 into natural summands and Euler indicates 
his “studies of partitioning the numbers”.  
    It is opportune to mention Jakob Bernoulli’s Ars Conjectandi where the 
appropriate rule was already provided in pt. 1 [in his commentary to 
Huygens’ Proposition 9]. It adjoins there the considerations of Huygens on 
the number of possible combinations appearing in a definite result of a 
throw of dice.  
    It is sufficient to formulate the problem as follows: In how many ways 
can we obtain 5 points in a throw of 1 die, or 2, …, or 5 dice without 
distinguishing between them? Following Bernoulli’s indication, we find 
that there are only seven such possibilities [for three dice see Bernoulli 
(1713/1899, Table on p. 27]. 
    Then Euler examines the number of possibilities occurring among all 
the types of sequences and here is his answer: 
 

    
( 1)( 2)...( 1) ( 1)( )( 1)...( 2)

.
1 2 ... ( 1) 1 2 3 ...

r r r k n r n r n r n r k
A

k k

− − − + − + − − − − − +
= ⋅

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
 

 
    For the numerical lottery we have 
    a) If k = 1, i. e., for 1(5), there are 86 possibilities of drawing 5 
consecutive numbers out of 90. 
    b) k = 2, i. e., 1(4) + 1(1) and 1(3) + 1(2): A = 14,620 possibilities. 
    c) k = 3, i. e., 1(3) + 2(1) and 2(2) + 1(1); A = 614,040 possibilities. 
    d) k = 4, i. e., 1(2) + 3(1):                       A = 8,494,220 possibilities. 
    e) k = 5, i. e., 5(1):                                A = 34,826,302 possibilities. 
    Thus all the possibilities for the case of combinations of 90 elements 5 
at a time are exhausted. If the calculations are correct, the sum of the 
possibilities for all the sequences from k = 1 to k = r = 5 should be equal  

to 43,949, 268. Indeed, 

    86 + 14,620 + 614,040 +  34,826,302 + 43,949,268 = 43,949,268.

r
nC =

 

    In the introduction to his memoir Euler indicated that the occurrence of 
numbers 90 and 1 in one and the same series of drawings might be 
considered as a sequence of two numbers; then, however, he adds: “ It is 
more natural to exclude [such cases] and only keep to the natural order of 
numbers”. 
    Johann III Bernoulli, 1744 – 1807, and N. de Beguelin, 1714 – 1789, 
considered the probability of the appearance of sequences also if 90 and 1 
were thought to constitute a sequence. Beguelin (1767, p. 233) remarked: 
 
    This means, to imagine that all the numbers are arranged along a 
circumference so that one more sequence is added, – that, which is formed 
by the greatest and the smallest numbers closing the circumference. 
 
    Johann III Bernoulli (1771, p. 235) justified the same assumption by 
noting that “here is no number preceding 1 or following after 90”. 
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    Beguelin’s memoir was published directly after Euler’s study, and 
Bernoulli’s work appeared two years later. In a footnote added at the time 
of publication, Bernoulli remarked: “This memoir was read in 1765 after 
Euler’s memoir on the same subject which was included in the Histoire de 
l’Académie […] for the same year”.  
    At the time when Beguelin wrote his paper consisting of two parts, he 
was already acquainted with Bernoulli’s study. An examination of his 
results derived under the assumption mentioned would have led us too far 
afield; in addition, Cantor (1908/1965, pp. 235ff) had described 
Beguelin’s involutorische method.  
    For the sake of completeness and to compare their conclusions with the 
result achieved by Euler, I indicate the Beguelin – Bernoulli formula as 
provided by Cantor for the absence of sequences among r numbers of a 
drawing: 
 

    
1

1 .
r
n r

s r
n

Cn
P

r C

−

− −=  

 
    In the footnote mentioned above, Bernoulli indicated that the lotto had 
become more popular than ever before. Warschauer (1885, p. 38) 
confirmed this remark. He noted that on June 10, 1769, the leaseholders of 
a lottery petitioned the King for raising the rent and prolonging the term of 
their contract for a longer period than previously. With each drawing ever 
more people participated in the lottery, and the leaseholders’ profit 
continuously increased. No wonder that the numerical lotto repeatedly 
offered occasions to studies in the theory of probability and Bernoulli, just 
like Euler, stressed the difficulties which he encountered. 
    Another problem presents itself in connection with the numerical 
lottery: To find the probability that after i drawings of r numbers each all 
the n initial numbers will have appeared. Euler (1785), as quoted by 
Cantor (1908/1924, p. 236), busied himself with this problem as well. I am 
only reporting his result which can be expressed as  
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    Performing that division, we arrive at the expression derived otherwise 
by Meyer (1874/1879, p. 46ff) in his lectures of 1849 – 1857 at Liège: 
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For example, assuming n = 90, r = 5 and i = 100, for 5 coincidences we 
have P = 0.7410. The expression above enables to calculate P 
approximately. Since 
 

    1 2 2 3 3(1 ) 1 ...,n
n n nx C x C x C x− = − + − +  
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we have 
 

    1 2 2 3 31 ( ) ( ) ( )  ... = [1 ( ) ] .i i i i n
n n n

n r n r n r n r
C C C

n n n n

− − − −
− + − + −  

 
    For large values of n the omitted terms may apparently be neglected so 
that approximately, for the numerical lotto13, 
 

    9090 5
[1 ( ) ] .                                                                   (6)

90
iP

−
= −   

 
Given P, i can now be directly calculated; for P = 1/2, i ≈ 85 drawings.  
    Had the probability of extracting a number remained constant in all the 
drawings, formula (6) would have been exact. However, P varies during 
the drawings; initially, it is equal to r/n, then it becomes (r – 1)/(n – 1) etc, 
and when the fifth number is to be drawn, it will be (r – 4)/(n – 4) = 1/(n – 
4), see Meyer (1874/1879, p. 54). 
    Meyer (pp. 33ff and 41ff) also examined another problem: To 
determine the probability that at least one drawn number will be expressed 
by one digit. In our notation, his formula, which he derived by solving an 
urn problem, was 
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Here, a and b are the numbers of one- and two-digit numbers (= 9 and 81), 
and f is the number of one-digit numbers in one drawing (f = 1, 2, 3, 4, 5). 
    The probability that at least one number in one of the drawings will 
consist of one digit (equal to the sum in that formula) is 0.417019. 
Separate summands, each of them multiplied by the fraction indicated, 
provide the probabilities that all the five numbers, or four, three or two of 
them, or one, will consist of one digit. Thus, for f = r = 5, 4, 3, 2, 1 
 
    P = 0.000003, 0.000232, 0.006193, 0.069888, 0.340703. 
 
    It is interesting to compare these with the actual results of 201 drawings 
made in Berlin in 1794 – 1805 (Nachricht 1806?, pp. 21ff)14. A one-digit 
number won 70 times; expected number of times, 68.5. Such a number 
occurred twice 11 times, and three times in two drawings (expected 
number of times, 14 and 1.3). In all, at least one one-digit number thus 
occurred 83 times out of 201; expected number of times, 83.8. Bearing in 
mind, that only 201 drawings were made, the coincidences were very 
good15. 
    My aim was to indicate selected results of those studies prompted by 
games of chance over three centuries and made by classics of the theory of 
probability. And the vivid interaction of theory and life becomes apparent 
in the example of the numerical lottery. 
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Notes 

    1. Sighart (1898, p. 5) mistakenly names the year 1720. K.-R. B. 
    2. The author adduces a long list of Italian literature on the number lottery. K.-R. B. 
    3. According to Nina as quoted by Weidlich (1922), there were 120 candidates. 
Weidlich also states that bets have been made since ca. 1576. K.-R. B. 
    4. For more details see Weidlich (1922). In Austria, Count O. di Cataldi, an Italian, got 
the first patent on a numerical lotto. Later E. A. Calcabigi [spelling uncertain] obtained 
the same in Prussia. The date Nov. 13, 1751 (Endemann 1899, p. 74) concerned the 
patent Codex austriacus, Bd. 3, p. 66ff. K.-R. B. 
    5. South of Berlin, latitude ca. 52°.  
    6. The lotto became the subject of many accusing and defending works, interpretations 
and astrological writings. Poets glorified it, winning formulas were being published. 
Members of parliaments ardently spoke for and against the lotto etc. The indicated 
sources contain many further references. K.-R. B. 
    7. According to Sieghart (1898) and Warschauer (1885). I do not dwell on such 
particulars as connecting the drawings with raffles for five complete sets of trousseaus for 
orphan girls (Preussia and Austria) or sequestering stakes, or decreasing the winnings if 
more than three coincidences occurred in a terno. The sources indicated consider these 
issues in detail. K.-R. B. 
    8. I am following the original publication (Acta Eruditorum Supplementa, t, 4, 1711, 
pp. 159ff, 167ff). [See Jakob Bernoulli 1975, pp. 320ff.]  
    Here and in the sequel I am using my own notation. I aimed at keeping to the original 
as closely as possible, but, for facilitating the understanding, I allowed myself to develop 
partly N. Bernoulli’s considerations. K.-R. B. 
    9. On p. 105ff. K.-R. B. Chapter 4, Corollary 5, without formulas.  
    10. Warschauer (1885, p. 6) reports, without stating his source, that for a stake of 1 
gold pistole the winning was 20 thousand, 5 – 6 thousand and 500 – 600 pistoles for 5, 4 
and 3 coincidences respectively. K.-R. B. 
    11. Coste (1933) mistakenly mentions 8,789,832 for a quinterno. See also Vega 
(1838). K.-R. B. 
    12. Sieghart (1898) and Warschauer [where exactly?] report that the leaseholders or 
the state, for example, in Austria and Preussia, received great profits from numerical 
lotteries. K.-R. B. 
    13. The author had not estimated the error of his approximation. For the numerical 
lotto, his formula (6) provides P = 0.7427 instead of P = 0.7410 as above.  
    14. This source contains the most comprehensive relevant data available. K.-R. B. 
    15. In such cases two hundred trials are quite sufficient.  
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Principles of the Mathematical Theory of Probability 
 

Osnovania Matematicheskoi Teorii Veroiatnostei. Petersburg, 1846 
Extracts (Prokhorov 1999, pp. 863 – 869) 

 
1. From the Writer 

    The analytical theory of probabilities is included in the realm of applied 
mathematics and essentially differs from the other applications of pure 
analysis. In geometry, and in the subjects of natural philosophy, such as 
for instance in the phenomena of universal gravitation, in the theories of 
light, heat, sound, electricity, all research is based partly on our notions 
about various really existing or only imagined by us magnitudes, and 
partly on the laws derived from experiments, or, should such an 
experimental foundation be lacking, on more or less likely hypotheses. On 
the contrary, the analysis of probabilities studies and numerically assesses 
phenomena that depend on causes which are not only completely unknown 
to us, but which, owing to our ignorance, do not even yield to any 
assumptions1. 
    Subtle and profound deductions leading us to this goal, make up in their 
totality the most reliable route to at least a possible approach to the truth if 
not to revealing it undoubtedly. And upon taking into consideration that, 
being entrusted with this important purpose, the applications of the 
mathematical doctrine of probabilities embrace the subjects of the physical 
and moral world, we may affirm that this theory, the most elevating 
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creation of our mind, as though indicates the boundaries of knowledge 
beyond which it is impossible to pass2.  
    The book which I am offering now, is the first Russian composition 
including a detailed description of both the mathematical principles of the 
theory of probability and of its most important applications to social life 
and natural philosophy as well as to political and moral sciences. The last 
chapter is devoted to historical details on the gradual development of the 
analysis of probabilities. Ten purely mathematical Supplements are 
appended to the book and they will spare some readers the trouble of 
looking elsewhere for an explanation of the various theories often 
encountered in the calculus of probability. After them follows an 
Explanation of the two useful tables [also] appended to my book, and, 
finally, an Addendum contains a solution of a curious problem. However, 
I refer readers to the Contents themselves where a detailed indication of 
the subjects included in the book can be found. 
    A few words about the execution itself of my work. Laplace’s immortal 
creation, the Théorie analytique des probabilités, invariably served me as 
a specimen both by the elegance of the analysis made use of and 
profundity of reasoning. At the same time, however, while offering many 
theories created by him, I have always attempted to simplify as much as 
possible both their description and proof and the analysis itself. I fearlessly 
hope that mathematicians will do me justice by noting that I have 
essentially facilitated the study of Laplace’s book, which, owing to its 
conciseness and the special difficulty peculiar to its subject, is only 
intelligible to very few readers. 
    Scientific research accomplished by other celebrated geometers, and in 
the first place by Euler, Lagrange and Poisson, had also been useful for 
me. From Poisson I have borrowed the description of the mathematical 
theory of legal proceedings. Regarding my other results, I restrict my 
comments to referring to some critical remarks and to the changes in the 
generally received analytical methods, useful in my opinion, and made in 
various cases. In this respect, I am turning the readers’ attention in the first 
place to chapters 7 and 10. 
    The reader himself will note these changes when attentively reading 
many sections of my book and comparing them with the description in 
well-known other sources. More extensive research of my own are 
accompanied by indications in the text. One more remark. Since until now 
we had no separate work and not even a translation of a work on the 
mathematical theory of probability, I was compelled to describe in 
Russian a subject for which established turns of phrases and expressions 
were lacking. I do not dare hope that I have quite satisfactorily created a 
simple and definite language for the analysis of probabilities but am 
pleased to be sure that in any case I have exerted every effort to approach 
this goal as closely as possible3. 
    I conclude by expressing my wish that the offered work will foster the 
spread of sensible notions and useful practical truths among my 
compatriots. And even if some of my readers are not mathematically 
educated to a sufficient level and are unable to follow the analytical 
exposition of all the theories comprising the subject of the doctrine of 
probability, – even for them an attentive reading of my book will not be 
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useless. They will derive various results of general usage showing in their 
true light many entertaining issues and truths concerning our social life. 
 

2. Conclusion. In What Sense Ought We To Understand  

the Corollaries Provided by the Mathematical Theory of Probability 

 
    Having consistently described the mathematical principles of the 
analysis of probabilities and its main applications to social life, natural 
philosophy and moral sciences, I am now able to give a concise account 
about what may we expect and demand from this theory which in all 
fairness can become on a par with the most important branches of our 
knowledge. Except a very few indisputable truths which had become a 
treasury of mankind, everything in nature and in the moral world is based 
on more or less likely conjectures.  
    The doctrine of probability therefore actually encompasses almost the 
entire sphere of intellectual activities. Such a vast purpose of that science 
is undoubtedly essentially restricted by lack of data furnished by observing 
physical and moral phenomena and their inadequacy, and, on the other 
hand, although to a lesser degree, by the imperfection of mathematical 
analysis. Nevertheless, the achievements of the theory of probability 
attained until now places it on the level of a most important intellectual 
tool for revealing truths and protecting the mind from delusions into which 
it often falls after superficially viewing a subject. 
    In cases in which an acute-minded person is only able to foresee 
approximate results, the theory often leads us to precise and numerically 
expressed conclusions. Such definite estimation of the measure of 
confidence in some conjectural truth, impossible for usual logic, 
undoubtedly deserves full attention of thinkers. However, these numerical 
conclusions should not be understood unquestionably as is done by some 
empiricists who have not comprehended the real spirit of the analysis of 
probabilities. Thus, for example, if the probability of some event is very 
close to certainty, or to unity, it does not follow that that event will occur 
without fail, or, to the contrary, that the theory leads to wrong inferences. 
The result mentioned ought to be understood in another sense which is 
quite justified by the well-known general proposition due to Jakob 
Bernoulli.  
    A high probability only indicates that, if we were able to repeat trials 
many times over under identical circumstances, the number of occurrences 
of the event will be incomparably greater than the number of its failure to 
occur, and the ratio of the first number to their sum will ever more closely 
approach the derived value of the probability. As to an isolated trial, the 
analysis of probabilities is unable to provide any definite conclusions 
because the conditions [of the problem] are not clear-cut as I have 
explained at the very beginning of this book. And in general, when 
explaining the various results of the analysis of probabilities, we ought 
always to bear in mind the law expressed by the Jakob Bernoulli theorem. 
In case of events depending on chance because of our ignorance regularity 
in the number of their occurrences only takes place if the number of trials 
is very large. For this reason, any decision concerning an isolated case 
should be only understood as a mean conclusion which in many instances 
might essentially deviate from the result revealed by posterior events. If, 
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however, it would have been possible to repeat the same trial indefinitely 
many times under the same conditions, the mean result thus obtained will 
approximate the sought ratios between the number of occurrences of 
various events the closer the more trials are made. 
    In concluding, I offer the readers a concise historical essay on the 
gradual development of the mathematical theory of probability. 
 

3. A Concise Historical Essay on the Gradual Development 

of the Mathematical Theory of Probability 

 
    118. The time to which the initial speculative notions on probability 
belong, is as indefinite as are the beginnings of most branches of our 
knowledge. Under various circumstances, as in games [of chance], when 
betting etc, and long before the first attempts at a mathematical theory of 
that science had been made, man resorted to comparing the numbers of 
favourable and unfavourable cases, and more or less luckily derived 
appropriate conclusions. 
    Suchlike considerations as well as some rules occurring in the works of 
philosophers of old, certainly belong to the doctrine of chances; there even 
exist definite testimonies that some remarkable applications of the science 
of probabilities had not been alien to very remote times. Thus, for 
example, Libri (1845) noted that the Digest contains a law on foodstuffs 
which clearly indicates that even the Romans had been determining mean 
life for various age groups. Libri went on to discuss societies of marine 
insurance which had already existed in the medieval Italian republics. This 
compels us to suggest that it was known in those times how to determine 
approximately the probability of shipwreck.  
    It is also known that later, in the beginning of the 17th century, the 
illustrious Galileo busied himself with a very important problem in the 
theory of probability, with deriving errors and estimating their influence 
on the results of observation. His examination of such a difficult issue 
naturally had not led to desired success. It seems that, again, the first idea 
about turnover of capital based on probabilities of human life originated in 
the first half of the same century. The Neapolitan Lorenzo Tonti suggested 
a special pertinent institution which until now has been called after him 
(the tontine, § 73).  
    All the attempts mentioned above undoubtedly belonged to the theory 
of probability, but, nevertheless, having been fragmentary and imperfect, 
they were unable to satisfy the demands of a science. Only Pascal and 
Fermat in the mid-17th century laid the foundation of the mathematical 
theory of chances. Chevalier De Méré had proposed to Pascal the first 
problem which they solved. It dealt with a fair division of stakes in an 
interrupted game, see details in §§ 32 and 38.  
    And so, in fairness and justice, we may state that the calculus of 
probability owes its mathematical beginnings and independence to these 
two celebrated scholars. Soon afterwards their contemporary Huygens 
busied himself with the same subject. He collected the already solved 
problems, supplemented them by his own research and composed a tract 
on reasoning in games subjected to chance. His writing, the first to appear 
on the theory of probability, came out incorporated in Schooten in 1657. It 



 171 

is also included in pt. 1 of the Ars Conjectandi, which I discuss below, 
enriched by Jakob Bernoulli’s commentary. 
    In the second half of the 17th century Sauveur also studied the theory of 
probability (J. des Savans for February 1679; Todhuner 1865, p. 46). He 
examined the chances in a game resembling Pharao and known as bassète. 
In addition, Montucla (an X, 1802, t. 3, p. 391) mentions a booklet entitled 
Of the Laws of Chance anonymously published in London in 1692. He 
believes that the author had been Benjamin Motte4. 
    Towards the end of the same century there appeared the works of van 
Hudden [Hudde]5, Witt [De Witt], the Pensionnaire d’Hollande, and 
Halley on the probabilities of human life. Halley (1694) published a 
mortality table, the first known to us (§ 60)6. Without mentioning other, 
less remarkable acquisitions made by the calculus of probability during the 
same period, I pass over to the work of the celebrated Jakob Bernoulli. 
Already in 1685 he proposed to mathematicians a rather difficult question 
concerning a game of dice. Since no answer had been offered, he himself 
published his solution, although without proof, in the Acta Eruditorum for 
16907. This prompted Leibniz to examine the posed problem. He solved it 
at once and published a detailed description of his method of solution in 
the same Acta [De Mora-Charles 1986].  
    The main service that Jakob Bernoulli rendered to the mathematical 
theory of probability was undoubtedly the compilation of his remarkable 
Ars Conjectandi on which he had deliberated for many years. His nephew, 
Niklaus Bernoulli, published it in Basel in 17138, seven years after Jakob 
had died. This work, distinguished by correct viewpoints and clever 
analytical methods, is separated into four parts. The first one, as 
mentioned above, is made up by explanatory comments on Huygens’ 
treatise. The second part includes an extensive theory of various kinds of 
combinations. Many problems dealing with various games are discussed in 
the third part and, finally, the fourth part contains the use and application 
of the rules explicated in the previous parts to issues in everyday life and 
moral and political sciences9.  
    This part deserves special attention because the Newtonian binomial10, 
being so important in the calculus of probabilities, is applied for solving 
the problems there. But the most remarkable item in pt. 4 is 
unquestionably the proof of the well-known theorem which has retained 
its author’s name and which I had the opportunity to mention so many 
times, see details in §§ 20, 22, 24, 26, …, 117. After the fourth part 
follows a treatise on infinite series and a curious investigation of an 
unknown author11. 
    Niklaus Bernoulli, who published the Ars Conjectandi, had been 
himself somewhat successfully studying the theory of probability. In 1709, 
in Basel, he defended his dissertation for a doctor’s degree in 
jurisprudence on the application of the calculus of probability to the 
administration of justice. Among the curious problems solved there I may 
indicate, in the first place, that which constitutes the subject of pt. 3 of 
Niklaus’ thesis: how much time should pass before an absentee about 
whom nothing is known must be declared legally dead. 
    119. The 18th century marked by so splendid successes achieved by 
pure mathematical analysis essentially improved the theory of probability 
as well. In the very beginning of that period Montmort in France, and De 
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Moivre of French extraction living in England most diligently examined 
the calculus of probability. The former published a book (1708) in which 
he offered solutions of many curious problems belonging to various card 
and dice games etc. In the second edition of his book, corrected and 
enlarged on many points, he included his curious correspondence with 
Niklaus Bernoulli, the nephew of Jakob and Johann Bernoulli.  
    Special notice here is merited by Niklaus’ clever solution of many 
problems and by the description of the one known as the Petersburg 
problem which he proposed for Montmort, see details in § 45. Among 
difficult problems whose solution occupied Montmort, I may also point 
out the division of stakes between gamblers when, according to the 
essence of that problem, the ending of the game remains indefinite. De 
Moivre also studied the same subject, but the solutions of these scholars 
lacked adequate completeness (§§ 33 and 40). 
    De Moivre submitted his first work on the theory of probability to the 
London Royal Society, and it appeared in the Philosophical Transactions 
(1712). He had been then publishing his research gradually perfecting it 
(1716 [1718!], 1738, and 1756). Concerning analytical methods, this 
writing is much preferable to all the previous works. In general, problems 
are solved there more generally by means of the Newtonian binomial. The 
Jakob Bernoulli theorem was very importantly developed there: De 
Moivre established the probability that the difference between the ratio 
(otnoshenie) of the actual number of the occurrences of events and the 
ratio of their probabilities is contained within given bounds12, and he was 
the first to apply here the Stirling theorem (§ 21). But the book is 
especially remarkable for describing his invented theory of recurring 
series which he highly successfully applied for solving various problems 
about probabilities. Actually, his theory includes a method of integrating 
equations in finite differences with constant coefficients, so fruitful in its 
applications to the analysis of probabilities. 
    At about the same time many other mathematicians have been more or 
less successfully working at the theory of probability. Among them was 
Mairan, see § 37 (Todhunter 1865, pp. 200 – 201) and Nicole (1732a; 
1732b; Todhunter 1865, pp. 201 – 203) who solved various problems on 
the fate [the expectations] of gamblers of unequal skill after some of them 
wins more rounds than others. 
    In the second half of the 18th century many scientists had been very 
carefully collecting various data on population in general, on mortality, the 
number of births, marriages etc. These numerical indications, after having 
been adequately examined, served for compiling many extremely useful 
tables and solving highly practical and various problems on probabilities 
of human life, on life annuities, savings banks, tontines, insurance of any 
kind etc. Historical details concerning this subject are to be found in 
Montucla (an X, 1802, t. 3), and I am restricting my description by 
concisely describing the main works of the scientists. 
    Very close to the mid-18th century remarkable writings on the same 
subject were published by Thomas Simpson in England, Kersseboom and 
Struyk in Holland and Deparcieux (1746) in France. Curious studies of 
mortality by the Swedish astronomer Wargentin are included in the 
periodical of the Swedish academy (1754 – 1755). In Germany, the 
mathematician Lambert examined the same subject (§ 60) as did Euler and 
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some others. During the last years of the century, Deparcieux (1781), a 
nephew of the man mentioned just above, had published a treatise on 
annuities and soon afterwards appeared a very remarkable book on 
financial turnovers by Duvillard (1787), see § 60. At about the same time 
the writing of Price (1771) on various issues of political arithmetic 
deserved general attention. 
    I shall describe now as concise as possible the most important 
acquisitions attained by the calculus of probability in the 18th century. 
Daniel Bernoulli, the son of Johann Bernoulli, whose discoveries enriched 
higher geometry and mechanics, was the first to suggest that the 
mathematical and the moral expectations be distinguished one from 
another and to introduce a measure of the latter (Chapter 4). Almost at the 
same time the illustrious natural scientist Buffon (1777)13 described his 
thoughts on the same subject (§ 42). The readers will also find a letter 
from Daniel Bernoulli to Buffon dated 19 March 1762 which testifies that 
he regarded Buffon’s viewpoint on moral probability absolutely sound 
although did not quite agree with its proposed measure [proposed value]. 
There also Buffon included mathematical solutions of a few problems 
from the analysis of probabilities and an application of that theory to 
issues in human life, births, marriages, mortality tables etc. 
    I return now to the works of Daniel Bernoulli. The analysis of 
probabilities owes him also an original idea, so fruitful because of its 
application to considering posterior probabilities of events, i. e., by issuing 
from observed phenomena (Chapter 7)14. Later Bayes and Price (1764 and 
1765) and then Laplace adequately generalized them. Daniel (1766) also 
applied the calculus of probability to the problem of inoculation (§ 64) 
which led to a rather heated discussion between him and D’Alembert 
(1761; 1768a; 1768b). 
    D’Alembert’s other contributions to the theory of probability are in his 
various works and partly in the Enc. méthodique (Mathématique). That 
excellent source also contains articles by Condorcet belonging to the 
analysis of probabilities; the most important of them both by its length and 
contents is Probabilité. His other contributions to that science were 
published in the Mémoires of the Paris Academy of Sciences for the years 
1781 – 178315, and his most remarkable work (1785) treats majority 
decisions. I referred to some of its places in Chapter 11. 
    Euler enriched almost every branch of pure and applied mathematics, 
and he also studied different parts of the theory of probability. He left 
rather many relevant memoirs and I indicated some of them in §§ 36, 65 
and 72. There are also his manuscripts [1862a; 1862b] as well as his 
curious correspondence with Friedrich II, also unpublished, on a special 
lottery [apparently (1749)]. His main merit is, however, the perfection of 
the integral calculus which to the highest degree fostered the speedy 
progress of the analysis of probabilities. 
    Lagrange (1777) offered a simple and handy method of integrating 
equations in partial finite differences and showed how to apply it for 
solving difficult and at the same time curious problems of the calculus of 
probability. I considered this subject in detail in Chapter 3 and Note 7, and 
in §§ 78 and 79 I mentioned another of his works devoted to the 
determination of most advantageous results of observations (1776). 
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    I also indicate a work by Lacroix belonging to the theory of probability. 
In 1781, the Paris Academy of Sciences proposed a prize question on 
marine insurance. Since it had not received satisfactory solutions, the 
question was twice repeated, after which, two from the eight answers 
taken together were judged to warrant half the prize. Lacroix wrote one of 
these answers and got 1800 francs, the other, written by Bicquilley, was 
awarded by 1200 francs. Lacroix had also published a very satisfactory 
book (1816; 1828; 1864; German translation 1818) and Bicquilley (1783) 
has a book to his credit as well. 
    I will not discuss the works of Legendre and Gauss on the determination 
of the most probable results of observation, see Chapter 10 (§ 92)16. There 
also I provide other historical details on the most beneficial combination 
of the initial equations and, among other items, I mention the method of 
the English mathematician Cotes (end of § 85). 
    Neverthless the analytical theory of probability owes Laplace more than 
anyone else. I had occasion to discuss his works so often that it seems 
sufficient only to offer here as concisely as possible the main merits of 
that great geometer. In addition to many memoirs which appeared in the 
periodical of the Paris Academy of Sciences on the analytical theory of 
probability, he (1812) published a great work on the same subject which 
covered its complete theory and all of its main applications. Laplace’s 
profound mind, subtle viewpoints and might of mathematical analysis is 
not seen in any of his other writings as powerfully as there. 
    Elegance and generality of his methods applied for solving the most 
difficult problems of the analysis of chances elevated this theory to a high 
level of perfection. From the most remarkable of his studies which most of 
all enriched the doctrine of probabilities I may mention in the first place  
    1) The theory of generating functions for integrating equations in finite 
differences, a procedure so often encountered in such issues. 
    2) Then, approximate calculations of various integrals of functions of 
large numbers; particular cases of such formulas were also treated 
previously, see for example the Stirling approximation of n! (§ 21) the 
exact value of which is represented by the definite integral 
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    3) General formulas for posterior probabilities derived from 
observations made (Chapter 7) and the calculation of the probabilities of 
future events when prior chances are considered, but actually are not 
equally possible (Chapter 5). 
    4) Various applications of the calculus of probability to phenomena 
observed in the solar system; thus, for example, the determination of the 
probability that there existed an initial cause forcing all the planets and 
their satellites to rotate about their axes and to move along their orbits 
from West to East, that is, in the same direction as the sun’s rotation and 
almost in one and the same plane with its equator17. 
    5) The theory of most beneficial results of observations (my Chapter 
10) so important by its applications to observational sciences, owes to 
Laplace its present perfection. He also indicated its application to geodetic 
work and developed it. 
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    6) Finally, in a separate publication (1814) we find a complete 
compendium and description of the facts of the theory and applications of 
the analysis of probabilities without formulas or calculations. 
    I have presented a cursory list of Laplace’s most important works 
[results] in the analysis of probabilities and it can be concluded that this 
theory, which originated in France by the hands of Pascal and Fermat, also 
owes its speedy perfection to a French geometer. 
    120. To our century, apart from Laplace’s main works and Gauss and 
Legendre whom I mentioned above, also belong various investigations of 
many astronomers and mathematicians. Bessel, Plana, Encke, Struve, 
Poisson, Lindenau, Bonenberger and others theoretically and practically 
busied themselves with the issue of the most beneficial results of 
observations (§§ 89, 91, 92, 95). In addition to Poisson’s writing 
mentioned in § 94, he published a few memoirs on the calculus of 
probability including memoir (1837b). In this curious writing he 
expounded the mathematical theory of probability of target shooting. From 
the obtained formulas he derived rules for comparing the accurateness of 
firearms and skill of shots. Experiments made by French artillery men 
completely corroborated his theory and proved that the obtained formulas 
were perfectly useful. 
    Poisson rendered his main service to this science by a separate treatise 
(1837a) on the mathematical theory of legal proceedings. It is separated 
into five chapters with the first four being devoted to the general principles 
of the calculus of probability and its most common applications. The last 
chapter, however, exclusively deals with the analytical theory of legal 
proceedings.  
    In that book, Poisson extended the Jakob Bernoulli theorem to cover 
variable chances and named a certain proposition the law of large numbers 
which I mention in a footnote on p. 35. In addition to the mathematicians 
mentioned above who studied the theory of probability during recent 
years, many others can be named, in particular Amper, Fourier, Puissant, 
Hansen, Quetelet, Littrow, Moser. 
    After having expounded the mathematical principles and main 
applications and offering a short essay on the progress of the theory of 
probability, I am concluding my book by Laplace’s words (1814/1995, p. 
124) on the importance of that science for human knowledge: 
 
    […] The theory of probability is basically only common sense reduced 
to calculus18. […] There is no science at all more worthy of our 
consideration […]. 
 

Author’s Footnotes 
    1. The Digest is known to be a compendium of decisions made by the most celebrated 
Roman lawyers and composed as a code by command of Emperor Justinian. Its 
appearance is attributed to year 52819. 
    2. P. N. Fuss, the perpetual secretary of the [Petersburg] Imperial Academy of 
Sciences, had informed me about these manuscripts. He is also keeping other memoirs 
written by Euler on various mathematical subjects and we may hope that these valuable 
works will be eventually published. 
    3. The Brussels edition of those collected articles on the art of artillery was published 
in 1839. In the same periodical Poisson published contribution (1830). 
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Some thoughts about the use of moral rather than mathematical 
      expectation 
Chapter 5. On the Influence of Unequal Chances Considered Equal 

on the Results of the Calculus of Probabilities and Investigation of a 

Special Kind of Combinations Leading to the Discussion of Infinitely 

Many Chances (§§ 47 – 48)  
How the unequally possible chances when considered equally possible 
      change the results of the calculus of probability. Application to the 
      pitch-and-toss game. The solution shows that in two throws of a coin 
      the appearance of the same side without indicating which one is more 
      probable than the appearance of differing sides. Generalization of this 
      result on any events. General formula expressing the influence of 
      inequality of the possibility of chances when supposed equally 
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      possible always heightens the probability of repetition of the same 
      events 
On prior calculated probabilities when there are infinitely many chances 
Chapter 6. Solution of Some special Problems  

of the Analytical Theory of Probability (§§ 49 – 51) 
Given, an equation x2 + px + q = 0 whose coefficients p and q are 
      supposed integral and varying from – m to m; also, for the sake of 
      simplicity, it is supposed that neither of them vanishes. Required is the 
      probability that a randomly written equation [of this kind] has real 
      roots 
Given a plane of indefinite dimensions covered by a system of adjoined 
      [congruent] equilateral triangles. A very thin cylinder of a given length 
      is randomly thrown on that plane. Required is the probability that it 
      falls on at least one side of these triangles 
Given two squares of a chessboard. Required is the probability that a 
      castle standing on one of them reaches the other square in x moves 
Chapter 7. On the Laws of Probability  

When There Are Infinitely Many Chances (§§ 52 – 59) 
General notions on posterior determination of probability. A numerical 
      example. Rules for determining probabilities of one or more causes or 
      assumptions 
The probability of some assumption is equal to the probability of the 
      observed event calculated under the same supposition and divided by 
      the sum of the probabilities of the same event over all possible 
      assumptions 
The probability of several assumptions considered in their entirety is equal 
      to the sum of the probabilities of the events over this total divided by 
      the sum of probabilities of the events over all possible assumptions 
General formulas for determining 
      1) The probability that the possibility of a simple event is contained 

     within known bounds given the observed compound event 
      2) The probability of a future event given its [present] observation 
Extension of the Jakob Bernoulli theorem on the case in which the 
      probability is only determined a posteriori 
General formulas for determining the probability under the assumption 
      that the observed event depends on simple phenomena of two or more 
      kinds 
Explication of general rules by several simple examples 
Chapter 8. On the Probability of Human Life (§§ 60 – 69) 
Compiling mortality tables. Graphical representation of the process of 
      mortality. Index of mortality. Equations of the line of mortality 
      suggested by Lambert and De Moivre 
Explaining the use of mortality tables for solving various problems 
      concerning the probabilities of human life. Probable life. The measure 
      of longevity. Mean life, formulas for its determination. Numerical 
      results for various states and cities. Determination of the number of 
      inhabitants of a country by a mortality table and distribution of 
      population by age 
Influence of the distinction of sex on mortality. Permanent numerical 
      superiority of male births over female births. Numerical results for 
      some states 
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Some remarks on the growth of population 
Determining the length of mean life if a certain cause of mortality is done 
      away with or at least weakened. Vaccination of smallpox lengthens 
      mean life by more than three years. Laplace’s formula for calculating 
      the measure of the decrease in the number of deaths when some cause 
      of mortality is done away with 
Notes on the movement of population. The measure of increase or fertility 
      Measure of mortality. Coefficient of increase. Formulas for solving 
      various problems on the movement of population 
Solution of some problems on the movement of population based on the 
      indications of mortality tables 
Determining the probable and mean duration of marriages, or, in general, 
      of any brotherhoods or companies (tovarishchestvo) or societies. The 
      probability of the existence of a society after the lapse of a given 
      number of years. Given a considerable number of brotherhoods or 
      companies of the same kind, determine the most probable number of 
      the survived after a given number of years 
Analytical determination of probability that the possibility of a male birth 
      is higher than the possibility of a female birth. Application of general 
      formulas to births in Petersburg 
Determining the population of a great state given the number of yearly 
      births and the population in its various places. Calculating the 
      probability that the error of this determination is contained within 
       given bounds. Numerical application to the population of France 
Chapter 9. On Life Annuities, Widow Funds, Tontines, Savings Banks  

and on Insurance Institutions in General (§§ 70 – 76) 
The subject of this chapter. Formulas for reducing deposits and payments 
      to the present time. General remarks on keeping to possible fairness in 
      stipulations between a society and its new members and various 
      obligations concerning any societies 
General notions on societies known as tontines. Solution of some 
      problems concerning this kind of mutual insurance. Given the annuity, 
      determine the initial payment made by a member of a tontine, and, 
      given the payment, determine the annuity. An approximate calculation 
      of the annuity of a member of a tontine after one, two, three, … years 
      Solution of same problem if the society is only paying some part of the 
      annuity allowing for the number of deceased members 
Notion about savings banks in general. Solution of problem: Each of N 
      investors of same age deposited S at the same time. Required is their 
      life annuity after n years. Determining that annuity if the depositors 
      make in addition yearly payments S1, S2, … 
On the insurance of property in general. An insurance premium. For being 
      mathematically fair, the premium ought to equal the cost of the insured 
      item multiplied by the probability of its loss or damage. Actually, the 
      premium is invariably higher; given its moderate excess, the insurance 
      society with a rather wide range of activities makes a sure profit 
      whereas the client will be insured in terms of moral expectation which 
      justifies the mutual benefit of suchlike societies 
Application of mathematical analysis to the solution of the following 
      problem. A merchant insures m ships for a each and pays mb. 
     Assess the conditions of such insurance concerning both 
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      the insurer and the insured 
Analytical solution of the first part of the problem. Numerical examples 
    Analytical solution of its second part. Notes on insurance societies in 
      general and on the advantages of societies of mutual insurance 
      Assuming a smallest excess over mathematical fairness to the benefit 
      of the society and its wide range of activities, it must almost certainly 
      expect essential profit increasing proportional to the number of 
      transactions 
Analytical proof of this proposition 
Chapter 10. On the Most probable Results of Observations (§§ 77 – 

96) 
On observations in general  
A numerical example. The mean error  
A numerical example. Explanation of the contradiction concerning the 
      probability of the mean error 
Initial equations. In each application of the method of most probable 
      deduction their linearity is assumed. Various combinations of the 
      initial equations. A system of equations ensuring the least possible 
      [absolute] maximal error. Such a combination of these equations was 
      called the méthode des situations21. The system of equations leading to 
      the least sum of errors. The mean result of observations. The Cotes 
      rule 
Determination of the measure of precision of the mean result of 
      observations 
A detailed proof [justification] of the method of least squares. The erreur 
      moyenne à craindre. Its comparison with the mean error under the 
      Cotes rule. Determination of the constant introduced in the formulas 
      by an unknown law of probability of the errors. This constant depends 
      on the squared sum of the observational errors. Determination of the 
      erreur moyenne à craindre given the coefficients of the initial 
      equations 
The weight (poid) of the result 
If the probability that the error is contained between given bounds is the 
      same, the weight increases as the bounds become closer to each other 
      The errors are inversely proportional to the square roots of the 
      corresponding weights. The condition for increasing weights. The 
      probable error of the results 
The rule for determining an unknown when several series of observations 
      of different kind are available. Here also, just as in the case of one 
      series, it leads to the method of least squares. The resemblance of this 
      rule to the theory of the centre of gravity 
Remark on the case in which the method of observation leads to a 
      preponderance of either positive or negative errors. On constant errors 
Historical information on the method of least squares. The relevant works 
      of Legendre, Gauss and Laplace 
Formulas derived from the method of least squares in the case of two or 
      three unknowns determined by the initial equations 
On a special kind of mean error used by German astronomers 
Numerical example of the determination of two unknowns from the 
      initial equations 
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Chapter 11. Application of the Analysis of Probabilities to 

Testimonies, Legends, Various Kinds of Choice between Candidates 

Or Opinions and to Majority Decisions in Law Courts (§§ 97 – 117) 
General remarks on the subject of this chapter and on the application of 
      mathematical analysis to moral issues  
On the probabilities of testimonies 
On unusual events 
Laplace’s solution of a problem concerning testimonies. He states that in 
      such problems two elements ought to be considered, the honesty and 
      the experience of the witness 
On probability of legends 
On election of candidates. General remarks on this subject. The case of 
      one or two candidates. When there are three or more candidates, the 
      relative majority of votes does not invariably reveal who of them 
      should be preferred 
Exposition of the method of voting suggested by the mathematician 
Borda. An analytical proof [justification] of this method for the case of 
      three candidates. A numerical example 
Another kind of voting when the mean merits of the candidates is not 
      allowed for 
Extension of the Borda method on an arbitrary number of candidates 
      Practical inconvenience of the method 
On the choice of the most probable proposition or cause. The relevant 
      guiding rule. Its analytical proof. A numerical example 
Application of the analysis of probability to administration of justice 
      Preliminary details and general remarks about its application to 
      judicial decisions. Resemblance of this subject to problems on 
      testimonies 
Indications about the work of Condorcet, Laplace, Ostrogradsky and 
      Poisson. The proper viewpoint for considering judicial decisions; what 
      should the sentences guilty and innocent mean. Mathematical theory of 
      administration of justice only provides mean results of essentially 
      many decided cases but does not apply to isolated sentences 
Conclusion. In what sense should we understand the inferences provided 
      by the mathematical theory of probability 
Chapter 12. A Concise Historical Essay on the Gradual Development 

of the Mathematical Theory of Probability (§§ 118 – 120)  
 
Notes 
Note 1. The derivation of the Euler [summation?] formula for 
      transforming an integral in finite differences into a usual integral 
Note 2. The development of the sine into infinitely many multipliers. The 
      Wallis expression for a quarter of a circumference. Summing infinite 
      series 
 

    
2 2 4 4 6 6

1 1 1 1 1 1
1 ...,  1 ...,  1+ ... etc.

2 3 2 3 2 3
+ + + + + + + +  

 
Note 3. On the convergence of infinite series 
Note 4. Various investigations concerning the definite integrals 
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Note 5. Proof of the factorial binomial 
Note 6. Proof of the identity (m < s/n) 
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Note 7. Explication of the theory of integrating equations in finite 
      differences 
Note 8. Derivation of the general term pty–t,0 of the equation 
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Note 9. On definite integrals considered in their connection with 
      arithmetical means 
Note 10. Summing the series 
 
    1 + 2(cosφ + cos 2φ + cos 3φ + … + cos nφ). 
 
Explanation of Tables 
Table 1. Contains the numerical values of the integral 
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for all the values of the argument t from t = 0 to t = 2  for each hundredth 
[t = 0(1/100)2] 
Table 2. Contains numerical values of the integral 
 

    2exp( )
T

t dt
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from T = 0 to T = 3 also for each hundredth. In addition, the table includes 
logarithms of the same integral for same values of the argument T 
 

Notes 
    1. Buniakovsky never supplemented this statement by any examples, and he himself 
(see below beginning of Conclusion) went back on his word. 
    2. This opinion seems to contradict the wrong statement above about the unrestricted 
realm of the theory of probability. 
    3. In those times, stochastic terminology was not yet developed. Thus, the expressions 
limit theorem and random variable (or, in Russian, random magnitude) did not exist. And 
Buniakovsky used different expressions for the theory of probability calling it in addition 
doctrine (also doctrine of chances) and analysis of probabilities. 
    4. Actually, the booklet was a translation of Huygens’ treatise (Todhunter 1865, p. 48). 
    5. On Hudde see Haas (1956). 
    6. Buniakovsky had not mentioned Graunt. 
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    7. For his problem and his own solution see J. Bernoulli (1975, p. 91; 1993, pp. 160 – 
163). 
    8. This is a mistake. Niklaus only supplied a short Introduction. And, in his own earlier 
dissertation of 1709, see below, he borrowed separate passages from the Ars and even 
from Jakob’s Diary never meant dor publication (Kohli 1975, p. 541). 
    9. Bernoulli only thought of describing this subject; part 4 of the Ars contains nothing 
of the sort. 
    10. Newton is credited for generalizing the development of the binomial on rational 
numbers of the exponent whereas Bernoulli had only applied the binomial for the case of 
natural exponents. 
    11. Bernoulli himself was the author of both the Treatise and the “curious 
investigation” of a version of tennis. 
    12. This is a hardly understandable description (repeated in the Contents, Chapter 2, 
see below. 
    13. See Buffon (1777, § 15), where the author’s letter to Gabriel Cramer of 1730 is 
appended. There also, in § 8, is Bernoulli’s letter to him mentioned just below. 
    14. This is left unclear; moreover, according to the context Buniakovsky referred to a 
contribution published before 1764, and I am unable to corroborate him. 
    15. See Kendall & Doig (1968). 
    16. Invariably following Laplace, Buniakovsky had obviously regarded Gauss quite 
insufficiently. Here, for example, he did not say “most reliable” results, although Gauss 
replaced in 1823 most probable (as he expressed himself in 1809) by that term. 
    17. Exceptions have been since discovered. 
    18. This phrase is generally known, but it seems that in 1814 it could have been 
applied to the entire realm of mathematics. 
    19. Somewhat differing dates have also been mentioned. 
    20. See a much later similar but independent explanation (Freudenthal 1951). 
    21. Actually, this expression (Laplace 1818) denotes the choice of the median.  
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XVIb 

A. Ya. Boiarsky, E. M. Andreev 

 

The Buniakovsky Method of Constructing Mortality Tables 
 

Demografichesky Enziklopedichesky Slovar  
(Demographic Encyclopedic Dictionary). Moscow, 1985, pp. 50 – 51 

 
    The method is based on using information on the number of deaths 
during a certain period of time grouped according to age and year of birth, 
and on the number of yearly births. Buniakovsky suggested it in 1864 and, 
using it, calculated a mortality table for the male, then for the female 
Orthodox population of Russia by issuing from  the data on deaths in 1862 
and births in 1796 – 1862. 
    The Buniakovsky method is a further modification of the method of 
lists [bills] of mortality and ensures an adequate measurement of the level 
of mortality of so-called closed populations (without migration) having an 
invariable order of extinction. 
    The initial indicator for calculating mortality tables according to the 
Buniakovsky method is the number of deaths dx assumed equal to the ratio 
of deaths at a given age x to the number of births x years ago. 
    Migration essentially corrupts such calculations which, furthermore, 
cannot be attributed either to a certain period or to a certain generation, 
and there is no guarantee that the equality ∑dx = 1 holds. The 
Buniakovsky method had been therefore only applied in the absence of 
censuses for calculating a few mortality tables. 
    For younger children the data on their deaths are sometimes more easily 
comparable with the data on births than with the results of censuses which 
are used for constructing mortality tables by the demographic method. The 
Buniakovsky method is therefore sometimes applied in such mortality 
tables calculated by the demographic method for the earliest ages (for 
example, up to five years of age). When necessary data are available, and 
independently from the method of construction of mortality tables, the 
Buniakovsky method is used for determining the coefficient of infant 
mortality. 
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XVII 

A. M. Liapunov 

 

Pafnuty Lvovich Chebyshev 
 

First published 1895 
P. L. Chebyshev, Izbrannye Matematicheskie Trudy (Sel. Math. Works). 

Moscow – Leningrad, 1946, pp. 9 – 21.  
 
    [1] Academician P. L. Chebyshev died 26 November 1894 and in his 
person science has lost one of the greatest geometers of this expiring 
century. Chebyshev’s investigations explained many difficult issues in 
analysis, established connections between differing heterogeneous theories 
and paved the way for solving many important problems not yielding to 
usual treatment. In a note (Markov & Sonin 1895) devoted to the memory 
of the late scholar, we find, in particular, an excellent testimonial about his 
works: 
 
    Chebyshev’s works bear the imprint of greatness. He derived new 
methods for solving many difficult problems proposed long ago and had 
been remaining unsolved. And he also formulated a series of new 
important issues with whose development he busied himself to his last 
hour. 
    Owing to the originality of Chebyshev’s investigations, he rarely had to 
mention research made by others1, whereas other scientists ever oftener 
cite our glorious fellow member [of the Academy] and are drawing their 
ideas from that rich treasury of Chebyshev’s works. 
 
    It is impossible to assess properly the significance of the great scholar 
without deeply analysing all of his works, and I do not make so bold as to 
take on this goal which [moreover] nowadays cannot be done in any 
satisfactory manner.  
    The great ideas scattered over Chebyshev’s works are undoubtedly not 
only not exhausted in all their conclusions, they can only bear adequate 
fruit in the future, and only then a possibility will present itself for 
properly comprehending the great significance of the scholar recently lost 
by science. Here, I only wish to explicate the known to me facts from 
Chebyshev’s life and scientific activity, to indicate his most important 
investigations and to make public some of my personal recollections of 
Chebyshev as professor. 
    Chebyshev, who belonged to an old noble family, was born 14 May 
1821 in the small village Okatovo, Borovsky uyezd (district) of Kaluga 
province, in his mother’s estate. He studied at home, then entered Moscow 
university where, in 1841, he achieved his candidate’s degree in 
mathematical sciences. When continuing his scientific learning under 
Professor Brashman, his talented and original investigations soon attracted 
attention.  
    [2] If I am not mistaken, Chebyshev’s name appeared for the first time 
in print in 1843, when he published a note on multiple integrals. Two 
years later he published his Essay on an Elementary Analysis of the 
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Theory of Probability and defended it in 1846 at Moscow University as a 
master’s dissertation. Thus, during this early period, Chebyshev’s 
attention was drawn to that theory. It had not failed to interest him later, 
and owes him very important acquisitions.  
    Soon after the defence, the Petersburg University had invited 
Chebyshev to the chair of mathematics, and he moved there. His most 
important investigations began to appear and it was not long before the 
entire mathematical world became acquainted with his name. In 1848 he 
submitted a very important memoir on the number of primes not 
exceeding a given boundary to Petersburg University; it appeared four 
years later (1849b). In 1849 he published his Theory of Congruences 
(1849a) and defended it as a doctoral dissertation. This excellent writing 
later became a manual for a large number of generations of the studying 
young men and still remains the best source of information on the branch 
of number theory expounded there. 
    In 1850 Chebyshev submitted to the Academy his celebrated Mémoire 
sur les nombres premiers (1852) where he solved many important and 
very difficult problems of the number theory. He described a method of 
determining the higher and the lower bounds for the sum of the logarithms 
of primes existing between given limits and indeed indicated such bounds 
which he made use of, in particular, for deriving some conclusions about 
the number of primes contained between given limits. There also he 
solved problems on the convergence and approximate summation of series 
whose terms were determined as values of given functions corresponding 
to the values of the independent argument taken from a series of primes. 
    [3] Chebyshev had attracted attention even earlier, and now he achieved 
fame of a first-class geometer by his research into number theory. It 
finally consolidated after the publication of a series of important memoirs 
on algebraic and logarithmic integrability of differentials containing 
irrational functions. 
    The first of these memoirs (1853) was devoted to the determination of 
the logarithmic part of the integral 
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when it can be expressed in a closed form. Here, the functions involved 
are any integral rational functions and m, any integral positive number. 
    But especially important work of the same kind (1860) belonging to the 
integration of elliptical differentials appeared somewhat later, at first in an 
Academic edition, then in the J. math. pure appl. (1860). There, 
Chebyshev very importantly supplemented the works of Abel. He showed 
that if the integration of any elliptical differential is possible in a closed 
form, it is reduced to integrating differentials of the type 
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    Already Abel proved that the possibility of integrating these taken with 
a proper value for the constant A depended on the periodicity of the 
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continued fraction into which the denominator of (1) is expanded. 
Chebyshev, however, did not stop here. Noting that, if the answer was in 
the negative, the described method cannot lead to any conclusion and 
wishing to make up this deficiency in Abel’s work, he (1861) offered a 
new method which allowed to solve the problem either in the positive, or 
negative sense by means of a finite number of algebraic operations if only 
α, β, γ and δ were real rational numbers. 
    Among non-elliptical differentials Chebyshev considered in more detail 
those that included a cubic root (1865) and he devoted some of his later 
memoirs to their integration. 
    [4] At the same time Chebyshev’s memoirs concerning another field 
began to appear. There, he proposed and solved quite special problems 
connected with approximate representation of functions and, having 
hardly any predecessors, he was entirely original. I am only acquainted 
with the first part of the memoir (1854) and do not know whether its 
concluding part was ever published. This first part is only introductory and 
contains a solution of an analytical problem, very important for the theory 
which Chebyshev thought of developing further. It concerned such an 
approximate representation of a function between two given bounds by a 
polynomial of a given degree that the maximal error between these bounds 
was as small as possible. His results are very remarkable, but even more 
so is the method that yielded them. Possibly excluding one proposition on 
which it is based, it is entirely his own. Indeed, no general methods for 
solving such problems existed, and, apart from several simplest particular 
cases considered by Ponselet, Chebyshev was unable to find any examples 
of solution of such problems in the writings of his predecessors. 
    Chebyshev did not stop after solving the described analytical problem. 
Those concerning approximate representation of one or another kind of a 
given function considered between given bounds under the same 
condition, can obviously have very diverse and important applications. In 
addition, their solution demands special methods and they are therefore 
extremely interesting from an analytical point. 
    All this compelled Chebyshev to undertake more general studies in the 
same direction and thus appeared his remarkable memoir (1858) in which 
he put forward general conditions for solving such problems. And so it 
occurred that Chebyshev laid the foundation of his theory of functions 
“least deviating from zero” [of constructive theory of functions]. 
    The memoir of 1855 belongs to the same kind of his writings. There, 
Chebyshev indicated important properties of continuous fractions as 
applied to developing functions in series and provided a general formula 
for interpolating by the method of least squares. To the same direction also 
belong memoirs on interpolation including two (1859a; 1859b) the first of 
which contains special formulas for interpolating given vast observational 
data and the second one expounds in detail the methods of interpolation 
following from the considerations provided earlier (1855). 
    For Chebyshev, all these memoirs served as points of departure for 
many further studies. There, he more fully developed his methods and 
discovered their diverse applications both to some related problems of 
kinematics of mechanisms which especially attracted the illustrious 
scholar’s attention. 
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    [5] I will not list the items of the long series of his subsequent memoirs 
but I ought to mention some of them, especially important either for the 
problems dealt there or because of the methods applied. Chebyshev’s 
memoir (1867a) expounds the points of departure for solving the same 
kind of problems concerning sums as those which involve integrals and 
are treated by calculus of variations.  
    Another memoir of the same year (1867b) contains a rigorous 
elementary proof of an important proposition of the theory of probability 
which includes as a particular case the so-called law of very [!] large 
numbers. This short contribution is especially remarkable owing to the 
idea underlying the proof which later led Chebyshev to propose an 
important analytical problem. 
    In his memoir (1874) Chebyshev posed an entirely special problem, 
very remarkable on many counts, about maximal and minimal values. He 
could have been prompted here by an investigation due to Bienaymé 
although he was also led to it in a natural manner by many of his own 
studies. Here it is. To find the extreme values which the integral 
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considered in wider intervals A < a, B > b with the function f(x) not being 
negative between x = A and x = B. 
    There also Chebyshev indicated an important proposition revealing the 
connection of the mentioned problem with developing the integral 
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into a continuous fraction and formulated the final conclusion for an 
interesting particular case. 
    Many of his later memoirs were devoted to that problem concerning 
integrals and to related problems. One of them contained an application of 
his conclusions to the proof of an important theorem in the theory of 
probability (1887). Chebyshev’s last memoir (1895) deals with the same 
kind of problems; he presented it to the Academy on 16 February of the 
past year, and it appeared only recently and posthumously. 
    Chebyshev’s work on number theory and integral calculus is important 
both because of the difficult problems treated there and for the methods 
which he devised for their solution. There, he followed his great 
predecessors, Euler, Legendre and Abel who proposed these problems. 
However, as regards approximate representation of functions and various 
original problems on maxima and minima, Chebyshev is the inventor of 
methods for solving very important and difficult problems which he 
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himself had proposed. Here, he opened up many entirely new issues and 
indicated new paths and a new direction in science. Although in general 
his deep ideas are far from being exhausted, it is especially true as regards 
those contained in the works belonging to the last-mentioned kind. 
    [6] The problems with which the mentioned most important research 
had been concerned were not the only ones attracting the attention of the 
great scholar. He was interested in very many issues of pure and applied 
mathematics. Thus, he busied himself with construction of geographical 
maps, special kind of problems on deformation of surfaces, with many 
problems of practical mechanics. Theoretical mechanics also attracted 
him, and I, for example, know that he investigated some issues in 
hydrostatics. In 1884, during one of our last encounters, he told me that, 
among other issues, he had studied the problem of the ring-shaped form of 
equilibrium of fluid rotating mass whose particles were mutually attracted 
according to the Newtonian law. And, as far as I remember, he wished to 
publish his related investigations. Other work probably prevented him and 
it can only be hoped that something concerning these interesting studies 
will be found in his posthumous papers.  
    Various scientific institutions and societies, both Russian and foreign, 
have long ago recognized and highly appreciated Chebyshev’s scientific 
merits. Apart from many scientific societies considering him their 
member, I only mention the Petersburg and the Paris academies of 
sciences. In 1853, the former elected him adjunct (junior scientific 
assistant), chair of applied mathematics, and from 1859 he had been full 
academician. In 1860 he became corresponding member, and in 1874, 
membre associé étranger of the latter. This last-mentioned circumstance 
clearly shows how highly did that scientific institution appreciate 
Chebyshev’s merits; indeed, very few of the most distinguished foreign 
scientists have been honoured by election to membre associé étranger. 
    [7] Until now, I spoke about Chebyshev the mathematician, but his 
name is also very honourably known in another field, in that of inventions 
of mechanisms. From his youth up, he had been especially inclined to such 
inventions and all his life they did not fail to interest him. In the first place 
they were mechanisms transforming circular motion into rectilinear 
motion. Such mechanisms invented by him have already been practically 
applied in various ways. His parallelograms do not provide precise 
rectilinear motion, but they only insignificantly deviate from it and 
successfully replace “precise” mechanisms of the same kind and, being 
simpler, are preferable to them. 
    Chebyshev explicated the theory of his mechanisms in a series of 
memoirs especially interesting because they reveal the connection between 
his invention of this kind and analytical research on approximate 
representation of functions. 
    He made many more inventions one of which ought to be especially 
mentioned. About 1878 he invented the arithmometer which may be 
considered the most perfect of all the existing machines of that kind. Its 
model is being kept at the Conservatoire des arts et métiers in France. 
Chebyshev himself described many of his inventions and delivered many 
reports about them both in Russia and in Paris and London.  
    [8] A scholar and inventor of genius, Chebyshev had also been an 
exemplary professor. His professorial activities began, as I mentioned 
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above, in 1847 and had continued without interruption until 1882 when he 
left the university and became until his last days exclusively engaged in 
scientific research. 
    During different periods of his professorial activities, Chebyshev 
delivered differing courses. When, at the end of the 1870s, I had been a 
student, he gave lectures in number theory, the theory of definite integrals 
and calculus of finite differences for third-year students and the theory of 
probability for those of the fifth year. His courses were not extensive, and 
he took care not so much about the amount of reported material as rather 
about clearing up the treated issues in principle. 
    His lectures were lively and captivating and accompanied by many 
interesting remarks on the significance and importance of some problems 
or scientific methods. Sometimes these were expressed in passing and 
referred to a particular case, but they invariably left a deep impression. His 
lectures therefore brought about a lofty development and after each of 
them his listeners acquired a wider opinion and new viewpoints. 
    Chebyshev hardly missed a lecture. I had been his listener for two years, 
and at least I do not remember that during that time he failed to come even 
once. He had always been appearing exactly on time, beginning at once, 
without wasting a single second, to continue the deliberations of the  
previous lecture. He calculated extremely speedily and, in spite of being 
an excellent calculator, he therefore often made mistakes so that it was 
necessary to follow his computations very attentively and to warn him 
about the mistakes on time which he always asked us to do. 
    And, when finally arriving at the desired goal, Chebyshev sat down in 
an armchair that was always placed for him near the first row of desks. 
Then it was that he expressed various remarks which all the listeners were 
awaiting impatiently and which ensured that his lectures had been 
especially interesting. Very often Chebyshev made known his opinion 
about some related works, sometimes he recalled incidents occurring 
during his travels abroad and related his conversations with some foreign 
scientist.  
    After a more or less long talk of such nature which served him as a 
respite, Chebyshev, who was quite quick both in his speech and in all of 
his actions, jumped up, took the piece of chalk and began to continue his 
lecture. He dropped the chalk as soon as the bell rang at whichever point 
of his deliberations.  
    His professorial activities at Petersburg University, where he had been 
teaching for 35 years, could not have failed to effect most beneficially the 
entire staff of the mathematical faculty whose chairs had become occupied 
by his most talented former students. The elevated position which that 
faculty had long ago occupied at the University is therefore 
understandable. 
    However strongly had Chebyshev influenced the university, his main 
merit as professor was the creation of that mathematical school which is 
known under his name and is distinguished by a special direction of 
research. Chebyshev’s students have continued to develop his invented 
methods and, while solving the problems posed by him, are proposing new 
problems of the same kind. Thus, gradually, new sections with which his 
name will be forever connected are being created in science. At the same 
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time, the work of his followers are ever wider spreading those viewpoints 
to which the great scholar had been keeping in all his investigations. 
    [9] The partisans of Riemann’s extremely abstract ideas delve ever 
deeper into function-theoretic research and pseudo-geometric 
investigations in spaces of four, and of more than four dimensions. In their 
investigations they sometimes go so far that any present or future 
possibility of seeing the meaning of their work with respect to some 
application is lost, whereas Chebyshev and his followers invariably stick 
to reality and are guided by the viewpoint that only those investigations 
are valuable that are called forth by applications, whether scientific or 
practical, and only those theories are really useful which are occasioned by 
considering particular cases2.  
    An elaboration of issues especially important for applications and at the 
same time presenting unusual theoretical difficulties, demanding invention 
of new methods and elevation to the principles of science, followed by 
generalization of conclusions obtained and creation of a more or less 
general theory – this is the direction of most of the work of Chebyshev and 
of the scientists who have adopted his viewpoints.  
   The entire scientific activity of Chebyshev, who had proposed and 
solved quite new and important issues of analysis by starting from applied 
and sometimes purely practical problems, clearly shows how fruitful can 
such a direction be in a purely scientific aspect. Such, however, is the path 
of many important discoveries in the mathematical field. 
    I am concluding my note by wishing that the preparations of 
Chebyshev’s complete works be started as soon as possible. Their study is 
now very difficult because of their scatter over various periodicals, some 
of which are rather rare. Indeed, the acquaintance with these works can be 
necessary in many different cases and their study can show the way for 
many new discoveries because the ideas of the great scholar can become 
extremely important for solving many difficult problems now awaiting 
their turn. 
 

Notes 
    1. This is not the whole story. In a private letter of 1885 to A. P. Karpinsky (a geologist 
and public figure, 1847 – 1936), Markov made known that Chebyshev (1885) had failed 
to refer to him, and “continues in the same vein” (Grodzensky 1987, pp. 62 – 63). 
    2. These investigations were recently often connected, but have nothing in common 
with Lobachevsky’s geometric research. Like Chebyshev, the great geometer always 
remained on solid ground and would have hardly seen these transcendental investigations 
as a development of his ideas. A. L. 
    And here is a modern comment (Novikov 2002, p. 330): “In spite of his splendid 
analytical talent, Chebyshev was a pathological conservative”. He corroborated his 
opinion by a reference to V. F. Kagan, an eminent geometrician (1869 – 1853). The 
latter, “when being a young Privat-Docent”, had listened to Chebyshev’s scornful 
statement on the “trendy disciplines like the Riemann geometry and complex-variable 
analysis”.  
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XVIII 

A. A. Konüs 

 

On the Definition of Mathematical Probability 
 

Problemy Teorii Statistiki. (Issues in the Theory of Statistics).  
Moscow, 1978, pp. 64 – 77 

 
    [1] The classical definition of probability is formulated in the following 
way (Druzinin 1970, p. 19; see also Kantorovich 1946):  
 
    Mathematical probability is expressed by a proper fraction representing 
the ratio of the number of cases favourable for the occurrence of event A 
to the general number of equally possible and exclusive cases. 
 
    At the beginning of the 1950s there occurred an opinion (Arley & Buch 
1950, p. 10) that that definition 
 
    Is logically a circle definition, since equally likely can be defined only 
as equally probable, which is to be defined. 
 
    Such reasoning first stated at the beginning of the century by the author 
of the frequentist definition of probability (Mises 1928) became 
widespread (Gottinger 1974), but it cannot be considered well-founded. 
Indeed, if probabilities of random events are magnitudes subject to 
measurement, then, when comparing them with each other, it is not needed 
to establish the unit in which they are measured, it is sufficient to be able 
to judge whether one is higher or lower than, or equal to the other. This is 
known to be ensured by the preparation of the experiment or observation 
(Konüs 1954, p. 12). 
    Khinchin (1961/2004, p. 397) and Glivenko1 had been our main 
proponents of the idea of equipossibility in the theory of probability: 
 
    We may consider this definition [of probability by means of equally 
possible cases] as a reduction of the problem of finding a quantitative 
measure of probability in general to a preceding notion of equiprobability 
of events; the vicious circle thus disappears and the definition itself 
acquires some scientific meaning. 
 
    Glivenko (1939, p. 18) expressed himself more resolutely:  
 
    The notion of equiprobable is comprehensible to all and, like, for 
example, the concept of real space, does not need a logical definition. We 
discuss the equiprobability of two or several events if we have sufficiently 
objective pertinent grounds resting in data provided by practice, just like 
we mention for example the linearity of a ray of light. 
 
    Critics of the classical definition of probability indicate (Khinchin 
1961/2004, p. 397) that it has 
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    An extremely restricted sphere of application. Having originated and 
been developed due to games of chance and simplest insurance 
operations, the old theory of probability had built for itself a basis fit to a 
certain degree for treating these simplest problems; however, once the 
sphere of its problems had extended in connection with the requirements 
of physical and social statistics, and, later on, of biology and technology, 
the initially adopted foundations became too narrow. In problems 
reaching beyond the realm of games of chance, those equally possible 
cases, without which the classical concept cannot even speak about 
probabilities, just do not exist. Mises’ celebrated example of an irregular 
die is unsurpassed in validity and simplicity of argumentation2. 
 
    However, in some important theoretical problems and in many practical 
applications the classical definition of probability entirely preserves its 
significance. Therefore, it is indeed included with some reservations in 
most treatises on the theory of probability. True, the axiomatic approach to 
the theory as developed by Kolmogorov (1933) is compulsory for 
contemporary mathematical treatises intended for university students. 
    [2] The initial notion in the axiomatic theory of probability is event. It 
makes sense to say that it occurs or does not occur (at present, in the past, 
or in the future). Abstract prototypes of operations with events are 
contained in the set theory (Gnedenko 1950) and the Boolean algebra 
(Glivenko 1939). The most important features of these operations and a 
number of necessary definitions are (in a simplified representation): 
    A group (a set) of events A, B, C, … is considered. The letters here are 
not magnitudes, but the events themselves. For example, when throwing a 
die […] the events will be “the appearance of one”; “the appearance of 
two” etc. A second example concerns the state of the weather in a certain 
locality at 12 o’clock on Nov. 1, 1980: the events are rain, snow, […]. 
    In each of these examples, one of the events listed will occur without 
fail. Concerning such events, we say that they constitute a complete group 
and it is with them that the theory of probability has to do. [The author 
introduces the notions of complete group; certain event; multiplication and 
addition of events; product of events; exclusive events; sum of events; 
elementary events; complete group of exclusive events; impossible event.] 
    Operations of multiplication and addition can be extended to any, and 
even to a countable set […]. An ordering relation can be established for 
two events of a given group. It is designated by A  B⊂  which means that 
A precedes B or B follows after A (Glivenko 1939, p. 207). Under various 
circumstances this relation is also interpreted as “A involves B” or “A is a 
particular case of B”. […] If event A precedes B, i. e. if B  A⊂ , and at 
the same time event B precedes A, i. e., if B ⊂ A, these events are called 
equivalent which is designated as A = B. […] 
    Mathematical courses on the theory of probability also list a number of 
other important definitions and relations between events. Their exhaustive 
and precise description predetermines the appropriate formulation of the 
necessary axioms. 
    Axioms founded on the set theory can be formulated thus (Gnedenko 
1950/1973, p. 48). 
    Axiom 1. With each random event A in the Borel field of events F [of the 
system of events satisfying some special relations partly mentioned above 
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– A. K.] there is associated a nonnegative number P(A) called its 
probability. 
    Axiom 2. [The probability of a certain event is 1.] 
    Axiom 3 (Axiom of addition). If events A1, A2, …, An are pairwise 
mutually exclusive, then 
 
    P(A1 + A2 + … + An) = P(A1) + P(A2) + … + P(An). 
 
    This last axiom, the most important for the theory of probability, can be 
extended to infinitely many events: 
    Extended axiom of addition (Ibidem, p. 51). If event A can be 
decomposed into a finite or countable set of pairwise mutually exclusive 
events A1, A2, …, An, …, its probability is represented by the sum of the 
probabilities of events A1, A2, …, An, …: 
 
    P(A) = P(A1) + P(A2) + … + P(An) + … 
 
    The axiomatic approach is remarkable in that the theory of probability, 
being the calculation of probabilities of any events by issuing from the 
probabilities of the initial events, is solely based on these axioms (actually, 
only on the addition axiom): However, the listed axioms do not determine 
those initial probabilities without which it is nevertheless impossible to 
manage, and mathematicians have to turn to the Mises frequentist theory 
“when describing the necessary assumptions for applying the theory of 
probability to the world of real events” (Kolmogorov 1933/1936, p. 11).  
    [3] Mises proposed his theory as a denial of classical tradition in the 
theory of probability and it “defines probability of an event as the limit of 
frequency under an infinitely increasing number of trials (Khinchin 1952, 
p. 527). However, without additional assumptions it is impossible to prove 
that a number sequence with randomly defined terms has a limit. 
Therefore, mathematical treatises on the theory of probability do not refer 
to the Mises definition in its exact formulation, but mention results of 
observations and experiments and thus restrict their discussion to less 
binding principles. The following reasoning is typical for contemporary 
treatises (Yaglom & Yaglom 1973, p. 18):  
 
    In many cases, when one and the same trial is repeated many times over 
under the same conditions, the frequency of the occurrence of the studied 
result […] remains all the time approximately invariable, close to some 
constant magnitude. Thus, for a given shot and under given conditions the 
frequency of his hitting the target almost always as a rule remains 
approximately invariable and only seldom deviates essentially at all from 
some mean figure. This figure can certainly change with time: the person 
either improves his performance or forgets how to shoot. […] It is 
therefore concluded that in each case there exists a certain constant 
magnitude objectively describing the very process of shooting, of throwing 
a die, of manufacturing articles, etc, around which the mean frequency of 
the pertinent result […] is fluctuating during the long series of trials 
without deviating from it in any essential measure. This constant 
magnitude is called the probability of the considered event. 
 



 199 

    In other words (Kolmogorov 1956, p. 270), it is presumed that there 
exist such random phenomena  
 
    Peculiar in that the frequencies of their occurrence are stable, i. e. that, 
given a large number of recurrences of certain circumstances, they tend to 
occur with frequencies grouped around some normal level, around the 
probability. 
 
    It is not difficult to see that in essence such reasoning anticipate the law 
of large numbers whose proof the classics of the theory of probability 
considered so important. And indeed Kolmogorov (1956) argues that the 
law of large numbers is only necessary because “the need to specify 
quantitatively the statement that in “large” series of trials the frequencies 
of an event are “close” to its probability is quite natural”3. 
    At the same time, the frequentist theory, as Mises himself remarked, 
leads to the needlessness of axiomatisation of the theory of probability 
regarded as an applied science. He (Khinchin 1961/2004, p. 401)  
 
    Labels as nihilists those who want to perceive a mathematical doctrine 
in the theory of probability; this is why, filled with disgust and horror-
stricken, he struggles against the proposition, accepted without hesitation 
by all advanced scientists of our day, that the theory of probability is a 
part of the general doctrine of functions and sets. 
 
    [4] All this leaves the student of the theory of probability with a feeling 
of dissatisfaction. It is impossible to agree that, “when actually analysing 
the notion of probability, it is not at all obligatory to aim at its formal 
definition” (Kolmogorov 1956, p. 275). Indeed, we have to provide three 
different approaches to that definition in one and the same course in the 
theory of probability. Here is an example (Prokhorov & Rozanov 1975, 
pp. 10, 11 and 132): 
 
    First approach. Consider some trial or phenomenon in which, 
depending on chance, the studied event A occurs or not. Suppose that the 
conditions of the trial (under which the considered phenomenon takes 
place) can be represented time and time again, so that in principle an 
entire series of the same trials independent one from another can be made 
and in each of them the event A occurs or not depending on chance. 
    Let n be the number of trials in such series and n(a), the number of 
trials leading to the occurrence of A. Then the ratio n(A)/n is called the 
[relative – A. K.] frequency of event A in the given series of trials. 
Practice indicates that for large values of n the frequencies n(A)/n in 
different series of trials are approximately equal to each other. There 
exists some value P(A) around which these frequencies are grouped: 
 

    
 ( )

( )
n A

P A
n

≈ . 

 
    Second approach. If the outcomes of [if the favourable and 
unfavourable cases in ] a considered trial are equally probable, the 
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probability P(A) of event A connected with that trial can be calculated 
according to the simple formula 
 

    
( )

( )
N A

P A
N

=  

 
where N is the total number of equiprobable and mutually exclusive 
outcomes, and N(A) is the number of those which lead to the occurrence of 
A.  
 
    The term equiprobable is lacking in Kolmogorov (1933; 1956) and 
Neyman (1950) so that the above definition should have perhaps been 
formulated differently or altogether abandoned. 
 
    Third approach. Each stochastic pattern is based on the so-called space 

of elementary events ( ;  A; P)Ω
(

, a measurable space of elements ω called 

elementary events or elementary outcomes with a probability measure  

( )      :

     ( ) = 1.

P A given on the algebra A

P

σ

Ω

(

 

The sets of space Ω are called events and the measure P(A)of the set 

A  A⊂
(

 is called the probability of event A. 
 
    Three definitions of mathematical probability appearing in one and the 
same book means that neither is of full value. This is the reason why 
Gnedenko (1950/1973, p. 43), when describing the frequentist definition 
of probability, specifies that it is not the mathematical, but the statistical 
probability. He also considers it necessary to indicate that the problem of 
defining probability is still open: 
 
    The statistical definition of probability given here is descriptive rather 
than formally mathematical in character. It is deficient in yet another 
aspect as well: it does not lay bare the actual peculiarities of those 
phenomena for which the frequency is stable. This is to stress the necessity 
of further investigations in the indicated direction. 
 
    [5] For ascertaining the actual peculiarities of those phenomena for 
which the frequency is stable, it is natural to provide practical examples 
which are usually mentioned when justifying the frequentist definition of 
probability. […] It is not difficult to see that, when a man is target 
shooting, he naturally wishes that his next attempt will not be worse than 
the previous one. However, for the frequency of hitting the target to be 
approximately the same for a given shot and under given conditions 
(Yaglom & Yaglom, see above), and for the frequentist definition of 
probability to remain valid, the man should not level his gun each time 
better than before. This means that the probability of hitting the target 
ought to remain invariable. When manufacturing goods, all measures are 
certainly taken for their quality to be not worse than previously. But, 
again, for the frequentist definition of probability to be valid, the manager 
should not allow any improvement of quality and thus ensure an equal 
probability of each item produced to be substandard.  
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    As to the remarkable (Mises) example of an irregular die, whose centre 
of gravity does not coincide with its geometric centre, its importance for 
justifying the frequentist theory of probability consists exactly in that it is 
easy to ensure here a constant probability of a certain outcome. The idea 
of a constant probability is seen in the proof of the law of large numbers as 
provided, for example, by Glivenko (1939, p. 111):  
 
    Let µ be the number of occurrences of event A in n independent trials 
and p – the constant probability of A in one separate trial4. Then 
 

    ( ) 1.P p
n

µ
→ =  

 
    The axiomatisation of the theory of probability corroborated the 
considerations above. The axioms founded on the set theory allow us to 
derive as a corollary the statement that (Gnedenko 1969, pp. 21 and 51) 
 
    If A = B, then P(A) = P(B)5. 
 
When elucidating axiomatics based on Boolean algebra, Glivenko (1939, 
p. 27) thought it necessary to isolate that corollary as a special axiom. […] 
    [6] Such differing attitudes to one and the same statement is explained 
by the different meanings of the symbol A  B⊂ which is the starting 
point here: in set theory it denotes that “the occurrence of the event B 
necessarily follows from the occurrence of A” (Kolmogorov 1936, p. 13) 
whereas in the Boolean algebra it means that “A precedes B” or “B 
follows after A” (Glivenko 1939, p. 207). 
    Yaglom & Yaglom (1973, p. 65) believe that  
 
    The connection of the theory of probability with Boolean algebras can 
serve as the foundation of the very definition of its subject. Indeed, we may 
say that The theory of probability studies the totality of objects forming a 
normed Boolean algebra. These objects are called events, and the norm 
P(A) of event A is called probability. 
 
    I will keep to the Boolean interpretation and consider A and B 
equivalent, if, at the same time, A precedes B and B precedes A. The 
statement that “equivalent events are equiprobable” and the extended 
addition axiom allow us to extend the classical definition of probability to 
a countable set of events and at the same time to justify firmly the 
frequentist theory6. 
    Suppose that a countable set  
 
    E1, E2, …, En, …                                                                                (3) 
 
constituting a complete group of pairwise exclusive events equivalent to 
one another is given. We will consider an event A which can be 
subdivided into a countable set of particular cases 
 
    G1, G2, …, Gm, …                                                                               (4) 
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included in the group (3).  
    Because of the extended addition axiom of addition and axiom 2 
 
    P(E1) + P(E2) + … + P(En) + … = 1.                                                  (5) 
 
It follows now from the statement above that 
 
    P(E1) = P(E2) = … = P(En) = … = 1/n                                                (6) 
 
and, again on the strength of that extended axiom, 
 
    P(A) = P(G1) + P(G2) + … + P(Gm) + …                                             (7) 
 
    Since events (4) are particular cases of the complete group (3), 
equalities (6) and (7) lead to 
 

    (A) = ,  (A),  
m

P m n n
n

= → ∞ .                                                              (8) 

 
    [7] Thus, mathematical probability can only be defined when it is 
possible to indicate a complete group of exclusive and equivalent events. 
In other words: axiomatics allows us to conclude that mathematical 
probability is a proper fraction whose denominator is the number of all 
and only possible exclusive and equivalent particular cases (a finite or 
countable set of equivalent elementary events constituting a complete 
group) and the numerator is the number of those particular cases of the 
denominator in which the given event is occurring. 
    The reservation “equivalent elementary events”, as compared with the 
classical definition of probability, means that the order of those events can 
change in any manner. Consider a die, a regular cube made from 
homogeneous material. We may believe that the face “one” is the same as 
and, since the numbering of the faces is arbitrary, precedes face “two”. 
Then the outcomes “one”, “two”, etc are equivalent in the sense of a 
Boolean algebra and constitute a complete group of six pairwise exclusive 
events. It will therefore be necessary to apply the axiom of addition for a 
finite number of events and substitute in formula (8) values n = 6 and m = 
1. 
    The faces of an irregular die in the celebrated Mises example can be 
arranged in a certain order of their distance from its centre of gravity; this 
order is not arbitrary and for a given die it cannot be changed. The 
different outcomes are therefore not equivalent and it is now impossible to 
determine their probabilities directly, before experimenting. However, it is 
not difficult to establish that for numerous and like throws of an irregular 
die the throws themselves are equivalent elementary events.  
    The first throw, E1, precedes the second one, E2, so that 1 2E   E . ⊂ The 

numbering of the events, of the like throws, is arbitrary and the second one 
may be considered as preceding the first one, so that 2 1E   E .⊂  These 

elementary events, the throws, are pairwise exclusive and, for a countable 
set, they constitute a complete group. Therefore, E1 = E2 and P(E1) = 
P(E2). The same reasoning applies to any pair of throws; in formula (8) n 
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will represent the total number of throws, and m, the number of them with 
the given outcome. 
    Theoretically, the number of throws is infinitely large but practically it 
is always finite, so that a complete group does not occur here. The 
probability of a given outcome determined from the experiment will 
always only approximate the true probability: 
 

    (A), (A).
m

P m n
n

≈ =                                                                          (9) 

 
The bounds characterizing the precision of this estimate of the probability 
are determined for various values of n by formulas of the theory of 
probability pertaining to the reciprocal law of large numbers as 
formulated, for example, by Bernstein (1946), see also Benedetti (1976, 
pp. 344 – 493 [?])7. 
    In the example of one and the same person shooting at a target 
equivalence can only be understood conditionally because he improves his 
performance with time and it not possible to exchange a man after only a 
few of his shots for another person who had made several hundred of 
them. And the number of shots is not arbitrary for the gun being used 
either. This means that the estimation of the probability (9) of hitting the 
target is less precise than stipulated by the appropriate formulas of the 
theory of probability. 
    Considering the example of forecasting the weather for determining 
the probability of rain etc. in a given locality on Nov. 1, 1980, we may rest 
on previous data if 1980 might be exchanged for 1960 or 1940 etc, i. e., if 
tendencies towards climatic changes are lacking. […] 
    As mentioned above, the frequentist definition of mathematical 
probability originated as a denial of the classical definition. However, the 
axiomatic direction of the theory of probability made the latter suitable for 
establishing that very frequentist definition. This is seen as a manifestation 
of dialectical development of science (Konüs 1970; Kravets 1976). 
    Acknowledgement. I am deeply grateful to Ms N. A. Tolmacheva, the 
head of the sector of mathematical programming at the research institute 
NIEM, State Planning Committee, for valuable comments on the initial 
version of this paper. 
 

Notes 
    1. The author many times refers to Glivenko. Kolmogorov (1941) highly appraised his 
work in mathematics in general and appended a list of his publications. 
    2. Newton (manuscript 1664 – 1666; 1967, pp. 58 – 61) was the first to discuss throws 
of an irregular die. He indirectly remarked that the probabilities of the various outcomes 
can be determined by trials. In the same manuscript he introduced a thought experiment 
with its result depending on calculation of geometric probability, its first indirect and 
unpublished appearance in the theory of probability. 
    3. The wording is unfortunate: the law of large numbers is “so important”, but “only” 
needed etc. 
    4. In contemporary treatises, as it seems, constant is simply implied. 
    5. Gnedenko continues:  
 
    However, and this is particularly important, in the given definition we retain the 
objective character of probability that is independent of the investigator. The fact that 
only after performing certain preliminary observations we can judge that some event has 
a probability does not in the least detract from our conclusions, for a knowledge of 
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regularities is never derived from nothing; it is always preceded by experiment and 
observation. Of course, these regularities existed prior to the intervention of the 
experimenting thinking person, but they were simply unknown to science. 
 
    6. This is a very strong declaration (although at the very end of his paper Konüs only 
mentions justification of the frequentist definition of probability). See my Introduction 
[XVIII]. 
        7. I have not seen Benedetti (1976). Bernstein (1946, pp. 220 – 221) introduced what 
he called “the reciprocal of sorts of the Bernoulli theorem”. For a constant probability p 
and a sufficiently large number n of independent trials the probability P that the 
frequency of the studied event m/n satisfies the inequality 
 

    | |   ε, ε > 0
m

p
n

− ≤  

 
becomes arbitrarily close to 1 if only the prior probability R of m is higher than t/n with 
positive t not depending on n. Bernstein then derived an estimate of P for a finite n: 
 

    
4

3
1 .

16 ε
P

n t
> −   

 
I do not understand, however, why had Bernstein (and Konüs) called this the reciprocal 
etc. Then, obviously, for any n, t ≤ n. 
    The 1973 English translation includes the following statement (p. 20): 
 
    In all considerations of probability theory, equivalent events can replace one another. 
[…] Any two equivalent events [are] simply identical. 
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XIX 

Oscar Sheynin 

 
Review of Ivar Ekeland, The best of all possible worlds. Mathematics and 
destiny. Chicago and London: University of Chicago Press, 2006, 207pp. 

Unpublished 
 
    A somewhat differing version of this review appeared in Russian 
(Voprosy Istorii Estestvoznania i Tekhniki, No. 2, 2009, pp. 211 – 213)  
 
The main story begins with Leibniz who stated that everything is possible 
if not contradictory and that God had created the world by choosing the 
most perfect alternative. In 1740, Maupertuis explained the choice (true, 
only of the course of some natural physical processes) by the principle of 
least action (of least product of distance travelled by the velocity of 
motion and mass which remains constant or the least value of the 
appropriate integral) and applied it to justify (mistakenly) the Snell law of 
refraction. Euler applied the same principle for studying important 
problems in mechanics and physics (partly even preceding Maupertuis), 
introduced it into mathematics and thus, along with Lagrange, initiated the 
calculus of variations. 
    The author then describes the work of Hamilton and C. G. Jacobi 
(Ostrogradsky is not mentioned) who showed that the Maupertuis 
principle was doubtful (what is possible motion? And how to calculate the 
appropriate action of forces?), transferred it to the phase space (position + 
velocity), and finally replaced it by the principle of stationary action (the 
quantity of action should be insensitive to small changes in the appropriate 
path). 
    Ekeland does not here recall the earlier mentioned Fermat principle 
according to which light travelled along the fastest possible route. 
Religious and philosophical views prevailing in the 18th century were 
forgotten; instead, according to Poincaré and Mach, a theory had only to 
be fruitful but necessarily true. Regrettably, the author had not explained 
all this clearly enough although he obviously intended his book for a 
broader circle of readers. Thus, in 1752 Chevalier d’Arcy discovered that 
in a certain case light did not pick the shortest path, but Ekeland did not 
connect this mentioned fact with the new principle. 
    Turning his attention to randomness and rejecting its usual 
interpretation as intersection of two (or a few) chains of determinate 
events, the author suggests that reality “lies somewhere between” order 
and dependence of everything on everything (p. 86). He thus refuses to 
study randomness, and he never mentions its regularity in case of mass 
random events.  
    Instead, he considers the example of the motion of a ball on a non-
elliptical billiard table. Owing to unavoidable small uncertainty of its 
initial conditions, the path of the ball becomes a cloud which fills a certain 
region. This chaos, which the author (p. 125) unfortunately compares with 
a game of chance, actually defies quantitative definition, and, unlike 
Brownian motion, cannot be stochastically studied. 
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    Ekeland attributes the foundation of the chaos theory to Poincaré who 
started from the principle of stationary action distorted by perturbations, 
and he concludes (p. 128) that randomness (contrary to Einstein’s opinion) 
exists at the subatomic level with the most likely paths of elementary 
particles corresponding to stationary action (Feynman, p. 120) and chaos 
governing at our scale with the principle “caught somewhere in the 
middle”. But where can that middle exist?  
    The following chapters are devoted to the theory of evolution and the 
existing situation in the world. He somehow understands evolution as a 
tendency towards an equilibrium between species (not as a stochastic 
process, as I suggested in 1980) and does not mention Mendel. Moreover, 
there is a suggestion that biological evolution is chaotic, and the author 
should have commented on it. It is perhaps permissible to add that 
Lamarck (Histoire naturelles des animaux sans vertèbres, t. 1. Paris, 1815, 
p. 169) stated that the equilibrium between “universal attraction” and 
“L’action repulsive des fluids subtiles” was the cause of all observed facts 
and especially those concerning living creatures. 
    It would have been opportune to mention the mistaken theory of 
spontaneous generation of the simplest organisms which had been yet 
received by Lamarck, i. e., the most serious significance attributed to 
randomness in biology even long before Darwin. 
    As to our situation, “God had receded, leaving humankind alone in a 
world not of its choosing” (p. 180). This quote also shows Ekeland’s style, 
as does the very first phrase of the book: “The optimist believes that this is 
the best of all possible worlds, and the pessimist fears that this might be 
the case”. 
    The book is interesting and instructive. A special example concerns the 
actually not so well-known trial of Galileo: he was accused of believing 
that a mathematical hypothesis reflected reality, “something that 
mathematicians would never do”. Copernicus, or rather his publisher had 
indeed denied this connection, but had there been other such instances? 
Another statement (p. 25) is however doubtful: Descartes unified 
geometry and algebra “thereby creating modern mathematics”. 
    The contents of the book are not presented clearly enough and 
bibliographic information is simply poor. Even the “second uncertainty 
principle in classical mechanics” that states, that in some sense the 
uncertainty in the initial data of motion cannot be lessened, is without any 
further details attributed to Gromov, 1980. The author could have surely 
done much better. He is Director of the Pacific Institute of Mathematical 
Studies, and he put out several books including Mathematics and the 
Unexpected (1988) and The broken Dice (1993), both issued by the same 
publisher. 
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XX 

Oscar Sheynin 

 

Antistigler 
Unpublished 

 
    Stigler is the author of two books (1986; 1999) in which he dared to 
profane the memory of Gauss. 
    I had unavailingly criticized the first one (1993; 1999a; 1999b), but not 
a single person publicly supported me, whereas several statisticians, only 
justifying themselves by arguments ad hominem, urgently asked me to 
drop that subject. The appearance of Stigler’s second book showed that 
they were completely wrong but the same general attitude is persisting. 
One of those, apparently believing that a living dog was more valuable 
than a dead lion, is the present President of the International Statistical 
Institute. But to go into detail.  
    1) A few years ago Stigler was elected President of that same Institute 
(and had served in that capacity). He is now member of the Institute’s 
committee on history to which I was also elected (chosen?) without my 
previous knowledge or consent. I refused to work together with him (and 
with Descrosières, – of all members of the Institute, see below!).  
    2) A periodical (Intern. Z. f. Geschichte u. Ethik (!) der 
Naturwissenschaften, Technik u. Medizin, NTM) refused to consider my 
proposed subject, – the refutation of Stigler. The Editor politely suggested 
that I should apply to a statistical periodical.  
    3) The Gauss-Gesellschaft-Göttingen is silent and had not even 
answered my letter urging them to support me.  
    4) Healy (1995, p. 284) indirectly called Stigler the best historian of 
statistics of the 20th century, and Hald – yes, Hald (1998, p. xvi) even 
called Stigler’s book (1986) epochal. Epochal, in spite of slandering 
Gauss, of humiliating Euler (below), and of its being an essay rather than 
THE HISTORY (!) of statistics, as Stigler had the cheek to name it.  
    So much is absent in THE HISTORY, – cf. my book Sheynin 
(2005/2009), – in spite of which it became the statisticians’ Bible, that I 
shall extrapolate this phenomenon by reducing it with Lewis Carroll’s help 
ad absurdum: 
 
    Other maps are such shapes, with their islands and capes: 
    But we’ve got our brave Captain to thank 
    (So the crew would protest) “That he’s bought us the best – 
    A perfect and absolute blank!” 
 
    Stigler is regarded as a demigod. Historia Mathematica had published a 
review of his book (1999). Instead of providing its balanced account, the 
reviewer (an able statistician; H. M. vol. 33, No. 2, 2006) went out of his 
way to praise, to worship both the book and Stigler himself. 
    5) Centaurus rejected the manuscript of my paper (1999a) initially 
submitted to them since the anonymous reviewer, contrary to facts and 
common sense, did his damnedest to exonerate Stigler. 
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    In addition to my papers mentioned above, I can now add two more 
publications (2005; 2006, see their Indices), but I ought to add several 
points here. 
    1. Stigler (1986, p. 145): Gauss solicited reluctant testimony from 
friends that he had told them of the method [of least squares, MLSq] 
before [the appearance of the Legendre memoir in] 1805. 
    And in 1999, p. 322, repeating his earlier (of 1981) statement of the 
same ilk: Olbers did support Gauss’s claim … but only after seven years 
of repeated prodding by Gauss. Grasping at straws, Stigler adds an 
irrelevant reference to Plackett (1972).  
    So what happened with Olbers? On 4.10.1809 Gauss had asked him 
whether he remembered that he had heard about the MLSq from him 
(from Gauss) in 1803 and again in 1804. Olbers apparently did not answer 
(or answered through a third party). On 24.1.1812 Gauss asked even more: 
Was Olbers prepared to confirm publicly that fact? And Olbers answered 
on 10.3.1812: gern und willig (with pleasure), and at the first opportunity. 
However, during 1812 – 1815 Olbers had only published a few notes on 
the observation of comets (Catalogue of Scientific Literature, Roy. Soc. 
London), and he therefore only fulfilled Gauss’ request in 1816. (Much 
later Gauss, who became sick and tired of the whole dispute, mentioned 
that his friend had acted in good faith, but that he was nevertheless 
displeased by Olbers’ testimony made public.) 
    2. Again in 1999, Stigler had deliberately omitted to mention Bessel’s 
statement on the same subject. I discovered it while being prompted by 
Stigler’s attitude and quoted Bessel in a paper (1993) which Stigler 
mentioned in 1999. Bessel’s testimony, all by itself, refutes Stigler’s 
accusation described above. 
    3. Stigler (1999, pp. 322 – 323) mentions von Zach, his periodical 
(Monatl. Corr.) and some material published there in 1806 – 1807 which 
allegedly (indirectly) proved that von Zach had not considered Gauss as 
the inventor of the MLSq. Stigler leaves out a review published in the 
same periodical in 1809 whose anonymous author (von Zach?) described 
the actual history of the discovery of the MLSq, see p. 191. Incidentally, I 
(1999a, p. 258) found von Zach’s later statement in which he repeated 
Gauss’ explanation to the effect that he, Gauss, discovered the MLSq in 
1795. 
    4. Stigler (1986, p. 57): “It is clear […] that Legendre immediately 
realized the method’s potential”. And, on p. 146: “There is no indication 
that [Gauss] saw its great general potential before he learned of 
Legendre’s work”. Stigler thus denies Gauss’ well-known statement that 
he had been applying the MLSq since 1794 or 1795, denies simply 
because he is inclined to dethrone Gauss and replace him by Legendre. 
    5. Stigler (1986, p. 143): Only Laplace saved Gauss’ first justification 
(in 1809) of the MLSq from joining “an accumulated pile of essentially ad 
hoc constructions”. And how about Legendre? Stigler (1986, p. 13): For 
stark clarity of exposition the presentation [by Legendre in 1805] is 
unsurpassed; it must be counted as one of the clearest and most elegant 
introductions of a new statistical method in the history of statistics. His 
work (Stgler, p. 57) revealed his “depth of understanding of his method”. 
All this in spite of two mistakes made by Legendre and lack of any 
demonstration of the method. Legendre alleged that the MLSq agreed with 
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the minimax principle, and he mentioned errors instead of residual free 
terms of the initial equations. And can we believe that Stigler did not 
know that the Gauss’ proof of 1809, which allegedly almost joined “the 
accumulating pile” of rubbish, had been repeated in hundreds of books on 
the treatment of observations? Was it only due to Laplace? 
    6. Stigler (p. 146): Although Gauss may well have been telling the truth 
about his prior use of the method, he was unsuccessful in whatever 
attempts he made to communicate it before 1805. The first part of the 
phrase was appropriate in respect to a suspected rapist, but not to Gauss. 
As to his “attempts”, Gauss had communicated his discovery to several 
friends and colleagues but did not proclaim it through a public crier or by 
a publication in a newspaper.  
    Other pertinent points. 
    7. Stigler (1986, p. 27) denounced Euler as a mathematician who did 
not understand statistics. After I (1993) had refuted that pernicious 
statement, Stigler (1999, p. 318) declared that, in another case, Euler was 
acting in the grand tradition of mathematical statistics. He did not, 
however, renounce his previous opinion. More: in that second case, Euler 
had rejected the method of maximum likelihood, because, as he put it, the 
result should not change whether an outlying observation be rejected or 
not (read: the treatment should be such that …). Euler suggested to keep to 
the known and reliable method, to the mean; he had not mentioned the 
median although it (but not the term itself) had actually been earlier 
introduced by Boscovich.  
    8. Descrosières (1998, transl. from French) believes that Poisson had 
introduced the strong law of large numbers and that Gauss had derived the 
normal distribution as a limit of the binomial law, see my review in Isis, 
vol. 92, 2001, pp. 184 – 185. And Stigler (1999, p. 52)? He called 
Descrosières a scholar of the first rank!  
    9. There also, Stigler named another such high ranking scholar, Porter, 
and he (p. 3) also called Porter’s book of 1986 excellent. I reviewed it 
(Centaurus, vol. 31, 1988, pp. 171 – 172) and declared an opposite 
opinion. In 2004 Porter published Pearson’s biography, see my review in 
Hist. Scientiarum, vol. 16, 2006, pp. 206 – 209. I found there such pearls 
of wisdom as (p. 37) Even mathematics has aspects that cannot be proven, 
such as the fourth dimension. In my opinion, that book is barely useful. 
    10. In 1983, issuing from a biased stochastic supposition, Stigler 
declared that another author rather than Bayes had actually written the 
Bayes memoir. In 1999, while reprinting his 1983 paper, in spite of his 
sensational finding being stillborn and forgotten, Stigler got rid of its 
criticisms in a tiny footnote (p. 391). 
    11. Stigler (1986) is loath to mention his predecessors. On pp. 89 – 90 
he described the De Moivre – Simpson debate forgetting to refer to me 
(1973a, p. 279). And on pp. 217 – 218 he discussed the once topical but 
then completely forgotten conclusion concerning statistics of population 
without citing his only possible source of information, Chuprov’s letter to 
Markov of 10.3.1916 (Ondar 1977/1981, No. 72, pp. 84 – 85).  
    Long before that Stigler (1977) dwelt on Legendre’s accusation of 
Gauss concerning number theory without naming me (1973b, p. 124, note 
83). 
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    So why does Stigler remain so popular? Because the statistical 
community is crassly ignorant of the history of its own discipline; because 
it pays absolutely no attention to the slandering of Gauss’ memory (even if 
realizing that fact, as the reviewer for Hist. Math. did, see above, – I 
personally informed him about it in 1991, but he had known it himself); 
because it possesses a narrow scientific Weltanschauuung; and because 
the tribe of reviewers does not feel any social responsibility for their 
output. And of course there is a special reason: Stigler published his book 
(1986) when there was hardly anything pertinent except for papers in 
periodicals. The same happened to a lesser extent with Maistrov’s book of 
1974 which is still remembered! 
    To end my pamphlet, I quote, first, the most eminent scholar and 
historian of science, the late Clifford Truesdell (1984, p. 292), whom I will 
never forget and whose alarm bell apparently fell on deaf ears, and, 
second, Einstein’s letter of 1933 to Gumbel, a German and later an 
American statistician (Einstein Archives, Hebrew Univ. of Jerusalem, 
38615, in translation):  
 
    1) No longer is learning the objective of scholarship. […] By definition, 
now, there is no learning, because truth is dismissed as an old-fashioned 
superstition.  
 
    2) Intergity is just as important as scientific merits. 
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