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Swan Song

I am 90 +. For a long time now, I am mostly translating papers from
English to Russian (some, from Russian to English or even from
German to Russian). Apart from possible short notes, the MS below is
apparently my last original contribution.

Statistics
1. Early History

1.1. University Statistics. In the 1660s, Hermann Conring
originated a new discipline, the Staatswissenschaft, or university
statistics, and by the beginning of the eighteenth century it was taught
all over Germany (Lazarsfeld 1961, p. 291). He modestly named
Aristotle, Strabo and Ptolemy as the coauthors of the new discipline
(Fedorovich 1894, p. 17).

Then, in mid-18th century Achenwall created the Göttingen school
of Staatswissenschaft which described the climate, geographical
situation, political structure and economics of separate states and
estimated their population by issuing from data on births and mortality
but did not study relations between quantitative variables. Wordy
descriptions rather than numbers lay at the heart of the works of the
Göttingen school, but Achenwall advised state measures fostering the
multiplication of the population and recommended censuses without
which (1763/1779, p. 187) a probable estimate of the population could
be still got, see above. He also appropriately defined the so-called
statistics as the Staatswissenschaft of separate states (Achenwall 1749,
p. 1) and (1752/1756, Intro.) left an indirect definition of statistics:

In any case, statistics is not a subject that can be understood at once
by an empty pate. It belongs to a well digested philosophy, it demands
a thorough knowledge of European state and natural history taken
together with a multitude of concepts and principles, and an ability to
comprehend fairly well very different articles of the constitutions of
present-day kingdoms.

On Achenwall see Schiefer (1916). It is appropriate to mention that
in a letter of 1742 Daniel Bernoulli (Fuss 1843/1968, t. 2, p. 496)
stated that mathematics can also be rightfully applied in politics.
Citing Maupertuis’ approval, he continued: An entirely new science
will emerge if only as many observations will be made in politics as in
physics. But did he understand politics just as Achenwall did later? Or,
as Laplace (1814/1995, p. 62), who urged that the method based on
observation and calculus should be applied to the political and moral
sciences?
Achenwall’s student Schlözer (1804, p. 86) figuratively stated that
History is statistics flowing, and statistics is history standing still.
Obodovsky (1839, p. 48) suggested a similar maxim: Statistics is to
history as painting is to poetry. For those keeping to
Staatswissenschaft Schlözer’s pithy saying became the definition of
statistics which was thus not compelled to study causal connections in
society or discuss possible consequences of innovations.
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Staatswissenschaft still exists, at least in Germany, in a new form. It
applies quantitative data and studies causes and effects. It is the
application of the statistical method to the life of a state or a region.

Knies (1850, p. 24) and John (1883, p. 670) quoted unnamed
German authors who had believed, in 1806 and 1807, that the issues of
statistics ought to be the national spirit, love of freedom, the talent and
the characteristics of the great and ordinary people of a given state.
This critic had to do with the limitations of mathematics in general.
Here, however, is an ancient example of uniting description with
approximate numbers:

Moses (Numbers 13: 17 – 20), who sent out spies to the land of
Canaan, wished to find out Whether the people who dwell in it are
strong or weak, whether they are few or many, – wished to know both
numbers (roughly) and moral strength.

Tabular statistics which had originated with Anchersen (1741) could
have served as an intermediate link between words and numbers
(between Staatswissenschaft and political arithmetic, see below), but
Achenwall (1752, Intro.) had experienced a public attack against the
first edition of that book (published in 1749 under a previous title) by
Anchersen. Tabular statisticians continued to be scorned, they were
called Tabellenfabrikanten and Tabellenknechte (slaves of tables)
(Knies 1850, p. 23). In 1734, I. K. Kirilov (Ploshko and Eliseeva 1990,
pp. 65 – 66) compiled a tabular description of Russia, but it was only
published in 1831.

In the beginning of the 1680s Leibniz compiled several manuscripts
on political arithmetic and Staatswissenschaft which were only
published in 1866. Now, they are available in his collected writings on
insurance and finance mathematics (2000). In one of those manuscripts
he (1680 – 1683/2000, pp. 442 and 443) adopted unfounded premises
about population statistics including a simply fantastic statement: the
birth rate can be nine or ten times higher than it is.

In his manuscripts devoted to Staatswissenschaft, Leibniz had
recommended the compilation of state tables containing information
useful for the state and the comparison of those of them which
pertained to different states or times; the compilation of medical
sourcebooks of observations made by physicians, of their
recommendations and aphorisms; and the establishment of sanitary
commissions with unimaginably wide tasks. He mentioned inspection
of shops and bakeries, registration of the changes in the weather, fruit
and vegetable yields, prices of foodstuffs, magnetic observations and,
the main goal, recording of diseases and accidents affecting humans
and cattle.

Leibniz (1682) also compiled a list of 56 questions (actually, of 58
since he made two mistakes in numbering them). He left them in an
extremely raw and disordered state and a few are even
incomprehensible. Their main topics were population statistics in a
wide sense; money circulation; cost of living; morbidity. Incidentally,
for some strange reason population statistics at least up to the 20th
century had largely shunned medical problems. Graunt was a
remarkable exception and Poisson (§ 5) treated them in his lectures.
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1.2. Political Arithmetic. Statistics, in its modern sense, owed its
origin to political arithmetic founded by Petty and Graunt. One of its
main problems belonged with demography.

They studied population, economics, and commerce and discussed
the appropriate causes and connections by means of elementary
stochastic considerations. Petty called the new discipline political
arithmetic and its aims were to study from a socio-economic point of
view states and separate cities (or regions) by means of (rather
unreliable) statistical data on population, industry, agriculture,
commerce etc. Petty (1690/1899, p. 244) plainly formulated his denial
of comparative and superlative Words and attempted to express
himself in Terms of Number, Weight, or Measure …; Graunt
undoubtedly did, if not said the same.

Petty (1927, vol. 1, pp. 171 – 172) even proposed to establish a
register generall of people, plantations & trade of England, to collect
the accounts of all the Births, Mariages, Burialls […] of the Herths,
and Houses […] as also of the People, by their Age, Sex, Trade, Titles,
and Office. The scope of that Register was to be wider than that of our
existing Register office (Greenwood 1941 – 1943/1970, p. 61).

At least 30 Petty’s manuscripts (1927) pertained to political
arithmetic. This source (pp. 39 – 40) shows him as a philosopher of
science congenial in some respects with Leibniz:

What is a common measure of Time, Space, Weight, & motion?
What number of Elementall sounds or letters, will […] make a speech
or language? How to give names to names, and how to adde and
subtract sensata, & to ballance the weight and power of words; which
is Logick & reason.

Graunt (1662) studied the weekly bills of mortality in London which
began to appear in the 16th century and had been regularly published
since the beginning of the 17th century. His contribution had been (but
is apparently not anymore) attributed to Petty who perhaps qualifies as
co-author. For my part, I quote his Discourse (1674): I have also (like
the author of those Observations [like Graunt!]) Dedicated this
Discourse ...

Graunt used the fragmentary statistical data to estimate the
population of London and England as well as the influence of various
diseases on mortality and he attempted to allow for systematic
corruptions of the data. Thus, he reasonably supposed that the number
of deaths from syphilis was essentially understated out of ethical
considerations. His main merit consisted in that he attempted to find
definite regularities in the movement of the population. Thus, he
established that both sexes were approximately equally numerous
(which contradicted the then established views) and that out of 27
newborn babies about 14 were boys. When dealing with large numbers,
Graunt did not doubt that his conclusions reflected objective reality
which might be seen as a fact belonging to the prehistory of the law of
large numbers (LLN). The ratio 14:13 was, in his opinion, an estimate
of the ratio of the respective probabilities.

Nevertheless, he had uncritically made conclusions based on a small
number of observations as well and thought that the population
increased in an arithmetical progression, since replaced by the
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geometrical progression definitively introduced by Süssmilch and
Euler (§ 1.3).

In spite of the meagre and sometimes wrong information, Graunt
was able to compile the first life table (common for both sexes). He
somehow calculated the relative number of people dying within the
first six years and within each next decade up to age 86. According to
his table, only one person out of a hundred survived until that age. The
very invention of the mortality table was the main point here. The
indicated causes of death were also incomplete and doubtful, but
Graunt formulated some important conclusions as well (although not
without serious errors). His general methodological (but not factual)
mistake consisted in that he assumed, without due justification, that
statistical ratios during usual years (for example, the per cent of yearly
deaths) were stable. Graunt had influenced later scholars (Huygens,
letter of 1662/1888 – 1950, 1891, p. 149; Hald 1990, p. 86):

1. Grant’s [!] discourse really deserves to be considered and I like it
very much. He reasons sensibly and clearly and I admire how he was
able to elicit all his conclusions from these simple observations which
formerly seemed useless.

2. Graunt reduced the data from several great confused Volumes
into a few perspicuous Tables and analysed them in a few succinct
Paragraphs which is exactly the aim of statistics.

1.3. Population Statistics. I discuss medical and juridical statistics
separately (§§ 2.2 and 2.3), but I emphasize that those fields are
fundamentally important for population statistics.

Halley (1693), a versatile scholar and an astronomer in the first
place, compiled the next life table. He made use of statistical data
collected in Breslau, a city with a closed population. Halley applied his
table for elementary stochastic calculations and thus laid a
mathematical foundation of actuarial science. He was also able to find
out the general relative population of the city. Thus, for each thousand
infants aged less than a year, there remained 855 children from one to
two years of age, …, and, finally, 107 persons aged 84 – 100. After
summing up all these numbers, Halley obtained 34 thousand (exactly)
so that the ratio of the population to the newborn babies occurred to be
34. Until 1750 his table remained the best one (K. Pearson 1978, p.
206).

The yearly rate of mortality in Breslau was 1/30, the same as in
London, and yet Halley considered that city as a statistical standard. If
such a notion is appropriate, standards of several levels ought to be
introduced. Again, Halley thought that the irregularities in his data will
rectify themselves, were the number of years [of observation] much
more considerable. Such irregularities could have been produced by
systematic influences, but Halley’s opinion shows the apparently
wide-spread belief in an embryo of the LLN.

Sofonea (1957, p. 31*) called Halley’s contribution the beginning of
the entire development of modern methods of life insurance, and Hald
(1990, p. 141) stated that it became of great importance to actuarial
science. Drawing on Halley, De Moivre (1725) introduced the
continuous uniform law of mortality for ages beginning at 12 years.
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In 1701 Halley (Chapman 1941, p. 5) compiled a chart of Northern
Atlantic showing the lines of equal magnetic declinations so that he
(and of course Graunt) might be called the founders of exploratory
data analysis.

It might be thought that statistics and statistical method are
equivalent notions (see however § 9), but it is normal to apply the
former term when studying population and to use the latter in all other
instances and especially when applying statistics to natural sciences.
Nevertheless, there also exist such expressions as medical and stellar
statistics, and theory of errors.

Three stages may be distinguished in the history of the statistical
method. At first, conclusions were being based on (statistically)
noticed qualitative regularities, a practice which conformed to the
qualitative essence of ancient science. Here, for example, is the
statement of the Roman scholar Celsus (1935, p.19):

Careful men noted what generally answered the better, and then
began to prescribe the same for their patients. Thus sprang up the Art
of medicine.

The second stage (Tycho in astronomy, Graunt in demography and
medical statistics) was distinguished by the availability of statistical
data. Scientists had then been arriving at important conclusions either
by means of simple stochastic ideas and methods or even directly, as
before. During the present stage, which dates back to the end of the
19th century, inferences are being checked by quantitative stochastic
rules.

In the 18th century, statisticians had been attempting to bring into
conformity the speedy increase in population with the Biblical
command (Genesis 1:28), Be fruitful and multiply and fill the earth
and subdue it, and K. Pearson (1978, p. 337) severely criticized them:

Instead of trying, in the language of Florence Nightingale, to
interpret the thought of God from statistical data, [they] turn the
problem around and twist their data to suit what they themselves
consider the will of the Creator.

And, on the same page, again about those statisticians who paved
the way for the Malthusians if not Malthus himself:

While the Creator would not approve of starvation for thinning
humanity, He would have no objection to plague or war.

The most renown statistician of the second half of the 18th century
was Süssmilch although Pearson (p. 347) called Struyck a more
influential forerunner in the field of vital statistics. Süssmilch (1741)
adhered to the tradition of political arithmetic. He collected data on the
movement of population and attempted to reveal pertinent divine
providence but he treated his materials loosely. Thus, when taking the
mean of the data pertaining to towns and rural districts, he tacitly
assumed that their populations were equally numerous; in his studies
of mortality, he had not attempted to allow for the differences in the
age structure of the populations of the various regions etc.

Nevertheless, his works paved the way for Quetelet; in particular, he
studied issues which later came under the province of moral statistics
(e.g., illegitimate births, crime, suicides) and his tables of mortality
had been in use even in the beginning of the 19th century, see Birg
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(1986) and Pfanzagl & Sheynin (1997). After A. M. Guerry and
Quetelet the domain of moral statistics essentially broadened and
includes now, for example, philanthropy and professional and
geographical mobility of the population.

Like Graunt, Süssmilch discussed pertinent causes and offered
conclusions. Thus, he (1758) thought of examining the dependence of
mortality on climate and geographical position and he knew that
poverty and ignorance were conducive to the spread of epidemics.

Süssmilch’s main contribution, the Göttliche Ordnung, marked the
origin of demography. Its second edition of 1761 − 1762 included a
chapter On the rate of increase and the period of doubling [of the
population]; it was written jointly with Euler and served as the basis of
one of Euler’s memoirs (Euler 1767). Süssmilch thought that, since
multiplication of mankind was a divine commandment, rulers must
take care of their subjects. He condemned wars and luxury and
indicated that the welfare of the poor was to the advantage of both the
state, and the rich. His pertinent appeals brought him into continual
strife with municipal (Berlin) authorities and ministers of the state
(Prussia). He would have likely agreed with a much later author (Budd
1849, p. 27) who discussed cholera epidemics:

By reason of our common humanity, we are all the more nearly
related here than we are apt to think. […] And he that was never yet
connected with his poorer neighbour by deeds of Charity or Love, may
one day find, when it is too late, that he is connected with him by a
bond which may bring them both, at once, to a common grave.

Süssmilch’s collaboration with Euler and frequent references to him
in his book certainly mean that Euler had shared his general social
views. Malthus (1798) picked up one of the conclusions in the
Göttliche Ordnung, viz., that the population increased in a geometric
progression (still a more or less received statement). Euler compiled
three tables showing the increase of population during 900 years
beginning with Adam and Eve. His third table based on arbitrary
restrictions meant that each 24 years the number of living increased
approximately threefold. Gumbel (1917) proved that the numbers of
births, deaths and of the living in that table were approaching a
geometric progression and noted that several authors since 1600 had
proposed that progression as the appropriate law.

Note, however, that it was Gregory King (1648 – 1712) who first
discussed the doubling of population (K. Pearson 1978, p. 109).

Euler left no serious contributions to the theory of probability, but
he published a few elegant and methodically important memoirs on
population statistics. He did not introduce any stochastic laws, but the
concept of increase in population is due to him, and his reasoning was
elegant and methodically interesting, in particular for life insurance
(Paevsky 1935).

Lambert published a methodical study in population statistics (1772).
Without due justification he proposed there several laws of mortality
(belonging to types IX and X of the Pearson curves). Then, he
formulated the problem about the duration of marriages, studied
children’s mortality from smallpox and the number of children in
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families (§ 108). See Sheynin (1971b) and Daw (1980) who also
appended a translation of the smallpox issue.

When considering the last-mentioned subject, Lambert started from
data on 612 families having up to 14 children, and, once more without
substantiation, somehow adjusted his materials. He arbitrarily
increased the total number of children by one half likely attempting to
allow for stillbirths and the death of children. Elsewhere he (§ 68)
indicated that statistical inquiries should reveal irregularities.

Population statistics owed its later development to the general
problem of isolating randomness from Divine design. Kepler and
Newton achieved this aim with regard to inanimate nature, and
scientists were quick to begin searching for the laws governing the
movement of population (and attempting to fit them to the Biblical
command). Moreover, De Moivre thought that exactly that problem
constituted the main aim of his philosophy. He dedicated the first
edition of his Doctrine of Chances (1718/1756, p. 329) to Newton, and
here are a few pertinent lines. His wish was to work out

A Method of calculating the Effects of Chance […] and thereby [of]
fixing certain rules, for estimating how far some sort of Events may
rather be owing to Design than Chance […] [so as to learn] from your
Philosophy how to collect, by a just Calculation, the Evidences of
exquisite Wisdom and Design, which appear in the Phenomena of
Nature throughout the Universe.

De Moivre thus believed that the (future) theory of probability
should be applied in natural sciences, but he rigorously demonstrated
his theorems. Studies of various distributions had not yet begun.
Chance had been certainly separated from design in everyday life.
Bühler (1886/1967, p. 267) described an appropriate (for us,
unreasonable) example pertaining to the administration of justice in
ancient India. Horrible trials with red-hot iron had been widespread.

1.3.1. The sex ratio at birth. The solution of this problem was not
practically needed, but the subject itself attracted scientists and
provided a possibility of applying mathematical methods.

1.3.1-1. Arbuthnot. He (1712) assembled the existing data on
baptisms in London for 1629 – 1710, noted that during those 82 years
more boys (m) were invariably born than girls (f) and declared that that
fact was not the Effect of Chance but Divine Providence, working for a
good End. Boys and men, as he added, were subject to greater dangers
and their mortality was higher than that of the females. Even
disregarding both that unsubstantiated statement and such [hardly
exhibited] regularities as the constant Proportion m:f and fix’d limits
of the difference (m – f), the Value of Expectation of a random
occurrence of the observed inequality was less than (1/2)82, he stated.

Arbuthnot could have concluded that the births of both sexes obeyed
the binomial distribution, which, rather than the inequality m > f,
manifested Divine design; and could have attempted to estimate its
parameter. Then, baptisms were not identical with births. Graunt (1662,
end of Chapt. 3) stated that during 1650 – 1660 less than half of the
general [Christian] population had believed that baptism was necessary;
Christians perhaps somehow differed from other people, London was
perhaps an exception. Note however, that during the 18th century



8

philosophers almost always understood randomness in the uniform
sense.

One more point. Denote a year by m or f if more boys or girls were
respectively born. Any combination of the m’s and f’s in a given order
has the same probability (2−82 in Arbuthnot’s case). However, if the
order is of no consequence, then those probabilities will greatly differ.
Indeed, in a throw of two dice the outcome “1 and 2” in any order is
twice as probable as “1 and 1”. It is this second case which Arbuthnot
likely had in mind.

I note Laplace’s inference (1776/1891, p. 152; 1814/1995, p. 9) in a
similar case: a sensible word would hardly be composed by chance
from separate letters. Poisson (1837a, p. 114) provided an equivalent
example and made a similar conclusion. However, a definition of a
random sequence (and especially of its finite variety) is still a subject
of subtle investigations.

Freudenthal (1961, p. xi) called Arbuthnot the author of the first
publication on mathematical statistics, see also Shoesmith (1987) and
David & Edwards (2001, pp. 9 – 11).

1.3.1-2. Nicolaus Bernoulli. While discussing the same subject, he
indirectly derived the normal distribution. Let the sex ratio be m/f, n,
the total yearly number of births, and µ and (n – µ), the numbers of
male and female births in a year. Denote

n/(m + f) = r, m/(m + f) = p, f/(m + f) = q, p + q = 1,

and let s = 0(√n). Then Bernoulli’s formula (Montmort 1713/1980, pp.
388 – 394) can be presented as

P(|µ– rm| ≤ s) ≈ (t – 1)/t,
t ≈ [1 + s(m + f)/mfr]s/2 ≈ exp[s2(m + f)2/2mfn],
P (|µ – rm| ≤ s) ≈ 1 – exp(s2/2pqn),

2μ
[ ] 1 exp[ ].

2

np s
P s s ׀ 

npq
׀ 

     

It is not an integral theorem since s is restricted (see above) and

neither is it a local theorem; for one thing, it lacks the factor 2/π.
The context of De Moivre’s paper (1733) in which he proved the

first version of the central limit theorem, CLT (a term introduced by
Polya (1920)) shows that he intended it for studying that same problem,
the sex ratio at birth.

1.3.1-3. While investigating the same problem, Daniel Bernoulli
(1770 – 1771) first assumed that male and female births were equally
probable. It followed that the probability that the former constituted a
half of 2N births will be

1 3 5 ...(2 1)
( ).

2 4 6 ... 2

N
P q N

N

   
 

   
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He calculated this fraction not by the Wallis formula but by means
of differential equations and obtained

1.12826
.

4 1
q

N




Application of differential equations was Bernoulli’s usual method
in probability. Bernoulli also determined the probability of the birth of
approximately m boys (see below):

P(m = N ± µ) = qexp(– µ2/N) with µ of the order of √N.   (1)

In the second part of his memoir Bernoulli assumed that the
probabilities of the birth of both sexes were in the ratio of a:b.
Equating the probabilities of m and (m + 1) boys being born, again
being given 2N births, he thus obtained the [expected] number of male
births

Em = M =
2 2Na b Na

a b a b




 

which was of course evident. More interesting was Bernoulli’s
subsequent reasoning for determining the probability of an arbitrary m
(for µ of the order of √N):

P(m = M + µ + 1) – P(m = M + µ) ≡ dπ =

π − (2 μ) π μ 1 μ /π μ,  μ.
( μ 1) π μ 1

a N M d a b
d d

b M m

   
 

   

The subsequent transformations included the expansion of
ln[(M + 1 + µ)/(M + 1)] into a power series. Bernoulli’s answer was

P(m = M  µ) = π = P(m = M)exp
2( )μ

[ ],
2

a b

bM




hence (1). Note that Bernoulli had not applied the local De Moivre (–
Laplace) theorem.

2. Statistical Startups, Not Yet Explored Topics, Difficulties
Graunt (1662) was not sure whether anyone except the Sovereign

and his chief Ministers needed statistics, but since then the situation
has essentially changed, and especially with the creation of the welfare
state and government decision making. Great changes have occurred
with regard to natural sciences as well. Mostly in the 19th century a
number of new disciplines linked to statistics have originated: medical
statistics (especially epidemiology), public hygiene (the forerunner of
ecology), geography of plants, zoogeography, biometry, climatology,
stellar statistics, and kinetic theory of gases. Many fundamental
problems, such as the influence of solar activity on terrestrial
phenomena have been studied statistically.
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Just to illustrate the widest scope of statistics I mention two papers:
Thornberg (1929) about the trade union movement (which showed an
unusual aspect of the application of statistics in industry) and Thorp
(1948) who described the use of statistics in foreign relations.

During the first five decades of the 19th century, statistical
institutions and/or national statistical societies came into being in the
main states of Europe and America. International statistical congresses
aiming at unification of official statistical data had been held from
1851 onward, and in 1885 the still active International Statistical
Institute was established instead.

Throughout the 19th century the importance of statistics had been
considerably increasing. By the mid-19th century it became important
to foresee how various transformations will influence society and
Quetelet (§ 7.1) repeatedly stressed this point. Then, at the end of that
century censuses of population, answering an ever widening range of
questions, began to be carried out in various countries. However,

● Public opinion was not yet studied.
● Sampling had been considered doubtful. Cournot (1843) passed it

over in silence and Laplace’s sample determination of the population
of France was largely forgotten. Quetelet opposed sampling. Much
later Bortkiewicz (1904, p. 825) and Czuber (1921, p. 13) called
sampling conjectural calculation although already the beginning of the
century witnessed legions of new data (Lueder 1812, p. 9) and the
tendency to amass sometimes useless or unreliable data revealed itself
in various branches of natural sciences.

I adduce two barely known statements. In 1904, Newcomb had sent
a letter to the Carnegie Institution urging it to establish an institute or a
bureau of exact sciences for developing methods of dealing with the
great mass of existing observations (Method 1905, p. 180). Neither he,
nor Pearson (p. 184), one of the several scientists whom the Carnegie
Institution asked to comment on Newcomb’s proposal, mentioned
sampling. Pearson argued that the situation was certainly bad and held
that at least 50 per cent of the observations made and the data
collected are worthless. Either the conditions necessary for testing a
theory were not met or collectors or observers were hopelessly
ignorant of the conditions required for accurate work. Owing to
various difficulties, Newcomb’s proposal was not adopted.

In 1915 or 1916, Chuprov mentioned the need to organize after the
end of the world war, under the (Russian) Academy of Sciences, the
studies of population and its productive forces (Sheynin 1990/2011, p.
130).

On the history of sampling, whose most active partisan was Kiaer,
see You Poh Seng (1951) and Tassi (1988). Kapteyn (1906) initiated
an international stratified sampling of the starry heaven.

● The development of the correlation theory began at the end of the
19th century, but even much later Kaufman (1922, p. 152) declared that
the so-called method of correlation adds nothing essential to the
results of elementary analysis.

● Variance began to be applied in statistics only after Lexis, but
even later Bortkiewicz (1894 – 1896, Bd. 10, pp. 353 – 354) stated that
the study of precision was a luxury, and that the statistical flair was
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much more important. This opinion had perhaps been caused by the
presence of large systematic corruptions in the initial materials.

● Preliminary (or exploratory) data analysis (generally recognized
only a few decades ago) was necessary, and should have been the
beginning of the statistician’s work.

● Statistical quality control had not been applied until the 1920s.
● Econometrics only originated in the 1930s (Frisch 1933, p. 1): the

main object of the just established Econometric Society was to
promote unification of the theoretical-quantitative and the empirical-
quantitative approach to economic problems and to foster constructive
and rigorous thinking similar to that which has come to dominate in
the natural sciences.

Poincaré, in an undated letter kept in his Dossier at the Paris
Academy of Sciences (Sheynin 2009, p. 117, No. 619) quite positively
described the work of H. Laurent both in probability and actuarial
science and noted his Traité [1902] on mathematical political economy
and lectures dans un cours libre at the Sorbonne on the same subject.
Poincaré called this discipline a science nouvelle crée par Walras et
ses disciples. So are Walras and Laurent the forerunners of
econometrics?

I can also mention Petty and Bortkiewicz. Petty’s essays on political
arithmetic were econometric in its methodological framework, even
from the modern point of view (Strotz 1978, p. 188). And Bortkiewicz

Made the necessary modifications that rendered the Marxian
scheme of surplus values and prices consistent. However, his dry
presentation prevented the Marxists (except for Klimpt [1936]) from
accepting his method. And he had made the lonely effort to construct a
Marxian econometrics [without applying statistical data] (Gumbel
1978, pp. 25 and 26).

Strotz (p. 189) also argues that econometrics is disappearing as a
special branch of economics.

In conformity with the situation in the Soviet Union (Sheynin 1998)
econometrics had hardly existed there. At an economic conference in
1960 Kolmogorov (Birman 1960, p. 44) stated that

The main difficult but necessary aim is to express the desired
optimal state of affairs in the national economy by a single indicator.

Indeed, the prices of commodities had only been administratively
established.

I list now the difficulties, real and imaginary, of applying the theory
of probability to statistics.

● The absence of equally possible cases whose existence is
necessary for understanding the classical notion of probability.
Statisticians repeatedly mentioned this cause.

● Disturbance of the constancy of the probability of the studied
event and/or of the independence of trials. Before Lexis (1879)
statisticians had only recognized the Bernoulli trials; and even much
later, again Kaufman (1922, pp. 103 – 104), argued that the theory of
probability was applicable only to these trials, and, for that matter,
only in the presence of equally possible cases.
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● The abstract nature of the (not yet axiomatized) theory of
probability. The history of mathematics testifies that the more abstract
it became, the wider had been the range of its applicability.

In the beginning of the 1820s in a letter to Quetelet, Fourier
maintained that the statistical sciences will only progress insofar as
they were supported by mathematical theories (Quetelet 1826, p. 177).
Soon, however, Quetelet (1828, p. i) called the calculus of probability
(not just mathematics) the basis of observational sciences, and later
(1869, t. 1, p. 134) a most reliable and most indispensable companion
of statistics. Bortkiewicz (1904) expressed similar ideas.

For most statisticians all these pronouncements remained alien (see
also § 8.3.3). They had not expected any help from the theory of
probability. Block (1878/1886, p. 134) thought that it was too abstract
and should not be applied too often, and Knapp (1872, p. 115) called it
difficult and hardly useful beyond the sphere of games of chance and
insurance. In 1911, G. von Mayr declared that mathematical formulas
were not needed in statistics and privately told Bortkiewicz that he was
unable to bear mathematics (Bortkevich & Chuprov 2005, Letter 109
of 1911). Bortkiewicz (1904, p. 822) also mentioned Guerry (1864, p.
XXXIII ff) as an opponent of the application of the theory of
probability and therefore his opponent as well.

I have noted (§ 2.1) that in 1835 several scientists including Poisson
had stressed the connection between statistics and probability. A bit
earlier three scholars, again including Poisson (Libri-Carrucci et al
1834, p. 535), declared that the most sublime problems of the
arithmétique sociale [see § 5] can only be resolved with the help of the
theory of probability.

Nevertheless, statisticians never mentioned Daniel Bernoulli who
published important statistical memoirs, almost forgot insurance,
barely understood the treatment of observations, did not notice either
Quetelet’s mistakes or his inclinations to crime and to marriage (§
7.1). After his death in 1874 they all the more turned away from
probability.

Two circumstances worsened the situation. First, mathematicians
often did not show how to apply their findings in practice. Poisson
(1837a) is a good example; his student Gavarret (1840) simplified his
formulas, but still insisted that conclusions should be based on a large
number of observations which was often impossible (§ 2.1). Second,
student-statisticians barely studied mathematics and, after graduation,
did not trust it.

It is not amiss to mention here a pioneer attempt to create
mathematical statistics (Wittstein 1867). He compared the situation in
statistics with the childhood of astronomy and stressed that statistics
(and especially population statistics) needed a Tycho and a Kepler to
proceed from reliable observations to regularities. Specifically, he
noted that statisticians did not understand the essence of probability
theory and never estimated the precision of the results obtained.

Knies (1850 [p. 163]) was strongly in favour of adopting the name
statistics for political arithmetic called by him mathematical statistics
(John 1883, p. 677). Hardly proper, but the term mathematical
statistics was apparently thus first pronounced.



13

● A few words about astronomy and meteorology. In astronomy
asteroids were understood to form a statistical population: their orbital
parameters were studied statistically (Newcomb). From the mid-18th

century (William Herschel) statistical reasoning was also applied to
studying the arrangement and (later) the movement of stars and
Kapteyn (1906) initiated an international plan for a sampling study of
the stellar universe. In meteorology, Humboldt (1817) used statistical
data on air temperatures to construct isotherms on a world-wide scale
and thus to isolate the Earth’s main climatic belts (more precisely, to
confirm quantitatively their existence, qualitatively suggested by
ancient geographers) and originate climatology. The introduction of
contour lines for representing statistical information (a brilliant
example of exploratory data analysis) was due to Halley (§ 1.3).

In general, Humboldt (1845 – 1862, Bd. 1, pp. 18 and 72; Bd. 3, p.
288) conditioned the investigation of natural phenomena by
examination of mean states. In the last-mentioned case he mentioned
the sole decisive method [in natural sciences], that of the mean
numbers which (1845, Bd. 1, p. 82) show us the constancy in the
changes. In other words, he stressed the importance of statistical
studies.

Lamarck, the most eminent biologist of his time, seriously occupied
himself with physics, chemistry and meteorology. In meteorology, his
merits had for a long time been ignored (Muncke 1837), but he is now
remembered for his pioneer work in the study of weather (Shaw &
Austin (1926/1942, p. 130). He repeatedly applied the term
météorologie statistique (e.g., 1800 – 1811, t. 4, p. 1) whose aim
(Ibidem, t. 11, p. 9 – 10) was the study of climate, or, as he (Ibidem, t.
4, pp. 153 – 154) maintained elsewhere, the study of the climate, of
regularities in the changes of the weather and of the influence of
various meteorological phenomena on animals, plants and soil.

He preferred a reasoned rather than an empirical meteorology
(Ibidem, t. 5, p. 1) with its own theory, general principles and
aphorisms (Ibidem, t. 3, p. 104). At the time, such an approach was
impossible but the development of statistical physics in the 19th

century somewhat changed the situation (Angström 1929, p. 229).
Buys Ballot (1850, p. 629) noted the appearance of the second stage

in the development of meteorology, the study of the deviations of
meteorological elements from their mean values or states. He could
have mentioned a few other sciences as well (for example, astronomy
and geodesy, − and statistics!).

2.1. Medical Statistics. Interestingly enough, the expression
medical probability appeared not later than in the mid-18th century
(Mendelsohn 1761, p. 204). At the end of that century Condorcet
(1795/1988, p. 542) advocated collection of medical observations and
Black (1788, p. 65) even compiled a possibly forgotten Medical
catalogue of all the principle diseases and casualties by which the
Human Species are destroyed or annoyed that reminded of Leibniz’
thoughts. Descriptions belonging to other branches of natural sciences
as well have actively been compiled (mostly later) and such work
certainly demanded preliminary statistical efforts. Some authors
mistakenly stated that their compilations ruled out the need for theories
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and, in addition, until the beginning of the 20th century the partisans of
complete descriptions continued to deny sampling in statistics proper.

The range of application of the statistical method in medicine
greatly widened after the emergence, in the mid-19th century, of
public hygiene (largely a forerunner of ecology) and epidemiology.
About the same time surgery and obstetrics, branches of medicine
proper, yielded to the statistical method.

Public hygiene began statistically studying problems connected with
the Industrial Revolution in England and, in particular, by the great
infant mortality (Chadwick 1842/1965, p. 228). Also, witness Farr (ca.
1857/1885, p. 148): Any deaths in a people exceeding 17 in a 1,000
annually are unnatural deaths. Unnatural, but common!

Epidemiology was properly born when cholera epidemics had been
ravaging Europe. Snow (1855) compared mortality from cholera for
two groups of the population of London, whose drinking water was
either purified or not, ascertained that purification decreased mortality
by eight times, and thus discovered how did cholera epidemics spread.
The need to combat the devastating visitations of cholera was of
utmost importance.

No less important was the study of prevention of smallpox. The
history of smallpox epidemics and inoculation, the communication of a
mild form of smallpox from one person to another, is described in
various sources (Condamine 1759, 1763, 1773; Karn 1931). In his first
memoir, Condamine listed the objections against inoculation, both
medical and religious.

Indeed, White (1896/1898) described the warfare of science with
theology including, in vol. 2, pp. 55 – 59, examples of fierce
opposition to inoculation (and, up to 1803, to vaccination of smallpox).
Many thousands of Canadians perished in the mid-19th century only
because, stating their religious belief, they had refused to be inoculated.
White clearly distinguished between theology, the opposing force, and
“practical” religion.

Karn stated at the very beginning of her article that
The method used in this paper for determining the influence of the

death-rates from some particular diseases on the duration of life is
based on suggestions which were made in the first place by D.
Bernoulli.

Daniel Bernoulli (1766) justified inoculation. That procedure,
however, spread infection, was therefore somewhat dangerous for the
neighbourhood and prohibited for some time, first in England, then in
France. Referring to statistical data, but not publishing it, Bernoulli
specified the yearly rates of the occurrence of smallpox in those who
have not had it before and of the corresponding mortality and assumed
that the inoculation itself proved fatal in 0.5% of cases.

He formed the appropriate differential equation whose solution
showed the relation between age in years and the number of people of
that age and, in addition, of those who had not contacted smallpox.
Also by means of a differential equation he derived a similar formula
for a population undergoing inoculation, that is, for its 99.5% which
safely endured it and were not anymore susceptible to the disease. It
occurred that inoculation lengthened the mean duration of life by 3
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years and 2 months and that it was therefore, in his opinion, extremely
useful. The Jennerian vaccination, – the inestimable discovery by
Jenner, who has thereby become one of the greatest benefactors of
mankind (Laplace 1814/1995, p. 83), – was introduced at the end of
the 18th century. Its magnificent success had not however ruled out
statistical studies. Thus, Simon (1887, vol. 1, p. 230) formulated a
question about the impermanence of protection against post-vaccinal
smallpox and concluded that only comprehensive national statistics
could have provided an answer.

D’Alembert (1761; 1768) criticized Daniel Bernoulli. Not everyone
will agree, he argued, to lengthen his mean duration of life at the
expense of even a low risk of dying at once of inoculation; then, moral
considerations were also involved, as when inoculating children.
D’Alembert concluded that statistical data on smallpox should be
collected, additional studies made and that the families of those dying
of inoculation should be indemnified or given memorial medals.

He also expressed his own thoughts, methodologically less evident
but applicable to studies of even unpreventable diseases. Dietz &
Heesterbeek (2002) described Bernoulli’s and D’Alembert’s
investigations on the level of modern mathematical epidemiology and
mentioned sources on the history of inoculation.

Seidel (1865; 1866), a German astronomer and mathematician,
quantitatively estimated the dependence of the number of cases of
typhoid fever on the level of subsoil water and precipitation but made
no attempt to generalize his study, to introduce correlation.

Already in 1839 there appeared (an unconvincing) statistical study
of the amputation of limbs. J. Y. Simpson (1847 – 1848/1871, p. 102)
mistakenly attempted to obtain reliable results about that operation by
issuing from materials pertaining to several English hospitals during
1794 – 1839.

Indeed, physicians learned that the new procedure, anaesthesia,
could cause complications, and began to compare statistically the
results of amputations made with and without using it.

Simpson (1869 – 1870/1871, title of contribution) also coined the
term Hospitalism which is still in vogue. He compared mortality from
amputations made in various hospitals and reasonably concluded, on
the strength of its monotonous behaviour, that mortality increases with
the number of beds; actually (p. 399), because of worsening of
ventilation and decrease of air space per patient. Suchlike justification
of conclusions was not restricted to medicine, cf. Quetelet’s study of
probabilities of conviction of defendants (§ 7.1).

In the mid-19th century Pirogov began to compare the merits of the
conservative treatment of the wounded versus amputation. Later he
(1864, p. 690) called his time transitional:

Statistics shook the sacred principles of the old school, whose views
had prevailed during the first decades of this century, – and we ought
to recognize it, – but it had not established its own principles.

Pirogov (1849, p. 6) reasonably believed that the application of
statistics in surgery was in complete agreement with the latter because
surgical diseases depended incomparably less on individual influences
but he indicated that medical statistics was unreliable, that (1864/1865
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– 1866, p. 20) a general impression based on sensible observation of
cases was better. He (1879/1882, p. 40) singled out extremely different
circumstances and stressed (1871, pp. 48 – 49) the importance of
efficient administration. Pirogov participated in the Crimean war, in
which Florence Nightingale, on the other side, showed her worth both
as a medical nurse and a statistician. She would have approved of
Pirogov’s conclusion above.

Pirogov was convinced in the existence of regularities in mass
phenomena. Thus (1850 – 1855/1961, p. 382), each epidemic disease
as well as each considerable operation had a constant mortality rate,
whereas war was a traumatic epidemic (1879/1882, p. 295). This latter
statement apparently meant that under war conditions the sickness rate
and mortality from wounds obeyed statistical laws. Then (1854, p. 2),
the skill of the physicians [but not of witch doctors] hardly influenced
the total result of the treatment of many patients.

A French physician Louis (1825) introduced the so-called numerical
method of studying symptoms of various diseases. His proposal had
been applied much earlier in various branches of science. It amounted
to the use of the statistical method without involving stochastic
considerations which. Quantitative data were also collected in
agriculture, meteorology, astronomy etc.; astronomical catalogues, for
example, fall in the same category. Nevertheless, this line of
development was not sufficient. See also § 2, bullet point 2.

Discussions about the numerical method lasted at least a few
decades. Thus, d’Amador (1837) attacked Louis wrongly attributing to
him a recommendation to use the theory of probability.

Gavarret (1840), a former student of Poisson, noted the
shortcomings of the numerical method and adduced examples on the
comparison of competing methods of medical treatment as also an
advice on the check of the null hypothesis (as it is now called), see p.
194. Thus, apart from popularizing probability theory, Gavarret’s main
achievement was the introduction of the principle of the null
hypothesis and the necessity of its check into medicine (actually, in
natural science in general).

Laplace (1798 – 1825/1878 – 1882, t. 3, ca. 1804, p. xi; 1814/1995,
p. 116) argued that the adopted hypotheses ought to be incessantly
rectified by new observations until veritable causes or at least the laws
of the phenomena be discovered. Cf. Double et al (1835, p. 176 – 177):
the main means for revealing the vérité were induction, analogy and
hypotheses founded on facts and incessantly verified and rectified by
new observations.

Gavarret’s contribution became generally known and many authors
repeated his recommendations. The time for mathematical statistics or
for its application in medicine was not yet ripe, but at least the Poisson
– Gavarret tradition led to the existence, in medicine, of a lasting drive
towards the use of probability based on numerous observations (and
the skill of the physician). Indeed, Poisson (1837a, Note to Annotated
Contents) stated that Medicine will not become either a science or an
art if not based on numerous observations, on the tact and proper
experience of the physicians …
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A few years earlier Double, Poisson et al (1835) maintained that
statistics was the functioning mechanism of the calculus of probability,
necessarily concerning infinite [?] masses …

A large number of observations! However, at least from the mid-
18th century (Bull 1959, p. 227) valuable medical conclusions had
been based on very small numbers of them, but it was Liebermeister
(ca. 1877) who vigorously opposed Gavarret and Poisson. He argued
that it was impossible, in therapeutics, to collect vast observations and,
anyway, recommendations based on several (reliable) observations
should be adopted as well. Statisticians have only quite recently
discovered his paper written as though by a specialist in mathematical
statistics. Then, at least from Gossett (Student) onwards small samples
are necessary for statistics. For his life and work see E. S. Pearson
(1990).

2.2. Juridical Statistics. Niklaus Bernoulli published a dissertation
on the application of the art of conjecturing to jurisprudence
(1709/1975). It contained the calculation of the mean duration of life
and recommended its use for ascertaining the value of annuities and
estimating the probability of death of absentees about whom nothing is
known; methodical calculations of expected losses in marine insurance;
calculation of expected losses in the celebrated Genoese lottery and of
the probability of truth of testimonies; the determination of the life
expectancy of the last survivor of a group of men (pp. 296 – 297), see
Todhunter (1865, pp. 195 – 196). Assuming a continuous uniform law
of mortality (the first continuous law in probability theory), he
calculated the expectation of the appropriate order statistic and was the
first to use, in a published work, both this distribution and an order
statistic.

Bernoulli’s work undoubtedly fostered the spread of stochastic
notions in society, but he borrowed separate passages from the Ars
Conjectandi and even from the Meditationes (Kohli 1975, p. 541),
never intended for publication. His general references to Jakob, his late
uncle, do not excuse his plagiarism the less so since he dedicated his
work not to the memory of Jakob, but to his father Johann.

Condorcet, Laplace and Poisson actively studied the application of
probability and statistics to jurisprudence. Todhunter (1865, p. 352)
concluded that The obscurity and self contradictions in the work of
Condorcet are without any parallel, but Poisson (1837a, pp. 2 and 5)
favourably mentioned his ideas. As to Laplace, it seems that his main
achievement consisted in drawing Poisson’s attention to the
administration of justice.

Poisson (1837a, pp. 1 – 2) thought that the study of the probabilities
of verdicts and, in general, of majority decisions, was a most important
application of the calculus of probability. He (p. 17) perceived his
main goal in that field as an examination of the stability of the rate of
conviction and of the probability of miscarriage of justice as well as in
the comparison of judicial statistics of different countries and (p. 7) in
proving the applicability of mathematical analysis to things that are
called moral.

Poisson was mainly interested in studying criminal offences. Unlike
Laplace, he (p. 4 and § 114, p. 318) introduced a positive probability
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of the defendant’s guilt (not to be taken into account in any individual
case). One of his statements (§ 136, pp. 375 – 376) is debatable: he
thought that the rate of conviction should increase with crime.

Poisson estimated the (beneficial or otherwise) changes in the rate
of conviction following changes in the administration of justice (in the
number of jurors, in the majority vote needed for conviction). I do not
know, however, whether his calculations had been taken into account.

Neither Condorcet, nor Poisson mentioned that they had assumed
that the jurors reach decisions independently from each other whereas
Laplace (1816, p. 523) only said so in passing.

The application of the theory of probability to jurisprudence
continued to be denied. Here are the two most vivid pertinent
statements (Mill 1843/1886, p. 353; Poincaré 1896/1912, p. 20):

1) Misapplications of the calculus of probability […] made it the
real opprobrium of mathematics. It is sufficient to refer to the
applications made of it to the credibility of witnesses, and to the
correctness of the verdicts of juries.

2) People influence each other and act like the moutons de Panurge.
The higher is a scientist’s standing, the more reserved he ought to be

when invading an alien field. Even Mill, not to mention Poincaré,
should not have categorically condemned a subject of which he was
ignorant.

It is opportune to cite Gauss whose opinion was voiced by W. E.
Weber in a letter of 1841 to J. F. Fries (Gauss, W-12, pp. 201 – 204):
probability can serve as a guide line for determining the desired
number of jurors and witnesses. Fries had then been preparing his
book on the principles of the theory of probability; it appeared in 1842.
Then, juridical statistics effectively applied the notion of errors of both
kinds.

2.3. Insurance of Property and Life Insurance. Marine insurance
was the first essential type of insurance of property but it lacked
stochastic ideas or methods. In particular, there existed an immoral and
repeatedly prohibited practice of betting on the safe arrivals of ships.
Anyway, marine insurance had been apparently based on rude and
subjective estimates.

And here is a quote from the first English Statute on assurance
(Publicke Acte No. 12, 1601; Statutes of the Realm, vol. 4, pt. 2, pp.
978 – 979):

And whereas it hathe bene tyme out of mynde an usage amongste
merchants, both of this realme and of forraine nacyons, when they
make any great adventure, […] to give some consideracion of money
to other persons […] to have from them assurance made of their
goodes, merchandizes, ships, and things adventured, […] whiche
course of dealinge is commonly termed a policie of assurance […].

Life insurance came into its own not by a front-door entrance, but
by the marine insurance porthole (O’Donnell 1936, p. 78) … It exists
in two main forms. Either the insurer pays the policy-holder or his
heirs the stipulated sum on the occurrence of an event dependent on
human life; or, the latter enjoys a life annuity. Annuities were known
in Europe from the 13th century onward although later they were
prohibited for about a century until a Papal bull officially allowed it in
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1423 (Du Pasquier 1910, pp. 484 – 485). The annuitant’s age was not
usually taken into consideration either in the mid-17th century
(Hendriks 1853, p. 112), or even, in England, during the reign of
William III [1689 – 1702] (K. Pearson 1978, p. 134). Otherwise, as it
seems, the ages had been allowed for only in a very generalized way
(Kohli & van der Waerden 1975, pp. 515 – 517; Hald 1990, p. 119).
At the end of the 17th century the situation began to change.

In the 18th, and even in the mid-19th century, life insurance still
hardly essentially depended on stochastic considerations; moreover,
the statistical data collected by the insurance societies as well as their
mortality tables and methods of calculations remained secret. And
more or less honest business based on statistics of mortality hardly
superseded downright cheating before the second half of the 19th

century. Nevertheless, beginning at least from the 18th century, the
institute of life insurance which essentially depended on studies of
mortality strongly influenced the theory of probability and turned the
attention of scholars to medical and social problems.

Tontines constituted a special form of mutual insurance. Named
after the Italian banker Laurens Tonti (Hendriks 1863), they, acting as
a single body, distributed the total sums of annuities among their
members still alive, so that those, who lived longer, received
considerable moneys. Tontines were neither socially accepted nor
widespread on the assumed rationale that they are too selfish and
speculative (Hendriks 1853, p. 116). Nevertheless, they did exist in the
17th century. Euler (1776) devised a tontine with flexible moments of
entering it, and flexible ages of its members and of their contributions
(therefore, of their annual income as well). Such a tontine could have
theoretically existed forever rather than disappearing with the death of
its last member. Euler’s innovation was apparently never taken up.

De Moivre first examined life insurance in the beginning of the
1720s and became the most influential author of his time in that field.
Issuing from Halley’s table, he (1725/1756, pp. 262 – 263) assumed a
continuous uniform law of mortality for all ages beginning with 12
years and a maximal duration of life equal to 86 years.

Hald (1990, pp. 515 – 546) described in detail the work of De
Moivre and of his main rival, Simpson (1775), in life insurance.
Simpson improved on, and in a few cases corrected the former’s
findings. After discussing one of the versions of mutual insurance,
Hald (p. 546) concluded that Simpson’s relevant results represented an
essential step forward; however, his attitude to De Moivre showed him
as an unblushing liar (K. Pearson 1978, p. 184).

Daniel Bernoulli (1768b) investigated the duration of marriages for
differing ages of man and wife which was important for insurance on
two lives. He based his analysis on another study (1768a) of extracting
pairs of white and black stripes from an urn with the respective
probabilities being equal or unequal.

Laplace (1814/1995, p. 89) compared free people to an association
whose members mutually protect their property and went on to praise
institutions based on the probabilities of human life. Markov
collaborated with pension funds (Sheynin 1997) and in 1906 he
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destructively criticized a proposed official scheme for insuring
children (reprinted in same article).

Actuarial science inevitably led to the compilation of life tables and
their improvement. Quetelet & Smits (1832, p. 33) stated that separate
tables for men and women had only recently begun to be published.
However (Nordenmark 1929, p. 250), Wargentin compiled such
separate tables for Sweden in 1766.

Then, many authors noted that the expectation of life of the general
male (say) population is either larger or smaller than that of men from
selected populations (e. g., from monks). Note a related remark made
by Buffon (1777/1954, § 8, note) in 1762, in a letter to Daniel
Bernoulli and thus to some extent foreshadowing Quetelet’s Average
man:

Mortality tables are always concerned with the average man; that is,
with people in general, feeling themselves quite well or ill, healthy or
infirm, robust or feeble.

Andersson (1929, p. 239) voiced a serious complaint:
The State does not [do] much […] to protect and forward the sound

practice of insurance. […] State statistics should pay regard to all the
desires of insurance and try to meet them. […] No country has as yet
suitable fire statistics, no shipping statistics are [is] being performed
with due attention to the special demands of marine insurance. […]
The insurance itself […] still has not given the due place to statistics
in the scientific insurance work.

2.4. Earliest Stochastic and Statistical Investigations
2.4.1. Pascal and Fermat. In 1654 Pascal and Fermat exchanged

several letters (Pascal 1654) which heralded the beginning of the
formal history of probability. They discussed several problems; here is
the most important of them which was known even at the end of the
14th century. Two or three gamblers agree to continue playing until
one of them scores n points; for some reason the game is interrupted
and it is required to divide the stakes in a reasonable way. Both
scholars solved this problem of points, see Takácz (1994), by issuing
from one and the same rule: the winnings of the gamblers should be in
the same ratio(s) as existed between the expectations of their scoring
the n points. The actual introduction of that notion, expectation, was
their main achievement. They also effectively applied the addition and
the multiplication theorems.

The methods used by Pascal and Fermat differed from each other. In
particular, Pascal solved the above problem by means of the arithmetic
triangle (Edwards 1987) composed, as is well known, of binomial
coefficients of the development (1 + 1)n for increasing values of n.
Pascal’s relevant contribution (1665) was published posthumously, but
Fermat was at least partly familiar with it. Both there, and in his letters
to Fermat, Pascal made use of partial difference equations (Hald 1990,
pp. 49 and 57).

The celebrated Pascal wager (1669/2000, pp. 676 – 681), also
published posthumously, was a discussion about choosing a hypothesis.
Does God exist, rhetorically asked the devoutly religious author and
answered: you should bet. If He does not exist, you may live calmly
[and sin]; otherwise, however, you can lose eternity. In the
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mathematical sense, Pascal’s reasoning is vague; perhaps he had no
time to edit his fragment. Its meaning is, however, clear: if God exists
with a fixed and however low probability, the expectation of the
benefit accrued by believing in Him is infinite. Pascal died in 1662 and
the same year Arnauld & Nicole (1662/1992, p. 334) published a
similar statement:

Infinite things, like eternity and salvation, cannot be equated to any
temporal advantage. […] We should never balance them with any
worldly benefit. […] The least degree of possibility of saving oneself is
more valuable than all the earthly blessings taken together, and the
least peril of losing that possibility is more considerable than all the
temporal evils […].

2.4.2. Huygens. Huygens was the author of the first treatise on
probability (1657). Being acquainted only with the general contents of
the Pascal – Fermat correspondence, he independently introduced the
notion of expected random winning and, like those scholars, selected it
as the test for solving stochastic problems. He went on to prove that
the value of expectation of a gambler who gets a in p cases and b in q
cases was

.
pa qb

p q




(1)

Jakob Bernoulli (1713/1999, p. 9) justified the expression (1) much
simpler than Huygens did: if each of the p gamblers gets a, and each of
the q others receives b, and the gains of all of them are the same, then
the expectation of each is equal to (1). After Bernoulli, however,
expectation began to be introduced formally: expressions of the type of
(1) followed by definition.

Huygens solved the problem of points under various initial
conditions and listed five additional problems two of which were due
to Fermat, and one, to Pascal. He solved them later, either in his
correspondence, or in manuscripts published posthumously. They
demanded the use of the addition and multiplication theorems, the
introduction of conditional probabilities and the formula (in modern
notation)

P(B) = ΣP(Ai)P(B/Ai), i = 1, 2, …, n.

Problem No. 4 was about sampling without replacement. An urn
contained 8 black balls and 4 white ones and it was required to
determine the ratio of chances that in a sample of 7 balls 3 were, or
were not white. Huygens determined the expectation of the former
event by means of a partial difference equation (Hald 1990, p. 76).
Nowadays such problems leading to the hypergeometric distribution
(Jakob Bernoulli 1713/1999, pp. 167 – 168; De Moivre 1712/1984,
Problem 14 and 1718/1756, Problem 20) appear in connection with
statistical quality control.

Pascal’s Problem No. 5 was the first to discuss the gambler’s ruin.
Gamblers A and B undertake to score 14 and 11 points respectively in
a throw of 3 dice. They have 12 counters each and it is required to
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determine the ratio of the chances that they be ruined. The stipulated
numbers of points occur in 15 and 27 cases and the ratio sought is
therefore (5/9)12.

In 1669, in a correspondence with his brother, Huygens (1888 –
1950, 1895), see Kohli & van der Waerden (1975), discussed
stochastic problems connected with mortality and life insurance.
Issuing from Graunt’s mortality table, Huygens (pp. 531 – 532)
introduced the probable duration of life (but not the term itself). He
also showed that the probable duration of life could be determined by
means of the graph (plate between pp. 530 and 531) of the function y =
1 – F(x), where, in modern notation, F(x) was a remaining unknown
integral distribution function with admissible values of the argument
being 0 ≤ x ≤ 100.

In the same correspondence Huygens (p. 528) examined the
expected period of time during which 40 persons aged 46 will die out;
and 2 persons aged 16 will both die. The first problem proved too
difficult, but Huygens might have remarked that the period sought was
40 years (according to Graunt, 86 years was the highest possible age).
He mistakenly solved a similar problem by assuming that the law of
mortality was uniform and that the number of deaths will decrease
with time, but for a distribution, continuous and uniform in some
interval, n order statistics will divide it into (n + 1) approximately
equal parts and the annual deaths will remain about constant. In the
second problem Huygens applied conditional expectation. When
solving problems on games of chance, Huygens issued from
expectations which varied from set to set rather than from constant
probabilities and was compelled to compose and solve difference
equations. See also Shoesmith (1986).

2.4.3. Newton left interesting ideas and findings pertaining to
probability, but more important were his philosophical views (K.
Pearson 1926):

Newton’s idea of an omnipresent activating deity, who maintains
mean statistical values, formed the foundation of statistical
development through Derham, Süssmilch, Niewentyt, Price to Quetelet
and Florence Nightingale […]. De Moivre expanded the Newtonian
theology and directed statistics into the new channel down which it
flowed for nearly a century. The cause which led De Moivre to his
Approximatio [1733] or Bayes to his theorem were more theological
and sociological than purely mathematical, and until one recognizes
that the post-Newtonian English mathematicians were more influenced
by Newton’s theology than by his mathematics, the history of science
in the 18th century – in particular that of the scientists who were
members of the Royal Society – must remain obscure.

Bayes theorem is a misnomer (§ 2.4.7). Then, Newton never
mentioned mean values. In 1971, answering my question on this point,
the Editor of his future book (1978), E. S. Pearson, stated:

From reading [the manuscript of that book] I think I understand
what K. P. meant. […] He had stepped ahead of where Newton had to
go, by stating that the laws which give evidence of Design, appear in
the stability of the mean values of observations. i. e., [he] supposed
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that Newton was perhaps unconsciously thinking what De Moivre put
into words.

Indeed, K. Pearson (1978, pp. 161 and 653) had attributed to De
Moivre (1733/1756, pp. 251 – 252) the Divine stability of statistical
ratios, that is, the original determination of original design and
referred to Laplace who (1814/1995, p. 37) had formulated a related
idea:

In an infinitely continued sequence of events, the action of regular
and constant causes ought, in the long run, to outweigh that of
irregular causes.

However, Laplace never mentioned Divine design. And here is
Newton’s most interesting pronouncement (1704/1782, Query 31):

Blind fate could never make all the planets move one and the same
way in orbs concentrick, some inconsiderable irregularities excepted,
which may have risen from the mutual actions of comets and planets
upon one another, and which will be apt to increase, till this system
wants a reformation. Such a wonderful uniformity in the planetary
system must be allowed the effect of choice. And so must the uniformity
in the bodies of animals.

Newton’s recognition of the existence and role of random
disturbances is very important. At the same time Newton (1958, pp.
316 – 318) denied randomness and explained it by ignorance of causes.

Newton (MS 1664 – 1666/1967, pp. 58 – 61) was the first to
mention geometric probability: If the Proportion of the chances […]
bee irrational, the interest may bee found after ye same manner.
Newton then considered a throw of an irregular die. He remarked that
[nevertheless] it may bee found how much one cast is more easily
gotten than another. He likely bore in mind statistical probabilities.
Newton (1728) also applied simple stochastic reasoning for correcting
the chronology of ancient kingdoms:

The Greek Chronologers […] have made the kings of their several
Cities […] to reign about 35 or 40 years a-piece, one with another;
which is a length so much beyond the course of nature, as is not to be
credited. For by the ordinary course of nature Kings Reign, one with
another, about 18 or 20 years a-piece; and if in some instances they
Reign, one with another, five or six years longer, in others they reign
as much shorter: 18 or 20 years is a medium.

Newton derived his own estimate from other chronological data and
his rejection of the twice longer period was reasonable. Nevertheless, a
formalized reconstruction of his decision is difficult: within one and
the same dynasty the period of reign of a given king directly depends
on that of his predecessor. Furthermore, it is impossible to determine
the probability of a large deviation of the value of a random variable
from its expectation without knowing the appropriate variance (which
Newton estimated only indirectly and in a generalized way). And here
is the opinion of Whiteside (private communication, 1972) about his
thoughts concerning errors of observation:

Newton in fact (but not in explicit statement) had a precise
understanding of the difference between random and structurally
‘inbuilt’ errors. He was certainly, himself, absorbed by the second
type of ‘inbuilt’ error, and many theoretical models of differing types
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of physical, optical and astronomical phenomena were all consciously
contrived so that these structural errors should be minimized. At the
same time, he did, in his astronomical practice, also make suitable
adjustment for ‘random’ errors in observation …

2.4.4. Arbuthnot. See § 1.3.1-1.
2.4.5. Jakob Bernoulli. His Ars Conjectandi (1713) appeared

posthumously; Niklaus Bernoulli compiled a Preface (Jakob Bernoulli
1975, p. 108) where, for the first time ever, the term calculus of
probability (in Latin) had appeared. The book itself contained four
parts. Interesting problems are solved in parts 1 (a reprint of Huygens’
tract, see § 1.3) and 3 (the study of random sums for the uniform and
the binomial distributions, a similar investigation of the sum of a
random number of terms for a particular discrete distribution, a
derivation of the distribution of the first order statistic for the discrete
uniform distribution and the calculation of probabilities appearing in
sampling without replacement). The author’s analytical methods
included combinatorial analysis and calculation of expectations of
winning in each set of finite and infinite games and their subsequent
summing.

In the beginning of pt. 4 Bernoulli explained that the theoretical
number of cases was often unknown, but what was impossible to
obtain beforehand, might be determined by observations. In his Diary
(Meditationes), whose stochastic considerations were only published
in Bernoulli (1975), he indirectly cited Graunt and reasoned how much
more probable was it that a youth will outlive an old man than vice
versa.

Bernoulli maintained that moral certainty ought to be admitted on a
par with absolute certainty. His theorem will show, he declared, that
statistical probability was a morally certain (a consistent) estimator of
the theoretical probability. It was Descartes (1644/1978, pt. 4, No. 205,
483°, p. 323) who introduced moral certainty for regulating our
morals (moeurs).

Actually, Bernoulli proved a proposition that, beginning with
Poisson, is called the LLN. Denote the statistical probability of the
occurrence of the studied event in a trial by p̂ and the theoretical
probability of the event by p; assume that n independent Bernoulli
trials in which p = Const are made. Then, as n → ∞,

ˆlim ( ) 1.P p p  (1)

This is an existence theorem and Bernoulli properly stated that it
signified that [for the Bernoulli trials] induction (the trials) was not
worse than deduction (the theoretically determined p). Had the right
side of (1) be a proper fraction, he added, induction would have been
worse.

His direct LLN thus determined p̂ whereas, as stated above, he
initially stated that p̂ was a morally certain estimate of p; moreover,
he even adduced an appropriate example in which p did not even exist.
This initial statement is called the inverse LLN, and Bernoulli
mistakenly believed that any version of that law led to the other
version.
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Bernoulli also estimated the rapidity of the convergence of one
probability to the other; however, not knowing the later discovered
Stirling theorem, his estimation was not good enough. Without
noticing the existence theorem K. Pearson (1925) denied Bernoulli’s
great achievement and even compared it with the wrong Ptolemaic
system of the world.

As Cournot (1843, § 86) emphasized, although not definitely
enough, stochastic reasoning was now justified beyond the province of
games of chance, at least for the Bernoulli trials. Strangely enough,
statisticians for a long time had not recognized this fact. Haushofer
(1872, pp. 107 – 108) declared that statistics, since it was based on
induction, had no intrinsic connections with mathematics based on
deduction. And Maciejewski (1911, p. 96) introduced a statistical LLN
instead of the Bernoulli proposition that allegedly impeded the
development of statistics. His new law qualitatively asserted that
statistical indicators exhibited ever lesser fluctuations as the number of
observations increased and his opinion likely represented the
prevailing attitude of statisticians. Bortkiewicz (1917, pp. 56 – 57)
thought that the LLN ought to denote a quite general fact, unconnected
with any stochastic pattern, of a degree of stability of statistical
indicators under constant or slightly changing conditions and a large
number of trials. Even Romanovsky (1961, p. 127) kept to a similar
view.

2.4.6. De Moivre. For n → ∞ De Moivre’s main result concerning
Bernoulli trials can be written as

2μ 1
lim  [ ] exp( ) .

22π

b

a

np z
P a b dz

npq


    (2)

Here μ is the number of successes, np = Eμ and npq = varμ.
This is the integral De Moivre – Laplace theorem, as Markov

(1900/1924, p. 53) called it, – a particular case of the CLT. Neither De
Moivre, nor Laplace knew about uniform convergence with respect to
a and b that takes place here. De Moivre proved (2) in a short Latin
memoir of 1733 which he sent around to his colleagues and then
translated it into English and incorporated in the editions of 1738 and
1756 of his Doctrine of Chances.

Laplace (1812) proved (2) simpler and provided a correction term
allowing for the finiteness of n. De Morgan (1864) was the first to
notice the normal distribution in (2) but he also made unbelievably
wrong statements about the appearance of negative probabilities and
those exceeding unity. More: in a letter of 1842 he (Sophia De Morgan

1882, p. 147) declared that tan∞ = cot∞ =  1.
2.4.7. Bayes. I dwell on the posthumous memoir (Bayes 1764 –

1765) complete with the commentaries by R. Price. In its first part
Bayes introduced his main definitions and proved a few theorems; note
that he defined probability through expectation. There was no hint of
the so-called Bayes theorem introduced by Laplace (1812/1886, p. 183)
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as Cournot (1843, § 88), actually following predecessors, called it.
Here is the real Bayes’ theorem in a simplified description

(Gnedenko 1954, p. 366). It is required to determine the unknown
probability r having continuous uniform density on interval [0, 1] if
after n = p + q (independent) trials it occurred p times and failed q
times. Answer:

P(a  r  b) =
1

0

(1 ) (1 ) .
b

p q p q

a

u u du u u du    (4)

Here, [a, b] is a segment within [0, 1]. Bayes derived the denominator
of (4) obtaining the value of the [beta-function] B(p+ 1; q + 1) and
spared no effort in estimating its numerator, a problem that remained
difficult until the 1930s. The right side of (4) is now known to be equal
to the difference of two values of the incomplete beta-function

Ib(p + 1; q + 1) – Ia(p + 1; q + 1).

Beginning with the 1930s and perhaps for three decades English and
American statisticians had been denying Bayes after which his
theorem has returned from the cemetery (Cornfield 1967).

The first and the main critic of the Bayes theorem or formula was
Fisher (1922, pp. 311 and 326). It seems that he disagreed with the
introduction of hardly known prior probabilities and/or with the
assumption that they were equal to one another.

Bayes had not expressly discussed the case of n → ∞. In another
posthumous note published in 1764 he warned mathematicians about
the danger of applying divergent series. He had not named De Moivre,
but apparently had in mind his derivation of the De Moivre – Laplace
theorem as well. De Moivre and his contemporaries had indeed
employed convergent parts of divergent series for approximate
calculations, and about a century later Poisson (1837a, § 68, p. 175)
stated that that trick was possible. Note that divergent series are now
included in the province of mathematics.

Timerding, the Editor of the German translation of the Bayes
memoir (1908), managed to consider the limiting case without
applying divergent series. He issued from Bayes’ calculations made
for large but finite values of p and q. Applying a clever trick, he
proved that, as n → ∞, the probability of the studied event obeyed the
proposition

limP{
2

3/2
0

1
} exp( ) ,

22π

zr a w
z z dw

pqn


     (5)
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where (not indicated by Timerding) a = p/n = Er, pq/n3/2 = varr so that
r ≈ Er = p/n.

The assumption of a uniform density is not a restriction; according
to information theory, it is tantamount to a statement of ignorance. The
influence of a non-uniform density taking place apparently decreases
with the increase of n (with the increase in posterior information).
The functions in the left sides of formulas (2) and (5) are different
random variables, centred and normed in the same way; Bayes,
without knowing the notion of variance, apparently understood that (2)
was not sufficiently precise for describing the problem inverse to that
studied by De Moivre, who (1718/1756, p. 251) mistakenly thought
otherwise (as Jakob Bernoulli also did). Note that, unlike the direct
law, its inverse counterpart has less initial data (the theoretical
probability is unknown) which qualitatively explains the situation.

A modern encyclopaedia (Prokhorov 1999) contains 14 items
mentioning Bayes, for example, Bayesian estimator, Bayesian
approach (and many more items are mentioned elsewhere). There also,
on p. 37, the author of the appropriate entry mistakenly attributes
formula (3) to Bayes. For my part, I believe that, since Bayes had
correctly interpreted the inverse LLN, he thus completed the first stage
of the theory of probability. He also was the main predecessor of
Mises (who never acknowledged it). And when a statistician starts
working, he invariably has to issue from some statistical probability. If
and when justifying this step, he refers to Mises, but he could have
mentioned Bayes instead.

3. Treatment of Observations
3.1. The following explanation will be needed below. Denote the

observations of a constant sought by

x1, x2, …, xn, x1 ≤ x2 ≤ … ≤ xn.                                       (1)

It is required to determine its value, optimal in some sense, and
estimate the residual error. The classical theory of errors considers
independent observations and, without loss of generality, they might
also be regarded as of equal weight. This problem is called adjustment
of direct observations.

Suppose now that k unknown magnitudes x, y, z, … are connected
by a redundant system of n physically independent equations (k < n)

aix + biy + ciz + … + si = 0                                                (2)

whose coefficients are given by the appropriate theory and the free
terms are measured. The approximate values of x, y, z, … were usually
known, hence the linearity of (2). The equations are linearly
independent (a later notion), so that the system is inconsistent (which
was perfectly well understood). Nevertheless, a solution had to be
chosen, and it was done in such a way that the residual free terms (call
them vi) were small enough. The values of the unknowns thus obtained
are called their estimates ( ˆ ˆ, ,...x y ) and this problem is called
adjustment of indirect measurements.
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Since the early 19th century the usual condition for solving (2) was
that of least squares

W = vi
2 = [vv] = v1

2 + v2
2 + … + vn

2 = min,                   (3)

so that

/ / ... 0.W x W y       (4)

Conditions (4) easily lead to a system of normal equations

[aa] x̂ + [ab] ŷ + … + [as] = 0, [ab] x̂ + [bb] ŷ + … + [bs] = 0, …,

with a positive definite and symmetric matrix. For direct
measurements the same condition (3) leads to the arithmetic mean.

There also existed a determinate branch of the theory of errors now
partly superseded by experimental design. It studies the process of
measurement without applying stochastic reasoning. Here is a simplest
example: determine the form of a geodetic figure ensuring optimal (in
some sense) results. The real development of the determinate error
theory was due to the differential calculus which ensured the study of
the sought functions of measured magnitudes, but even Hipparchus
was aware that, under favourable conditions, a given error of
observation can comparatively little influence the unknown sought
(Toomer 1974, p. 131), see also below.

Gauss and Bessel originated a new direction in practical astronomy
and geodesy. They demanded and carried out thorough examinations
of the instruments and investigations of the plausibility of the methods
of observation. This direction belonged to the determinate error theory.

Now, the design of experiments is a branch of mathematical
statistics dealing with the rational organization of measurements
subject to random errors (Enc. Math. 1977 – 1985/1988 – 1994, vol. 3,
p. 66). Finney (1960), however, argued that this new discipline does
not entirely belong to the mathematical theory of statistics, but did not
elaborate. I would say, belongs to theoretical statistics, see § 7.2.

The design of experiments ought to include the choice of optimal
methods and circumstances of observation, design of instruments
capable of using such methods etc. (Box 1964). Many of such
problems have nothing to do with randomness; and they undoubtedly
belong to the determinate error theory.

Some Russian authors (Romanovsky 1955; Bolshev 1989) state that
the stochastic theory of errors belongs to statistics, but it seems more
natural to define it as the application of the statistical method to the
treatment of observations in experimental science, see § 9.
Romanovsky excluded systematic errors from their consideration;
Bolshev agreed and attributed their study to a special discipline, the
processing (the treatment) of observations. I categorically deny such
opinions. Observers have to take care of both random and systematic
errors which cannot therefore be attributed to separate branches (or
twigs) of science.
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3.2. Ancient astronomers apparently selected point estimates for
the constants sought by choosing almost any number within reasonable
bounds. According to modern notions, such an attitude is quite proper
if the errors of observations are large; moreover, it fits in with the
qualitative nature of ancient science.

It was Daniel Bernoulli (1780) who introduced, although in a
restricted sense, the notions of random and systematic errors, but
ancient astronomers obviously acquired some understanding of both.
The influence of refraction, for example, was systematic.

3.3. In Kepler’s time, and possibly even somewhat earlier, the
arithmetic mean became the generally accepted estimator of
measurements. Indeed, Kepler (1609/1992, p. 200/63), when treating
four observations, selected a number as the medium ex aequo et bono
(in fairness and justice). A plausible reconstruction assumes that it was
a generalized arithmetic mean with differing weights of observations.
More important, the Latin expression above occurred in Cicero, 106 –
43 BC (Pro A. Caecina oratio), and carried an implication Rather than
according to the letter of the law, an expression known to lawyers. In
other words, Kepler, who likely read Cicero, called the ordinary
arithmetic mean the letter of the law, i.e., the universal estimator of the
parameter of location.

Kepler repeatedly adjusted observations. How had he convinced
himself that Tycho’s observations were in conflict with the Ptolemaic
system of the world? I believe that Kepler applied the minimax
principle which demanded that the residual free term of the given
system of equations, maximal in absolute value, be the least from
among all of its possible solutions. He (1609/1992, p. 286/113)
apparently determined such a minimum, although only from among
some possibilities, and found out that that residual was equal to 8′
which was inadmissible. Any other solution would have been even less
possible, so that either the observations or the underlying theory were
faulty. Kepler reasonably trusted Tycho’s observations and his
inference was obvious. Note that this principle did not ensure optimal,
in any sense, results.

When adjusting observations, Kepler (Ibidem, p. 334/143) corrupted
them by small arbitrary corrections. He likely applied elements of
what is now called statistical simulation, but in any case he must have
taken into account the properties of usual random errors, i.e., must
have chosen a larger number of small positive and negative corrections
and about the same number of the corrections of each sign. Otherwise,
Kepler would have hardly achieved success.

3.4. Direct Observations. I am now entering the 18th century and,
after discussing Lambert, begin with the treatment of direct
observations.

3.4.1. The term Theory of errors (Theorie der Fehler) is due to
Lambert (1765a, Vorberichte and § 321) who defined it as the study
of the relations between errors, their consequences, circumstances of
observation and the quality of the instruments. He isolated the aim of
the Theory of consequences as the study of functions of observed (and
error-ridden) magnitudes. In other words, he introduced the
determinate error theory and devoted to it §§ 340 – 426 of his
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contribution. Neither Gauss, nor Laplace ever used the new
terminology, but Bessel (1820, p. 166; 1838b, § 9) applied the
expression theory of errors without mentioning anyone and by the
mid-19th century it became generally known.

Lambert studied the most important aspects of treating observations
and in this respect he was Gauss’ main predecessor. He (1760, §§ 271
– 306) described the properties of usual random errors, classified them
in accordance with their origin (§ 282), unconvincingly proved that
deviating observations should be rejected (§§ 287 – 291) and estimated
the precision of observations (§ 294), again lamely but for the first
time ever. He then formulated an indefinite problem of determining a
[statistic] that with maximal probability least deviated from the real
value of the constant sought (§ 295) and introduced the principle of
maximal likelihood, but not the term itself, for a continuous density (§
303), maintaining, however (§ 306), that in most cases it will provide
estimates little deviating from the arithmetic mean. The translator of
Lambert’s contribution into German left out all this material claiming
that it was dated.

Lambert introduced the principle of maximum likelihood for an
unspecified, more or less symmetric and unimodal curve (as shown on
his figure), call it φ(x – x̂ ), where x̂ was the sought parameter of
location. Denote the observations by x1, x2, …, xn, and, somewhat
simplifying his reasoning, write his likelihood function as

φ(x1 – x̂ ) φ(x2 – x̂ ) … φ(xn – x̂ ).

When differentiating it, Lambert had not indicated that the argument
here was the parameter x̂ , etc.

When Lambert (1765a) returned to the treatment of observations, he
attempted to estimate the precision of the arithmetic mean, but did not
introduce any density and was unable to formulate a definite
conclusion. He also partly repeated his previous considerations and
offered a derivation of a density law of errors occurring in pointing an
instrument (§§ 429 – 430) in accordance with the principle of
insufficient reason: it was a semi-circumference (with an unknown
radius) simply because there were no reasons for its angularity.

3.4.2. Simpson (1756), see also Shoesmith (1985), applied, for the
first time ever, stochastic considerations to the adjustment of
measurements by assuming that observational errors obeyed some
density law and thus extended probability to a new domain and
effectively introduced random observational errors. He aimed to refute
some unnamed authors who had maintained that one good observation
was as plausible as the mean of many of them. Simpson considered
errors obeying the discrete uniform and triangular distributions and
effectively applied the proper generating functions.

For both these cases he founded out that the probability that the
absolute value of the error of the arithmetic mean of n observations
was less than some magnitude, or equal to it. He decided that the mean
was always [stochastically] preferable to a separate observation and
thus arbitrarily and wrongly generalized his proof. Simpson also
indicated that his first case was identical with the determination of the
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probability of throwing a given number of points with n dice each
having (v + 1) faces. Note that in the continuous case, Simpson’s
distributions can be directly compared with each other: their respective
variances are v2/3 and v2/6.

Soon Simpson (1757) reprinted his memoir adding to it an
investigation of the continuous triangular distribution. However, his
graph showed the density curve of the error of the mean which should
have been near-normal but which did not possess the distinctive form
of the normal distribution.

3.4.3. Daniel Bernoulli (1769) assumed the density law of
observational errors as a semi-ellipse or semi-circumference of some
radius r which he ascertained by assigning a reasonable maximal error
of observation and the location parameter equal to the weighted
arithmetic mean with posterior weights

pi = r2 – ( x – xi)
2.                                                            (5)

Here, xi were the observations and x , the usual mean. The first to
apply weighted, or generalized arithmetic means was Short (1763).
Such estimators demanded a subjective selection of weights and only
provided a correction to the ordinary arithmetic mean which tended to
vanish for even density functions.

In his published memoir Daniel Bernoulli (1778) objected to the
application of the arithmetic mean which (§ 5) only conformed to an
equal probability of all possible errors and was tantamount to shooting
blindly. K. Pearson (1978, p. 268), however, reasonably argued that
small errors were more frequent and had their due weight in the mean.
Instead, Bernoulli suggested the maximum likelihood estimator of the
location parameter. Listing reasonable restrictions for the density
curve (but adding the condition of its cutting the abscissa axis almost
perpendicularly), he selected a semi-circumference with radius equal
to the greatest possible, for the given observer, error. He then (§ 11)
wrote out the likelihood function as

{[r2 – (x – x1)
2] [r2 – (x – x2)

2] [r2 –(x – x3)
2]…}1/2,

where x was the unknown abscissa of the centre of the semi-
circumference, and x1, x2, x3, …, were the observations. Preferring,
however, to ease calculation, he left the semi-circumference for an arc
of a parabola but he had not known that the variance of the result
obtained will therefore change.

For three observations his likelihood equation was of the fifth
degree. Bernoulli numerically solved it in a few particular instances
with some values of x1, x2, and x3 chosen arbitrarily (which was
admissible for such a small number of them). I present his equation as

1 2
2 2 2 2

1 2

... 0
( ) ( )

x x x x

r x x r x x

 
  

   

so that the maximum likelihood estimate is
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with unavoidable use of successive approximations. For some
inexplicable reason these formulas are lacking in Bernoulli’s memoir
although the posterior weights (7) were the inverse of the weights (5)
from his manuscript and heuristically contradicted his own preliminary
statement about shooting skilfully. It is now known, however, that
such weights are expedient in case of some densities.

3.4.4. Euler (1778, § 6) objected to the principle of maximum
likelihood. He argued that the result of an adjustment should barely
change whether or not a deviating observation was adopted, but that
the value of the likelihood function essentially depended on that
decision. His remark should have led him to the median although he (§
7) selected the estimate (6) with posterior weights (5) and mistakenly
assumed that Bernoulli had chosen these same weights.

It is not regrettably known whether Gauss had read these two
contributions. Indeed, an intermediate formula of Euler heuristically
resembled Gauss’ choice of least variance as a criterion for treating
observations.

3.5. Indirect Measurements. Here, I consider the adjustment of
redundant systems

aix + biy + … + si = vi, i = 1, 2, …, n (8)

in k unknowns (k < n) and residual free terms vi.
3.5.1. In case of two unknowns astronomers usually separated

systems (8) into all possible groups of two equations each and
averaged the solutions of these groups. As discovered in the 19th

century, the least-squares solution of (8) was some weighted mean of
these partial solutions (Whittaker & Robinson 1924/1949, p. 251).

3.5.2. For three unknowns that method becomes unwieldy. In an
astronomical context, Mayer (1750) had to deal with 27 equations in
three unknowns. He calculated three particular solutions (see below),
and averaged them. The plausibility of the results thus obtained
depended on the expediency of the separation and it seems that Mayer
had indeed made a reasonable choice. Being mostly interested in only
one unknown, he included the equations with its greatest and smallest
in absolute value coefficients in the first, and the second group
respectively. Note also that Mayer believed that the precision of results
increased as the number of observations, but in his time this mistake
was understandable.

Mayer solved each group of equations under an additional condition

Σvi = 0,

where i indicated the number of an equation; if the first group included
the first nine of them, then i = 1, 2, …, 9. Laplace (1812/1886, pp. 352
– 353) testified that the best astronomers had been following Mayer. A
bit earlier Biot (1811, pp. 202 – 203) reported much the same.
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The condition above determines the method of averages and
Lambert’s recommendation (1765b, § 20) about fitting an empirical
straight line might be interpreted as its application. Lambert separated
the points (the observations) into two groups, with smaller and larger
abscissas, and drew the line through their centres of gravity, and into
several groups when fitting curves.

3.5.3. The Boscovich Method. He (Maire & Boscovich 1770, p.
501) adjusted systems (8) under additional conditions

v1 + v2 + … + vn = 0, |v1| + |v2| + ... + |vn| = min,            (9; 10)

the first of which can be allowed for by summing all the equations and
eliminating one of the unknowns from the expression thus obtained.
The second condition linked the Boscovich’ method with the median.
Indeed, he adjusted systems (8) by constructing a straight line whose
slope was equal to the median of some fractions. In 1809, Gauss noted
that (10) led exactly to k zero residuals vi, which follows from an
important theorem in the then not yet known theory of linear
programming.

Galileo (1632), see Hald (1990, § 10.3), and Daniel Bernoulli
(1735/1987, pp. 321 – 322) applied condition (10) in the case in which
the magnitudes such as vi were positive by definition. Just the same,
Herschel (1805) determined the movement of the Sun by issuing from
the apparent motion of the stars. The sum of these motions depends on
the former and its minimal value, as he assumed, estimated that
movement. Herschel’s equations were not even algebraic, but, after
some necessary successive approximations, they might have been
considered linear. In those times the motion of a star could have been
discovered only in the plane perpendicular to the line of vision. When
treating direct measurements Herschel (1806) preferred the median
rather than the arithmetic mean (Sheynin 1984a, pp. 172 – 173).

3.5.4. The Minimax Method. Kepler (§ 3.3) had apparently made
use of some elements of this method. Laplace (1789/1895, pp. 493,
496 and 506 and elsewhere) applied it for preliminary investigations.
This method corresponds, as Gauss (1809, § 186) remarked, and as it
is easy to prove, to the condition

lim (v1
2k + v2

2k + ... + vn
2k) = min, k → ∞.

Below, I describe the subsequent history of the theory of errors, but
right now I emphasize that beginning with Simpson and until the
1930s it had been the main field of application of the theory of
probability and that mathematical statistics had borrowed two main
principles from the theory of errors, those of maximal likelihood and
of least variance.

4. Laplace
He devoted a number of memoirs to the theory of probability and

later combined them in his Théorie analytique des probabilités (TAP)
(1812). He made use of characteristic functions and the inversion
formula, calculated difficult integrals, applied Hermite polynomials,
introduced the Dirac function and (after Daniel Bernoulli) the
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Ehrenfests’ model and studied sampling. Issuing from observations,
Laplace proved that the Solar system will remain stable for a long time
and completed the explanation of the movement of its bodies in
accordance with the law of universal gravitation.

He had not even heuristically introduced the notion of random
variable and was unable to study densities or characteristic functions
as mathematical objects, did not bother to prove rigorously his
theorems (for example, often issued from non-rigorously proved
versions of the CLT, not even properly formulated) which was
contrary to the attitude of his predecessors. His theory of probability
therefore became an applied mathematical discipline unyielding to
development and it had to be constructed anew. Here, indeed, is
Poisson (1837a, § 84) who methodically followed Laplace: There
exists a very high probability that these unknown chances little differ
from the ratio …

Then, Laplace insisted on his own impractical justification of the
method of least squares and virtually neglected Gauss. Many
commentators reasonably stated that his contributions made difficult
reading.

Here is an interesting problem from Chapter 2 of the TAP. An
interval OA is divided into equal or unequal parts and perpendiculars
are erected to the intervals at their ends. The number of perpendiculars
is n, their lengths (moving from O to A) form a non-increasing
sequence and the sum of these lengths is given. Suppose now that the
sequence is chosen repeatedly; what, Laplace asks, will be the mean
broken line connecting the ends of the perpendiculars? The mean value
of a current perpendicular? Or, in the continuous case, the mean curve?
Each curve might be considered as a realization of a stochastic process
and the mean curve sought, its expectation. Laplace was able to
determine this mean curve and to apply this finding for studying expert
opinions.

Suppose that some event can occur because of n mutually exclusive
causes. Each expert arranges these in an increasing (or decreasing)
order of their [subjective] probabilities, which, as it occurs, depend
only on n and the number of the cause, r, and are proportional to

1 1 1
... .

1 1n n n r
  
  

The comparison of the sums of these probabilities for each cause also
shows the mean opinion about its importance. To be sure, different
experts will attribute differing perpendiculars to one and the same
cause.

In Chapter 6 Laplace applied the Bayesian approach to problems in
population statistics. First, he wrote out formula (5) from § 2.4.7 with r
being the unknown probability of a male birth and p and q, the very
large numbers of male and female births. He expressed the integrals of
functions of very large numbers (as Laplace called them) by integrals
of an exponential function of a negative square.

In the same way Laplace estimated the population of France (M) by
issuing from sampling, from the known number of yearly births in
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France and in some of its regions (N and n) and the population of those
regions (m). K. Pearson (1928) remarked that Laplace had mistakenly
considered (m, n) and (M, N) as independent samples from the same
infinite population (whose very existence was doubtful) and that his
estimate of the achieved precision of sampling (the first of its kind)
was somewhat erroneous.

Laplace’s theory of errors was based on several versions of the CLT
(whose conditions he never really formulated!) and therefore required,
first of all, a large number of observations. In geodesy, that number
was barely sufficient, and the errors in long series of astronomical
observations hardly obeyed one and the same law of distribution. And
only the normal distribution became worthy of attention.

Without explanation which appeared in his Supplement 2
(1818/1886, p. 571) Laplace (1816) approximated the squared sum of
the real errors by the same sum of the residuals and, for the case of s

observations, arrived at an estimator of their variance m = [ ]/ .vv s

Interestingly, he (1814/1995, p. 45) stated that the weight of the mean
result increases like the number of observations divided [divisé] by the
number of parameters. See below the more precise formula due to
Gauss (§ 6) and note that variance is a modern term.

Curiously, Laplace (1796/1884, p. 504), actually attributed the
planetary eccentricities to randomness:

Had the Solar system been formed perfectly orderly, the orbits of the
bodies composing it would have been circles whose planes coincided
with the plane of the Solar equator. We can perceive however that the
countless variations that should have existed in the temperatures and
densities of the diverse parts of these grand masses gave rise to the
eccentricities of their orbits and the deviations of their movement from
the plane of that equator.

Curiously, since Newton had proved that the eccentricities were
determined by the planets’ initial velocities. However, did Newton get
rid of randomness? No, not at all: those velocities seem to be random.

5. Poisson
He introduced the concepts of random variable and distribution

function. He contributed to limit theorems and brought into use the
LLN, proving it for the case of Poisson trials. He devoted much
attention to the study of juridical statistics (§ 2.2) and systematically
determined the significance of empirical discrepancies. Poisson
stressed the difference between subjective and objective probabilities.
Cournot (1843) kept to the same attitude and even introduced non-
numerical probabilities. They as well as the subjective probabilities are
being applied as expert estimates (cf. § 4).

Since Poisson (1837a) consistently checked the significance of
empirical discrepancies, for example between results of different series
of observations, he, along with Bienaymé, can be called the Godfather
of the Continental direction of statistics (Lexis, Bortkiewicz, Chuprov,
Markov, Bohlmann, see § 8.3) that mostly studied population. True,
his approach was definitely restricted as it became apparent in
medicine (§ 2.1).

Poisson’s generally known formula (1837a, § 81, p. 206)
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2(1 /2! ... / !), μw nP e w w w n w p     

for an event having probability q = 1 – p ≈ 0 to occur not more than n
times in a large number μ of Bernoulli trials had been all but ignored
until Bortkiewicz (1898) introduced his law of small numbers,
allegedly a breakthrough extremely important for statistics. However,
Whitaker (1914) and then, Kolmogorov (1954) had identified it as the
Poisson formula. They did not justify that statement, and I (2008)
proved it, see also § 8.3.3.

Poisson’s (1837a) LLN is his best known innovation. It generalized
the Bernoulli trials on the case of variable probabilities pi of success
although many authors have reasonably noted that his proof was not
rigorous. For him, the LLN was rather a principle whose scope he
exaggerated. Still, he (p. 10) qualitatively connected it with the
existence of a stable mean interval between molecules (Gillispie 1963,
p. 438). The founders of the kinetic theory of gases had not regrettably
noticed Poisson’s conclusion.

Poisson’s programme of probability calculus and social arithmetic
(1837b) devoted serious attention to that latter subject. I quote the
appropriate part of the programme:

Des tables de population et de mortalité. De la durée de la vie
moyenne dans diverses contrées. Partage de la population suivant les
âges et les sexes. De l’influence de la petite vérole, de l’inoculation et
de la vaccine sur la population, et la durée de la vie moyenne. […]

That programme also mentioned insurance establishments, annuities,
tontines, savings banks and emprunts (loans or perhaps bonds). Social
arithmetic therefore meant population statistics, at least some medical
statistics and insurance.

Following Laplace, Poisson (see § 4) had often left demonstrations
without indicating the boundaries of possible errors and his theory of
probability still belonged to applied mathematics. One of his examples
(1837a, § 11) led to a subjective probability of the studied event equal
to 1/2, and, in conformity with the future information theory, he
(Ibidem, § 4) properly remarked that such results illustrate la perfaite
perplexité de notre esprit.

Poisson (1825 – 1826) applied subjective probability when
investigating a game of chance. Cards are extracted one by one from
six decks shuffled together as a single whole until the sum of the
points in the sample obtained will be in the interval [31; 40]. The
sample is not returned and a second sample of the same kind is made.
It is required to determine the probability that the sums of the points
are equal. Like the gamblers and bankers, Poisson tacitly assumed that
the second sample was extracted as though from the six initial fresh
decks. Actually, this was wrong, but the gamblers thought that, since
they did not know what happened to the initial decks, the probability
of drawing some number of points did not change.

When blackjack is played, bankers are duty bound to act the same
wrong way: after each round the game continues without the used
cards, and, to be on the safe side, they ought to stop at 17 points. A
gambler endowed with a retentive memory can certainly profit from
this restriction.



37

Catalan (1877; 1884) even formulated the following principle: If the
causes, on which the probability of an event depended, changed in an
unknown way, that probability remains unaltered.

6. Gauss
He was the real, although not the formal discoverer of the method of

least squares (MLSq) first publicly proposed by Legendre (1805).
Indeed, Gauss had applied it from 1794 or 1795, informed his
colleagues about it before 1805 and justified it. Legendre, however,
only put forward reasonable arguments and, even so, actually and
mistakenly stated that the MLSq also ensured a minimax solution of
redundant systems of equations.

Three circumstances greatly impeded the dissemination of Gauss’
ideas. First, although citing Legendre, he (1809, § 186) mentioned our
principle (of least squares) which insulted the much older French
scientist. That same year, Legendre (Gauss, W-9, p. 380) wrote a letter
to Gauss stating that priority is only established by publication. A
withdrawn person that he was, Gauss did not answer; for the time
being, Legendre could have dropped the subject and repeated his
proper remark at the first occasion.

As it happened, however, Legendre, as well as all the other French
mathematicians interested in the treatment of observations except
Laplace, became infuriated and, to their own detriment, for at least a
few decades had continued to ignore Gauss’ contributions to the theory
of errors.

Second, Laplace (1812, § 24) properly described the situation, but
kept to his own version of the theory of errors. Third, Laplace
somehow eclipsed Gauss. Innumerable geodetic textbooks only
described the MLSq according to Gauss (1809), but even so many
scientists barely noticed that work. Tsinger (1862, p. 1), who
obviously did not even read Gauss, was the worst perpetrator:

Laplace provided a rigorous [?] and impartial investigation […].
On the basis of extraneous considerations, Gauss endeavoured to
attach to [the MLSq] an absolute significance etc.

So what had Gauss achieved in 1809? Gauss (1809, § 177) assumed
as an axiom that the arithmetic mean of many observations was the
most probable value of the measured constant if not absolutely
precisely, then very close to it. Together with the principle of maximal
likelihood, his axiom or postulate (Bertrand 1888a, p. 176) led to the
normal distribution of the observational errors as the only possible law.
Gauss was hardly satisfied with his derivation. His axiom contained
qualification remarks, other laws of error were possible and maximum
likelihood was worse than an integral criterion. It is somewhat strange
that Gauss himself only mentioned the last item and only in a few
letters. In his letter to Bessel of 1839 (Plackett 1972/1977, p. 287) he
stated that the highest probability of the value of an unknown
parameter was still infinitely low so that he preferred to rely on the
least disadvantageous game, on maximum weight or minimal variance.

Indeed, Gauss (1823b, § 6) introduced the variance

2φ( )x x dx


 

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where the density φ(x) was an even unimodal function (which
conformed with the properties of usual random errors) and selected its
minimal value as the criterion for adjusting observations.

He (§§ 18 and 19) also introduced independence of linear functions:
they should not contain common observations. Then Gauss (§§ 37 – 38)
proved what was practically necessary: for n observations and k
unknowns, the unbiased sample variance and its estimator were,
respectively,

m2 = E[vv]/(n – k), 2m̂ = [vv]/(n – k). (1a, b)

Instead of the mean value, the sum of squares [vv] itself has to be
applied. Coupled with the principle of maximal weight, formulas (1)
provide effective estimators, as they are now called. Without
mentioning Laplace, see above, Gauss (1823b, §§ 37 – 38) noted that
his formula was not good enough. Elsewhere, he (1823a/1887, p. 199)
stated that its correction was also necessary for the dignity of science.

The necessary restrictions for the derivation of (1a) are linearity of
the equations (1) of § 3.1, independence of their free terms (of the
results of observation), and the unbiasedness of the estimators ˆ ˆ, ,...x y
of the unknowns. An extremely important corollary follows: the
immediately appearing principle of least squares can be derived
without recourse to sections 7 – 38 of the memoir. Gauss had thus
derived the principle of least squares by two independent ways: by the
method which he described in those intermediate sections and by the
just outlined method.

The first method is so complicated that perhaps up to the second
half of the 20th century textbook authors invariably introduced the
MLSq in accordance with Gauss’ first memoir of 1809, which he no
longer acknowledged. Now, however, after my discovery outlined
above (Sheynin 2012), the situation has changed.

Gauss (§ 40) calculated the boundaries of the var 2m̂ by means of the

fourth moment of the errors but made a mistake later corrected by
Helmert and then by Kolmogorov et al.

But why did not Gauss even hint at the described possibility? I can
only quote Kronecker (1901, p. 42):

The method of exposition in the Disquisitiones [Arithmeticae of
1801] as in his works in general is Euclidean. He formulates and
proves theorems and diligently gets rid of all the traces of his train of
thoughts which led him to his results. This dogmatic form was
certainly the reason for his works remaining for so long
incomprehensible.

Later commentators expressed the same opinion. It remains to
illustrate the former difficulties which led to the choice of the memoir
of 1809 over Gauss’ final memoir of 1823: the very existence of that
final memoir (Eisenhart 1964, p. 24)

Seems to be virtually unknown to all American users of Least
Squares, except students of advanced mathematical statistics.

Here, indeed, is Fisher (1925, p. 260):
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In the cases to which it is appropriate, this method [of least squares]
is a special application of the method of maximum likelihood, from
which it may be derived.

Quite recently Nikulin & Poliscuk (1999) failed to mention that
final memoir. Petrov (1954) perhaps still provides the best description
of the properties of estimators derived by the MLSq.

6.1. There are important additional considerations: the
determination of the necessary number of observations, the rejection of
outliers and the so-called true values of the unknowns. Owing to the
unavoidable presence of systematic errors, the number of observations
is not really determined by the formulas (1). For the same reason
statistical criteria for rejecting outliers are hardly useful and this latter
problem remains delicate.

Astronomers, geodesists, metrologists and other specialists making
measurements have always been using the expression true value.
Mathematical statistics has done away with true values and introduced
instead parameters of densities (or distribution functions), and this was
a step in the right direction: the more abstract was mathematics
becoming, the more useful it proved to be.

Fisher was mainly responsible for that change; indeed, he (1922, pp.
309 – 310) defined the notions of consistency, efficiency and
sufficiency of statistical estimators without any reference to true
values. But then, on p. 311, he accused the Biometric school of
applying the same names to the true value which we should like to
know […] and to the particular value at which we happen to arrive…
So the true value was then still alive and even applied, as in the lines
above, to objects having no existence in the real world.

The same can be said about Gauss (1816, §§ 3 and 4) who
repeatedly considered the true value of a measure of precision of
observations. And Hald (1998) mentioned true value many times in
Chapters 5 and 6; on p. 91 he said: the estimation of the true value, the
location parameter…

So what is a true value? Markov (1900/1924, p. 323) was the only
mathematician who cautiously, as was his wont, remarked: It is
necessary in the first place to presume the existence of the numbers
whose approximate values are provided by observations. This phrase
first appeared in the 1908 edition of his Treatise (and perhaps in its
first edition of 1900). He had not attempted to define true value, but
this is exactly what Fourier (1826/1890, p. 534) had done about a
century before him. He determined the véritable objet de la recherche
(the constant sought, or its true value) as the limit of the arithmetic
mean of n appropriate observations as n → ∞. Incidentally, he thus
provided the Gauss postulate with a new dimension.

Many authors, beginning perhaps with Timerding (1915, p. 83) [and
including Mises (1919/1964b, pp. 40 and 46)], without mentioning
Fourier and independently from each other, introduced the same
definition. One of them (Eisenhart 1963/1969, p. 31) formulated the
unavoidable corollary: the mean residual systematic error had to be
included in that true value:
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The mass of a mass standard is […] specified […] to be the mass of
the metallic substance of the standard plus the mass of the average
volume of air adsorbed upon its surface under standard conditions.

However, even leaving systematic influences aside, the precision of
observations is always restricted and the number of observations finite,
so that the term limit in the Fourier definition (which is in harmony
with the Mises definition of probability) must not be understood
literally.

Statistics moved from true values to parameters of densities or
distribution functions, but still does not entirely abandon them.

6.2. Chronologically, Helmert belongs to the second half of the 19th

century, but it is better to mention him here. He mainly completed the
development of the classical Gaussian theory of errors and some of his
findings were interesting for mathematical statistics. Until the 1930s,
Helmert’s treatise (1872) remained the best source for studying the
error theory and the adjustment of triangulation. When adjusting a
complicated geodetic net, Helmert (1886, pp. 1 and 86) temporarily
replaced chains of triangulation by geodetic lines. His innovation had
been applied in the Soviet Union. The chains of the national primary
triangulation were there situated between baselines and astronomically
determined azimuths. Before the general adjustment of the entire
system, each chain was replaced by the appropriate geodetic line; only
they were adjusted, then the chains were finally dealt with
independently one from another.

Elsewhere Helmert (1868) studied various configurations of
geodetic systems. In accordance with the not yet existing linear
programming, he investigated how to achieve necessary precision with
least possible effort, or, to achieve highest possible precision with a
given amount of work. Some equations originating in the adjustment
of geodetic networks are not linear, not even algebraic; true, they can
be linearized, and perhaps some elements of linear programming could
have emerged then, in 1868, but this had not happened. Nevertheless,
Helmert noted that it was expedient to leave some angles of particular
geodetic systems unmeasured, but his remark was purely academic: all
angles ought to be measured at least for checking the work as a whole.

Abbe (1863) derived the chi-square distribution, see also Sheynin
(1966) and Kendall (1971), as the frequency of the sum of the squares
of n normally distributed errors. Helmert (1875; 1876) derived the
same distribution by induction beginning with n = 1 and 2 and Hald
(1952/1960, pp. 258 – 261) provided a modernized derivation. Much
later Helmert (1905) offered a few tests for revealing systematic
influences in a series of errors. Among other results, I note that he
(1876) derived a formula that showed that, for the normal distribution,
[vv], – and, therefore, the variance as well,– and the arithmetic mean
were independent. He had thus proved the important Student – Fisher
theorem although without paying any attention to it.

Czuber (1891, p. 460) testified that Helmert had thought that
var 2 2ˆ ˆ/m m was more important than var 2m̂ by itself and Eddington

(1933, p. 280) independently expressed the same opinion. Czuber also
proved that, for the normal distribution, that relative error was minimal
for the estimator (1b).
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In addition, Helmert noted that for small values of n the var 2m̂ did

not estimate the precision of formula (1b) good enough. His
considerations led him to the so-called Helmert transformations.

6.3. Bessel. His achievements in astronomy and geodesy include the
determination of astronomical constants; the first determination of a
star’s parallax; the discovery of the personal equation; the
development of a method of adjusting triangulation; and the derivation
of the parameters of the Earth’s ellipsoid of revolution. He (1838a)
also proved the CLT, but its rigorous proof became possible, with a
doubtful exception of one of Cauchy’s memoirs, only much later.
Incidentally, Gauss was familiar with the pertinent problem. In the
letter to Bessel of 1839 mentioned above, he stated that he had read
that proof with great interest, but that

This interest was less concerned with the thing itself than with your
exposition. For the former has been familiar to me for many years,
though I myself have never arrived at carrying out the development
completely.

The personal equation of an observer is his systematic error of
registering the moments of the passage of a star through the cross-hairs
of the eyepiece of an astronomical instrument. When studying this
phenomenon, it is possible to compare the moments fixed by two
astronomers at different times. Although Bessel did not explain the
situation, it followed from the context that he and another astronomer
had only one clock. Consequently, it was necessary to take into
account its correction. Bessel (1823), who discovered the existence of
the personal equation, had indeed acted appropriately, since apparently
(he did not explain the situation) both observers had been using the
same clock.

However, in one case he mistakenly presumed that the rate of the
clock was constant, and his pertinent observations proved useless; he
made no such comment. When studying Bradley’s observations,
Bessel (1818; 1838a, § 11) failed to note the deviation of their errors
from normality. And I (Sheynin 2000) discovered 33 mistakes in
arithmetical and simple algebraic operations in Bessel’s contributions
collected in his Abhandlungen (1876). Not being essential, they testify
to his inattention and undermine the trust in the reliability of his more
involved calculations.

That Gauss had been familiar with the derivation of the CLT could
have angered Bessel. Anyway, in 1844, in a letter to Humboldt he
(Sheynin 2001c, p. 168) reversed his previous opinion and stressed
Legendre’s priority in the dispute over the discovery of the MLSq.
Moreover, in 1825 Bessel met Gauss and quarrelled with him,
although no details are known (Ibidem) and even in 1822 Olbers in a
letter to Bessel (Erman 1852, Bd. 2, p. 69) regretted that the relations
between the two scholars were bad. Gerling (1861), a former student
of Gauss, described Bessel’s unwarranted attempts made in 1843 to
establish his priority over Gauss in the adjustment of triangulation. See
also Sheynin (2001c, pp. 171 – 172).

Bessel’s posthumously published collected reports (1848) include
an item on the theory of probability (pp. 387 – 407), this being his
report to a physical society, written on a low scientific level
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(apparently occasioned by the poor knowledge of his listeners).
Among the applications of the theory of probability Bessel only dwelt
on astronomy, but he did not say a single word about the discovery of
the minor planets, about the MLSq or Gauss. A distressing impression!

Bessel (p. 401) stated that the great Lambert had objected to the use
of the arithmetic mean. Actually, Lambert (1760) introduced the
principle of maximum likelihood but noted, certainly without proving
it that the appearing estimate does not deviate much from the
arithmetic mean, the mean which he never denied. Worse is to come.
Bessel (1843) stated that Herschel had discovered the planet Uranus,
saw its disc. Actually, Herschel only saw a moving body and thought
that it was a comet. It follows that Bessel did not know the true story
and falsely reconstructed it. Then, he (1845), without any statistical
data, invented a false picture about Native Americans.

A great scholar and a deep-rooted fabricator! A case for a
psychologist.

7. The Second Half of the 19th Century
7.1. At the beginning of his scientific career Quetelet visited Paris

and I think that Fourier had mostly inspired him. Quetelet tirelessly
treated statistical data and attempted to standardize statistics on an
international scale. He was co-author of the first statistical reference
book (Quetelet & Heuschling 1865) on the population of Europe
(including Russia) and the USA that contained a critical study of the
initial data; in 1853, he (1974, pp. 56 – 57) served as chairman of the
Conférence maritime pour l’adoption d’un système uniforme
d’observation météorologiques à la mer and the same year he
organized the first International Statistical Congress. K. Pearson
(1914 – 1930, 1924, vol. 2, p. 420) praised Quetelet for organizing
official statistics in Belgium and […] unifying international statistics.
About 1831 – 1833 Quetelet had successfully suggested the formation
of a Statistical Society in London, now called the Royal Statistical
Society.

Quetelet’s writings (1869; 1871) contain many dozen of pages
devoted to various measurements of the human body, of pulse and
respiration, to comparisons of weight and stature with age, etc. and he
extended the applicability of the normal law to this field. Following
Humboldt’s advice, Quetelet (1870; 1871) introduced the term
anthropometry and thus curtailed the boundaries of anthropology. He
was influenced by Babbage (1857), an avid collector of biological
data. In turn, Quetelet impressed Galton (1869, p. 26) who called him
the greatest authority on vital and social statistics. While discussing
that contribution, K. Pearson (1914 – 1930, vol. 2, 1924, p. 89)
declared:

We have here Galton’s first direct appeal to statistical method and
the text itself shows [that the English translation of Quetelet (1846)]
was Galton’s first introduction to the […] normal curve.

Quetelet (1846) recommended the compilation of questionnaires
and the preliminary checking of the data; maintained (p. 278) that too
many subdivisions of the data was a charlatanisme scientifique, and,
what was then understandable, opposed sampling (p. 293). Darwin
(1887, vol. 1, p. 341) approvingly cited that contribution whereas
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Quetelet (1846, p. 259) declared that the plants and the animals have
remained as they were when they left the hands of the Creator.
Lamarck was the first who attempted to construct a theory of
evolution, and Quetelet’s statement proves that his thoughts had been
more or less discussed. However, Quetelet never mentioned either
Lamarck, or Wallace, or Darwin.

He collected and systematized meteorological observations and
described the tendency of the weather to persist by elements of the
theory of runs. Köppen (1875, p. 256), an eminent meteorologist,
noted that ever since the early 1840s the Belgian meteorological
observations proved to be the most lasting [in Europe] and extremely
valuable.

Quetelet discussed the level of postage rates (1869, t. 1, pp. 173 and
422) and rail fares (1846, p. 353) and recommended to study
statistically the changes brought about by the construction of telegraph
lines and railways (1869, t. 1, p. 419). He (1836, t. 2, p. 313)
quantitatively described the monotone changes in the probabilities of
conviction of the defendants depending on their personality (sex, age,
education) and Yule (1900/1971, pp. 30 – 32) called it the first attempt
to measure association.

Quetelet is best remembered for the introduction of the Average
man (1832a, p. 4 and elsewhere), inclinations to crime (1832b, p. 17
and elsewhere) and marriage (1848a, p. 77 and elsewhere), – actually,
the appropriate statistical probabilities, – and for mistaken (Rehnisch
1876) statements about the constancy of crime (1829, pp. 28 and 35
and many other sources) whose level he (1836, t. 1, p. 10) connected
with the general organization of the society. The two last-mentioned
items characterized Quetelet as the follower of Süssmilch in
originating moral statistics. Quetelet (1848a, p. 82 and elsewhere)
indicated that the inclination to crime of a given person might differ
considerably from the apparent mean tendency and (pp. 91 – 92) and
related these inclinations to the Average man, but statisticians did not
notice that reservation and denied inclinations and even probability
theory. True, many of them, e. g., Haushofer (1872) or Block (1878),
only applied arithmetic. After Quetelet’s death statisticians (mostly in
Germany) had simply discarded him.

The Average man, as Quetelet thought, was the type of the nation
and even of entire mankind. Reasonable objections were levelled
against this concept. Thus, the Average man was physiologically
impossible (the averages of the various parts of the human body were
inconsistent one with another). Then, Quetelet (1846, p. 216) only
mentioned the Poisson LLN in connection with the mean human
stature. Bertrand (1888a, p. XLIII) ridiculed Quetelet:

In the body of the average man, the Belgian author placed an
average soul. He has no passions or vices [wrong, see above], he is
neither insane, nor wise, neither ignorant nor learned. […] [He is]
mediocre in every sense. After having eaten for thirty-eight years an
average ration of a healthy soldier, he has to die not of old age, but of
an average disease that statistics discovers in him.
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However, that concept is useful at least as an average producer and
consumer; Fréchet (1949) replaced him by a closely related typical
man.

Quetelet (1848a, p. 80 and elsewhere) noticed that the curves of the
inclinations to crime and to marriage plotted against ages were
exceedingly asymmetric. He (1846, pp. 168 and 412 – 424) also knew
that asymmetric densities occurred in meteorology and he (1848a, p.
viii) introduced a mysterious loi des causes accidentelles whose curve
could be asymmetric (1853, p. 57)! No wonder Knapp (1872, p. 124)
called him rich in ideas, but unmethodical and therefore un-
philosophical. Nevertheless, Quetelet had been the central figure of
statistics in the mid-19th century.

7.2. Being influenced by his cousin, Darwin, Galton began to study
the heredity of talent (1869). In a letter of 1861 Darwin (1903, p. 181)
favourably mentioned that contribution. Darwin (1876/1878, p. 15)
also asked Galton to examine his investigation of the advantages of
cross-fertilization as compared with spontaneous pollination. Galton
solved that problem by effectively applying rank correlation. Then, he
(1863) devised an expedient system of symbols for weather charts and
immediately discovered the existence of previously unknown
anticyclones. This was the third (after Halley and Humboldt, see § 2)
example of a wonderful application of a preliminary or exploratory
data analysis, the comparatively new stage of statistical investigations.
See Andrews (1978) who refers to many authors including J. W.
Tukey. In particular, this analysis aims at discovering patterns in the
data (including systematic influences). Tukey (1962/1986, p. 397)
remarked on an important feature of that stage:

Data analysis, and the parts of statistics which adhere to it, must
[…] take on the characteristics of a science rather than those of
mathematics.

Kolmogorov (1948a, p. 216) unfortunately, as I think, stated that
mathematical statistics comprised theoretical statistics and a
(preliminary) descriptive part devoted to systematizing mass data and
to calculating the appropriate means, moments, etc. He himself
(Anonymous 1954, pp. 46 – 47) later maintained that theoretical
statistics comprises mathematical statistics and some technical
methods of collecting and treating statistical methods. Many
statisticians seem to share this opinion but he belittled these technical
methods and denied theoretical statistics. Anyway, I cannot agree with
Anscombe (1967, p. 3n) who called mathematical statistics a
grotesque phenomenon.

Galton (Pearson 1914 – 1930, vol. 2, Chapter 12) also invented
composite photographs of people of a certain nationality or
occupation, or criminals, all of them taken on the same film with an
appropriately shorter exposure. Such photographs heuristically showed
Quetelet’s Average man.

In 1892, Galton became the main inventor of fingerprinting.
Another of Galton’s invention (1877) was the so-called quincunx, a
device for demonstrating the appearance of the normal distribution as
the limiting case of the binomial law which also showed that the
normal law was stable. Galton’s main statistical merit consisted,
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however, in the introduction of the notions of regression and
correlation. The development of correlation theory became one of the
aims of the Biometric school, and Galton’s close relations with
Pearson were an important cause of its successes.

7.3. I reconstruct now Darwin’s model of evolution (1859).
Introduce an n-dimensional (possibly with n = ∞) system of
coordinates, the body parameters of individuals belonging to a given
species (males and females should be treated separately), and the
appropriate Euclidean space with the usual definition of distance
between its points. At moment tm each individual is some point of that
space and the same takes place at moment tm+1 for the individuals of
the next generation. Because of the vertical variation, these, however,
will occupy somewhat different positions. Introduce in addition point
(or subspace) V, corresponding to the optimal conditions for the
existence of the species, then its evolution will be represented by a
discrete stochastic process of the approximation of the individuals to V
(which, however, moves in accordance with the changes in the
external world) and the set of individuals of a given generation
constitutes the appropriate realization of the process. Probabilities
describing it (as well as estimates of the influence of habits, instincts,
etc) are required for the sake of definiteness, but they are of course
lacking.

Mendel’s discovery was only unearthed at the very end of the 19th

century, and it certainly changed the picture of evolution. Then, the
importance of mutation became known (De Vries 1905).

Darwin and his teaching inspired the founders of the Biometric
school (§ 8.1).

7.4. In 1855 Bertrand had translated Gauss’ works on the MLSq
into French. The title-page of this translation carried a phrase
Translated and published avec l’autorisation de l’auteur, but Bertrand
himself (C. r. Acad. Sci. Paris, t. 40, 1855, p. 1190) indicated that
Gauss, who had died that same year, was only able to send him
quelques observations de détail.

Bertrand’s own work on probability began in essence in 1887 –
1888 when he published 25 notes in one and the same periodical as
well as his main treatise (1888a), written in great haste and carelessly,
but in a very good literary style. I take up its main issues and state
right now that it lacks a systematic description of its subject.

1) Statistical probability and the Bayesian approach. Heads
appeared m = 500,391 times in n = 106 tosses of a coin (p. 276). The
statistical probability of that event is p = 0.500391; it is unreliable, not
a single of its digits merits confidence. After making this astonishing
declaration, Bertrand compared the probabilities of two hypotheses,
namely, that the probability was either p1 = 0.500391, or p2 =
0.499609. However, instead of calculating

[p1
mp2

n] ÷ [p2
mp1

n],

he applied the De Moivre – Laplace theorem and only indicated that
the first probability was 3.4 times higher than the second one. So what
should have the reader thought?
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As I understand him, Bertrand (p. 161) condemned the Bayes
principle only because the probability of the repetition of the
occurrence of an event after it had happened once was too high. This
conclusion was too hasty, and the reader was again left in suspense:
what might be proposed instead? Note that Bertrand (p. 151)
mistakenly thought that the De Moivre – Laplace theorem precisely
described the inverse problem, the estimation of the theoretical
probability given the statistical data, cf. § 2.4.7.

2) Mathematical treatment of observations. Bertrand paid much
attention to this issue, but his reasoning was amateurish and sometimes
wrong. Even if, when translating Gauss (see above), he had grasped
the essence of the MLSq, he barely remembered that subject after
more than 30 years. Thus, he (pp. 281 – 282) attempted to prove that
the sample variance (1) of § 6 might be replaced by another estimator
of precision having a smaller variance. He failed to notice, however,
that, unlike the Gauss’ statistic, his new estimator was biased.
Furthermore, when providing an example, Bertrand calculated the
variance for the normal distribution instead of applying the Gauss
additional formula for that case.

At the same time Bertrand also formulated some sensible remarks.
He (p. 248) expressed a favourable opinion about the second Gauss
justification of the MLSq but indicated (p. 267) that, for small errors,
the even distribution

φ(x) = a + bx2

can be approximately represented by an exponential function of a
negative square, – that the first substantiation of the method was
approximately valid.

3) Several interesting problems dwell on a random composition of
balls in an urn; on sampling without replacement; on the ballot
problem; and on the gambler’s ruin.

a) White and black balls are placed in the urn with equal
probabilities and there are N balls in all. A sample made with
replacement contained m white balls and n black ones. Determine the
most probable composition of the urn (pp. 152 – 153). Bertrand
calculated the maximal value of the product of the probabilities of the
sample and of the hypotheses on the composition of the urn.

b) An urn has sp white balls and sq black ones, p + q = 1.
Determine the probability that after n drawings without replacement
the sample will contain (np – k) white balls (p. 94). Bertrand solved
this problem applying the [hypergeometric distribution] and obtained,
for large values of s and n, an elegant formula

P =
1

2πpqn

s

s n
exp[

2

2 ( )

k s

pqn s n



].

He published this formula earlier without justification and noted that
the variable probability of extracting the balls of either colour was en
quelque sorte un régulateur.
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c) Candidates A and B scored m and n votes respectively, m > n and
all the possible chronologically differing voting records were equally
probable. Determine the probability P that, during the balloting, A was
always ahead of B (p. 18). Following André (1887), who provided a
simple demonstration, Bertrand proved that

P = (m – n)/(m + n), (1)

see also Feller (1950, § 1 of Chapter 3). Actually, Bertrand was the
first to derive formula (1) by a partial difference equation. This ballot
problem has many applications (Feller, Ibidem). Takácz (1982) traced
its history back to De Moivre. He indicated that it was extended to
include the case of m ≥ µn for positive integral values of µ and that he
himself, in 1960, had further generalized that extended version.

d) I select one out of the few problems on the gambler’s ruin
discussed by Bertrand (pp. 122 – 123). Gambler A has m counters and
plays with an infinitely rich partner. His probability of winning any
given game is p. Determine the probability that he will be ruined in
exactly n games (n > m). Bertrand was able to solve this problem by
applying formula (1). Calculate the probability that A loses (n + m)/2
games and wins (n – m)/2 games; then, multiply it by the probability
that during that time A will never have more than m counters, that is,
by m/n. Conforming to common sense, Bertrand’s derived formula
shows that in case of a very high p the game will last exceedingly long.

In a brief chapter he largely denied everything done in the moral
applications of probability by Condorcet (and did not refer to Laplace
or Poisson).

In two of his notes Bertrand (1888b; 1888c) came close to proving
that for a sample from a normal population the mean and the variance
were independent (to the Student – Fisher theorem).

4) I take up Bertrand’s celebrated problem about a random chord of
a circle in § 7.6.1.

Taken as a whole, Bertrand’s treatise is impregnated with its non-
constructive negative (and often unjustified) attitude towards the
theory of probability and treatment of observations. And at least once
he (pp. 325 – 326) wrongly alleged that Cournot had supposed that
judges decided their cases independently one from another. I ought to
add, however, that Bertrand exerted a strong (perhaps too strong)
influence upon Poincaré, and, its spirit and inattention to Laplace and
Bienaymé notwithstanding, on the revival of the interest of French
scientists in probability (Bru & Jongmans 2001).

7.5. In the theory of probability, Poincaré is known for his treatise
(1896); I refer to its extended edition of 1912. I note first of all that he
had passed over in silence not only the Russian mathematicians, but
even Laplace and Poisson, and that his exposition was imperfect.

Following Bertrand, Poincaré (p. 62) called the expectation of a
random variable its probable value; denoted the measure of precision
of the normal law either by h or by √h; made use of loose expressions
such as z lies between z and z + dz (p. 252).

Several times Poincaré applied the formula
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where Ф(x) was a restricted positive function, xo, the only point of its
maximum, and the limits of integration could have been infinite
(although only as the result of a formal application of the Bayesian
approach). Poincaré (p. 178) only traced the proof of (2) and, for being
true, some restrictions should perhaps be added. To place Poincarè’s
trick in the proper perspective, see Erdélyi (1956, pp. 56 – 57). I
discuss now some separate issues mostly from Poincaré’s treatise.

1) The theory of probability. Poincaré (p. 24) reasonably stated that
a satisfactory definition of prior probability was impossible. Strangely
enough, he (1902/1923, p. 217) declared that all the sciences were
nothing but an unconscious application of the calculus of probability,
that the theory of errors and the kinetic theory of gases were based on
the LLN (wrong about the former) and that the calculus of probability
will evidently ruin them (les entrainerait évidemment dans sa ruine).
Therefore, as he concluded, the calculus was only of practical
importance. Another strange pronouncement is in his treatise (p. 34).
As I understand him, he maintained that a mathematician is unable to
understand why forecasts concerning mortality figures come true.

In a letter of ca. 1899 partly read out at the hearing of the notorious
Dreyfus case (Le procès 1900, t. 3, p. 325; Sheynin 1991, pp. 166 –
167) Poincaré followed Mill (§ 2.2) and even generalized his statement
to include moral sciences and declared that the appropriate findings
made by Condorcet and Laplace were senseless. And he objected to a
stochastic study of handwriting for identifying the author of a certain
document.

The interest in application of probability to jurisprudence is now
revived. Heyde & Seneta (1977, p. 34) had cited several pertinent
sources published up to 1975; to these I am adding Zabell (1988),
Gastwirth (2000) and Dawid (2005) who emphasized the utmost
importance of interpreting background information concerning
stochastic reasoning.

2) Poincaré (1892a) had published a treatise on thermodynamics
which Tait (1892) criticized for his failure to indicate the statistical
nature of this discipline. A discussion followed in which Poincaré
(1892b) stated that the statistical basis of thermodynamics did not
satisfy him since he wished to remain entirely beyond all the
molecular hypotheses however ingenious they might be; in particular,
he therefore passed the kinetic theory of gases over in silence. Soon he
(1894/1954, p. 246) made known his doubts: he was not sure that that
theory can account for all the known facts. In a later popular booklet
Poincaré (1905/1970, pp. 210 and 251) softened his attitude: physical
laws will acquire an entirely new aspect and differential equations will
become statistical laws; laws, however, will be shown to be imperfect
and provisional.

3) The binomial distribution. Suppose that m Bernoulli trials with
probability of success p are made and the number of successes is α.
Poincaré (pp. 79 – 84), in a roundabout and difficult way, derived (in
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modern notation) E(α – mp)2 and E|α – mp|. In the first case he could
have calculated Eα2; in the second instance he obtained

E|α – mp| ≈ 2mpq mp
mC pmpqmq, q = 1 – p.

4) Without mentioning Gauss (1816, § 5), Poincaré (pp. 192 – 194)
derived the moments of the [normal] distribution

φ(y) = /πh exp(– hy2) (3)

obtaining

Ey2p =
pp ph

p
22!

)!(2
(4)

and proved, by issuing from formula (2), that the density function
whose moments coincided with the respective moments of the [normal]
law was [normal]. This proposition was, however, due to Chebyshev
(1887), see also Bernstein (1945/1964, p. 420).

Then Poincaré (pp. 195 – 201) applied his investigation to the
theory of errors. He first approximately calculated E y 2p for the mean
y of a large number n of observations having Eyi = 0 and Eyi

2 = Const,
equated these moments to the moments (4) and thus expressed h
through Eyi

2. This was a mistake: y , being a mean, had a measure of
precision nh rather than h. Poincaré (p. 195) also stated that Gauss had
calculated E y 2; actually, Gauss (1823b, §15) considered the mean
value of ∑yi

2/n.
The main point here and on pp. 201 – 206, where Poincaré

considered the mean values of (y1 + y2 + … + yn)
2p with identical and

then non-identical distributions and Eyi = 0, was a non-rigorous proof
of the CLT: for errors of sensiblement the same order and constituting
une faible part of the total error, the resulting error follows
sensiblement the Gauss law (p. 206). For Poincaré, the theory of
probability was still an applied science as he himself actually stated,
see item 1) above.

Also for proving the normality of the sum of errors Poincaré (pp.
206 – 208, only in 1912) introduced characteristic functions which did
not conform to their modern definition. Nevertheless, he was able to
apply the Fourier formulas for passing from them to densities and back.
These functions were

f(α) = Σpx eαx, f(α) = αφ( ) xx e dx (5)

and he noted that

f (α) = 1 + αEx/1! + α2Ex2/2! + …                                          (6)

5) Homogeneous [Markov chains]. Poincaré provided interesting
examples which can be interpreted in the language of these chains.
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a) He (p. 150) assumed that all the asteroids moved along one and
the same circular orbit, the ecliptic, and explained why they were
uniformly scattered across it. Denote the longitude of a certain minor
planet by l = at + b where a and b are random and t is the time, and,
by φ(a; b), the continuous joint density function of a and b. Issuing
from the expectation

Eeiml =   ( )φ ; im at ba b e dadb

(which is the appropriate characteristic function in the modern sense),
Poincaré not very clearly proved his proposition that resembled the
celebrated Weyl theorem (the terms of the sequence {nx} where x is
irrational and n = 1, 2, … and the braces mean drop the integral part
are uniformly distributed on a unit interval). The place of a planet in
space is only known with a certain error, and the number of all
possible arrangements of the asteroids on the ecliptic can therefore be
assumed finite whereas the probabilities of the changes of these
arrangements during time period [t; t + 1] do not depend on t. The
uniform distribution of the asteroids might therefore be justified by the
ergodic property of homogeneous Markov chains having a finite
number of possible states.

b) The game of roulette. A circle is alternately divided into a large
number of congruent red and black sectors. A needle is whirled with
force along the circumference of the circle, and, after a great number
of revolutions, stops in one of the sectors. Experience proves that the
probabilities of red and black coincide and Poincaré (p. 148) attempted
to justify that fact. Suppose that the needle stops after travelling a
distance s (2π < s < A). Denote the corresponding density by φ(x), a
function continuous on [2π; A] with a bounded derivative on the same
interval. Then, as Poincaré demonstrated, the difference between the
probabilities of red and black tended to zero as the length of each red
(and black) arc became infinitesimal (or, which is the same, as s
became infinitely large). He based his proof on the method of arbitrary
functions (Khinchin 1961/2004, pp. 421 – 422; von Plato 1983) and
sketched its essence. Poincaré also indicated that the rotation of the
needle was unstable: a slight change in the initial thrust led to an
essential change in the travelled distance (and, possibly, to a change
from red to black or vice versa).

c) Shuffling a deck of cards (p. 301). In an extremely involved
manner, by applying hypercomplex numbers, Poincaré proved that
after many shuffling all the possible arrangements of the cards tended
to become equally probable.

6) Mathematical treatment of observations. In a posthumously
published Résumé of his work, Poincaré (1921/1983, p. 343) indicated
that the theory of errors naturally was his main aim in the theory of
probability. His statement reflected the situation in those times. In his
treatise he (pp. 169 – 173) derived the normal distribution of
observational errors mainly following Gauss; then, like Bertrand, he
changed the derivation by assuming that not the most probable value
of the estimator of the [location parameter] coincided with the
arithmetic mean, but its mean value. He (pp. 186 – 187) also noted that,
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for small absolute errors x1, x2, …, xn, the equality of f(z) to the mean
value of f(xi), led to z, the estimate of the real value of the constant
sought, being equal to the arithmetic mean of xi. It seemed to him that
he thus corroborated the Gauss postulate. In the same context Poincaré
(p. 171) argued that everyone believed that the normal law was
universal: experimenters thought that that was a mathematical fact and
mathematicians believed that it was experimental. Poincaré referred to
the oral statement of Lippmann, an author of a treatise on
thermodynamics.

Finally, Poincaré (p. 188) indicated that the [variance] of the
arithmetic mean tended to zero with the increase in the number of
observations and referred to Gauss (who nevertheless had not stated
anything at all about the case of n  . Nothing, however, followed
since other linear means had the same property, as Markov
(1899a/1951, p. 250) stated. Poincaré himself (pp. 196 – 201 and 217)
twice proved the [consistency] of the arithmetic mean. In the second
case he issued from a characteristic function of the type of (5) and (6)
and passed on to the characteristic function of the arithmetic mean. He
noted that, if that function could not be represented as (6), the
consistency of the arithmetic mean was questionable, and he illustrated
that fact by the Cauchy distribution. Perhaps because of all this
reasoning on the mean Poincaré (p. 188) declared that Gauss’ rejection
of his first substantiation of the MLSq was assez étrange and
corroborated this conclusion by remarking that the choice of the
[parameter of location] should not be made independently from the
distribution. Gauss (1823b) came to the opposite conclusion, but he
restricted his attention to practically occurring distributions.

Poincaré (pp. 217 – 218) also stated that very small errors made it
impossible to obtain absolute precision as n  . More properly, this
fact is explained by the non-evenness of the law of distribution, the
variability of that law and some interdependence of the observations.

7) Randomness. See § 7.6.2.
Poincaré’s almost total failure to refer to his predecessors except

Bertrand testifies that he was not duly acquainted with their work.
Furthermore: in 1912 he was already able to, but did not apply Markov
chains. At the same time, however, he became the author of a treatise
that for about 20 years had remained the main writing on probability in
Europe. Le Cam’s declaration (1986, p. 81) that neither Bertrand, nor
Poincaré appeared to know the theory was unjust: he should have
added that, at the time, Markov was apparently the only one who did
master probability.

7.6. Supplement to § 7.4. I ought to discuss Bertrand’s problem
about the random chord and I seize the opportunity to introduce
geometric probability and the notion of randomness.

7.6.1. Geometric Probabilities. These were decisively
introduced in the 18th century although the definition of the notion
itself only occurred in the mid-19th century. Newton (§ 2.4.3) was the
first to think about geometric probability. Beginning with Nikolaus
Bernoulli (1709/1975, pp. 296 – 297), see also Todhunter (1865, pp.
195 – 196), each author dealing with continuous laws of distribution
effectively applied geometric probability. The same can be said about
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Boltzmann (1868/1909, p. 49) who defined the probability of a system
being in a certain phase as the ratio of the time during which it is in
that time to the whole time of the motion. Ergodic theorems can be
mentioned, but they are beyond our boundaries.

However, it was Buffon who expressly studied the new notion. The
first report on his work likely written by him himself was Anonymous
(1735). Here is his main problem: A needle of length 2r falls randomly
on a set of parallel lines. Determine the probability P that it intersects
one of them. It is seen that

P = 4r/πa (7)

where a > 2r is the distance between adjacent lines. Buffon himself
had, however, only determined the ratio r/a for P = 1/2. His main aim
was (Buffon 1777/1954, p. 471) to put geometry in possession of its
rights in the science of the accidental. Many commentators described
and generalized the problem above. The first of them was Laplace
(1812/1886, p. 366) who noted that formula (7) enabled to determine
[with a low precision] statistically the number π.

A formal definition of the new concept was only due to Cournot
(1843, § 18). More precisely, he offered a general definition for a
discrete and a continuous random variable by stating that probability
was the ratio of the étendue of the favourable cases to that of all the
cases. We would now replace étendue by measure (in particular, by
area).

Michell (1767) attempted to determine the probability that two stars
were close to each other. By applying the Poisson distribution,
Newcomb (1859 – 1861, 1860, pp. 137 – 138) calculated the
probability that some surface with a diameter of 1° contained s stars
out of N scattered “at random” over the celestial sphere and much later
Fisher (Hald 1998, pp. 73 – 74) turned his attention to that problem.
Boole (1851/1952, p. 256) reasoned on the distinction between a
uniform and any other law of distribution:

A random distribution meaning thereby a distribution according to
some law or manner, of the consequences of which we should be
totally ignorant; so that it would appear to us as likely that a star
should occupy one spot of the sky as another. Let us term any other
principle of distribution an indicative one.

His terminology is now unsatisfactory, but his statement shows that
Michell’s problem had indeed led to deliberations of a general kind.

Determine the probability that a random chord of a given circle is
shorter than the side of an inscribed equilateral triangle (Bertrand
1888a, p. 4). This celebrated problem had been discussed for more
than a century and several versions of uniform randomness were
studied. Bertrand himself offered three different solutions, and it was
finally found out that, first an uncountable number of solutions was
possible, and, second, that the proper solution was probability equals
1/2 and I note that it corresponded to la perfaite perplexité de notre
esprit (§ 5). Thus ended the protracted discussion.

For a modern viewpoint on geometric probability see Kendall &
Moran (1963); in particular, following authors of the 19th century (e.g.,
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Crofton 1869, p. 188), they noted that it might essentially simplify the
calculation of integrals. Then, Ambartzumian (1999) indicated that
geometric probability and integral geometry are connected with
stochastic geometry.

7.6.2. Randomness is a fundamental notion which inevitably enters
statistics. For a popular discussion of recent mathematical efforts to
define it, see Chaitin (1975). The history of that notion begins in
antiquity; Aristotle and other early scientists and philosophers
attempted to define, or at least to throw light upon randomness. His
examples of random events are a sudden meeting of two acquaintances
(Phys. 196b30) and a sudden unearthing of a buried treasure
(Metaphys. 1025a). In both cases the event occurred without being
aimed at and in addition they illustrate one of Poincaré’s explanations
(interpretations) of randomness (1907), then incorporated in his
popular book (1908) and in his treatise (1912/1987, p. 4): if
equilibrium is unstable,

A very small cause which escapes us determines a considerable
effect […] and we say that that effect is due to chance.

Many authors had been repeating Aristotle’s first example and
Cournot’s (1843, § 40) explanation can also be cited:

Events occurring as a combination or meeting of phenomena which
apparently belong to independent series [but] happening as ordered by
causality, are called fortuitous, or results of hazard.

Poincaré could have mentioned a coin toss. His deliberations (also
see below) heralded the beginning of the modern period of studying
randomness. However, Poincaré certainly had predecessors who only
failed to mention directly randomness. Among them was the ancient
physician Galen (1951, p. 202): In old men even the slightest causes
produce the greatest change; Pascal (1669/2000, p. 675): Had
Cleopatra’s nose been shorter, the whole face of the Earth would have
changed; and Maxwell (1873a/1882, p. 364) who referred to the
unstable refraction of rays within biaxial crystals. Elsewhere he
(1859/1927, p. 295 – 296) left a most interesting statement:

There is a very general and very important problem in Dynamics.
[...] It is this: Having found a particular solution of the equations of
motion of any material system, to determine whether a slight
disturbance of the motion indicated by the solution would cause a
small periodic variation, or a total derangement of the motion.

Given a large number of births, regularities of such mass random
events will, however, certainly reveal themselves but Aristotle did not
connect such events with randomness. Corruption of, or deviation
from laws of nature also means randomness, and this idea can be
traced at least until Lamarck who stated that the deviations from the
divine lay-out of the tree of animal life had been occasioned by a
cause accidentelle (Lamarck 1815, p. 133).

There also, on p. 173, he indicated that the spontaneous generation
of organisms was caused by a très-irrégulière force but did not
mention randomness. When considering the state of the atmosphere,
Lamarck (1800 – 1811/1800, p. 76) stated that it was disturbed by two
kinds of causes, including variables, inconstantes et irrégulières.
Again, no mention of randomness, but then he (1810 – 1814/1959, p.



54

632) denied it: no part of nature disobeys invariable laws; therefore
that, which is called chance, does not exist.

Louis Pasteur definitively disproved spontaneous generation, but
until then it was apparently always considered random. Witness indeed
Harvey (1651/1952, p. 338):

Creatures that arise spontaneously are called automatic […]
because they have their origin from accident, the spontaneous act of
nature.

Harvey did not say anything about the essence of accidents, but it
seems that he thought them aimless, identified them with lack of law.
Many other scientists denied randomness as Lamarck did.

I will now mention Laplace (1814/1995, p. 9) who stated that the
arrangement of printed letters in the word Constantinople is not due to
chance; all arrangements are equally unlikely, but that word has a
meaning and it is incomparably more probable that someone had
written it on purpose. He equated randomness with lack of purpose.
This example shows that human judgement is needed for
supplementing mathematical reasoning about randomness; intersection
of events (above) can be additionally interpreted as lack of purpose.

Poincaré (1896/1912, p. 1) also formulated a dialectical statement
about determinism and randomness much broader than the one
following from deviation from laws of nature: it legitimizes
randomness and indirectly defines it but does not say anything about
regularities of mass random events:

In no field [of science] do exact laws decide everything, they only
trace the boundaries within which randomness is permitted to move.
According to this understanding, the word randomness has a precise
and objective meaning.

He thus restricted the action of his pattern small cause –
considerable effect. Exact laws tolerate randomness, cf. Newton’s
statement about the system of the world (§ 2.4.3). He recognized
randomness, although this time only in its uniform version as
witnessed by the expression blind fate. Whether in English, or in
equivalent French and German terms, scientists of the 17th and 18th

centuries, if discussing randomness, mostly understood it in this sense.
For example, Arbuthnot (§ 1.3.1-1), only compared Design with a
discrete uniform distribution of the sexes of the newborn babies.

Maupertuis (1745/1756, pp. 120 – 121) indicated that the seminal
liquid of chaque individu most often contained parties similar to those
of their parents, but he (p. 109) also mentioned rare cases of a child
resembling one of his remote ancestors as well as mutations (p. 121, a
later term). It seems that Maupertuis thus recognized randomness with
a multinomial distribution, but, when discussing the origin of eyes and
ears in animals, he (1751/1756, p. 146) only compared une attraction
uniforme & aveugle [blind] and quelque principe d’intelligence (and
came out in favour of design).

A chaotic process engendered by a small corruption of the initial
conditions of motion can lead to its exponential deviation. Only in a
sense this may be understood as an extension of Poincaré’s pattern
small cause – considerable effect. However complicated and
protracted is a coin toss, it has a constant number of outcomes whose
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probabilities persist, whereas chaotic motions imply rapid increase of
their instability with time and countless positions of their possible
paths. Their importance in mechanics and physics is unquestionable.
My explanation of the comparatively new concept is only qualitative,
but I have not seen any better.

In statistics, a random variable should be statistically stable, but in
natural science this restriction is not necessary. Lamarck (see above)
provided a good example of the latter phenomena: the deviations from
the divine lay-out of the tree of animal life. Kolmogorov (1983/1992, p.
515) properly stated:

We should distinguish between randomness in the wider sense
(absence of any regularity) and stochastic random events (which
constitute the subject of probability theory).

There seems to be no quantitative criteria of statistical stability
which apparently characterizes observations belonging to a single law
of distribution, to a single population. However, practice often has to
work in its absence; example: sampling estimation of the content of
the useful component in a deposit. Choose other sample points, and it
will be unclear whether they possess the same statistical properties
(Tutubalin 1972/2011, § 1.2). But, according to scientific folklore,
pure science achieves the possible by rigorous methods, whereas
applications manage the necessary by possible means.

I provide now an example of a false conclusion caused by lack of
statistical stability of the considered deviations. William Herschel
(1817/1912, p. 579), who certainly knew nothing either about the size
of stars or of their belonging to different spectral classes, decided that
the size of a randomly chosen star will not much differ from the mean
size of all of them. The sizes of stars are enormously different and
their mean size is a purely abstract notion. There are stars whose radii
are greater than the distance between the Sun and the Earth. Again, ex
nihilo nihil fit.

Earlier, De Moivre (1733/1756, pp. 251 – 252) refused to admit
randomness in the wide sense:

Absurdity follows, if we should suppose the Event not to happen
according to any Law, but in a manner altogether desultory and
uncertain; for then the Event would converge to no fixt Ratio at all.

8. The First Half of the 20th Century
8.1. Karl Pearson (1857 – 1936) was an applied mathematician and

philosopher and the creator of biometry, the main branch of what later
became mathematical statistics.

Pearson studied physics on which he expressed some extremely
interesting ideas. Thus, negative matter exists in the universe (1891, p.
313); all atoms in the universe of whatever kind appear to have begun
pulsating at the same instant (1887, p. 114) and physical variations
effects were perhaps due to the geometrical construction of our space
(Clifford 1885/1886, p. 202). He did not, however, mention
Riemannian spaces whereas it is nowadays thought that the curvature
of space-time is caused by forces operating in it. Remarkable also was
Pearson’s idea (1892, p. 217) about the connection of time and space
subjectively expressed as:
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Space and time are so similar in character, that if space be termed
the breadth, time may be termed the length of the field of perception.

Mach (1897), in his Introduction, mentioned K. P. in the first edition
of his book which appeared after 1892:

The publication [of the Grammar of Science] acquainted me with a
researcher whose erkenntnisskritischen [Kantian] ideas on every
important issue coincide with my own notions and who knows how to
oppose, candidly and courageously, extra-scientific tendencies in
science.

Again in the same contribution we find Pearson’s celebrated maxim
(1892, p. 15): The unity of all science consists alone in its method, not
in its material. I return to this statement in § 9. Here, I indicate that
Pearson, a Fellow of the Royal Society since 1896, was unable to take
up the invitation of Newcomb, the president of the forthcoming
International Congress of Arts and Sciences (St. Louis, 1904), to
deliver there a talk on methodology of science (Sheynin 2002, p. 163,
note 8).

At the very end of the 19th century, by founding the celebrated
Biometrika, Galton, Pearson and Weldon (who died in 1906)
established the Biometric school which aimed at the creation of
methods of treating biological observations and of studying statistical
regularities in biology. Pearson became the chief (for many years, the
sole) editor of that periodical. In the Editorial, in its first issue of 1902,
we find a reference to Darwin:

[E]very idea of Darwin – variation, natural selection […] – seems
at once to fit itself to mathematical definition and to demand statistical
analysis.

K. P. compiled contributions on Weldon (1906) and on Galton’s life
and achievements, a fundamental and most comprehensive tribute to
any scholar ever published (1914 – 1930). Incidentally, Chr. Bernoulli
(1841, p. 389) had coined the word Biometric (in German) which
referred to mass observations.

The immediate cause for establishing Biometrika seems to have
been scientific friction and personal disagreement between Pearson
and Weldon on the one hand, and biologists, especially Bateson, on the
other hand, who exactly at that time had discovered the unnoticed
Mendel. It was very difficult to correlate Mendelism and biometry: the
former studied discrete magnitudes while the latter investigated
continuous quantitative variations. However, in 1926 Bernstein
(Kolmogorov 1938, § 1) proved that under wide assumptions the
Galton law of inheritance of quantitative traits was a corollary of the
Mendelian laws.

The speedy success of the Biometric school had been to a large
extent prepared by the efforts of Edgeworth (1845 – 1926); his
collected writings appeared in 1996. Pearson’s results in statistics
include the development of the elements of correlation theory and
contingency; introduction of the Pearsonian curves for describing
empirical distributions; and a derivation of a most important chi-
squared test for checking the correspondence of experimental data
with one or other law of distribution, as well as the compilation of
many important statistical tables.
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Pearson’s posthumously published lectures (1978) examined the
development of statistics in connection with religion and social
conditions of life. On the very first page we find the statement about
the importance of the history of science: I do feel how wrongful it was
to work for so many years at statistics and neglect its history. However,
he provided a false appraisal of the Bernoulli LLN (§ 2.4.5).

Pearson attempted, often successfully, to apply the statistical
method, and especially correlation theory, in many branches of science.
Here is his interesting pronouncement (1907, p. 613):

I have learnt from experience with biologists, craniologists,
meteorologists, and medical men (who now occasionally visit the
biometricians by night!) that the first introduction of modern statistical
method into an old science by the layman is met with characteristic
scorn; but I have lived to see many of them tacitly adopting the very
processes they began by condemning.

It is interesting to note the different views held of K. P. by other
scientists. Kolmogorov (1947, p. 63) stated that

The modern period in the development of mathematical statistics
began with the fundamental works of English statisticians (K. Pearson,
Student, Fisher) which appeared in the 1910s, 1920s and 1930s. Only
in the contributions of the English school did the application of
probability theory to statistics cease to be a collection of separate
isolated problems and became a general theory of statistical testing of
stochastic hypotheses (i. e., of hypotheses about laws of distribution)
and of statistical estimation of parameters of these laws.

Kolmogorov (p. 64 of same paper) had not then duly appreciated
Fisher, and here is his possible explanation:

The investigations made by Fisher, the founder of the modern
British mathematical statistics, were not irreproachable from the
standpoint of logic. The ensuing vagueness in his concepts was so
considerable, that their just criticism led many scientists (in the Soviet
Union, Bernstein) to deny entirely the very direction of his research.

A year later Kolmogorov (1948b/2002, p. 68) criticized the
Biometric school:

Notions held by the English statistical school about the logical
structure of the theory of probability which underlies all the methods
of mathematical statistics remained on the level of the eighteenth
century.

Fisher (1922, p. 311) expressed similar criticisms as did Chuprov
(Sheynin 1990/2011, p. 149); Chuprov (Ibidem) informed his
correspondents that Continental statisticians (especially Markov) did
not wish to recognize Pearson.

Here are some other opinions about Pearson.
1) Bernstein (1928/1964, p. 228), when discussing a new cycle of

problems in the theory of probability which comprises the theories of
distribution and of the general non-normal correlation, wrote:

From the practical viewpoint the Pearsonian English school is
occupying the most considerable place in this field. Pearson fulfilled
an enormous work in managing statistics; he also has great theoretical
merits, especially since he introduced a large number of new concepts
and opened up practically important paths of scientific research. The
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justification and criticism of his ideas is one of the central problems of
current mathematical statistics. Charlier and Chuprov, for example,
achieved considerable success here whereas many other statisticians
are continuing Pearson’s practical work, definitely losing touch with
probability theory …

2) Fisher, letter of 1946 (Edwards 1994, p. 100):
He was singularly unreceptive to and often antagonistic to

contemporary advances made by others in [his] field. [Otherwise] the
work of Edgeworth and of Student, to name only two, would have
borne fruit earlier.

Fisher (1937, p. 306) also accused Pearson: his plea of
comparability [between the methods of moments and maximum
likelihood] is […] only an excuse for falsifying the comparison […].
Pearson died in 1936, but his son, Egon, kept silent.

3) But there are also testimonies of a contrary nature: Mahalanobis,
in a letter of 1936 (Ghosh 1994, p. 96): he always looked upon [K. P.]
as his master, and upon himself, as one of his humble disciples. And
Newcomb, who had never been Pearson’s student, wrote in a letter of
1903 to him (Sheynin 2002, p. 160):

You are the one living author whose production I nearly always
read when I have time and can get at them, and with whom I hold
imaginary interviews while I am reading.

4) Hald (1998, p. 651) offered a reasonable general description of
one aspect of the Biometric school:

Between 1892 and 1911 he [Pearson] created his own kingdom of
mathematical statistics and biometry in which he reigned supremely,
defending its ever expanding frontiers against attacks. […] He was not
a great mathematician, but he effectively solved the problems head-on
by elementary methods.

5) Fisher (1956/1990, p. 3), however, ungenerously criticized
Pearson for the weakness of his mathematical and scientific work.

In Russia, Chuprov and Slutsky defended Pearson's work against
Markov's opposition (Sheynin 1990/2011, §§ 7.4 and 7.6). Chuprov
wished to unite the Continental direction of statistics with biometry,
but did not achieve real success.

Lenin’s criticism of Pearson was in itself a sufficient cause of the
negative Soviet attitude towards Pearson. Maria Smit’s statement
(1934, pp. 227 – 228) was its prime example: his curves are based

On a fetishism of numbers, their classification is only mathematical.
Although he does not want to subdue the real world as ferociously as it
was attempted by […] Gaus [Smit’s spelling], his system nevertheless
only rests on a mathematical foundation and the real world cannot be
studied on this basis at all.

In 1931 this troglodyte (Corresponding member of the Soviet
Academy of Sciences since 1939!) declared: The crowds of arrested
saboteurs are full of statisticians (Sheynin 1998, p. 533, literal
translation). She likely participated in enlarging that crowd.

However, the tone of the item Pearson, in the third edition of the
Great Sov. Enc. (vol. 19, 1975/English edition: same volume, 1978, p.
366) was quite different: he considerably contributed to the
development of mathematical statistics and Lenin had only criticized
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his subjective-idealistic interpretation of the nature of scientific
knowledge.

8.2. Markov is known to have opened up a new direction of
probability theory dealing with dependent events, and in particular, to
have studied the Markov chains. At the same time, he refused to apply
his chains to problems in natural sciences, did not apply the allegedly
meaningless term random magnitude (as it is still called in Russia) and,
similarly, the expressions normal law and coefficient of correlation
were absent in his works. Like a student of Chebyshev that he was, he
underrated the then emerging axiomatic approach to probability as
well as the theory of functions of a complex variable (A. A.
Youshkevich 1974, p. 125).

During his last years, in spite of extremely difficult conditions of
life in Russia and his worsened health, he completed (perhaps not
entirely) the last posthumously published edition of his Treatise but
insufficiently described there the findings of the Biometric school;
such scholars as Yule and Student (Gosset) were not mentioned and he
(1900/1924, pp. 10, 13 – 19 and 24) even wrongly stated that he
transferred probability to the realm of pure mathematics just by
proving the addition and multiplication theorems. Actually, to some
extent he became a victim of his own rigidity; he failed, or did not
wish to notice the new tide of opinion in statistics, or even probability
theory, see Sheynin (2006) and the text above.

Markov (1888) compiled a table of the normal distribution which
gave it to 11 digits for the argument x = 0 (0.001) 3 (0.01) 4.8. Two
such tables, one of them Markov’s, and the other, published ten years
later, remained beyond compare up to the 1940s (Fletcher et al
1946/1962).

Markov included some innovations in the last edition of his Treatise:
a study of statistical series, linear correlation. He determined the
parameters of lines of regression, discussed random variables
possessing certain densities and included a reference to Slutsky (1912),
whom he previously barely recognized, but paid no attention either to
the chi-squared test or to the Pearsonian curves.

The so-called Gauss – Markov theorem invented by Lehmann
(1951), who followed Neyman’s mistake (which he himself later
acknowledged), never existed.

8.3. The Continental Direction of Statistics. At the end of the 19th,
and in the beginning of the 20th century, statistical investigations on
the Continent were chiefly restricted to the study of population
whereas in England scientific statistics was mostly applied to biology.
The so-called Continental direction of statistics originated as the result
of the work of Lexis whose predecessors had been Poisson, Bienaymé,
Cournot and Quetelet. Poisson and Cournot examined the significance
of statistical discrepancies for a large number of observations without
providing examples. Cournot also attempted to reveal dependence
between the decisions reached by judges (or jurors). Bienaymé (1839)
was interested in the change in statistical indicators from one series of
trials to the next one and Quetelet (§ 7.1) investigated the connections
between causes and effects in society, attempted to standardize
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statistical data worldwide and, following Süssmilch (§ 1.3), created
moral statistics.

At the same time statisticians held that the theory of probability was
only applicable to statistics if equally possible cases were in existence,
and the appropriate probability remained constant (§ 2.4.5).

8.3.1. Lexis (1879) proposed a distribution-free test for the equality
of probabilities in different series of observations; or, a test for the
stability of statistical series. Suppose that there are m series of ni

observations, i = 1, 2, …, m, and that the probability of success p was
constant throughout. If the number of successes in series i was ai, the
variance of these magnitudes could be calculated by two independent
formulas (Lexis 1879, § 6)

σ1
2 = pqn, σ2

2 = [vv]/(m – 1)                                                     (1; 2)

where n was the mean of ni, vi, the deviations of ai from their mean,
and q = 1 – p. Formula (2) was due to Gauss, see (§ 6); he also knew
formula (1), see Gauss, W-8, p. 133. The frequencies of success could
also be calculated twice. Note however that Lexis applied the probable
error rather than the variance and mistakenly believed that the relation
between the mean square error and the probable error was distribution-
free. Lexis (§ 11) called the ratio

Q = σ2/σ1

the coefficient of dispersion. For him, the case Q = 1 corresponded to
normal dispersion (with admissible random deviations from unity); he
called the dispersion supernormal, and the stability of the observations
subnormal if Q > 1 (and indicated that the probability p was not then
constant); finally, Lexis explained the case Q < 1 by dependence
between the observations, called the appropriate variance subnormal,
and the stability, supernormal. He did not, however, pay attention to
this possibility. His coefficient was the ratio of the appearance of the
studied event as calculated by the Gauss formula to that peculiar to the
binomial distribution.

Lexis hardly thought about calculating the mean value and variance
of Q (and in any case that was a serious problem). In 1916, Markov,
and, much better, Chuprov derived EQ and, in a manuscript of 1916 or
1917, Chuprov derived the mean square error of Q.

8.3.2. In 1910 Markov and Chuprov, in their letters to each other
(Ondar 1977), proved that some of the Lexian considerations were
wrong. Then, in 1918 – 1919, Chuprov formulated the shortcomings of
Q as a criterion but, strangely enough, he somehow kept to the Lexian
theory until 1921. Indeed, in a letter of 30 Jan. 1921 to a friend
Chuprov wrote:

One of the most important doctrines of theoretical statistics, which I
until now entirely accepted and professed, the Lexian theory of
stability of statistical figures is to a large extent based on a
mathematical misunderstanding.

Concerning this paragraph see Sheynin (1990/2011, pp. 140 – 143).
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The refutation of those Lexian considerations was apparently barely
noticed. Bernstein (1928/1964, p. 224) called them the first important
step of the scientific treatment of statistical materials and even much
later Särndal (1971, pp. 376 – 377) who described this subject did not
mention any criticisms of Lexis. As it seems, Bernstein also positively
although obliquely referred to the non-existing Bortkiewicz’ law of
small numbers (1898): Poisson’s investigations had been recently
specified and essentially supplemented. Yes, Lexis thought of basing
statistical investigations on a stochastic foundation (although so did
Jakob Bernoulli), and he also made a forgotten attempt to define
stationarity and trend.

In a paper devoted to the application of probability theory to
statistics, Lexis (1886, pp. 436 – 437) stated that the introduction of
equipossibility led to the subjectivity of the theory of probability. He
did not say that the existence of equally possible cases was not
necessary. These cases haunted him (Lexis 1913, p. 2091).

8.3.3. Bortkiewicz had introduced his own test, Q′, not coinciding
with the Lexian Q, and equal to the ratio of two dependent random
variables, call them ξ and η. Unlike Q, Q′ could not be less than 1
(1898, p. 31). Later Bortkiewicz (1904, p. 833) noted that EQ = Q′ but
mistakenly justified this equality by believing that, for those dependent
variables, Eξ/η = Eξ/Eη. Then, he (1918, p. 125n) unjustifiably
admitted that the equality was only insignificantly approximate.
Chuprov (1922) devoted a paper to that subject.

See my discussion (1990/2011, pp. 59 – 62) of the Lexian
innovation. In particular, I quoted Bortkiewicz’ letter to Chuprov of 29
March 1911: Poisson cannot at all be considered the own father of the
law of large numbers since he, Bortkiewicz, did not regard a low level
of the probability of the studied event as the decisive point. Rarity, he
continued, can mean a small number of occurrences of that event when
the number of trials was also small. He thus undermined his alleged
law! Delicate Chuprov did not comment.

8.3.4. The Two Statistical Streams. Bauer (1955, p. 26)
investigated how the Biometric school and the Continental direction of
statistics had been applying analysis of variance and concluded (p. 40)
that their work was going on side by side but did not tend to
unification. For more details about Bauer`s study see Heyde & Seneta
(1977, pp. 57 – 58) where it also correctly indicated that, unlike the
Biometric school, the Continental direction had concentrated on
nonparametric statistics. Chuprov can be certainly mentioned here. He
achieved some important results; for example, he discovered finite
exchangeability (Seneta 1987).

However, his formulas, being of considerable theoretical interest,
were almost useless due to complicated calculations involved
(Romanovsky 1930, p. 216). In addition, he had not paid due attention
to notation. Thus, in one case he (1923, p. 472) applied two-storey
superscripts and two-storey subscripts in the same (five-storey!)
formula. Hardly has any other author (not even Bortkiewicz) allowed
himself to take such liberties, to expect his readers to understand
suchlike monsters.



62

For his part, Bortkiewicz just had not respected his readers. Winkler
(1931, p. 1030) quoted his letter (but did not provide its date) in which
Bortkiewicz mentioned that he expected to have five readers of his
(unnamed by Winkler) publication. Statisticians had not been
mathematically educated and despised mathematics; for them,
Bortkiewicz remained an alien body.

I myself (Gnedenko & Sheynin 1978/2001, p. 275), probably
following other authors, suggested that mathematical statistics
properly originated as the coming together of the two streams.
However, now I correct myself. At least until the 1920s, say, British
statisticians had continued to work all by themselves. E. S. Pearson
(1936 – 1937), in his study of the work of his father, had not
commented on Continental statisticians and the same is true about
other such essays (Mahalanobis 1936; Eisenhart 1974). I believe that
English, and then American statisticians for the most part only
accidentally discovered some findings already made by the
Continental school. Furthermore, the same seems to happen nowadays
as well. Even Hald (1998) called his book History of Mathematical
Statistics, but barely studied the work of that school.

In 1919 there appeared in Biometrika an editorial entitled
Peccavimus! (we were guilty). Its author, Pearson, corrected his
mathematical and methodological mistakes made during several years
and revealed mostly by Chuprov (Sheynin 1990a/2011, p. 75) but he
had not taken the occasion to come closer to the Continental
statisticians. In 2001, five essays were published in Biometrika, vol. 88,
commemorating its centenary. They were devoted to important
particular issues, but nothing was said in that volume about the history
of the Biometric school, and certainly nothing about Continental
statisticians.

8.3.5. Statistics and Sociology in the Soviet Union. Concerning
the general situation there, see Sheynin (1998).

Sociology studies society, its institutions, population, existing
tendencies and attempts to discern possible developments. Statistics is
certainly essential for such investigations, and many statisticians from
Graunt to Quetelet to modern specialists can be cited here. Here, I am
only concerned with the year 1954 and begin by quoting two authors
(Schlözer 1804, p. 51) and Truesdell (1981/1984, pp. 115 – 117) who
invented two terms, plebiscience which describes modern times and
prolescience of the future:

Statistics and despotism are incompatible.
Prolescience will confirm and comfort the proletariat in all that will

by then have been ordered to believe. […] That will be mainly social
science.

Süssmilch attempted to reveal divine order in demography, and
official Soviet statistics regarded statistics as a discipline reduced to
corroborate quantitatively Marxist propositions. Many participants in a
statistical conference held in Moscow in 1954 voiced that opinion
(Anonymous 1954; see also Kotz 1965; Sheynin 1998, pp. 540 – 541).

Only the revolutionary Marxist theory is the basis for developing
statistics as a social science (p. 41); statistics does not study mass
random phenomena (p. 61) which anyway possess no special features
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(p. 74); the LLN is not a mathematical proposition (p. 64); probability
is not the necessary basis of statistics, the theory of stability of
statistical series is a bourgeois theory and even honest bourgeois
statisticians are compelled to violate their professional duty (p. 46, the
notorious Maria Smit, see § 8.1).

K. V. Ostrovitianov (p. 82), the vice-president of the Academy of
Sciences, ignorantly declared that Lenin had completely subordinated
[adapted] the statistical methods of research […] to the class analysis
of the rural population. And, as he menacingly continued, the same
scientific methods cannot be used in astronomy and economics.

His latter statement directly contradicted Kolmogorov’s (pp. 46 – 47)
definition of mathematical statistics who also mentioned several safe
areas of application of the statistical method (studies of the work of
telephone exchanges, management of life insurance, determination of
necessary stocks of foodstuffs) but omitted population statistics. This
subject was dangerous. The census of 1937 was proclaimed worthless
and followed by a decimation of the Central Statistical Directorate: it
revealed a demographic catastrophe occasioned by arbitrary rule,
uprooting of millions, mass hunger and savage witch-hunt. And the
war losses had to be hushed up.

Much later, still in accord with the resolution of the conference,
Riabushkin (1980, p. 498) argued that statistical descriptions should be
inseparably bound with life’s qualitative content. Ten more years had
to pass before Orlov (1990) rejected the decisions of that conference,
revealed the falsifications of Soviet statistics and its backwardness
(certainly known abroad).

9. The Unity of Statistics Consists Alone in Its Method.
Schlözer (1804) called his book Theory of statistics, but it did not

contain any theory in our sense. Bearing in mind other authors of the
first half of the 19th century, I believe that in those times theory of
statistics meant a systematic arrangement of statistical data according
to reasonably chosen indicators.

For that matter, even Achenwall had a theory (of Staatswissenschaft)
in that same sense, and, as it seems, so did Delambre (1819, p. LXVII)
and the London Statistical Society (Anonymous 1839, p. 1). Delambre
argued that statistics ought not to engage in discussions or conjectures
or to aim at perfecting theories, and that Society declared that statistics
does not discuss causes nor reason upon probable effects. True, these
absurd restrictions have been necessarily disregarded (Woolhouse
1873, p. 39), − I would say, they became obsolete, but no theory of
statistics had yet emerged.

The very title of Dufau (1840) called statistics the theory of
studying the laws to which the social events are developing. And,
without mentioning any theories, a kindred idea was pronounced much
earlier (Gatterer 1775, p. 15): Just as in history it is necessary to
investigate not only the Pourquoi, but also the Pourquoi of the
Pourquoi, so it is necessary in statistics to explain the present state of
a nation by its previous states.

This Pourquoi of the Pourquoi likely came from Sophie Charlotte,
Queen of Prussia, apparently from her letter to Leibniz (Krauske 1892,
p. 682). Cf. Cournot (1843, § 106):
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The essential goal of the statistician, just like of any other observer,
is to penetrate as deeply as possible into the knowledge of the essence
of things.

Perhaps Cauchy (1845/1896, p. 242) can also be cited: statistics was
infallible in judging doctrines and institutions.

Here is how Chuprov’s student and the last representative of the
Continental direction, Anderson (1932, p. 243), described the previous
situation of the application of probability in statistics:

Our (younger) generation of statisticians is hardly able to imagine
that mire in which the statistical theory had got into after the collapse
of the Queteletian system, or the way out of it which only Lexis and
Bortkiewicz have managed to discover.

But did they (or Chuprov, whom Anderson later added to them)
really overcome the occurring difficulty? Did they convince
statisticians? In any case, the situation changed only gradually. Only in
the mid-20th century Neyman (1950, p. 4), Mises (1964a, posthumous,
p. 1) and Kendall (1978, p. 1093) stated that mathematical statistics (a
section of the theory of probability, as the two first authors held) was
the mathematical theory of statistics. The relations between probability
theory and mathematical statistics does not directly bear on statistics
and I only note that Kolmogorov (1948a, p. 216) thought that the
theory of probability must be considered the structural part of
mathematical statistics, but that (p. 218) statistics only gradually
ceases to be the applied theory of probability. And (p. 216)
mathematical statistics is a science of the mathematical methods of
studying mass phenomena.

Later, however, Kolmogorov (Anonymous 1954, pp. 46 – 47) only
declared that mathematical statistics is not an applied theory of
probability. Then, mass phenomena is too restrictive. Anyway, much
later Kolmogorov provided quite another definition of mathematical
statistics, see below.

The following two definitions should perhaps be altered by
substituting theory of statistics instead of statistics and statistical data
instead of mass observations; they both will then be in line with the
definitions above.

Fisher (1925, p. 1) argued that statistics is a branch of applied
mathematics and may be regarded as mathematics, applied to
observational data. K. Pearson (1978, p. 3) stated that statistics is the
application of mathematical theory to the interpretation of mass
observations.

Alph. De Candolle (1833, p. 334) and Chaddock (1925, p. 26)
thought that statistics is a branch of mathematics. Here also, this rather
incomplete definition can be altered to conform to those of Neyman,
Mises and Kendall.

According to the comparatively new definition of Kolmogorov &
Prokhorov (1988/1990, p. 138),

Mathematical statistics is a branch of mathematics devoted to
systematizing, processing and utilizing statistical data, or information
on the number of objects in some more or less extensive collection that
have some specific properties.
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They (p. 139) also argued that the method of research, characterized
as the discussion of statistical data, […] is called statistical and
consists in calculating the number of objects in some group or other,
in discussing the distribution of quantitative indicators, applying the
method of sampling and estimating the adequacy of the number of
observations etc (p. 139).

Kolmogorov & Prokhorov’s definition apparently excluded the
theory of errors and in addition it remains unclear whether the
information was raw or corrected, either initially or during
systematization by means of exploratory data analysis, − whether they
incorporated that stage of work into mathematical statistics. See § 7.2
on the difference between mathematical and theoretical statistics.

Many definitions are more or less akin to theirs, although their
authors sometimes discuss statistics instead of theory of statistics or
mathematical statistics. Thus (Butte 1808, p. XI),

Statistics is a science of the art [science and art] of the knowledge
and due estimation of statistical data, of their collection and
systematic analysis.

Zhuravsky (1846, p. 173): statistics is a calculus of categories,
which distributes objects among the categories and counts them in
each category. He thought that statistics is a special and very wide
science. Maxwell (1871/1890, vol. 2, p. 253; 1877, p. 242) defined the
statistical method as an estimation of an average condition of a group
of atoms, as a study of the probable number of bodies in each group
under investigation.

Some modern definitions have been offered by Egon Pearson
(Bartholomew 1995, p. 7), Kendall (1950, p. 130), Kendall &
Buckland (1971), Marriot (1991), Bancroft (1966, p. 530), Kruskal
(1978, p. 1072), Wilks (1968, p. 162), anonymous authors (1968, p.
166; 1985, p. 230) and Dodge (2003, p. 388).

The first two definitions are rather abstract as also, to a lesser extent,
is the fourth one; the others have much in common with Kolmogorov
& Prokhorov’s. And here is Dodge: statistics is a science of collecting,
analysing and interpreting the data (the numerical information
relating to an aggregate of individuals).

Several authors have preferred a narrower and therefore hardly
sufficient definition of statistics. Chuprov, in his unpublished thesis of
1896 (Sheynin 1990/2011, p. 118), as well as Lindley (1984, p. 360)
and Stigler (1986, p. 1) believed that it measures our ignorance or
uncertainty. And Chernoff & Moses (1959, p. 1) even stated that

Today’s statistician will be more likely to say that statistics is
concerned with decision making in the face of uncertainty (than with
processing of data).

Cf. Mahalanobis’ statement of 1950 (Rao 1993, p. 339): The aim of
statistics is to reach a decision on a probabilistic basis, on available
evidence. And Bancroft (1966), remarked that statistical inferences are
made in the face of uncertainty.

Several authors held that statistics is only a method (Fox 1860, p.
331; Miklashevsky 1901, p. 476). Alph. De Candolle (1873, p. 12)
reversed his own much earlier opinion, agreed with that statement and
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even contrasted statistics with mathematics mistakenly arguing that the
latter (only) provided deterministic conclusions.

It is time to formulate my own conclusions.
1. Statistics and statistical method: at the end of § 2 I noted that

these terms are (sometimes) understood as synonyms. More precisely,
the statistical method is almost the same as mathematical statistics or
theory of statistics.

2. Such expressions as stellar or medical statistics mean the
application of the statistical method to stellar astronomy or medicine.

3. Statistical theory or mathematical statistics rather than statistics as
a whole may perhaps be likened to a statistical method or a series of
statistical procedures.

4. Sociology or the science of the life of groups of men in a society
essentially applies the statistical method.

5. The stochastic theory of errors is the application of the statistical
method to the treatment of observations. This statement contradicts the
definition of Kolmogorov & Prokhorov, but I believe that their
understanding of statistical data may well be generalized to include
results of observations or measurements.

6. K. Pearson (§ 8.1) stated that the unity of all science consists
alone in its method … To a certain extent this maxim is borne out by
the essence of statistical method. Kruskal (1978, p. 1082) thought that
statistics has a neighbourly relation with philosophy of science, but I
will argue that statistics ought to be replaced here by statistical method.
Recall also Achenwall (beginning of § 1.1): statistics belongs to a well
digested philosophy.

7. For statistics, the axiomatized theory of probability is useless.
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